14等差与等比数列综合

合集下载

2014版高考数学一轮总复习 第33讲 等差、等比数列的综合应用课件 理 新人教A版

2014版高考数学一轮总复习 第33讲 等差、等比数列的综合应用课件 理 新人教A版

4.各项均为正数的等比数列{an}的前 n 项和为 Sn, 若 Sn=2,S3n=14,则 S4n= 30 .
【解析】由已知及等比数列{an}的性质知, Sn,S2n-Sn,S3n-S2n,S4n-S3n 也成等比数列, 从而(S2n-2)2=2(14-S2n), 又 Sn>0,所以 S2n=6, 于是(S3n-S2n)2=(S2n-Sn)(S4n-S3n), 即(14-6)2=(6-2)(S4n-14),所以 S4n=30.
素材1
已知等差数列{an}的前 n 项和为 Sn, 公差 d<0, 满足 S12>0, S13<0,求 Sn 达到最大值时对应的项数 n 的值.
a1+a12×12 【解析】因为 S12= =6(a6+a7)>0, 2 a1+a13×13 S13= =13a7<0, 2 所以 a6>0,a7<0,故当 n=6 时,S6 取最大值.
备选例题
(2010· 泰州市质检)在数列{an}中, 1=1,3anan-1+an-an a
-1
=0(n≥2). (1)求数列{an}的通项公式; (2)若 λan+ ≥λ 对任意 n≥2,n∈N*恒成立,求实数 a n+ 1 1
λ 的取值范围.
1 【解析】(1)将 3anan-1+an-an-1=0,整理可得a =1+3(n n -1)=3n-2, 1 所以 an= (n≥2). 3n-2 当 n=1 时,a1=1,也满足上式, 1 所以{an}的通项公式为 an= . 3n-2
【解析】因为 a5·2n-5=22n(n≥3),且{an}成等比数列, a 则 a1·2n-1=a3·2n-3=a5·2n-5=„=22n=a2. a a a n 令 S=log2a1+log2a3+„+log2a2n-1, 则 S=log2a2n-1+log2a2n-3+„+log2a1, 所以 2S=log2[(a1·2n - 1)(a3·2n - 3)„(a2n - 3·3)(a2n - 1·1)]= a a a a log2(22n)n. 所以 2S=2n· n,故 S=n2.

等差数列和等比数列相乘的求和公式

等差数列和等比数列相乘的求和公式

等差数列和等比数列相乘的求和公式等差数列和等比数列是初中数学中的重点内容,学习它们对于提高数学能力具有极大的帮助。

今天我们来讲一下等差数列和等比数列相乘的求和公式。

首先,我们先来说一下等差数列。

所谓等差数列就是一个数列,其中每一项与它的前一项的差相等。

那么,等差数列的和是多少呢?等差数列的和可以用以下公式来表示:S = n(a1 + an)/2其中,S 表示等差数列的和,n 表示等差数列的项数,a1 表示等差数列的首项,an 表示等差数列的末项。

接下来,我们再看一下等比数列。

所谓等比数列就是一个数列,其中每一项与它的前一项的比相等。

那么,等比数列的和是多少呢?等比数列的和可以用以下公式来表示:S = a1(1 - q^n)/(1 - q)其中,S 表示等比数列的和,n 表示等比数列的项数,a1 表示等比数列的首项,q 表示等比数列的公比。

好了,接下来我们看看等差数列和等比数列相乘的求和公式。

当等差数列和等比数列相乘时,我们可以使用以下公式来计算它们的和:S = (a1d - a1q^n+1)/(d - q)其中,S 表示等差数列和等比数列相乘的和,n 表示等比数列的项数,a1 表示等比数列的首项,d 表示等差数列的公差,q 表示等比数列的公比。

通过这个公式,我们可以快速计算等差数列和等比数列相乘的和,这对于我们在学习数学中遇到一些计算上的难题时非常有用。

总结起来,等差数列和等比数列相乘的求和公式用来计算这两个数列相乘后的和。

它是由等差数列和等比数列的公式组合得出的。

对于初学者来说,掌握这个公式能够极大地提高解题的效率。

江苏省2014届一轮复习数学试题选编14:等差与等比数列综合(教师版)

江苏省2014届一轮复习数学试题选编14:等差与等比数列综合(教师版)

江苏省2014届一轮复习数学试题选编14:等差与等比数列综合填空题错误!未指定书签。

.(江苏省扬州市2013届高三下学期5月考前适应性考试数学(理)试题)数列{}n a 中,12a =,1n n a a cn +=+(c 是常数,123n = ,,,),且123a a a ,,成公比不为1的等比数列,则{}n a 的通项公式是______.【答案】22n a n n =-+错误!未指定书签。

.(常州市2013届高三教学期末调研测试数学试题)已知数列{}n a 满足143a =,()*11226n n a n N a +-=∈+,则11ni ia =∑=______. 【答案】2324n n ⋅--错误!未指定书签。

.(江苏省徐州市2013届高三上学期模底考试数学试题)已知各项均为正数的等比数列{a n }的前n 项和为S n ,若a 3=18,S 3=26,则{a n }的公比q =________. 【答案】3错误!未指定书签。

.(扬州、南通、泰州、宿迁四市2013届高三第二次调研测试数学试卷)设数列{a n }满足:()()*3118220()n n n n a a a a a n ++=---=∈N ,,则a 1的值大于20的概率为____.【答案】14错误!未指定书签。

.(苏北老四所县中2013届高三新学期调研考试)已知数列}{na 满足122n n aqa q +=+-(q 为常数,||1q <),若3456,,,a a a a ∈}{18,6,2,6,30---,则1a = ▲ .【答案】2-或126错误!未指定书签。

.(镇江市2013届高三上学期期末考试数学试题)观察下列等式:31×2×12=1-122, 31×2×12+42×3×122=1-13×22, 31×2×12+42×3×122+53×4×123=1-14×23,,由以上等式推测到一个一般的结论:对于n ∈N *,31×2×12+42×3×122++n +2n n +1×12n =______. 【答案】()nn 2111⋅+-错误!未指定书签。

等差数列与等比数列的综合应用题

等差数列与等比数列的综合应用题

等差数列与等比数列的综合应用题下面是2000字的文章,涉及到等差数列和等比数列的综合应用题。

等差数列和等比数列的综合应用题数列是数学中一个重要的概念,有着广泛的应用。

其中等差数列和等比数列是最常见的两种数列,它们在实际问题中有着丰富的应用。

本文将探讨其中一些有趣的综合应用题。

一、等差数列的综合应用1. 现有一连续数列,首项为a,公差为d,共有n项。

若已知该等差数列的和为Sn,则求出该数列的最后一项。

解析:根据等差数列的性质,我们知道等差数列的前n项和可以表示为Sn = (2a + (n-1)d) * n / 2。

将该式子中的Sn替换为已知的值,整理后得到一个关于未知数的一元二次方程,通过解方程,我们可以求得该数列的最后一项。

2. 小明上学迟到了,他每天比前一天迟到10分钟,第一天迟到15分钟,到第九天小明迟到多久?解析:这是一个等差数列的应用题,题目中已经给出了首项和公差,我们需要求出第九项。

