线性方程组和矩阵ppt课件

合集下载

线性代数教材讲解ppt课件

线性代数教材讲解ppt课件

a11
A
a21
a12
a22
a1n a2n
am1 am1 amn
矩阵A的
m, n元
简记为
A Amn
aij
mn
aij
.
这m n个数称为A的元素,简称为元.
元素是实数的矩阵称为实矩阵,
元素是复数的矩阵称为复矩阵.
例如
1 9
0 6
3 4
5 3
是一个 2 4 实矩阵,
0
0
单位阵.
0 0 1
线性变换
x1 y1
cosx siny, sinx cosy.
对应 cos sin sin cos
这是一个以原点为中心
旋转 角的旋转变换.
Y P1 x1, y1
Px, y
O
X
三、小结
(1)矩阵的概念 m行n列的一个数表
a11
A
a21
a12
且对应元素相等,即
aij bij i 1,2,,m; j 1,2,,n,
则称矩阵 A与B相等,记作 A B.
(8)线性变换与矩阵之间关系:
例1 n个变量x1, x2,, xn与m个变量y1, y2,, ym之
间的关系式
y1 a11x1 a12 x2 a1n xn ,
y2 a21x1 a22 x2 a2n xn ,
13 2
6 2
2i 2
是一个
33
复矩阵,
2 2 2
1 2 是一个 3 1 矩阵,
4
2 3 5 9
4
是一个 1 4 矩阵,
是一个 11 矩阵.
矩阵与行列式有本质的区别, 行列式是一个算式, 其行数和列数相同,一个数字行列式经过计算 可求得其值, 而矩阵仅仅是一个数表, 它的行数和 列数可以不同.

线性代数第2章矩阵PPT课件

线性代数第2章矩阵PPT课件
线性代数第2章矩阵ppt 课件
目录 CONTENT
• 矩阵的定义与性质 • 矩阵的逆与行列式 • 矩阵的秩与线性方程组 • 矩阵的特征值与特征向量 • 矩阵的对角化与相似变换
01
矩阵的定义与性质
矩阵的基本概念
矩阵是一个由数字组 成的矩形阵列,行数 和列数可以不同。
矩阵的维度是指行数 和列数的数量。
矩阵的元素通常用方 括号括起来,并用逗 号分隔。
矩阵的运算规则
01
02
03
加法
两个矩阵的加法是将对应 位置的元素相加。
数乘
一个数乘以一个矩阵是将 该数乘以矩阵的每个元素。
乘法
两个矩阵的乘法只有在第 一个矩阵的列数等于第二 个矩阵的行数时才能进行。
特殊类型的矩阵
对角矩阵
对角线上的元素非零,其他元素为零的矩阵。
行列式的递推公式法
递推公式法是一种常用的计算行列式 的方法,它通过递推关系式将n阶行 列式转化为低阶行列式进行计算。这 种方法在计算较大行列式时非常有效。
03
矩阵的秩与线性方程组
矩阵的秩
矩阵的秩定义
矩阵的秩是其行向量组或列向量 组的一个极大线性无关组中向量 的个数。
矩阵的秩的性质
矩阵的秩是唯一的,且满足行秩 等于列秩。矩阵的秩等于其任何 子矩阵的秩。
02
特征值和特征向量与矩阵的乘法 运算有关,即如果Ax=λx,那么 (kA)x=(kλ)x,其中k是任意常数。
03
特征值和特征向量与矩阵的转置 运算有关,即如果Ax=λx,那么 A^Tx=(λ^T)x。
特征值与特征向量的计算方法
定义法
根据特征值和特征向量的定义, 通过解方程组Ax=λx来计算特
征值和特征向量。

