新概念物理教程热学答案第一章温度

合集下载

热学课后习题答案

热学课后习题答案

热学课后习题答案热学课后习题答案热学是物理学的一个重要分支,研究物体的热现象和热力学性质。

在学习热学的过程中,课后习题是巩固知识、提高理解能力的重要途径。

下面将为大家提供一些常见热学课后习题的答案,希望能对大家的学习有所帮助。

1. 一个物体的质量为2kg,温度从20℃上升到50℃,求该物体所吸收的热量。

答:根据热容公式Q = mcΔT,其中Q表示吸收的热量,m表示物体的质量,c表示物体的比热容,ΔT表示温度的变化。

根据题目中的数据,可以计算出ΔT= 50℃ - 20℃ = 30℃。

假设物体的比热容为c = 0.5 J/g℃(根据物质的不同,比热容也不同),将质量转化为克,即2kg = 2000g。

代入公式,可以得到Q = 2000g × 0.5 J/g℃ × 30℃ = 30000 J。

2. 一块铁板的质量为1kg,温度从100℃下降到20℃,求该铁板所释放的热量。

答:同样使用热容公式Q = mcΔT,根据题目中的数据,可以计算出ΔT = 20℃ - 100℃ = -80℃。

根据铁的比热容为c = 0.45 J/g℃,将质量转化为克,即1kg = 1000g。

代入公式,可以得到Q = 1000g × 0.45 J/g℃ × -80℃ = -36000 J。

由于温度下降,所以热量为负值,表示释放的热量。

3. 一杯开水的质量为200g,温度为100℃,将其倒入一个质量为300g的铝杯中,铝杯的初始温度为20℃,求达到热平衡后的最终温度。

答:根据热平衡原理,两个物体达到热平衡时,它们的热量相等。

设最终温度为T℃,根据热容公式,可以得到200g × 1 J/g℃ × (100℃ - T℃) = 300g × 0.9J/g℃ × (T℃ - 20℃)。

化简方程,得到20000 - 200T = 270T - 5400。

解方程,得到T = 40℃。

热学课后习题答案

热学课后习题答案

第一章温度1-1 定容气体温度计的测温泡浸在水的三相点槽内时,其中气体的压强为50mmHg。

(1)用温度计测量300K的温度时,气体的压强是多少?(2)当气体的压强为68mmHg时,待测温度是多少?解:对于定容气体温度计可知:(1)(2)1-3用定容气体温度计测量某种物质的沸点。

原来测温泡在水的三相点时,其中气体的压强;当测温泡浸入待测物质中时,测得的压强值为,当从测温泡中抽出一些气体,使减为200mmHg时,重新测得,当再抽出一些气体使减为100mmHg时,测得.试确定待测沸点的理想气体温度.解:根据从理想气体温标的定义:依以上两次所测数据,作T-P图看趋势得出时,T约为400.5K亦即沸点为400.5K.题1-4图1-6水银温度计浸在冰水中时,水银柱的长度为4.0cm;温度计浸在沸水中时,水银柱的长度为24.0cm。

(1)在室温时,水银柱的长度为多少?(2)温度计浸在某种沸腾的化学溶液中时,水银柱的长度为25.4cm,试求溶液的温度。

解:设水银柱长与温度成线性关系:当时,代入上式当,(1)(2)1-14水银气压计中混进了一个空气泡,因此它的读数比实际的气压小,当精确的气压计的读数为时,它的读数只有。

此时管内水银面到管顶的距离为。

问当此气压计的读数为时,实际气压应是多少。

设空气的温度保持不变。

题1-15图解:设管子横截面为S,在气压计读数为和时,管内空气压强分别为和,根据静力平衡条件可知,由于T、M不变根据方程有,而1-25一抽气机转速转/分,抽气机每分钟能够抽出气体,设容器的容积,问经过多少时间后才能使容器的压强由降到。