根据等差数列的性质,我们知道第九项可以表示为a9 = a1 + (9-1)d。

将已知的值代入公式,计算得到小明第九天迟到了85分钟。

二、等比数列的综合应用1. 小明通过研究发现,他所在的城市每年的垃圾总量是前一年的1.5倍。

今年城市的垃圾总量为2000吨,请计算出5年后的城市垃圾总量是多少吨。

解析:这是一个等比数列的应用题,题目中已经给出了首项和公比,我们需要求出第五项。

根据等比数列的性质,我们知道第五项可以表示为an = a1 * r^(n-1),其中a1为首项,r为公比。

将已知的值代入公式,计算得到5年后的城市垃圾总量为3750吨。

2. 一颗植物的高度是前一天的2倍,已知第一天植物的高度为10厘米,请计算出第五天的植物高度。

解析:这是一个等比数列的应用题,题目中已经给出了首项和公比,我们需要求出第五项。

根据等比数列的性质,我们知道第五项可以表示为an = a1 * r^(n-1),其中a1为首项,r为公比。

等差和等比数列的综合应用教案

等差和等比数列的综合应用教案

教学过程一、复习预习师:这节课我们要运用等差、等比数列的概念、性质及有关公式,解决一些等差、数比数列的综合问题.(请学生叙述公式的内容并写在黑板上)生甲:等差、等比数列的通项公式分别是an=a1+(n-1)d,an=a1qn-1.生丙:等比数列的前n项和公式要分成q=1和q≠1两种情况来表示,即生丁:如果m,n,p,q都是自然数,当m+n=p+q时,那么在等差数列中有:am+an=ap+aq,在等比数列中有:am·an=ap·aq.师;在上述公式中,涉及到a1,n,d(q),an,Sn五个量,运用方程思想,已知其中三个量,就可以求另外两个量.二、知识讲解考点1:等差数列{an}的性质(1)am=ak+(m -k )d ,d=k m a a km --.(2)若数列{an}是公差为d 的等差数列,则数列{λan+b}(λ、b 为常数)是公差为λd的等差数列;若{bn}也是公差为d 的等差数列,则{λ1an+λ2bn}(λ1、λ2为常数)也是等差数列且公差为λ1d+λ2d.(3)下标成等差数列且公差为m 的项ak ,ak+m ,ak+2m ,…组成的数列仍为等差数列,公差为md.(4)若m 、n 、l 、k ∈N*,且m+n=k+l ,则am+an=ak+al ,反之不成立. (5)设A=a1+a2+a3+…+an ,B=an+1+an+2+an+3+…+a2n ,C=a2n+1+a2n+2+a2n+3+…+a3n ,则A 、B 、C 成等差数列.(6)若数列{an}的项数为2n (n ∈N*),则S 偶-S 奇=nd ,奇偶S S =n n aa 1+,S2n=n (an+an+1)(an 、an+1为中间两项);若数列{an}的项数为2n -1(n ∈N*),则S 奇-S 偶=an ,奇偶S S =n n 1-,S2n -1=(2n-1)an (an 为中间项).考点2:等比数列{an}的性质(1)am=ak·qm-k.(2)若数列{an}是等比数列,则数列{λ1an}(λ1为常数)是公比为q的等比数列;若{bn}也是公比为q2的等比数列,则{λ1an·λ2bn}(λ1、λ2为常数)也是等比数列,公比为q·q2.(3)下标成等差数列且公差为m的项ak,ak+m,ak+2m,…组成的数列仍为等比数列,公比为qm.(4)若m、n、l、k∈N*,且m+n=k+l,则am·an=ak·al,反之不成立.(5)设A=a1+a2+a3+…+an,B=an+1+an+2+an+3+…+a2n,C=a2n+1+a2n+2+a2n+3+…+a3n,则A、B、C成等比数列,设M=a1·a2·…·an,N=an+1·an+2·…·a2n,P=a2n+1·a2n+2·…·a3n,则M、N、P也成等比数列.考点3:用函数的观点理解等差数列、等比数列1.对于等差数列,∵an=a1+(n-1)d=dn+(a1-d),当d≠0时,an是n的一次函数,对应的点(n,an)是位于直线上的若干个点.当d>0时,函数是增函数,对应的数列是递增数列;同理,d=0时,函数是常数函数,对应的数列是常数列;d<0时,函数是减函数,对应的数列是递减函数.若等差数列的前n项和为Sn,则Sn=pn2+qn(p、q∈R).当p=0时,{an}为常数列;当p≠0时,可用二次函数的方法解决等差数列问题.2.对于等比数列:an=a1qn-1.可用指数函数的性质来理解.当a1>0,q>1或a1<0,0<q<1时,等比数列是递增数列;当a1>0,0<q<1或a1<0,q>1时,等比数列{an}是递减数列.当q=1时,是一个常数列.当q<0时,无法判断数列的单调性,它是一个摆动数列.三、例题精析【例题1】.等比数列{an}的公比为q,则“q>1”是“对于任意自然数n,都有an+1>an”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】D【解析】当a1<0时,条件与结论均不能由一方推出另一方.【例题2】已知数列{a n}满足a n+2=-a n(n∈N*),且a1=1,a2=2,则该数列前2002项的和为A.0B.-3C.3D.1【答案】C【解析】由题意,我们发现:a1=1,a2=2,a3=-a1=-1,a4=-a2=-2,a5=-a3=1,a6=-a4=2,…,a2001=-a1999=1,a2002=-a2000=2,a1+a2+a3+a4=0.∴a1+a2+a3+…+a2002=a2001+a2002=a1+a2=1+2=3.四、课堂运用【基础】1.若关于x 的方程x 2-x +a =0和x 2-x +b =0(a ≠b )的四个根可组成首项为41的等差数列,则a +b 的值是 A.83B.2411C.2413D.7231【答案】D【解析】依题意设四根分别为a 1、a 2、a 3、a 4,公差为d ,其中a 1=41,即a 1+a 2+a 3+a 4=1+1=2.又a 1+a 4=a 2+a 3,所以a 1+a 4=a 2+a 3=1.由此求得a 4=43,d =61,于是a 2=125,a 3=127.故a +b =a 1a 4+a 2a 3=41×43+125×127=14462=7231.2.在等差数列{a n}中,当a r=a s(r≠s)时,数列{a n}必定是常数列,然而在等比数列{a n}中,对某些正整数r、s(r≠s),当a r=a s时,非常数列{a n}的一个例子是___________________.【答案】a,-a,a,-a…(a≠0)【解析】只需选取首项不为0,公比为-1的等比数列即可.【巩固】1.等差数列{a n}中,a1=2,公差不为零,且a1,a3,a11恰好是某等比数列的前三项,那么该等比数列公比的值等于___________________.【答案】4【解析】设a1,a3,a11成等比,公比为q,a3=a1·q=2q,a11=a1·q2=2q2.又{a n}是等差数列,∴a11=a1+5(a3-a1),∴q=4.2、已知{a n}是等比数列,a1=2,a3=18;{b n}是等差数列,b1=2,b1+b2+b3+b4=a1+a2+a3>20.(1)求数列{b n}的通项公式;(2)求数列{b n}的前n项和S n的公式;(3)设P n=b1+b4+b7+…+b3n-2,Q n=b10+b12+b14+…+b2n+8,其中n=1,2,…,试比较P n与Q n的大小,并证明你的结论.【答案】见解析【解析】(1)设{a n }的公比为q ,由a 3=a 1q 2得q 2=13a a =9,q =±3. 当q =-3时,a 1+a 2+a 3=2-6+18=14<20, 这与a 1+a 2+a 3>20矛盾,故舍去.当q =3时,a 1+a 2+a 3=2+6+18=26>20,故符合题意. 设数列{b n }的公差为d ,由b 1+b 2+b 3+b 4=26得4b 1+234⨯d =26. 又b 1=2,解得d =3,所以b n =3n -1. (2)S n =2)(1n b b n +=23n 2+21n .(3)b 1,b 4,b 7,…,b 3n -2组成以3d 为公差的等差数列, 所以P n =nb 1+2)1(-n n ·3d =29n 2-25n ; b 10,b 12,b 14,…,b 2n +8组成以2d 为公差的等差数列,b 10=29,所以Q n =nb 10+2)1(-n n ·2d =3n 2+26n . P n -Q n =(29n 2-25n )-(3n 2+26n )=23n (n -19).所以,对于正整数n ,当n ≥20时,P n >Q n ; 当n =19时,P n =Q n ; 当n ≤18时,P n <Q n .【拔高】1、已知等差数列{a n }的首项a 1=1,公差d >0,且第二项、第五项、第十四项分别是等比数列{b n }的第二项、第三项、第四项.(1)求数列{an}与{bn}的通项公式;(2)设数列{cn}对任意正整数n 均有11b c +22mb c +323b mc +…+nn nb mc 1 =(n+1)an+1成立,其中m 为不等于零的常数,求数列{cn}的前n 项和Sn.【答案】(1)a n =2n -1(n =1,2,3,…),b n =3n -1(n =1,2,3,…).(2)S n =⎪⎩⎪⎨⎧--+-+-+++222)31(])3()3[(431)3)(14(96132m m m m m n m n n n n .31,31≠=m m【解析】(1)由题意得(a 1+d )(a 1+13d )=(a 1+4d )2,整理得2a 1d =d 2.∵a 1=1,解得d =2(d =0不合题意舍去), ∴a n =2n -1(n =1,2,3,…).由b 2=a 2=3,b 3=a 5=9,易求得b n =3n -1(n =1,2,3,…). (2)当n =1时,c 1=6; 当n ≥2时,nn n b mc 1-=(n +1)a n +1-na n =4n +1,∴c n =(4n +1)m n -1b n =(4n +1)(3m )n -1.∴c n =⎩⎨⎧+-1)3)(14(6n m n .,4,3,2,1⋅⋅⋅==n n 当3m =1,即m =31时, S n =6+9+13+…+(4n +1)=6+2)149)(1(++-n n=6+(n -1)(2n +5)=2n 2+3n +1. 当3m ≠1,即m ≠31时, S n =c 1+c 2+…+c n ,即S n =6+9·(3m )+13·(3m )2+…+(4n -3)(3m )n -2+(4n +1)(3m )n -1.①3mS n =6·3m +9·(3m )2+13·(3m )3+…+(4n -3)(3m )n -1+(4n +1)(3m )n .② ①-②得(1-3m )S n =6+3·3m +4·(3m )2+4·(3m )3+…+4·(3m )n -1-(4n +1)(3m )n =6+9m +4[(3m )2+(3m )3+…+(3m )n -1]-(4n +1)(3m )n=6+9m +m m m n 31])3()3[(42---(4n +1)(3m )n .∴S n =m m n m n 31)3)(14(96-+-++22)31(])3()3[(4m m m n --.∴S n =⎪⎩⎪⎨⎧--+-+-+++222)31(])3()3[(431)3)(14(96132m m m m m n m n n n n .31,31≠=m mcb d a cba c bc a c b a cad a a cd cd d c c d cdd c cd d c >∴>>>>∴>>>>>∴>>>∴>-=-∴>>->∴>>,0d 21)2(,0,01,0)1(,0,0,011,011,01,0,0,0)得)(由(又又课程小结等差数列和等比数列的综合问题,涉及的知识面很宽,题目的变化也很多,但是万变不离其宗,只要抓住基本量a1,d(q),充分运用方程、函数、转化等数学思想方法,合理调用相关知识,这样,任何问题都不能把我们难倒.课后作业【基础】1.在等比数列{a n }中,a 5+a 6=a (a ≠0),a 15+a 16=b ,则a 25+a 26的值是A.abB.22abC.ab 2 D.2ab【答案】C【解析】 由等比数列的性质得三个和成等比数列,由等比中项公式可得选项为C. 【巩固】2.若数列x ,a 1,a 2,y 成等差数列,x ,b 1,b 2,y 成等比数列,则21221)(b b a a ⋅+的取值范围是___________________.【答案】[4,+∞)或(-∞,0]【解析】在等差数列中,a 1+a 2=x +y ;在等比数列中,xy =b 1·b 2.∴21221)(b b a a ⋅+=y x y x ⋅+2)(=y x y xy x ⋅++222=y x +x y +2.当x ·y >0时,y x +x y≥2,故21221)(b b a a ⋅+≥4;当x ·y <0时,y x +x y≤-2,故21221)(b b a a ⋅+≤0.答案:[4,+∞)或(-∞,0]【拔高】3.已知数列{a n }中,a 1=65且对任意非零自然数n 都有a n +1=31a n +(21)n +1.数列{b n }对任意非零自然数n 都有b n =a n +1-21a n .(1)求证:数列{b n }是等比数列; (2)求数列{a n }的通项公式.【答案】见解析【解析】(1)证明:b n =a n +1-21a n =[31a n +(21)n +1]-21a n =(21)n +1-61a n ,b n +1=(21)n +2-61a n +1=(21)n +2-61[31a n +(21)n +1]=21·(21)n +1-181a n -61·(21)n +1=31·(21)n +1-181a n =31·[(21)n +1-61a n ], ∴n n b b 1+=31(n =1,2,3,…). ∴{b n }是公比为31的等比数列. (2)解:∵b 1=(21)2-61a 1=41-61·65=91,∴b n =91·(31)n -1=(31)n +1.由b n =(21)n +1-61a n ,得(31)n +1=(21)n +1-61a n ,解得a n =6[(21)n +1-(31)n +1].5.设{a n }为等比数列,a 1=b 1=1,a 2+a 4=b 3,b 2b 4=a 3,分别求出{a n }及{b n }的前10项的和S 10及T 10.解:设公差为d ,公比为q ,由题意知⎪⎩⎪⎨⎧=+=+,21,4242q d q d∴⎪⎪⎩⎪⎪⎨⎧=-=22,83q d 或⎪⎪⎩⎪⎪⎨⎧-=-=.22,83q d ∴S 10=10+2910⨯(-83)=-855. 当q =22时,T 10=32)22(31+;当q =-22时,T 10=32)22(31-.=a +b ab -2ab2a +b=ab a -b 2a +b>0,∴C >D ,∴A >B >C >D .。