线性代数7PPT课件

线性代数7PPT课件

向量空间的性质
零向量和负向量的存在
在向量空间中,存在一个特殊的向量,称为零向量,它与任何向量进行加法运算结果仍为 该向量本身。同时,对于每个非零向量,都存在一个与其相反的向量,称为该向量的负向 量。
向量的线性组合
对于任意标量和向量,以及任意数量的标量,都可以进行线性组合,得到一个新的向量。
向量的线性无关
二次型的性质
01
实定性
如果一个二次型在某个基下的矩 阵是对称的,那么这个二次型是 实定的。
正定性
02
03
半正定性
如果一个实定的二次型在某个基 下的矩阵是正定的,那么这个二 次型是正定的。
如果一个实定的二次型在某个基 下的矩阵是半正定的,那么这个 二次型是半正定的。
二次型与矩阵的相似性的关系
二次型与矩阵的相似性
07
二次型与矩阵的相似性
二次型的定义
二次型
一个n元二次型是一个n维向量空间上的多 线性函数,其一般形式为$f(x) = sum_{i=1}^{n} sum_{ j=1}^{n} a_{ij} x_i x_j$,其中$a_{ij}$是常数。
二次型的矩阵表示
对于一个二次型$f(x) = x^T A x$,其中 $A$是一个对称矩阵。
特征值和特征向量的性质还包括:如 果λ是A的特征值,那么kλ(k≠0)也 是A的特征值;如果x是A的对应于λ的 特征向量,那么kx也是A的对应于λ的 特征向量。
特征值与特征向量的应用
在物理和工程领域中,特征值和特征向量的应用非常广泛。例如,在振动分析中,系统的固有频率和 振型可以通过求解系统的质量矩阵和刚度矩阵的特征值和特征向量得到。
02
19世纪中叶,德国数学家克罗内克等人开始系统地 研究线性代数,并为其建立了基础。

第2章 线性方程组与矩阵初等变换-郑成勇主编教材配套课件

第2章 线性方程组与矩阵初等变换-郑成勇主编教材配套课件

11
−2
r3
−3r2
0
−10
11
−2
11 3
0
11
r2 r3
−3r1 −11r1
0
−30
33
0
0
0 0 6
最后一个矩阵所对应的线性方程组为
0
x1 + 3x2 x1 −10x2
− 3x3 = 1 +11x3 = −2
.
0x1 + 0x2 + 0x3 = 6
方程组最后一个方程显然矛盾,故方程组无解.
矩阵总可以经过若干次初等变换化为它标准形 F
=
Er O
O
O
mn

04 其中 r 为行阶梯形矩阵中非零行的行数.
OPTION
Linear Algebra
2.3 矩阵初等行变换解线性方程组
第2章 线性方程组与矩阵初等变换 14
定义2.1 矩阵的秩 将一个矩阵 A化成行阶梯阵后, 其非零行的行数称为矩阵的
a21
a22

am1 am2
a1n
a2n
amn
x1
未 知
x
=
x2


xn
b1
常 数 列
b
=
b2
bm
Ax = b
a11 a12
增广矩阵
B =[A
b]
=
a21
a22
am1 am2
a1n b1
a2n
b2
amn bm
A = [a1, a2 , , an ] 其中 ai ( i = 1, 2, , n ) 为矩阵 A 的第i 列,则按分块矩阵乘法运算,

第十一章 矩阵与线性方程组

第十一章 矩阵与线性方程组

4 5
, 求A '.
am1
am
2
L
amn
1 3
解 A' 7 1 0 2
4
5
容易看出,若A为m n矩阵,则A'为n m矩阵, A中第i行第j列处的 元素aij ,在A'中则为第j行第i列的元素.
转置矩阵具有以下性质.
(1)( A') ' A; (2)( A B) ' A' B '
(3) AE EA A;
(4)( A)B (AB) A(B),(为常数).
例5 求解矩阵方程.
2 1
1 2
X
1 1
2 4
,
X
为二阶方阵.

设X
x11
x21
x12 x22
,
由题设
2 1x22
1 1
2 4
.
所以
2x11 +x21 x11 2x21
2x12 x22 x12 2x22
L , Ak Ak1A, (k 2,3,L , n).
可以证明Ak Ap Ak p , ( Ak ) p Akp , (k, p为非负整数),当A, B不 可交换时,(AB)k Ak Bk
设线性方程组的一般形式为
a11x1 a12 x2 L a1n xn b1
La21 x1
a22 x2 L
第十一章 矩阵与线性方程组
第一节 矩阵的概念及运算 第二节 逆矩阵 第三节 矩阵的秩与初等变换 第四节 线性方程的矩阵求解 第五节 数字实验五 用Mathematica进行矩阵运算和解
线性方程组
第十一章 矩阵与线性方程组
矩阵是解线性方程组的一个十分重要的数学工具,是线性 代数的一个主要研究对象.