解:设抽气机每转一转时能抽出的气体体积为,则当抽气机转过一转后,容器内的压强由降到,忽略抽气过程中压强的变化而近似认为抽出压强为的气体,因而有,当抽气机转过两转后,压强为当抽气机转过n转后,压强设当压强降到时,所需时间为分,转数1-27把的氮气压入一容积为的容器,容器中原来已充满同温同压的氧气。

哈工大 热学 答案:第一章 温度

哈工大 热学 答案:第一章 温度

第一章温度1-1在什么温度下,下列一对温标给出相同的读数:(1)华氏温标和摄氏温标;(2)华氏温标和热力学温标;(3)摄氏温标和热力学温标?解:(1)当时,即可由,解得故在时(2)又当时则即解得:故在时,(3)若则有显而易见此方程无解,因此不存在的情况。

1-2 定容气体温度计的测温泡浸在水的三相点槽内时,其中气体的压强为50mmHg。

(1)用温度计测量300K的温度时,气体的压强是多少?(2)当气体的压强为68mmHg时,待测温度是多少?解:对于定容气体温度计可知:(1)(2)1-3 用定容气体温度计测得冰点的理想气体温度为273.15K,试求温度计内的气体在冰点时的压强与水的三相点时压强之比的极限值。

解:根据已知冰点。

1-4用定容气体温度计测量某种物质的沸点。

原来测温泡在水的三相点时,其中气体的压强;当测温泡浸入待测物质中时,测得的压强值为,当从测温泡中抽出一些气体,使减为200mmHg时,重新测得,当再抽出一些气体使减为100mmHg时,测得.试确定待测沸点的理想气体温度.解:根据从理想气体温标的定义:依以上两次所测数据,作T-P图看趋势得出时,T约为400.5K亦即沸点为400.5K.题1-4图1-5铂电阻温度计的测量泡浸在水的三相点槽内时,铂电阻的阻值为90.35欧姆。

当温度计的测温泡与待测物体接触时,铂电阻的阻值为90.28欧姆。

试求待测物体的温度,假设温度与铂电阻的阻值成正比,并规定水的三相点为273.16K。

解:依题给条件可得则故1-6在历史上,对摄氏温标是这样规定的:假设测温属性X随温度t做线性变化,即,并规定冰点为,汽化点为。

设和分别表示在冰点和汽化点时X的值,试求上式中的常数a和b。

解:由题给条件可知由(2)-(1)得将(3)代入(1)式得1-7水银温度计浸在冰水中时,水银柱的长度为4.0cm;温度计浸在沸水中时,水银柱的长度为24.0cm。

(1)在室温时,水银柱的长度为多少?(2)温度计浸在某种沸腾的化学溶液中时,水银柱的长度为25.4cm,试求溶液的温度。

热学习题解答_第1章温度

热学习题解答_第1章温度

第一章温度1-1在什么温度下,下列一对温标给出相同的读数:(1)华氏温标和摄氏温标;(2)华氏温标和热力学温标;(3)摄氏温标和热力学温标解:(1)当时,即可由,解得故在时(2)又当时则即解得:故在时,(3)若则有显而易见此方程无解,因此不存在的情况。

1-2 定容气体温度计的测温泡浸在水的三相点槽内时,其中气体的压强为50mmHg。

(1)用温度计测量300K的温度时,气体的压强是多少(2)当气体的压强为68mmHg时,待测温度是多少解:对于定容气体温度计可知:(1)(2)1-3 用定容气体温度计测得冰点的理想气体温度为,试求温度计内的气体在冰点时的压强与水的三相点时压强之比的极限值。

解:根据已知冰点。

1-4用定容气体温度计测量某种物质的沸点。

原来测温泡在水的三相点时,其中气体的压强;当测温泡浸入待测物质中时,测得的压强值为,当从测温泡中抽出一些气体,使减为200mmHg时,重新测得,当再抽出一些气体使减为100mmHg时,测得.试确定待测沸点的理想气体温度.解:根据从理想气体温标的定义:依以上两次所测数据,作T-P图看趋势得出时,T约为亦即沸点为.题1-4图1-5铂电阻温度计的测量泡浸在水的三相点槽内时,铂电阻的阻值为欧姆。