等差数列和等比数列的综合应用

等差数列和等比数列的综合应用

1等差数列和等比数列的综合应用1.等差数列的常用性质:⑴ m ,n ,p ,r ∈N *,若m +n =p +r ,则有 .⑵ {a n }是等差数列, 则{a kn } (k ∈N *,k 为常数)是 数列. ⑶ S n ,S 2n -S n ,S 3n -S 2n 构成 数列.2.在等差数列中,求S n 的最大(小)值,关键是找出某一项,使这一项及它前面的项皆取正(负)值或0,而它后面的各项皆取负(正)值.⑴ a 1> 0,d <0时,解不等式组 ⎩⎨⎧<≥+001n n a a 可解得S n 达到最 值时n 的值. ⑵ a 1<0,d>0时,解不等式组⎪⎩⎪⎨⎧可解得S n 达到最小值时n 的值.3.等比数列的常用性质:⑴ m ,n ,p ,r ∈N *,若m +n =p +r ,则有 . ⑵ {a n }是等比数列,则{a 2n }、{na 1}是 数列. ⑶ 若S n ≠0,则S n ,S 2n -S n ,S 3n -S 2n 构成 数列. 4.求数列的前n 项和,一般有下列几种方法: (1).等差数列的前n 项和公式: S n = = .(2).等比数列的前n 项和公式: ① 当q =1时,S n = . ② 当q≠1时,S n = .(3).倒序相加法:将一个数列倒过来排列与原数列相加.主要用于倒序相加后对应项之和有公因子可提的数列求和.(4).错位相减法:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和.例1. 数列{a n }的前n 项和S n ,且a 1=1,a n +1=31S n ,n =1,2,3…… 求:⑴ a 2、a 3、a 4的值及{a n }的通项公式;⑵ a 2+a 4+a 6+…+a 2n 的值.2解析:(1)由a 1=1,a n +1=31S n ,n =1,2,3,…得a 2=31S 1=31a 1=31,a 3=31S 2=31(a 1+a 2)=94,a 4=31S 3=31(a 1+a 2+a 3)=2716 由a n +1-a n =31(S n -S n -1)=31a n (n≥2),得a n +1=34a n (n≥2),又a 2=31,∴a n =31·(34)n -2(n≥2)∴ {a n }通项公式为a n =⎪⎩⎪⎨⎧≥⋅=-2)34(31112n n n(2) 由(1)可知a 2、a 4、…a 2n 是首项为31,公比为(34)2,项数为n 的等比数列.∴ a 2+a 4+a 6+…+a 2n =31×22)34(1)34(1--n =73[(34)2n -1] 变式训练1.设数列{}n a 的前n 项的和14122333n n n S a +=-⨯+,......3,2,1=n 求首项1a 与通项n a 。

等差数列与等比数列的求和

等差数列与等比数列的求和

等差数列与等比数列的求和等差数列与等比数列的求和是数学中常见的问题。

它们在数学和应用数学的许多领域中都具有重要的作用。

本文将分别介绍等差数列与等比数列的概念,并详细讲解它们的求和公式和求和方法。

一、等差数列的求和等差数列是指数列中相邻的两项之差是一个常数的数列。

常用的求和符号为∑(sigma),表示将数列中的所有项相加。

等差数列的求和公式为:Sn = (a1 + an) * n / 2其中,Sn表示数列的前n项和,a1表示首项,an表示末项,n表示项数。

举例来说,若等差数列的首项为a1,公差为d,共有n项,则数列的前n项和可以表示为:Sn = (a1 + a1 + d + a1 + 2d + ... + a1 + (n - 1)d)= (n / 2) * (a1 + an)= (n / 2) * (2a1 + (n - 1)d)其中,第一个等号是将等差数列展开后相邻的项相加,第二个等号是根据等差数列的性质进行化简得到的。

二、等比数列的求和等比数列是指数列中相邻的两项之比是一个常数的数列。

常用的求和符号同样为∑(sigma)。

等比数列的求和公式为:Sn = a1 * (1 - q^n) / (1 - q)其中,Sn表示数列的前n项和,a1表示首项,q表示公比,n表示项数。

举例来说,若等比数列的首项为a1,公比为q,共有n项,则数列的前n项和可以表示为:Sn = a1 * (1 - q^n) / (1 - q)其中,分子的1 - q^n是根据等比数列的求和性质进行的化简。

三、等差数列和等比数列的应用等差数列和等比数列的求和公式在实际应用中有广泛的用途。

它们在经济学、物理学、统计学等领域中都有应用。

1. 经济学中,等差数列可以用来表示资金的增长或减少等情况。

通过求和公式,可以方便地计算出一段时间内资金的总和。

2. 物理学中,等差数列可以用来表示物体的运动情况。

通过求和公式,可以计算出一段时间内物体的位移或速度。

等比数列和等差数列的综合运用

等比数列和等差数列的综合运用

04
等比数列和等差数列的 应用题
生活中的等差数列问题
银行贷款和存款:等差数列可以用来计算银行贷款和存款的利息和本金。 工资计算:很多公司采用等差数列的方式来计算员工的工资等级和晋升。 地铁和公交车站:等差数列可以用来规划地铁和公交车站的站点间隔和路线。 音乐和艺术:等差数列在音乐和艺术中也有广泛应用,例如音阶和节奏的排列。
的首项 a_1 / r^(n-1)。
添加标题
等差数列和等比数列的混合运算
定义:等差数列 和等比数列的混 合运算是指在一 个数学表达式中 同时出现等差数 列和等比数列的 项。
运算规则:等差 数列和等比数列 的混合运算需要 遵循数学的运算 顺序,先进行乘 除运算,再进行 加减运算。
实例:例如,对 于等差数列 {2, 4, 6, 8} 和等比 数列 {1, 2, 4, 8},混合运算的 结果可以是这些 数列的各项相加 或相乘。
等差数列和等比数列的应用:等差数列和等比数列的应用包括在数学、物理、工程等领域的应 用。
感谢您的观看
汇报人:XX
实例:可以通过举例来说明等差数列和等比数列的混合运用,例如斐波那契数列就是一个典 型的例子。
03
等比数列和等差数列的 求和
等差数列的求和公式
定义:等差数列是一种常见的数列,其相邻两项的差相等
求和公式:S_n=n/2*(a_1+a_n) 其中,S_n为前n项和,a_1为首项, a_n为第n项
推导过程:通过等差数列的性质,我们可以将每一项表示为首项和公差 的函数,再利用求和公式进行推导
生活中的等比数列问题
添加项标题
银行贷款和储蓄:等比数列可以用来计算复利和本金增长,例 如银行的定期存款和贷款的利息计算。
添加项标题