矩阵分析课件精品PPT

矩阵分析课件精品PPT

典型例题解析
例1
求矩阵A的特征值和特征向量,其中A=[[3,1],[2,2]]。
例2
已知矩阵A的特征值为λ1=2, λ2=3,对应的特征向量为 α1=[1,1]T, α2=[1,-1]T,求矩阵A。
解析
首先求出矩阵A的特征多项式为f(λ)=(λ-1)(λ-4),解得特 征值为λ1=1, λ2=4。然后分别将特征值代入(A-λI)x=0求 解对应的特征向量。
应用举例
通过克拉默法则求解二元、三元线性方程组,并验证解的正确性 。
典型例题解析
01
例题1
求解三元线性方程组,通过高斯消元 法得到增广矩阵的上三角形式,然后 回代求解未知数列向量x。
02
03
例题2
例题3
判断四元线性方程组的解的情况,通 过计算系数矩阵的行列式|A|以及替换 列向量后的矩阵行列式|Ai|,根据克 拉默法则判断方程组的解是唯一解、 无解还是无穷多解。
特殊类型矩阵介绍
01
02
03
04
方阵
行数和列数相等的矩阵称为方 阵。
零矩阵
所有元素都是零的矩阵称为零 矩阵。
对角矩阵
除主对角线外的元素全为零的 方阵称为对角矩阵。
单位矩阵
主对角线上的元素全为1,其 余元素全为0的方阵称为单位 矩阵。
矩阵性质总结
Байду номын сангаас
01
结合律
02
交换律
03 分配律
04
数乘结合律
数乘分配律
• 对于每一个特征值m,求出齐次线性方程组(A-mI)x=0的一个基础解系,则A对应于特征值m的全部特征向量(其中I是与A 同阶的单位矩阵)。
特征值和特征向量求解方法

线性代数课件第三章

线性代数课件第三章
的元素都为零, 则称这个矩阵为标准形矩阵.
定理 任何矩阵都可经过单纯的初等行变换化为行
最简形矩阵. 任何矩阵都可经过初等变换化为标准形矩 阵.
下面我们还是通过例子来说明该定理.
单击这里开始
从上面的例子可见, 任何矩阵经单纯的初等行变换 必能化为行阶梯形矩阵和行最简形矩阵, 但不一定能化 成标准形矩阵, 如果再使用初等列变换, 则一定能化成 标准形矩阵. 将矩阵化为行阶梯形矩阵的方法不是唯一 的, 所得结果也不唯一. 但一个矩阵的标准形是唯一的, 这反映了矩阵的另一个属性, 即矩阵的秩的概念.
第三章 矩阵的初等变换与线性方程组
第一节 矩阵的初等变换 第二节 矩阵的秩 第三节 线性方程组的解 知识要点 释疑解难 习题课
第三章 矩阵的初等变换与线性方程组
本章先引进矩阵的初等变换, 建立矩阵的秩的概念; 然后利用矩阵的秩讨论齐次线性方程组有非零解的充要 条件和非齐次线性方程组有解的充要条件, 并介绍用初 等变换解线性方程组的方法.
(i) 对调两行(对调 i, j 两行, 记作 ri rj ); (ii) 以数 k 0 乘某一行中的所有元素
(第 i 行乘 k , 记作 ri k ); (iii) 把某一行所有元素的 k 倍加到另一行对应的元素 上去(第 j 行的 k 倍加到第 i 行上,记作 ri + krj).
把定义中的“行”换成“列”,即得矩阵的初等列变 定义换. 的矩阵的初等行变换与初等列变换, 统称初等变换.