当温度计的测温泡与待测物体接触时,铂电阻的阻值为欧姆。

试求待测物体的温度,假设温度与铂电阻的阻值成正比,并规定水的三相点为。

解:依题给条件可得则故1-6在历史上,对摄氏温标是这样规定的:假设测温属性X随温度t做线性变化,即,并规定冰点为,汽化点为。

设和分别表示在冰点和汽化点时X的值,试求上式中的常数a和b。

解:由题给条件可知由(2)-(1)得将(3)代入(1)式得1-7水银温度计浸在冰水中时,水银柱的长度为4.0cm;温度计浸在沸水中时,水银柱的长度为24.0cm。

(1)在室温时,水银柱的长度为多少(2)温度计浸在某种沸腾的化学溶液中时,水银柱的长度为25.4cm,试求溶液的温度。

温度(讲义及答案)

温度(讲义及答案)

两种常见的自制温度计:二、精讲精练【板块一】温度的意义1.下列关于温度的说法正确的是()A.感觉较热的物体,温度一定高B.0℃的冰和0℃的水,冷热程度不同C.温度反映的是物体的冷热程度 D.冰的温度一定是 0℃2.用手指去触摸0℃的水和0℃的冰时()A.感觉一样冷,因为它们的温度相同B.感到冰更冷,因为冰在熔化时还要吸热C.感到水更冷,因为“湿冷”比“干冷”更冷D.各人的感觉不一样,与人体的耐寒程度有关3.0℃的水和0℃的冰水混合物相比较()A.0℃的水温度更低B.0℃的冰水混合物温度更低C.0℃的水和0℃的冰水混合物的状态不一样,无法比较温度的高低D.0℃的水和 0℃的冰水混合物的冷热程度一样4.下列关于生活环境中的一些常见温度的说法中,你认为最符合实际的是()A.人感觉到温暖而又舒适的房间温度是37℃B.酒精灯的火焰温度是100℃C.人的正常体温约为37℃D.我国历史上的最低气温是 0℃5.下列关于温度的描述中符合实际的是()A.发高烧时人体温度可达 40℃B.冰箱冷冻室的温度为10℃C.饺子煮熟即将出锅时温度为50℃D.加冰的橙汁饮料温度为-20℃【板块二】温标6.关于“摄氏度”,下列说法中不正确的是()A.在标准大气压下,冰水混合物的温度规定为 0℃B.在标准大气压下,沸水的温度规定为 100℃C.-18℃就是零下 18 摄氏度D.0℃就是没有温度7.在寒冷的冬天,河面上面结了一层厚厚的冰,冰下面有流动的水,若冰面上方气温是-10℃,那么,下列说法中正确的是A.冰的上表面为-10℃,下表面是 0℃B.整个冰层的温度都是-10℃C.整个冰层的温度都是 0℃D.冰层的下表面的温度是-10℃8.某天广州的温度是18℃,而吉林的温度是-12℃,这天广州比吉林的温度高()A.-4℃B.4℃C.30℃D.-40℃9.除摄氏温标外,还有华氏温标和热力学温标,国际单位制中所采用的温标是热力学温标,它的单位名称是开尔文,符号是“K”。

(完整版)热学第一章练习题

(完整版)热学第一章练习题

《热学》第一章作业1。

定容气体温度计的测温泡浸在水中的三相点管内时,其中气体的压强为50 mmHg。

(1)用温度计测量300K的温度时,气体的压强是多少?(2)当气体的压强为68 mmHg时,待测温度是多少?2.用定容气体温度计测得冰点的理想气体温度为273.15 K,试求温度计内的气体在冰点时的压强与水在三相点时压强之比的极限值.3.用定容气体温度计测量某种物质的沸点。