2024届高考一轮复习数学教案(新人教B版):数列中的综合问题

2024届高考一轮复习数学教案(新人教B版):数列中的综合问题

§6.6数列中的综合问题考试要求数列的综合运算问题以及数列与函数、不等式等知识的交汇问题,是历年高考的热点内容.一般围绕等差数列、等比数列的知识命题,涉及数列的函数性质、通项公式、前n 项和公式等.题型一等差数列、等比数列的综合运算例1(2023·厦门模拟)已知数列{a n }的前n 项和为S n ,且S n =32n 2+12n ,递增的等比数列{b n }满足b 1+b 4=18,b 2·b 3=32.(1)求数列{a n },{b n }的通项公式;(2)若c n =a n ·b n ,n ∈N +,求数列{c n }的前n 项和T n .解(1)当n ≥2时,a n =S n -S n -1=32n 2+12n -32(n -1)2+12(n -1)=3n -1,又∵当n =1时,a 1=S 1=2符合上式,∴a n =3n -1.∵b 2b 3=b 1b 4,∴b 1,b 4是方程x 2-18x +32=0的两根,又∵b 4>b 1,∴解得b 1=2,b 4=16,∴q 3=b4b 1=8,∴q =2,∴b n =b 1·q n -1=2n .(2)∵a n =3n -1,b n =2n ,则c n =(3n -1)·2n ,∴T n =2·21+5·22+8·23+11·24+…+(3n -1)·2n ,2T n =2·22+5·23+8·24+11·25+…+(3n -1)·2n +1,将两式相减得-T n =2·21+3(22+23+24+…+2n )-(3n -1)·2n +1=4+322(1-2n -1)1-2-(3n -1)·2n +1=(4-3n )·2n +1-8,∴T n =(3n -4)·2n +1+8.思维升华数列的综合问题常将等差、等比数列结合,两者相互联系、相互转化,解答这类问题的方法:寻找通项公式,利用性质进行转化.跟踪训练1(2022·全国甲卷)记S n 为数列{a n }的前n 项和.已知2S nn+n =2a n +1.(1)证明:{a n }是等差数列;(2)若a 4,a 7,a 9成等比数列,求S n 的最小值.(1)证明由2S nn+n =2a n +1,得2S n +n 2=2a n n +n ,①所以2S n +1+(n +1)2=2a n +1(n +1)+(n +1),②②-①,得2a n +1+2n +1=2a n +1(n +1)-2a n n +1,化简得a n +1-a n =1,所以数列{a n }是公差为1的等差数列.(2)解由(1)知数列{a n }的公差为1.由a 4,a 7,a 9成等比数列,得a 27=a 4a 9,即(a 1+6)2=(a 1+3)(a 1+8),解得a 1=-12.所以S n =-12n +n (n -1)2=n 2-25n2-6258,所以当n =12或13时,S n 取得最小值,最小值为-78.题型二数列与其他知识的交汇问题命题点1数列与不等式的交汇例2(1)已知数列{a n }满足a 1+12a 2+13a 3+…+1na n =n 2+n (n ∈N +),设数列{b n }满足:b n =2n +1a n a n +1,数列{b n }的前n 项和为T n ,若T n <nn +1λ(n ∈N +)恒成立,则实数λ的取值范围为()A.14,+∞C.38,+∞答案D解析数列{a n }满足a 1+12a 2+13a 3+…+1na n =n 2+n ,①当n ≥2时,a 1+12a 2+13a 3+…+1n -1a n -1=(n -1)2+(n -1),②①-②得1na n =2n ,故a n =2n 2,当n =1时,a 1=2也满足上式.数列{b n }满足:b n =2n +1a n a n +1=2n +14n 2(n +1)2=141n 2-1(n +1)2,则T n =141+…+1n 2-1(n +1)2=141-1(n +1)2,由于T n <nn +1λ(n ∈N +)恒成立,故141-1(n +1)2<n n +1λ,整理得λ>n +24n +4,因为y =n +24n +4=n ∈N +上单调递减,故当n =1=38,所以λ>38.(2)已知数列{a n }满足a 1=37,3a n ,2a n +1,a n a n +1成等差数列.{a n }的通项公式;②记{a n }的前n 项和为S n ,求证:1271S n <7528.①解由已知得4a n +1=3a n +a n a n +1,因为a 1=37≠0,所以由递推关系可得a n ≠0恒成立,所以4a n =3a n +1+1,所以4a n -4=3a n +1-3,即1a n +1-1又因为1a 1-1=73-1=43,所以数列是首项为43,公比为43的等比数列,所以1a n-1,所以a n =11.②证明由①可得a n =111-1=37×-1,所以S n ≥37+37×+…+37×-1=1271n,a n =11<1,S 1=37<7528,当n ≥2时,S n <37++ (37)1-34=7528-3<7528.综上所述,1271n≤S n <7528成立.命题点2数列与函数的交汇例3(1)(2023·龙岩模拟)已知函数f (x )=13x 3+4x ,记等差数列{a n }的前n 项和为S n ,若f (a 1+2)=100,f (a 2022+2)=-100,则S 2022等于()A .-4044B .-2022C .2022D .4044答案A解析因为f (-x )=-13x 3-4x =-f (x ),所以f (x )是奇函数,因为f (a 1+2)=100,f (a 2022+2)=-100,所以f (a 1+2)=-f (a 2022+2),所以a 1+2+a 2022+2=0,所以a 1+a 2022=-4,所以S 2022=2022(a 1+a 2022)2=-4044.(2)数列{a n }是等差数列,a 1=1,公差d ∈[1,2],且a 4+λa 10+a 16=15,则实数λ的最大值为________.答案-12解析因为a 4+λa 10+a 16=15,所以a 1+3d +λ(a 1+9d )+a 1+15d =15,令λ=f (d )=151+9d -2,因为d ∈[1,2],所以令t =1+9d ,t ∈[10,19],因此λ=f (t )=15t -2,当t ∈[10,19]时,函数λ=f (t )是减函数,故当t =10时,实数λ有最大值,最大值为f (10)=-12.思维升华(1)数列与不等式的综合问题及求解策略①判断数列问题的一些不等关系,可以利用数列的单调性比较大小或借助数列对应的函数的单调性比较大小.②以数列为载体,考查不等式恒成立的问题,此类问题可转化为函数的最值.③考查与数列有关的不等式证明问题,此类问题一般采用放缩法进行证明,有时也可通过构造函数进行证明.(2)数列与函数交汇问题的主要类型及求解策略①已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题.②已知数列条件,解决函数问题,解决此类问题一般要利用数列的通项公式、前n 项和公式、求和方法等对式子化简变形.跟踪训练2(1)设{a n }是等比数列,函数y =x 2-x -2023的两个零点是a 2,a 3,则a 1a 4等于()A .2023B .1C .-1D .-2023答案D解析由题意a 2,a 3是x 2-x -2023=0的两根.由根与系数的关系得a 2a 3=-2023.又a 1a 4=a 2a 3,所以a 1a 4=-2023.(2)数列{a n }满足a 1=1,a n +1=2a n (n ∈N +),S n 为其前n 项和.数列{b n }为等差数列,且满足b 1=a 1,b 4=S 3.①求数列{a n },{b n }的通项公式;②设c n =1b n ·log 2a 2n +2,数列{c n }的前n 项和为T n ,证明:13≤T n <12.①解由题意知,{a n }是首项为1,公比为2的等比数列,所以a n =a 1·2n -1=2n -1.所以S n =2n-1.设等差数列{b n }的公差为d ,则b 1=a 1=1,b 4=1+3d =7,所以d =2,b n =1+(n -1)×2=2n -1.②证明因为log 2a 2n +2=log 222n +1=2n +1,所以c n =1b n ·log 2a 2n +2=1(2n -1)(2n +1)=所以T n -13+13-15+…+12n -1-因为n ∈N +,所以T n <12,=n 2n +1.当n ≥2时,T n -T n -1=n 2n +1-n -12n -1=1(2n +1)(2n -1)>0,所以数列{T n }是一个递增数列,所以T n ≥T 1=13.综上所述,13≤T n <12.课时精练1.(2022·汕头模拟)已知各项均为正数的等比数列{a n }的前4项和为15,4a 1,2a 3,a 5成等差数列,则a 1等于()A .52-5B .52+5C .52D .5答案A解析设各项均为正数的等比数列{a n }的公比为q ,q >0,由前4项和为15,4a 1,2a 3,a 5成等差数列,可得a 1+a 1q +a 1q 2+a 1q 3=15,4a 3=4a 1+a 5,即4a 1+a 1q 4=4a 1q 2,即q 2-2=0,解得q =2,a 1=52-5.2.(2023·焦作模拟)直播带货是一种直播和电商相结合的销售手段,目前受到了广大消费者的追捧,针对这种现状,某传媒公司决定逐年加大直播带货的资金投入,若该公司今年投入的资金为2000万元,并在此基础上,以后每年的资金投入均比上一年增长12%,则该公司需经过____年其投入资金开始超过7000万元()(参考数据:lg 1.12≈0.049,lg 2≈0.301,lg 7≈0.845)A .14B .13C .12D .11答案C解析设该公司经过n 年投入的资金为a n 万元,则a 1=2000×1.12,由题意可知,数列{a n }是以2000×1.12为首项,以1.12为公比的等比数列,所以a n =2000×1.12n ,由a n =2000×1.12n >7000可得n >log 1.1272=lg 7-lg 2lg 1.12≈11.1,因此,该公司需经过12年其投入资金开始超过7000万元.3.在正项等比数列{a n }中,3为a 6与a 14的等比中项,则a 3+3a 17的最小值为()A .23B .89C .6D .3答案C解析因为{a n }是正项等比数列,且3为a 6与a 14的等比中项,所以a 6a 14=3=a 3a 17,则a 3+3a 17=a 3+3·3a 3≥2a 3·3·3a 3=6,当且仅当a 3=3时,等号成立,所以a 3+3a 17的最小值为6.4.(2023·岳阳模拟)在等比数列{a n }中,a 2=-2a 5,1<a 3<2,则数列{a 3n }的前5项和S 5的取值范围是()-118,--338,-答案A解析设等比数列{a n }的公比为q ,则q 3=a 5a 2=-12,数列{a 3n }是首项为a 3,公比为q 3=-12的等比数列,则S 51+12=1116a 35.(多选)(2023·贵阳模拟)已知函数f (x )=lg x ,则下列四个命题中,是真命题的为()A .f (2),f (10),f (5)成等差数列B .f (2),f (4),f (8)成等差数列C .f (2),f (12),f (72)成等比数列D .f (2),f (4),f (16)成等比数列答案ABD解析对于A ,f (2)+f (5)=lg 2+lg 5=lg 10=1,2f (10)=2lg 10=1,故f (2),f (10),f (5)成等差数列,故是真命题;对于B ,f (2)+f (8)=lg 2+lg 8=lg 16,2f (4)=2lg 4=lg 16,故f (2),f (4),f (8)成等差数列,故是真命题;对于C ,f (2)·f (72)=lg 2×lg =lg 212=f 2(12),故f (2),f (12),f (72)不成等比数列,故是假命题;对于D ,f (2)f (16)=lg 2×lg 16=4lg 22=(2lg 2)2=lg 24=f 2(4),故f (2),f (4),f (16)成等比数列,故是真命题.6.