①-② ②-③
x2 x3 3, x4 3,
② ③
(B5)
0 0. ④
至此消元结束, 且得到 (1) 的同解方程组 (B5), (B5) 是方程组 (1) 的所有同解方程组中最简单的一个, 其中

线性代数第1章解线性方程组的消元法与矩阵的初等变换PPT课件

线性代数第1章解线性方程组的消元法与矩阵的初等变换PPT课件
否则称之为无解或不相容。
当(1)式右端常数全为0而得到的齐次线性方程组
a11 x1 a12 x2
a21 x1
a22 x2
am1 x1 am2 x2
a1n xn 0 a2n xn 0
amn xn 0
成为(1)导出的齐次线性方程组。
- 30 -
定义 由方程组(1)的系数与常数项组成的矩阵
几种特殊的方阵(P4)
1. 对角矩阵(约定:未写出的元素全为零)
d1
D
d2
d
n
记作 D d ia g ( d 1 ,d 2 , ,d n )
2. 数量矩阵
A
- 11 -
3. 单位矩阵
1
E
1
1
4.上(下)三角矩阵
a11 A
a12 a22
上三角
a1n
a2n
- 16 -
定义 称矩阵的下面三种变换分别为第一、第二、 第三种初等行变换:
(1) 交换矩阵的某两行,记为 ri rj (2) 以不等于0的数乘矩阵的某一行,记为 k ri (3) 把矩阵的某一行乘上一个数加到另一行上,
记为 ri krj
类似定义三种初等列变换:
( 1 ) c i c j( 2 ) k i ( k c 0 )( 3 ) c i k j c
2 2
2
0
1 2
r2
0
1 1
1
0
r3 2r1 0 5 5 3 6 0 5 5 3 6
r4 3r1
0
3 3
4
3
0
3 3
4
3
- 24 -
1 1 2 1 4
1 1 2 1 4
r35r2

线性代数ppt课件

线性代数ppt课件

VS
线性代数的特点
线性代数具有抽象性、实用性、广泛性等 特点,是数学中重要的分支之一。
线性代数的历史背景
线性代数的起源
线性代数起源于17世纪,主要目的 是为了解决线性方程组的问题。
线性代数的发展
随着数学的发展,线性代数逐渐成为 一门独立的数学分支,并在20世纪得 到了广泛的应用和发展。
线性代数的应用领域
转置矩阵
一个矩阵A的转置矩阵是满足$A^T_{ij}=A_{ ji}$的矩阵
行列式与高斯消元
03

行列式的定义及性质
总结词
行列式是线性代数中重要的工具之一,它具有特殊的性质和计算规则。
详细描述
行列式是由一组方阵中的元素按照一定规则组成的,它是一个方阵是否可逆的判断标准,同时也有一 些重要的性质和计算规则,如交换两行或两列、对角线上的元素相乘等。了解行列式的定义和性质是 学习线性代数的基础。
矩阵的运算规则
加法
两个相同大小的矩阵,对应位置的元素相加
数乘
用一个数乘以矩阵的每一个元素
减法
两个相同大小的矩阵,对应位置的元素相减
乘法
要求两个矩阵满足乘法运算的规则,即第一 个矩阵的列数等于第二个矩阵的行数
矩阵的逆与转置
逆矩阵
一个矩阵A的逆矩阵是满足$AA^{-1}=I$的矩阵,其中$I$是单位矩阵
高斯消元法的原理
总结词
高斯消元法是一种解线性方程组的直接方法 ,其原理是将方程组转化为阶梯形矩阵。
详细描述
高斯消元法的基本思想是通过一系列的行变 换将线性方程组转化为阶梯形矩阵,这样就 可以直接求解方程组。高斯消元法包括三种 基本的行变换:将两行互换、将一行乘以非 零常数、将一行加上另一行的若干倍。通过 这些行变换,我们可以将矩阵转化为阶梯形 矩阵,从而求解方程组。