原来测温泡在水的三相点时,其中气体的压强;当测温泡浸入待测物质中时,测得的压强值为。

当从测温泡中抽出一些气体,使减为200 mmHg时,重新测得,当再抽出一些气体,使减为100 mmHg时,测得,试确定待测沸点的理想气体的温度。

4.铂电阻温度计的测温泡浸在水中的三相点管内时,铂电阻的阻值为90。

35 。

当温度计的测温泡与待测物体接触时,铂电阻的阻值为90。

28 ,试求待测物体的温度.假设温度与铂电阻的阻值成正比,并规定水的三相点为273.16 K。

5.在历史上,对摄氏温标是这样规定的;假设测温属性X随温度t做线性变化,即,并规定冰点为,汽点为。

设和分别表示在冰点和汽点时的值,试求上式中的常数a和b.6.水银温度计浸在冰水中时,水银柱的长度为4。

0cm;温度计浸在沸水中时,水银柱的长度为24.0cm。

(1)在室温为22。

0时,水银柱的长度为多少?(2)温度计浸在某种沸腾的化学溶液中时,水银柱的长度为25.4cm,试求溶液的温度。

7.设一定容气体温度计时按摄氏温标刻度的,它在冰点和汽点时,其中气体的压强分别为0.400 atm和0。

546 atm。

(1)当气体的压强为0。

100atm时,待测温度时多少?(2)当温度计在沸腾的硫中时(硫的沸点为444。

60),气体的压强是多少?8.当热电偶的一个触点保持在冰点,另一个触点保持在任一摄氏温度t时,其热电动势由下式确定:,式中,。

(1)试计算当t=—100,200,400和500时热电动势的值,并在此温度范围内做(2)设用为测温属性,用下列线性方程来定义温标:,并规定冰点为,汽点为,试求出a和b的值,并画出图。

热学课后习题答案

热学课后习题答案

第一章温度1—1 定容气体温度计得测温泡浸在水得三相点槽内时,其中气体得压强为50mmHg。

(1)用温度计测量300K得温度时,气体得压强就是多少?(2)当气体得压强为68mmHg时,待测温度就是多少?解:对于定容气体温度计可知:(1)(2)1—3用定容气体温度计测量某种物质得沸点。

原来测温泡在水得三相点时,其中气体得压强;当测温泡浸入待测物质中时,测得得压强值为,当从测温泡中抽出一些气体,使减为200mmHg时,重新测得,当再抽出一些气体使减为100mmHg时,测得.试确定待测沸点得理想气体温度。

解:根据从理想气体温标得定义:依以上两次所测数据,作T—P图瞧趋势得出时,T约为400、5K亦即沸点为400、5K.题1-4图1-6水银温度计浸在冰水中时,水银柱得长度为4.0cm;温度计浸在沸水中时,水银柱得长度为24.0cm。

(1)在室温时,水银柱得长度为多少?(2)温度计浸在某种沸腾得化学溶液中时,水银柱得长度为25.4cm,试求溶液得温度。

解:设水银柱长与温度成线性关系:当时,代入上式当,(1)(2)1-14水银气压计中混进了一个空气泡,因此它得读数比实际得气压小,当精确得气压计得读数为时,它得读数只有。

此时管内水银面到管顶得距离为。

问当此气压计得读数为时,实际气压应就是多少、设空气得温度保持不变。

题1—15图解:设管子横截面为S,在气压计读数为与时,管内空气压强分别为与,根据静力平衡条件可知,由于T、M不变根据方程有,而1-25一抽气机转速转/分,抽气机每分钟能够抽出气体,设容器得容积,问经过多少时间后才能使容器得压强由降到。

解:设抽气机每转一转时能抽出得气体体积为,则当抽气机转过一转后,容器内得压强由降到,忽略抽气过程中压强得变化而近似认为抽出压强为得气体,因而有,当抽气机转过两转后,压强为当抽气机转过n转后,压强设当压强降到时,所需时间为分,转数1-27把得氮气压入一容积为得容器,容器中原来已充满同温同压得氧气。