数学家也有许多美丽的错误,如法国数学家费马于1640年提出了F n =22n+1(n =0,1,2,…)是质数的猜想,直到1732年才被善于计算的大数学家欧拉算出F 5=641×6700417,不是质数.现设a n =log 4(F n -1)(n =1,2,…),S n 表示数列{a n }的前n 项和.若32S n =63a n ,则n 等于()A .5B .6C .7D .8答案B解析因为F n =22n+1(n =0,1,2,…),所以a n =log 4(F n -1)=log 4(22n+1-1)=log 422n=2n -1,所以{a n }是等比数列,首项为1,公比为2,所以S n =1(1-2n )1-2=2n -1.所以32(2n -1)=63×2n -1,解得n =6.7.宋元时期我国数学家朱世杰在《四元玉鉴》中所记载的“垛积术”,其中“落—形”就是每层为“三角形数”的三角锥垛,三角锥垛从上到下最上面是1个球,第二层是3个球,第三层是6个球,第四层是10个球,…,则这个三角锥垛的第十五层球的个数为________.答案120解析∵“三角形数”可写为1,1+2,1+2+3,1+2+3+4,1+2+3+4+5,…,∴“三角形数”的通项公式为a n =1+2+3+…+n =n (n +1)2,∴这个三角锥垛的第十五层球的个数为a 15=15×162=120.8.已知数列{a n }的通项公式为a n =ln n ,若存在p ∈R ,使得a n ≤pn 对任意的n ∈N +都成立,则p 的取值范围为________.答案ln 33,+∞解析数列{a n }的通项公式为a n =ln n ,若存在p ∈R ,使得a n ≤pn 对任意的n ∈N +都成立,故p ,设f (x )=ln x x ,则f ′(x )=1x ·x -ln x x 2,令f ′(x )=1-ln x x 2=0,解得x =e ,故函数f (x )的单调递增区间为(0,e),单调递减区间为(e ,+∞),所以函数在x =e 处取最大值,由于n ∈N +,所以当n =3时函数最大值为ln 33.所以p 的取值范围是ln 33,+9.记关于x 的不等式x 2-4nx +3n 2≤0(n ∈N +)的整数解的个数为a n ,数列{b n }的前n 项和为T n ,满足4T n =3n +1-a n -2.(1)求数列{b n }的通项公式;(2)设c n =2b n -,若对任意n ∈N +,都有c n <c n +1成立,试求实数λ的取值范围.解(1)由不等式x 2-4nx +3n 2≤0可得,n ≤x ≤3n ,∴a n =2n +1,T n =14×3n +1-12n -34,当n =1时,b 1=T 1=1,当n ≥2时,b n =T n -T n -1=12×3n -12,∵b 1=1适合上式,∴b n =12×3n -12.(2)由(1)可得,c n =3n -1+(-1)n -1,∴c n +1=3n +1-1+(-1)n +1,∵c n <c n +1,∴c n +1-c n =2×3n +52(-1)n >0,∴(-1)n λ>-45×2n ,当n 为奇数时,λ<45×2n ,由于45×2n 随着n 的增大而增大,当n =1时,45×2n 的最小值为85,∴λ<85,当n 为偶数时,λ>-45×2n ,由于-45×2n 随着n 的增大而减小,当n =2时,-45×2n 的最大值为-165,∴λ>-165,综上可知,-165<λ<85.10.设n ∈N +,有三个条件:①a n 是2与S n 的等差中项;②a 1=2,S n +1=a 1(S n +1);③S n =2n +1-2.在这三个条件中任选一个,补充在下列问题的横线上,再作答.若数列{a n }的前n 项和为S n ,且________.(1)求数列{a n }的通项公式;(2)若{a n ·b n }是以2为首项,4为公差的等差数列,求数列{b n }的前n 项和T n .注:如果选择多个条件分别解答,那么按第一个解答计分.解(1)选择条件①:因为a n 是2与S n 的等差中项,所以2a n =2+S n ,所以当n ≥2时,2a n -1=2+S n -1,两式相减得,2a n -2a n -1=a n ,即a n =2a n -1(n ≥2),在2a n =2+S n 中,令n =1,可得a 1=2,所以数列{a n }是首项为2,公比为2的等比数列,故a n =2·2n -1=2n .选择条件②:由a 1=2,S n +1=a 1(S n +1),知S n +1=2(S n +1),当n =1时,可求得a 2=4,所以当n ≥2时,S n =2(S n -1+1),两式相减得,a n +1=2a n (n ≥2),又a 1=2,a 2=4也满足上式,所以数列{a n }是首项为2,公比为2的等比数列,故a n =2·2n -1=2n .选择条件③:在S n =2n +1-2中,令n =1,则a 1=21+1-2=2,当n ≥2时,有S n -1=2n -2,两式相减得,a n =2n (n ≥2),当n =1时,a 1=2满足上式,所以a n =2n .(2)因为{a n ·b n }是以2为首项,4为公差的等差数列,所以a n ·b n =2+(n -1)·4=4n -2,由(1)知,a n =2n ,所以b n =2n -12n -1,所以T n =1+3+5+…+2n -12n -1,12T n =1+3+…+2n -32n -1+2n -12n ,两式相减得,12T n =1+2+2+…+2-1-2n -12n =1+2×21-12-2n -12n =3-2n +32n,所以T n =6-2n +32n -1.11.(2022·北京)设{a n }是公差不为0的无穷等差数列,则“{a n }为递增数列”是“存在正整数N 0,当n >N 0时,a n >0”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案C 解析设无穷等差数列{a n }的公差为d (d ≠0),则a n =a 1+(n -1)d =dn +a 1-d .若{a n }为递增数列,则d >0,则存在正整数N 0,使得当n >N 0时,a n =dn +a 1-d >0,所以充分性成立;若存在正整数N 0,使得当n >N 0时,a n =dn +a 1-d >0,即d >d -a 1n对任意的n >N 0,n ∈N +均成立,由于n →+∞时,d -a 1n→0,且d ≠0,所以d >0,{a n }为递增数列,必要性成立.故选C.12.已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3).若a 1>1,则()A .a 1<a 3,a 2<a 4B .a 1>a 3,a 2<a 4C .a 1<a 3,a 2>a 4D .a 1>a 3,a 2>a 4答案B 解析因为ln x ≤x -1(x >0),所以a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3)≤a 1+a 2+a 3-1,所以a 4=a 1·q 3≤-1.由a 1>1,得q <0.若q ≤-1,则ln(a 1+a 2+a 3)=a 1+a 2+a 3+a 4=a 1(1+q )·(1+q 2)≤0.又a 1+a 2+a 3=a 1(1+q +q 2)≥a 1>1,所以ln(a 1+a 2+a 3)>0,矛盾.因此-1<q <0.所以a 1-a 3=a 1(1-q 2)>0,a 2-a 4=a 1q (1-q 2)<0,所以a 1>a 3,a 2<a 4.13.函数y =f (x ),x ∈[1,+∞),数列{a n }满足a n =f (n ),n ∈N +,①函数f (x )是增函数;②数列{a n }是递增数列.写出一个满足①的函数f (x )的解析式________.写出一个满足②但不满足①的函数f (x )的解析式________.答案f (x )=x 2f (x )(答案不唯一)解析由题意,可知在x ∈[1,+∞)这个区间上是增函数的函数有许多,可写为f (x )=x 2.第二个填空是找一个数列是递增数列,而对应的函数不是增函数,可写为f (x ).则这个函数在1,43上单调递减,在43,+∴f (x )在[1,+∞)上不是增函数,不满足①.而对应的数列为a n 在n ∈N +上越来越大,属于递增数列.14.设函数f (x )-4,x ≤-3,x 2+2,x >-3,数列{a n }满足a n +1=f (a n )(n ∈N +),若{a n }是等差数列.则a 1的取值范围是__________.答案(-∞,-3]∪{-2,1}解析画出函数f (x )的图象如图所示,当a 1≤-3时,a 2=f (a 1)=a 1-4≤-7,a 3=f (a 2)=a 2-4≤-11,…,数列{a n }是首项为a 1,公差为-4的等差数列,符合题意,当a 1>-3时,因为{a n }是等差数列,①若其公差d >0,则∃k 0∈N +,使得0k a >2,这与a n +1=f (a n )=2-a 2n ≤2矛盾,②若其公差d =0,则a 2=-a 21+2=a 1,即a 21+a 1-2=0,解得a 1=-2或a 1=1,则当a 1=-2时,a n =-2为常数列,当a 1=1时,a n =1为常数列,此时{a n }为等差数列,符合题意,③若其公差d <0,则∃k 0∈N +,使得0k a >-3且01k a +≤-3,则等差数列的公差必为-4,因此001k k a a +-=-4,所以2-002k k a a -=-4,解得0k a =-3(舍去)或0k a =2.又当0k a =2时,000123k k k a a a +++===…=-2,这与公差为-4矛盾.综上所述,a 1的取值范围是(-∞,-3]∪{-2,1}.15.若数列{a n }对于任意的正整数n 满足:a n >0且a n a n +1=n +1,则称数列{a n }为“积增数列”.已知“积增数列”{a n }中,a 1=1,数列{a 2n +a 2n +1}的前n 项和为S n ,则对于任意的正整数n ,有()A .S n ≤2n 2+3B .S n ≥n 2+4nC .S n ≤n 2+4nD .S n ≥n 2+3n 答案D 解析∵a n >0,∴a 2n +a 2n +1≥2a n a n +1,∵a n a n +1=n +1,∴{a n a n +1}的前n 项和为2+3+4+…+n +1=n (2+n +1)2=n (n +3)2,∴数列{a 2n +a 2n +1}的前n 项和为S n ≥2×n (n +3)2=n 2+3n .16.设{a n }是正数组成的数列,其前n 项和为S n ,并且对于所有的正整数n ,a n 与2的等差中项等于S n 与2的等比中项.(1)求数列{a n }的通项公式;(2)令b nn ∈N +),求证:b 1+b 2+b 3+…+b n <1+n .(1)解由已知a n +22=2S n (n ∈N +),整理得S n =18(a n +2)2,所以S n +1=18(a n +1+2)2.所以a n +1=S n +1-S n =18[(a n +1+2)2-(a n +2)2]=18(a 2n +1+4a n +1-a 2n -4a n ),整理得(a n +1+a n )(a n +1-a n -4)=0,由题意知a n +1+a n ≠0,所以a n +1-a n =4,而a 1=2,即数列{a n }是a 1=2,d =4的等差数列,所以a n =a 1+(n -1)d =4n -2.(2)证明令c n =b n -1,则c n +a n a n +1-=12n -1-12n +1.故b 1+b 2+…+b n -n =c 1+c 2+…+cn…1-12n +1<1.故b 1+b 2+…+b n <1+n .。