线性代数课件_第3章_矩阵的初等变换与线性方程组

线性代数课件_第3章_矩阵的初等变换与线性方程组

-13-
定理 (等价标准形定理 等价标准形定理) 等价标准形定理 用初等变换必能将矩阵化为如下等价标准形 等价标准形( 用初等变换必能将矩阵化为如下等价标准形(也称 相抵标准形): 相抵标准形):Er Fra bibliotek O O
等价标准形是唯一的。 等价标准形是唯一的。
-14-
例2
(接例1) 接例 )
1 2 1 1 1 2 1 1 4 6 2 2 3 6 9 7
1 0 0 0
0 2 0 1 1 0 0 0 1 0 0 0
0 0 0 0
1 2 0 1 0 0 1 2 0 0 0 0 0 0 0 0
-10-
只用初等行变换必能将矩阵化为阶梯形, 定理 只用初等行变换必能将矩阵化为阶梯形, 从而再化为最简阶梯形。阶梯形不唯一,最简阶梯形 从而再化为最简阶梯形。阶梯形不唯一, 唯一。 唯一。
-8-
在 m × n 的矩阵集合 R 中的一个等价关系? 中的一个等价关系
m×n
A r 中, 如果
B ,
具有行相抵的关系,问行相抵是不是 行相抵的关系 则称 A 与 B 具有行相抵的关系 问行相抵是不是 R m × n
Gauss消元法的思想又可表述为 在与方程组增 消元法的思想又可表述为, 消元法的思想又可表述为 广矩阵行相抵的矩阵中,找一个最简单的 找一个最简单的,然后求解 广矩阵行相抵的矩阵中,找一个最简单的,然后求解 这个最简单的矩阵所对应的方程组. 这个最简单的矩阵所对应的方程组 以后我们把这个最简单的矩阵叫做(行 最简阶 以后我们把这个最简单的矩阵叫做 行)最简阶 梯形矩阵. 梯形矩阵
a11 = a 21 a 31
a12
a 22 a 32
a13 1 0 0 a 23 0 1 0 a 33 0 0 k
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用欧姆定理和楚列斯 基定律,可以得到串联 电路和并联
电路的转移矩阵分别为
1 0
R1 1

1 1 R2
10 .
• i1
v1

R1
串联电路
i2 • i2
v2

梯形网络
R2
并联电路
i3 •
v3

4、线性方程组
a11 x1 a12 x2
a21 x1 a22 x2
am1 x1 am2 x2
7、记住伴随矩阵的基本性 质 A A AA A E
二、难点 矩阵的乘法及其运算律 . (教材第 31、33 页)
三、应用 矩阵乘法可表示变量间 的线性变换 .
《线性代数》同济六版
第 2 章 矩阵及其运算 第一节 线性方程组和矩阵
课件制作:黄 明
2018年9月
一、线性方程组
设有 n 个未知数 m 个方程的线性方程组
这张表的研究.
amn
bm
5、田忌赛马的故事大家都 很熟悉 :说的是田忌和 齐王各有上等、中等、 下等马各一匹 . 但是田忌 的马在同等级马中略逊 一筹 , 双方每次出一匹马 比赛 , 比赛三场定出胜负 .
每一场比赛中 , 齐王赢加一分 , 齐王输减一分 . 每场比赛出场的马匹按 先后共有六种策略 , 即 (上、中、下) , (上、下、中) , (中、上、下) , (中、下、上) , (下、中、上) (下、上、中) 则可写出齐王的得分数 表 :
1、某班级同学早餐情况
姓名 周月驰 张曼羽 陈木扁
馒头 4 0 4
包子 2 0 9
鸡蛋 2 0 8
稀饭 1 0 6
为了方便,常用下面的数表表示
4 2 2 1
0 4
0 9
0 8
0 6
这个数表反映了学 生的早餐情况.
2、某航空公司在A,B,C,D四城市 之间的航线图
青岛
广州
成都
拉萨
为了方便,常用下面的表表示
本次课(§1~ §2 )的要点
一、内容
1、矩阵是一张数表 .
2、矩阵与线性变换的一一 对应 .
3、矩阵的线性运算
① ②
加法 : 对应元素相加 . 数乘 : 每个元素倍乘 .
4、矩阵的乘法 (重点)
① 可乘条件 : 左列 = 右行 ② 乘法的要领 .
5、矩阵乘法的三大特征
① 无交换律 ; AB =?BA
例如