《热学》第一章习题参考答案

《热学》第一章习题参考答案

《热学》第一章习题参考答案1-1按线形标度法,可设华氏温标与摄氏温标的关系为 t F =at+b 参考教材P2内容知 t=0 时,t F =32,以及t=100时,tF=212 .即+=+=ba b a 100*2120*32? a=59,b=32 ,故华氏温标与摄氏温标的换算关系为 t F =59+32 , 若 t F =t ,即t=59+32 ? t=-40 ,即在-40摄氏度的温标下,摄氏温标与华氏温标给出相同的读数.1-21)此题须从理想气体温标的定义来考虑.理想气体温标是定容(或定压)气体温度计来实现的.实验表明,无论用什么气体,无论是定容还是定压气体温度计,所建立的温标在测温泡内的气体压强趋于0时,都趋于一个极限值,这个极限温标就是理想气体温标.我们可以先根据题意算出三次测量所得的,用定容气体温标表示的沸点温度,然后应用作图法,求出当测温泡内气体在水的三相点时的压强P tr 趋于0时的定容气体温标的极限,此极限即为该题所要求的某种物质的沸点的理想气体温度.根据T=273.16*trP P. 可得三次测得的沸点温度分别为: T 1=273.16*500734=401.00(K) T 2=273.16*2004.293=400.73(K)T 3=273.16*10068.146=400.67(K)在T---P tr 图上作出(T 1,P tr1),(T 2,P tr2).(T 3,P tr3)三点.由图看三点连线趋势得知:当P tr ->0时T->400.50K,此即待测沸点的理想气体温度.此题告诉我们一个道理,理想气体温度不能用温度计直接测量.只能借助气体温度计做间接测量.2)t*=a ε+b=a(αt+βt(2))+b按规定。

冰点t=0时,t*=100度,即++=++=b a ba )100*100*(100)0*0*(022βαβα? a=?5m v ,b=0即t*=5ε。

热学教程习题解答

热学教程习题解答

《热学教程》习题解答第一章习题(P43)1.1解:根据trR R R T 16.273)(= 则: )K (1.29135.9028.9616.273=⨯=T1.2解:(1)摄氏温度与华氏温度的关系为C)(5932F)( t t +=解出: 40-=t(2)华氏温标与开氏温标的关系为)15.273(5932-+=T t解出: 575=t(3)摄氏温度与开始温度的关系为15.273-=T t可知:该方程无解,即摄氏温标和开氏温标不可能给出相同的读数。

1.3解:根据定压理想气体温标的定义式K 15.373732038.0K 16.273limK 16.273)(0===→trP V V V T tr1.4解:(1)第三种正确。

因为由实验发现,所测温度的数值与温度计的测温质有关,对同种测温质,还与其压强的大小有关。

(2)根据理想气体温标定义trP P PT tr 0limK 16.273→=当这个温度计中的压强在水的三相点时都趋于零时,即0→tr P 时,则所测温度值都相等。

1.5解:(1)根据2t t βαε+=,由t 值可求出ε的值(见后表)(2)根据b a t +=*ε,利用0=*t ,100=*t 及相应的ε值,可得b a +⨯=00与 b a +⨯=15100解出: 0,320==b a这样,由ε320=*t 求出相应的*t 值(见后表)。

(3)将与t 对应的ε及*t 值列表如下:由表中数据即可作出t -ε,*-t ε和*-t t 图(图略)。

(4)很明显,除冰点,t 与*t 相同外,其它温度二者温度值都不相同。

*-t ε是正比关系,但是用温度t 是比较熟悉的,与日常生活一致。

1.6解:当温度不变时,C PV =,设气压计的截面积为S ,由题意可知:S P S )73474880()734(80)748768(-+⨯-=⨯-可解出:)Pa (1099.9)Pa (76010013.1)734948020(45⨯=⨯⨯+⨯=P1.7解:设气体压强分别为P 1、P 2,玻璃管横截面积为S ,由题意可知: (1)cmHg P P 2001+= hcmHg P P -=02S h P S P )70()2070(21-⨯=-⨯解出:)cm (55.3=h (注意大气压强单位变换) (2)S P S P 70)2070(21⨯≥-⨯)Pa (1065.65040⨯=≤cmHg P1.8答:活塞会移动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章温度1-1在什么温度下,下列一对温标给出相同的读数:(1)华氏温标和摄氏温标;(2)华氏温标和热力学温标;(3)摄氏温标和热力学温标解:(1)当时,即可由,解得故在时(2)又当时则即解得:故在时,(3)若则有显而易见此方程无解,因此不存在的情况。