高考数学《等差等比数列综合问题》基础知识与练习题(含答案)

高考数学《等差等比数列综合问题》基础知识与练习题(含答案)

高考数学《等差等比数列综合问题》基础知识与练习题(含答案)一、基础知识:1、等差数列性质与等比数列性质:(1)若{}n a 为等差数列,0,1c c >≠,则{}na c成等比数列证明:设{}n a 的公差为d ,则11n n n na a a da c c c c ++−==为一个常数所以{}na c成等比数列(2)若{}n a 为正项等比数列,0,1c c >≠,则{}log c n a 成等差数列 证明:设{}n a 的公比为q ,则11log log log log n c n c n c c na a a q a ++−==为常数 所以{}log c n a 成等差数列 二、典型例题:例1:已知等比数列{}n a 中,若1324,,2a a a 成等差数列,则公比q =( ) A. 1 B. 1−或2 C. 2 D. 1−思路:由“1324,,2a a a 成等差数列”可得:3123122422a a a a a a =+⇒=+,再由等比数列定义可得:23121,a a q a a q ==,所以等式变为:22q q =+解得2q =或1q =−,经检验均符合条件 答案:B例2:已知{}n a 是等差数列,且公差d 不为零,其前n 项和是n S ,若348,,a a a 成等比数列,则( )A. 140,0a d dS >>B. 140,0a d dS <<C. 140,0a d dS ><D. 140,0a d dS <>思路:从“348,,a a a 成等比数列”入手可得:()()()22438111327a a a a d a d a d =⇒+=++,整理后可得:2135a d d=−,所以135d a =−,则211305a d a =−<,且()2141646025a dS d a d =+=−<,所以B 符合要求答案:B小炼有话说:在等差数列(或等比数列)中,如果只有关于项的一个条件,则可以考虑将涉及的项均用1,a d (或1,a q )进行表示,从而得到1,a d (或1,a q )的关系例3:已知等比数列{}n a 中的各项均为正数,且510119122a a a a e +=,则1220ln ln ln a a a +++=_______________思路:由等比数列性质可得:1011912a a a a =,从而51011912a a a a e ==,因为{}n a 为等比数列,所以{}ln n a 为等差数列,求和可用等差数列求和公式:101112201011ln ln ln ln ln 2010ln 502a a a a a a a ++++=⋅==答案:50例4:三个数成等比数列,其乘积为512,如果第一个数与第三个数各减2,则成等差数列,则这三个数为___________ 思路:可设这三个数为,,a a aq q ,则有3=512512aa aq a q⋅⋅⇒=,解得8a =,而第一个数与第三个数各减2,新的等差数列为82,8,82q q −−,所以有:()816282q q ⎛⎫=−+− ⎪⎝⎭,即22252520q q q q+=⇒−+=,解得2q =或者12q =,2q =时,这三个数为4,8,16,当12q =时,这三个数为16,8,4 答案: 4,8,16小炼有话说:三个数成等比(或等差)数列时,可以中间的数为核心。