x y 0,
x
y
2;
x y 0,

x
y
1,
x y 2;
x1 x2 0, ③ 2 x1 2 x2 个二元线性方程 组 , 并且 ③ 是齐次方程组 .
下面讨论这三个方程组 的解 . 方程组 ① : 因其系数行列式
1 D
1 2 0 , 知其有惟一解 x y 1 ; 方程组 ② : 显然
11
不存在数 x 和 y 使 x y 1 和 x y 2 同时成立 , 故方程组 ② 无解 ; 方程组 ③ : 设 s 为任一数 , 那么 x1 x2 s 是 ③ 的解 , 从而方程组 ③ 有无限多个解 .
这样看来 , 对于线性方程组需要讨 论以下问题 : (1) 它是否有解 ? (2) 在有解时它的解是否惟 一 ? (3) 如果有多个解 , 如何求出它的所有解 ?
对于未知数的个数与方 程的个数相等的齐次线 性 方程组 , 这里先将一个结论告知 大家 , 等到后面我们 会进一步地详细说 (证)明 .
系数行列式 D 不等于 0 时 ,齐次线性方程只有零解 .
系数行列式 D 等于 0 时 ,齐次线性方程有非零解 .
以上两条结论均是充分 且必要条件 .
二、矩阵概念的引入
到站
广州 青岛 成都 拉萨
广州 0 1 1
发站 青岛
1
0
1
1 0 0
成都
0
1
0
拉萨
其中 表示有航班.
为了便于计算,把表中的
改成1
,空白地方填上 0(变定性为定量)就
得到一个数表:
0
0
1
这个数表反映了四 城市间交通联接情 况.
0
3、 电路是电子元件的神经 系统 . 参数的计算是电路
设计的重要环节 . 其依据来自两个方面,一是客观需要, 二是物理定律 .
USB 扩展版 ( 图1.2 ) 中有输入和输出终端的 电路.

v1 i1
记录输入电压和输入电

(
电压
v
以V
为单位,
电流
i

A
为单位
)
,

v2 i2
记录输出电压和输出电
流.
. i1 . 输入终端 v1
电路
i2
.
输出终端 v2 .

v2 i2
A
v1 i1
对于这个四端网络我们 称矩阵
A
为转移矩阵 .
下图给出了一个梯形网 络 . 左边的电路称为串联电 路, 电阻为 R1 ( 单位:) ;右边的电路是并联电路 ,电阻为 R2 .
a11 x1 a12 x2 a1n xn b1
a21 x1
a22 x2
a2n xn b2
( 1)
am1 x1 am2 x2 amn xn bm
其中 aij 是第 i 个方程的第 j 个未知数的系数 , bi 是 第 i 个方程的常数项 , i 1 , 2 , , m ; j 1 , 2 , , n ,
叫做 n 元齐次线性方程组 .
n 元线性方程组往往简称 为线性方程组或方程组 .
对于 n 元齐次线性方程组 (2) , x1 x2 xn 0 一定是它的解 , 这个解叫做齐次线性方 程组 (2) 的 零解
如果一组不全为零的数 是 (2) 的解 , 则它叫做齐次线性 方程组(2) 的非零解 . 齐次方程组 (2) 一定有零解 , 但不一 定有非零解 .
当常数项 b1 , b2 , , bm 不全为零时 , 线性方程组 (1) 叫做
n 元非齐次线性方程组
, 当b1 , b2 , , bm 全为零时 ,
(1) 式成为
a11 x1 a12 x2 a1n xn 0,
a21x1 a22 x2 a2n xn 0,
(2)
am1 x1 am2 x2 amn xn 0,
a1n xn b1 a2n xn b2
amn xn bm
的解取决于
系数
常数项
aij i, j 1,2, ,n(m), bi i 1,2, ,m
线性方程组的系数与常数项按原位置可排为
a11 a12
a21
a22
am1
am 2
a1n b1
a2n
b2
对线性方程组的 研究可转化为对
当 AB 有意义时 , BA 不一定有意义 .

AB O

AO ,
or
BO .
③ 无消去律 AB=AC
? B C
6、几个特殊矩阵 ① 零矩阵 O (见教材第 26 页)
② 对角矩阵 Λ diag(1, 2,, n ) (见教材第 28 页)
③ 单位矩阵 E (见教材第 28 页) ④ 对称矩阵 A AT (见教材第 37 页)
相关文档
最新文档