1-2 定容气体温度计的测温泡浸在水的三相点槽内时,其中气体的压强为50mmHg。

(1)用温度计测量300K的温度时,气体的压强是多少(2)当气体的压强为68mmHg时,待测温度是多少解:对于定容气体温度计可知:(1)(2)1-3 用定容气体温度计测得冰点的理想气体温度为,试求温度计内的气体在冰点时的压强与水的三相点时压强之比的极限值。

解:根据已知冰点。

1-4用定容气体温度计测量某种物质的沸点。

原来测温泡在水的三相点时,其中气体的压强;当测温泡浸入待测物质中时,测得的压强值为,当从测温泡中抽出一些气体,使减为200mmHg时,重新测得,当再抽出一些气体使减为100mmHg时,测得.试确定待测沸点的理想气体温度.解:根据从理想气体温标的定义:依以上两次所测数据,作T-P图看趋势得出时,T约为亦即沸点为.题1-4图1-5铂电阻温度计的测量泡浸在水的三相点槽内时,铂电阻的阻值为欧姆。

当温度计的测温泡与待测物体接触时,铂电阻的阻值为欧姆。

试求待测物体的温度,假设温度与铂电阻的阻值成正比,并规定水的三相点为。

解:依题给条件可得则故1-6在历史上,对摄氏温标是这样规定的:假设测温属性X随温度t做线性变化,即,并规定冰点为,汽化点为。

设和分别表示在冰点和汽化点时X的值,试求上式中的常数a和b。

解:由题给条件可知由(2)-(1)得将(3)代入(1)式得1-7水银温度计浸在冰水中时,水银柱的长度为4.0cm;温度计浸在沸水中时,水银柱的长度为24.0cm。

(1)在室温时,水银柱的长度为多少(2)温度计浸在某种沸腾的化学溶液中时,水银柱的长度为25.4cm,试求溶液的温度。

解:设水银柱长与温度成线性关系:当时,代入上式当,(1)(2)1-8设一定容气体温度计是按摄氏温标刻度的,它在冰点和汽化点时,其中气体的压强分别为和。

(1)当气体的压强为时,待测温度是多少(2)当温度计在沸腾的硫中时(硫的沸点为),气体的压强是多少解:解法一设P与t为线性关系:由题给条件可知:当时有当时得:由此而得(1)(2)时解法二若设t与P为线性关系利用第六题公式可得:由此可得:(1)时(2)时1-9当热电偶的一个触点保持在冰点,另一个触点保持任一摄氏温度t时,其热电动势由下式确定:式中题1-9题(1)题1-9图(2)题1-9图(3)(1)试计算当和时热电动势的值,并在此范围内作图。

(2)设用为测温属性,用下列线性方程来定义温标:并规定冰点为,汽化点为,试求出a和b的值,并画出图。

(3)求出与和对应的值,并画出图(4)试比较温标t和温标。

解:令(1)(2)在冰点时,汽化点,而,已知解得:(3)当时当时当时当时(4)温标t和温标只有在汽化点和沸点具有相同的值,随线性变化,而t不随线性变化,所以用作测温属性的温标比t温标优越,计算方便,但日常所用的温标是摄氏温标,t与虽非线性变化,却能直接反应熟知的温标,因此各有所长。

1-10 用L表示液体温度计中液柱的长度。

定义温标与L之间的关系为。

式中的a、b为常数,规定冰点为,汽化点为。

设在冰点时液柱的长度为,在汽化点时液柱的长度,试求到之间液柱长度差以及到之间液柱的长度差。

解:由题给条件可得: (1) (2)解联立方程(1)(2)得:则1-11定义温标与测温属性X之间的关系为,其中K为常数。

(1)设X为定容稀薄气体的压强,并假定在水的三相点为,试确定温标与热力学温标之间的关系。

(2)在温标中,冰点和汽化点各为多少度(3)在温标中,是否存在0度解:(1)根据理想气体温标,而X=P (1)由题给条件,在三相点时代入式代入(1)式得: (2)(2)冰点代入(2)式得汽化点代入(2)式得(3)若,则从数学上看,不小于0,说明有0度存在,但实际上,在此温度下,稀薄汽体可能已液化,0度不能实测。