【高考数学热点小专题】 等差、等比数列的综合问题

【高考数学热点小专题】 等差、等比数列的综合问题

4.2数列大题4.2.1等差、等比数列的综合问题必备知识精要梳理1.判断给定的数列{a n}是等差数列的方法(1)定义法:a n+1-a n=d是常数(n∈N*).(2)通项公式法:a n=kn+b(k,b是常数).(3)前n项和法:数列{a n}的前n项和为S n=An2+Bn(A,B是常数且A2+B2≠0).(4)等差中项法:a n+a n+2=2a n+1(n∈N*).2.若数列{a n},{b n}为等差数列且项数相同,则{ka n},{a n±b n},{pa n+qb n}都是等差数列.3.判断给定的数列{a n}是等比数列的方法(1)定义法:a n+1a n=q(常数q≠0).(2)通项公式法:a n=kq n(k,q为常数,且kq≠0).(3)中项法:a n·a n+2=a n+12(n∈N*).(4)前n项和法:数列{a n}的前n项和为S n=A-Aq n(常数A≠0,公比q≠1).4.若数列{a n},{b n}为等比数列且项数相同,则{ka n}(k≠0),{a n2},{a nb n}都是等比数列.关键能力学案突破热点一等差(比)数列的判断与证明【例1】(2020山东淄博4月模拟,18)已知数列{a n}满足a1=1,a n+1=4a n+3n-1,b n=a n+n.(1)证明:数列{b n}为等比数列;(2)求数列{a n}的前n项和.解题心得1.判断数列是等差(比)数列的方法通常有四种,证明数列是等差(比)数列的方法常用定义法.2.对已知数列a n与S n的关系,证明{a n}为等差或等比数列的问题,解题思路是:由a n与S n 的关系递推出n+1时的关系式,两个关系式相减后,进行化简、整理,最终化归为用定义法证明.【对点训练1】(2019全国Ⅱ,理19)已知数列{a n}和{b n}满足a1=1,b1=0,4a n+1=3a n-b n+4,4b n+1=3b n-a n-4.(1)证明:{a n+b n}是等比数列,{a n-b n}是等差数列;(2)求{a n}和{b n}的通项公式.热点二等差数列的通项及求和【例2】(2019全国Ⅰ,文18)记S n为等差数列{a n}的前n项和.已知S9=-a5.(1)若a3=4,求{a n}的通项公式;(2)若a1>0,求使得S n≥a n的n的取值范围.解题心得a1,n,d是等差数列的三个基本量,a n和S n都可以用这三个基本量来表示,五个量a1,n,d,a n,S n中可“知三求二”,一般是通过通项公式和前n项和公式联立方程(组)求解,这种方法是解决数列问题的基本方法.【对点训练2】(2020海南天一大联考第三次模拟,17)对于由正整数构成的数列{A n},若对任意m,n∈N*且m≠n,A m+A n也是{A n}中的项,则称{A n}为“Q数列”.设数列{a n}满足a1=6,8≤a2≤12.(1)请给出一个{a n}的通项公式,使得{a n}既是等差数列也是“Q数列”,并说明理由;(2)根据你给出的通项公式,设{a n}的前n项和为S n,求满足S n>100的正整数n的最小值.热点三等比数列的通项及求和【例3】(2020山东,18)已知公比大于1的等比数列{a n}满足a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)记b m为{a n}在区间(0,m](m∈N*)中的项的个数,求数列{b m}的前100项和S100.解题心得1.已知等比数列前几项或者前几项的关系,求其通项及前n项和时,只需利用等比数列的通项公式及求和公式得到几个方程求解即可.2.若已知条件没有明确数列{a n}是等比数列,而是已知a n=f(S n)的关系式,在转化此条件时,通常有两种思路,一是将a n用S n-S n-1代替,二是由a n=f(S n)推出a n-1=f(S n-1),两式作差,消去S n.【对点训练3】(2020四川绵阳三模,理17)若数列{a n}的前n项和为S n,已知a1=1,a n+1=23S n.(1)求S n;(2)设b n=1S n ,求证:b1+b2+b3+…+b n<52.热点四等差、等比数列的综合问题【例4】(2020安徽合肥4月质检二,理17)已知等差数列{a n}的前n项和为S n,a2=1,S7=14,数列{b n}满足b1·b2·b3·…·b n=2n2+n 2.(1)求数列{a n}和{b n}的通项公式;(2)若数列{c n}满足c n=b n cos(a nπ),求数列{c n}的前2n项和T2n.解题心得对于等差、等比数列的综合问题,解决的思路主要是方程的思想,即运用等差、等比数列的通项公式和前n项和公式将已知条件转化成方程或方程组,求出首项、公差、公比等基本量,再由基本量求出题目要求的量.【对点训练4】(2020全国Ⅲ,文17)设等比数列{a n}满足a1+a2=4,a3-a1=8.(1)求{a n}的通项公式;(2)记S n为数列{log3a n}的前n项和.若S m+S m+1=S m+3,求m.热点五等差、等比数列的存在问题【例5】(2020山东新高考模拟,17)在①b1+b3=a2,②a4=b4,③S5=-25这三个条件中任选一个,补充在下面问题中,若问题中的k存在,求k的值;若k不存在,说明理由.设等差数列{a n}的前n项和为S n,{b n}是等比数列,,b1=a5,b2=3,b5=-81,是否存在k,使得S k>S k+1且S k+1<S k+2?解题心得从三个给出的选择性条件中,选择自己好理解的条件是解题的关键,将已知的条件通过逻辑推理进行转换是解题的突破口,较强的运算能力是拿到满分的重要保证.【对点训练5】(2020山东枣庄二模,17)在①S4是a2与a21的等差中项;②a7是S33与a22的等比中项;③数列{a2n}的前5项和为65这三个条件中任选一个,补充在横线中,并解答下面的问题.已知{a n}是公差为2的等差数列,其前n项和为S n,.(1)求a n;(2)设b n=(34)n·a n,是否存在k∈N*,使得b k>278?若存在,求出k的值;若不存在,说明理由.核心素养微专题(四) 求解等差、等比数列的应用题【例1】(2020安徽合肥一中模拟,文12)如图所示,一条螺旋线是用以下方法画成的:△ABC 是边长为2的正三角形,曲线CA 1,A 1A 2,A 2A 3是分别以A ,B ,C 为圆心,AC ,BA 1,CA 2为半径画的圆弧,曲线CA 1A 2A 3称为螺旋线的第一圈,然后又以A 为圆心,AA 3为半径画圆弧,……,这样画到第n 圈,则所得螺旋线的长度l n 为( ) A.(3n 2+n )π B.2(3n 2+n )πC.(3n 2+n )π2D.(3n 2-n+1)π2核心素养分析本例考查考生多个核心素养,首先需要考生在读懂题意的基础上,从题目所给的几何图形中通过“数学抽象”得到一组数据;再通过“数学建模”将问题转化为等差数列模型;然后对等差数列模型的各项数值通过“数据分析”得到等差数列的项数和公差;最后通过“数学运算”得出答案.【跟踪训练1】(2019四川绵阳模拟,理16)如图,互不相同的点A 1,A 2,…,A n ,…和B 1,B 2,…,B n ,…分别在角O 的两条边上,所有A n B n 相互平行,且所有梯形A n B n B n+1A n+1的面积均相等.设OA n =a n ,若a 1=1,a 2=2,则数列{a n }的通项公式是 .【例2】已知正方体ABCD-A 1B 1C 1D 1的棱长为6,E ,F ,G 分别为A 1B 1,BB 1,B 1C 1的中点,E 1,F 1,G 1分别为EB 1,FB 1,B 1G 的中点,E 2,F 2,G 2分别为E 1B 1,F 1B 1,B 1G 1的点,……,依此类推,令三棱锥B-A 1B 1C 1的体积为V 1,三棱锥F-EB 1G 的体积为V 2,三棱锥的体积为F 1-E 1B 1G 1的体积为V 3,……,则V 1+V 2+V 3+…+V n =( ) A.288-18×(14)n -23B.288-18×(14)n -13C.288-36×(18)n -17D.576-9×(18)n -27核心素养分析本例考查三个核心素养,考生在读懂题意的基础上,需要从题目所给的正方体中通过“数学抽象”得到三棱锥的一组体积数据;再通过“数学建模”将问题转化为等比数列模型;然后对等比数列通过“数学运算”得出答案.【跟踪训练2】在数列{a n }中,a 1=1,前n 项和S n 满足3x (S n+1-1)=(2x+3)S n x ≠0,x ≠-32,n ∈N *.令f (x )=a n+1a n,则f (x )= .4.2 数列大题4.2.1 等差、等比数列的综合问题关键能力·学案突破【例1】 (1)证明 ∵b n =a n +n ,∴b n+1=a n+1+n+1.又a n+1=4a n +3n-1,∴bn+1b n=a n+1+n+1a n +n=(4a n +3n -1)+n+1a n +n=4(a n +n )a n+n =4.又b 1=a 1+1=1+1=2,∴数列{b n }是首项为2,公比为4的等比数列. (2)解 由(1)知,b n =2×4n-1,∴a n =b n -n=2×4n-1-n ,∴S n =a 1+a 2+…+a n =2(1+4+42+…+4n-1)-(1+2+3+…+n )=2(1-4n )−n (n+1)=23(4n -1)-12n 2-12n. 对点训练1 (1)证明 由题设得4(a n+1+b n+1)=2(a n +b n ),即a n+1+b n+1=12(a n +b n ).又因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列. 由题设得4(a n+1-b n+1)=4(a n -b n )+8,即a n+1-b n+1=a n -b n +2. 又因为a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列. (2)解 由(1)知,a n +b n =12n -1,a n -b n =2n-1.所以a n =12[(a n +b n )+(a n -b n )]=12n +n-12,b n =12[(a n +b n )-(a n -b n )]=12n -n+12. 【例2】 解 (1)设{a n }的公差为d.由S9=-a5,得a1+4d=0.由a3=4,得a1+2d=4.可得a1=8,d=-2.因此{a n}的通项公式为a n=10-2n.(2)由(1)得a1=-4d,故a n=(n-5)d,S n=n(n-9)d.由a1>0知d<0,故S n≥a n等价于n2-11n+10≤0,解得1≤n≤10.所以n的取值范围是{n|1≤n≤10,n∈N}.对点训练2解(1)给出的通项公式为a n=2n+4,a1=6,a2=8符合题意.因为对任意n∈N*,a n+1-a n=2(n+1)+4-2n-4=2,所以{a n}是公差为2的等差数列.对任意m,n∈N*且m≠n,a m+a n=2m+4+2n+4=2(m+n+2)+4=a m+n+2,所以{a n}是“Q数列”.(2)因为{a n}是等差数列,所以S n=n(6+2n+4)2=n2+5n(n∈N*).因为S n单调递增,且S7=72+5×7=84<100,S8=82+5×8=104>100,所以n的最小值为8.注:以下答案也正确,解答步骤参考上面内容:①a n=3n+3,S n=32n2+92n,n的最小值为7;②a n=6n,S n=3n2+3n,n的最小值为6.【例3】解(1)设{a n}的公比为q.由题设得a1q+a1q3=20,a1q2=8.解得q=12(舍去),q=2.因为a1q2=8,所以a1=2.所以{a n}的通项公式为a n=2n.(2)由题设及(1)知b1=0,且当2n≤m<2n+1时,b m=n.所以S100=b1+(b2+b3)+(b4+b5+b6+b7)+…+(b32+b33+…+b63)+(b64+b65+…+b100)=0+1×2+2×22+3×23+4×24+5×25+6×(100-63)=480.对点训练3(1)解a n+1=2S n,可得a n+1=S n+1-S n=2S n,即S n+1=5S n,由a 1=1,可得S 1=1,可得数列{S n }是首项为1,公比为53的等比数列,则S n =(53)n -1;(2)证明 因为b n =1n=(3)n -1,所以{b n }是首项为1,公比为35的等比数列,则b 1+b 2+b 3+…+b n =1-(35)n 1-35=521-(35)n <52.【例4】 解 (1)设{a n }的公差为d ,由a 2=1,S 7=14得{a 1+d =1,7a 1+21d =14.解得a 1=12,d=12,所以a n =n2.∵b 1·b 2·b 3·…·b n =2n 2+n2=2n (n+1)2,∴b 1·b 2·b 3·…·b n-1=2n (n -1)2(n ≥2),两式相除得b n =2n (n ≥2).当n=1时,b 1=2,适合上式,∴b n =2n . (2)∵c n =b n cos(a n π)=2n cos (nπ),∴T 2n =2cos π2+22cos π+23cos 3π2+24cos 2π+…+22n-1cos(2n -1)π2+22n cos n π=22cos π+24cos 2π+26cos 3π+ (22)cos n π=-22+24-26+…+(-1)n·22n=-4[1-(-4)n ]1+4=-4+(-4)n+15.对点训练4 解 (1)设{a n }的公比为q ,则a n =a 1q n-1.由已知得{a 1+a 1q =4,a 1q 2-a 1=8,解得a 1=1,q=3.所以{a n }的通项公式为a n =3n-1. (2)由(1)知log 3a n =n-1,故S n =n (n -1)2.由S m +S m+1=S m+3得m (m-1)+(m+1)m=(m+3)(m+2),即m 2-5m-6=0,解得m=-1(舍去),m=6.【例5】 解 因为在等比数列{b n }中,b 2=3,b 5=-81,所以公比q=-3,从而b n =b 2(-3)n-2=3×(-3)n-2,从而a 5=b 1=-1.若存在k ,使得S k >S k+1,即S k >S k +a k+1,从而a k+1<0; 同理,若使S k+1<S k+2,即S k+1<S k+1+a k+2,从而a k+2>0.若选①:由b 1+b 3=a 2,得a 2=-1-9=-10,又a 5=-1,则可得a 1=-13,d=3,所以a n =3n-16,当k=4时,能使a5<0,且a6>0成立;若选②:由a4=b4=27,且a5=-1,所以数列{a n}为递减数列,故不存在a k+1<0,且a k+2>0;若选③:由S5=-25=5(a1+a5)2=5a3,解得a3=-5,从而a n=2n-11,所以当k=4时,能使a5<0,a6>0成立.对点训练5解(1)若选①S4是a2与a21的等差中项,则2S4=a2+a21,即24a1+4×32×2=(a1+2)+(a1+20×2).解得a1=3.所以a n=3+2(n-1)=2n+1.若选②a7是S33与a22的等比中项,则a72=S33·a22,即(a1+6×2)2=a1+3-12×2·(a1+21×2).解得a1=3.所以a n=3+2(n-1)=2n+1.若选③数列{a2n}的前5项和为65,则a2+a4+a6+a8+a10=65,即5a1+25d=65,解得a1=3.所以a n=3+2(n-1)=2n+1.(2)不存在.理由如下,b n=(34)n·a n=(2n+1)·(34)n.b n+1-b n=(2n+3)·(3)n+1-(2n+1)·(3)n=3n4n+1[3(2n+3)-4(2n+1)]=3n4n+1(5-2n).所以b n+1>b n可转化为b n+1-b n>0,即5-2n>0,解得n<2.5,则n=1,2,即b3>b2>b1;b n+1<b n可转化为b n+1-b n<0,即5-2n<0,解得n>2.5,则n=3,4,5,…,即b3>b4>b5>….所以{b n}中的最大项为b3=(2×3+1)×(34)3=7×2764.显然b3=7×2764<8×2764=278.所以∀n∈N*,b n<278.所以不存在k∈N*,使得b k>278.核心素养微专题(四)【例1】B解析第一圈的三段圆弧为CA1,A1A2,A2A3,第二圈的三段圆弧为A3A4,A4A5,A5A6,…,第n圈的三段圆弧为A3(n-1)A3n-2,A3n-2A3n-1,A3n-1A3n.各段圆弧的长度分别为2×2π3,4×2π3,6×2π3,8×2π3,10×2π3,12×2π3,…,(6n-4)×2π3,(6n-2)×2π3,6n ×2π, 此数列是以4π3为首项,4π3为公差,项数为3n 的等差数列, 则l n =(2×2π3+6n×2π3)×3n 2=2(3n 2+n )π,故选B .跟踪训练1 a n =√3n -2 解析 设S △OA 1B 1=S ,∵a 1=1,a 2=2,OA n =a n , ∴OA 1=1,OA 2=2.又易知△OA 1B 1∽△OA 2B 2, ∴S △OA 1B1S △OA 2B2=(OA 1)2(OA 2)2=(12)2=14.∴S 梯形A 1B 1B 2A 2=3S △OA 1B 1=3S.∵所有梯形A n B n B n+1A n+1的面积均相等,且△OA 1B 1∽△OA n B n , ∴OA 1OA n=√S △OA 1B1S △OA n B n=√S S+3(n -1)S =√13n -2.∴a1a n=√3n -2,∴a n =√3n -2. 【例2】 C 解析 由题意得V 1=13×12×6×6×6=36.因为E ,F ,G 分别为A 1B 1,BB 1,B 1C 1的中点,所以三棱锥F-EB 1G 的体积为V 2=18V 1;E 1,F 1,G 1分别为EB 1,FB 1,B 1G 的中点,所以V 3=18V 2;E 2,F 2,G 2分别为E 1B 1,F 1B 1,B 1G 1的中点,所以V 4=18V 3;…,V k+1=18V k . 所以V 1,V 2,V 3,…,V n 成等比数列,且首项为36,公比为18, 所以S n =36×[1-(18)n]1-18=288-36×(18)n -17.故选C .跟踪训练22x+33x解析 由题知,当n=1时,3x (a 1+a 2-1)-(2x+3)a 1=0,因为a 1=1,所以a 2=2x+33x , 所以a2a 1=2x+33x . 当n ≥2时,有3x (S n+1-1)-(2x+3)S n =0, ① 3x (S n -1)-(2x+3)S n-1=0,②①-②得3xa n+1-(2x+3)a n=0,即a n+1a n =2x+33x,于是f(x)=2x+33x.。

山东省2014届理科数学一轮复习试题选编19:等差与等比的综合问题(学生版)

山东省2014届理科数学一轮复习试题选编19:等差与等比的综合问题(学生版)