1-12一立方容器,每边长20cm其中贮有,的气体,当把气体加热到时,容器每个壁所受到的压力为多大解:对一定质量的理想气体其状态方程为因,而故1-13一定质量的气体在压强保持不变的情况下,温度由升到时,其体积将改变百分之几解:根据方程则体积改变的百分比为1-14一氧气瓶的容积是,其中氧气的压强是,规定瓶内氧气压强降到时就得充气,以免混入其他气体而需洗瓶,今有一玻璃室,每天需用氧气,问一瓶氧气能用几天。

解:先作两点假设,(1)氧气可视为理想气体,(2)在使用氧气过程中温度不变。

则:由可有每天用掉的氧气质量为瓶中剩余氧气的质量为天1-15水银气压计中混进了一个空气泡,因此它的读数比实际的气压小,当精确的气压计的读数为时,它的读数只有。

此时管内水银面到管顶的距离为。

问当此气压计的读数为时,实际气压应是多少。

设空气的温度保持不变。

题1-15图解:设管子横截面为S,在气压计读数为和时,管内空气压强分别为和,根据静力平衡条件可知,由于T、M不变根据方程有,而1-16截面为的粗细均匀的U形管,其中贮有水银,高度如图1-16所示。

今将左侧的上端封闭年,将其右侧与真空泵相接,问左侧的水银将下降多少设空气的温度保持不变,压强题1-16图解:根据静力平均条件,右端与大气相接时,左端的空气压强为大气压;当右端与真空泵相接时,左端空气压强为(两管水银柱高度差)设左端水银柱下降常数即整理得:(舍去)1-17图1-17所示为一粗细均匀的J形管,其左端是封闭的,右侧和大气相通,已知大气压强为,今从J形管右侧灌入水银,问当右侧灌满水银时,左侧水银柱有多高,设温度保持不变,空气可看作理想气体。

题1-17图解:设从J形管右侧灌满水银时,左侧水银柱高为h。

假设管子的直径与相比很小,可忽略不计,因温度不变,则对封闭在左侧的气体有:而(S为管的截面积)解得:(舍去)1-18如图1-18所示,两个截面相同的连通管,一为开管,一为闭管,原来开管内水银下降了,问闭管内水银面下降了多少设原来闭管内水银面上空气柱的高度R和大气压强为,是已知的。

题1-18图解:设截面积为S,原闭管内气柱长为R大气压为P闭管内水银面下降后,其内部压强为。

对闭管内一定质量的气体有:以水银柱高度为压强单位:取正值,即得1-19 一端封闭的玻璃管长,贮有空气,气体上面有一段长为的水银柱,将气柱封住,水银面与管口对齐,今将玻璃管的开口端用玻璃片盖住,轻轻倒转后再除去玻璃片,因而使一部分水银漏出。

当大气压为时,六在管内的水银柱有多长解:题1-19图设在正立情况下管内气体的压强为,以水银柱高度表示压强,倒立时,管内气体的压强变为,水银柱高度为由于在倒立过程温度不变,解之并取的值得1-20求氧气在压强为,温度为时的密度。

解:已知氧的密度1-21容积为的瓶内贮有氢气,因开关损坏而漏气,在温度为时,气压计的读数为。

过了些时候,温度上升为,气压计的读数未变,问漏去了多少质量的氢。

解:当时,容器内氢气的质量为:当时,容器内氢气的质量为:故漏去氢气的质量为1-22 一打气筒,每打一次可将原来压强为,温度为,体积的空气压缩到容器内。

设容器的容积为,问需要打几次气,才能使容器内的空气温度为,压强为。

解:打气后压强为:,题上未说原来容器中的气体情况,可设原来容器中没有空气,设所需打气次数为,则得:次1-23一气缸内贮有理想气体,气体的压强、摩尔体积和温度分别为、和,现将气缸加热,使气体的压强和体积同时增大。

设在这过程中,气体的压强和摩尔体积满足下列关系式:其中为常数(1)求常数,将结果用,和普适气体常数表示。

(2)设,当摩尔体积增大到时,气体的温度是多高解:根据理想气体状态方程和过程方程有(1)(2)而,则1-24图1-24为测量低气压的麦克劳压力计的示意图,使压力计与待测容器相连,把贮有水银的瓶R缓缓上提,水银进入容器B,将B中的气体与待测容器中的气体隔开。

继续上提瓶R,水银就进入两根相同的毛细管和内,当中水银面的高度差,设容器的容积为,毛细管直径,求待测容器中的气压。

题1-24图解:设管体积,当水银瓶R上提时,水银上升到虚线处,此时B内气体压强与待测容器的气体压强相等。

以B内气体为研究对象,当R继续上提后,内气体压强增大到,由于温度可视为不变,则根据玻-马定律,有由于1-25用图1-25所示的容积计测量某种轻矿物的操作步骤和实验数据如下:(1)打开活拴K,使管AB和罩C与大气相通。

上下移动D,使水银面在n处。

(2)关闭K,往上举D,使水银面达到m处。

这时测得B、D两管内水银面的高度差。

(3)打开K,把400g的矿物投入C中使水银面重密与对齐,关闭K。

(4)往上举D,使水银面重新到达m处,这时测得B、D两管内水银面的高度差已知罩C和AB管的容积共为,求矿物的密度。

题1-25图解:设容器B的容积为,矿物的体积为,为大气压强,当打开K时,罩内压强为,步骤(2)中罩内压强为,步骤(4)中,罩内压强为,假设操作过程中温度可视不变,则根据玻意马定律知未放矿石时:放入后:解联立方程得1-26一抽气机转速转/分,抽气机每分钟能够抽出气体,设容器的容积,问经过多少时间后才能使容器的压强由降到。

解:设抽气机每转一转时能抽出的气体体积为,则当抽气机转过一转后,容器内的压强由降到,忽略抽气过程中压强的变化而近似认为抽出压强为的气体,因而有,当抽气机转过两转后,压强为当抽气机转过n转后,压强设当压强降到时,所需时间为分,转数1-27按重量计,空气是由的氮,的氧,约的氩组成的(其余成分很少,可以忽略),计算空气的平均分子量及在标准状态下的密度。

解:设总质量为M的空气中,氧、氮、氩的质量分别为。

氧、氮、氩的分子量分别为。

空气的摩尔数则空气的平均摩尔质量为即空气的平均分子量为。

空气在标准状态下的密度1-28把的氮气压入一容积为的容器,容器中原来已充满同温同压的氧气。

试求混合气体的压强和各种气体的分压强,假定容器中的温度保持不变。

解:根据道尔顿分压定律可知又由状态方程且温度、质量M不变。

1-29用排气取气法收集某种气体(见图1-29),气体在温度为时的饱和蒸汽压为,试求此气体在干燥时的体积。

题1-29图解:容器内气体由某气体两部分组成,令某气体的压强为则其总压强干燥时,即气体内不含水汽,若某气体的压强也为其体积V,则根据PV=恒量(T、M一定)有1-30 通常称范德瓦耳斯方程中一项为内压强,已知范德瓦耳斯方程中常数a,对二氧化碳和氢分别为和,试计算这两种气体在,和时的内压强,解:根据内压强公式,设内压强为的内压强。

当时,当时当时1-31一摩尔氧气,压强为,体积为,其温度是多少解:由于体积较小,而压强较大,所以利用状态方程则必然出现较大的误差,因此我们用范氏方程求解式中1-32试计算压强为,密度为的氧气的温度,已知氧气的范德瓦耳斯常数为,。

相关文档
最新文档