山东省2014届理科数学一轮复习试题选编19:等差与等比的综合问题一、选择题 1 .(山东省实验中学2013届高三第三次诊断性测试理科数学)已知等差数列{}n a 的公差d 不为0,等比数列{}n b 的公比q 是小于1的正有理数.若d a =1,,21d b =且321232221b b b a a a ++++是正整数,则q 的值可以是( )A .71 B .-71 C .21 D .-21 2 .(山东省莱芜五中2013届高三4月模拟数学(理)试题)已知数列{},{}n n a b 满足113a b ==,113n n n nb a a b ++-==,n N +∈,若数列{}n c 满足n n a c b =,则2013c = ( )A .20129B .201227C .20139D .2013273 .(山东省烟台市莱州一中2013届高三第二次质量检测数学(理)试题)已知各项均不为零的数列{}n a ,定义向量()()1,,,1,n n n n c a a b n n n N *+==+∈ .下列命题中真命题是( )A .若n N *∀∈总有n n c b ⊥成立,则数列{}n a 是等比数列B .若n N *∀∈总有//n n c b 成立,则数列{}n a 是等比数列C .若n N *∀∈总有n n c b ⊥成立,则数列{}n a 是等差数列D .若n N *∀∈总有//n n c b 成立,则数列{}n a 是等差数列二、填空题 4 .(山东省莱芜市第一中学2013届高三12月阶段性测试数学(理)试题)已知等差数列{}n a 中,有11122012301030a a a a a a ++++++=成立.类似地,在正项等比数列{}n b 中,有_____________________成立.三、解答题 5 .(山东省济南市2013届高三4月巩固性训练数学(理)试题)已知数列{}n a 满足13a =,*133()n n n a a n N +-=∈,数列{}n b 满足3nn na b =. (1)证明数列{}n b 是等差数列并求数列{}n b 的通项公式; (2)求数列}{n a 的前n 项和n S .6 .(山东省济宁市2013届高三第一次模拟考试理科数学 )已知数列{n a }的前n 项和1122n *n n S a ()(n N )-=--+∈,数列{n b }满足n b =2n n a .(I)求证数列{n b }是等差数列,并求数列{n a }的通项公式;(Ⅱ)设2n n n c log a =,数列{22n n c c +}的前n 项和为T n ,求满足2521*n T (n N )<∈的n 的最大值.7 .(山东省莱芜五中2013届高三4月模拟数学(理)试题)在等差数列{}n a 中,345842,30a a a a ++==.(1)求数列{}n a 的通项公式; (2)若数列{}n b满足2n a n b λ+=+(R λ∈),则是否存在这样的实数λ使得{}n b 为等比数列;(3)数列{}n c 满足112,1,2n n n n n c T a n --⎧⎪=⎨⎪⎩为奇数,为偶数为数列{}n c 的前n 项和,求2n T .8 .(山东省凤城高中2013届高三4月模拟检测数学理试题 )设等比数列{}n a 的前项和为n S ,已知122n n a S +=+,(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)在n a 与1n a +之间插入n 个数,使这2+n 数组成公差为n d 的等差数列,求1{}nd 的前n 项和n T .9 .(山东省莱芜市莱芜十七中2013届高三4月模拟数学(理)试题)已知数列{}n a 的前n 项和n S 满足21n n S a =-,等差数列{}n b 满足11b a =,43b S =.(1)求数列{}n a 、{}n b 的通项公式; (2)设11n n n c b b +=,数列{}n c 的前n 项和为n T ,问n T >10012012的最小正整数n 是多少?10.(山东省青岛即墨市2013届高三上学期期末考试数学(理)试题)等差数列}{n a 中,9,155432==++a a a a .(Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设213+=n a n b ,求数列n n a 1{,b }2+的前n 项和n S .11.(山东省德州市2013届高三上学期期末校际联考数学(理))数列{a n }的前n 项和为1,2(1)n n n S S n +=-+,等差数列{}n b 的各项为正实数,其前n 项和为31122339,,,n T T a b a b a b =+++,且又成等比数列. (I)求数列{a n }、{}n b 的通项公式;(2)若.n n n c a b =,当n≥2时,求数列{}n c 的前n 项和A n .12.(山东省泰安市2013届高三第二次模拟考试数学(理)试题)已知等差数列{}n a 的首项13,0a d =≠公差,其前n 项和为n S ,且1413,,a a a 分别是等比数列{}n b 的第2项,第3项,第4项. (I)求数列{}n a 与{}n b 的通项公式;(II)证明1211113.34n S S S ≤++⋅⋅⋅+< 13.(山东省泰安市2013届高三第一轮复习质量检测数学(理)试题)设等比数列{}n a 的前n 项和为,415349,,,n S a a a a a =-成等差数列.(I)求数列{}n a 的通项公式;(II)证明:对任意21,,,k k k R N S S S +++∈成等差数列.14.(山东师大附中2013届高三第四次模拟测试1月理科数学)已知数列{}n a 是等差数列,{}n b 是等比数列,且112a b ==,454b =,12323a a a b b ++=+.(1)求数列{}n a 和{}n b 的通项公式(2)数列{}n c 满足n n n c a b =,求数列{}n c 的前n 项和n S .15.(山东省烟台市莱州一中2013届高三第二次质量检测数学(理)试题)已知{}n a 是公差为2的等差数列,且317111a a a +++是与的等比中项.(1)求数列{}n a 的通项公式;(2)令()12n n na b n N *-=∈,求数列{}n b 的前n 项和Tn. 16.(2012年山东理)(20)在等差数列{}n a 中,345984,73a a a a ++==.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)对任意*m ∈N ,将数列{}n a 中落入区间2(9,9)m m 内的项的个数记为{}n b ,求数列{}n b 的前m 项和m S .17.(山东省枣庄三中2013届高三上学期1月阶段测试理科数学)已知数列{}n a 的前n 项和为1,3n n n S a S n +=-+且,1,2n a ∈=+N .(Ⅰ)求数列{}n a 的通项; (Ⅱ)设()2n n nb n S n =∈-++N 的前n 项和为n T ,证明:n T <34. 18.(山东省日照市2013届高三12月份阶段训练数学(理)试题)已知{}n a 是公差不为零的等差数列,11391,,,a a a a =成等比数列.求: (I)数列{}n a 的通项公式; (II)数列{}2an n a ⋅的前n 项和n S19.(山东省莱钢高中2013届高三4月模拟检测数学理试题 )设数列{}n a 为等差数列,且145=a ,720a =,且132(2,)n n S S n n N -=+≥∈;, (Ⅰ(Ⅱ为数列{}n c 的前n 项和. T n <m 恒成立对N n *∈,求m 的最小值.20.(山东省莱芜市第一中学2013届高三12月阶段性测试数学(理)试题)已知数列n a 满足222121na a a n n =+⋅⋅⋅++- (Ⅰ)求数列{}n a 的通项; (Ⅱ)若nn a nb =,求数列{}n b 的前n 项的和n S .21.(山东师大附中2013届级高三12月第三次模拟检测理科数学)数列{}n a 的前n 项的和为n S ,对于任意的自然数0n a >,()241n n S a =+(Ⅰ)求证:数列{}n a 是等差数列,并求通项公式 (Ⅱ)设3nn na b =,求和12n n T b b b =+++ 22.(山东省兖州市2013高三9月入学诊断检测数学(理)试题)设等比数列{}n a 的前n 项和为n S ,已知122(n n a S n +=+∈N *).(1)求数列{}n a 的通项公式;(2)在n a 与1n a +之间插入n 个数,使这n+2个数组成公差为n d 的等差数列,求数列1n d ⎧⎫⎪⎨⎬⎪⎭⎩的前n 项和n T . 23.(山东省潍坊市四县一校2013届高三11月期中联考(数学理))已知各项均为正数的数列{}n a 前n 项和为n S ,首项为1a ,且n n S a ,,21等差数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若n b n a )21(2=,设n n n a b c =,求数列{}n c 的前n 项和n T .24.(山东省夏津一中2013届高三4月月考数学(理)试题)在等比数列}{n a 中,412=a ,512163=⋅a a .设22122log 2log 2nn n a a b +=⋅,n T 为数列{}n b 的前n 项和.(Ⅰ)求n a 和n T ;(Ⅱ)若对任意的*∈N n ,不等式n n n T )1(2--<λ恒成立,求实数λ的取值范围.25.(山东省济南市2013届高三3月高考模拟理科数学)数列{}n a 的前n 项和为n S ,11a =,121n n a S +=+*()n N ∈,等差数列{}n b 满足 353,9b b ==.(1)分别求数列{}n a ,{}n b 的通项公式; (2)设*22()n n n b c n N a ++=∈,求证113n n c c +<≤.26.(山东省济南市2013届高三上学期期末考试理科数学)已知等差数列{}n a 的前n 项和为n S ,365,36a S ==,(1)求数列{}n a 的通项公式;(2) 设2n an b =,求数列{}n b 的前n 项和n T .27.(山东省潍坊市2013届高三上学期期末考试数学理(A ))设数列{}n a 为等差数列,且9,553==a a ;数列{}n b 的前n 项和为n S ,且2=+n n b S .(I)求数列{}n a ,{}n b 的通项公式; (II)若()+∈=N n b a c nnn ,n T 为数列{}n c 的前n 项和,求n T .28.(山东威海市2013年5月高三模拟考试数学(理科))已知{}n a 为等差数列,n S 为其前n 项和,且222n n S a n =+.(Ⅰ)求,n n a S ;(Ⅱ)若2221,,k k k a a a -+成等比数列,求k 的值及公比.山东省2014届理科数学一轮复习试题选编19:等差与等比的综合问题参考答案一、选择题1. C 【解析】由题意知21312,23a a d d a a d d =+==+=,22222131,b b q d q b b q d q ====,所以2222221232222212349141a a a d d d b b b d d q d q qq++++==++++++,因为321232221b b b a a a ++++是正整数,所以令2141t q q=++,t 为正整数.所以2114t q q ++=,即21014t q q ++-=,解得5613t q +-+===,因为t 为正整数,所以当8t =时,12122q -+===.符合题意,选C2. D3. D 【解析】由//nn c b 得,1(1)n n na n a +=+,即11n n a a n n +=+,所以11n n a n a n ++=,所以1n a na =,故数列{}n a 是等差数列,选D.二、填空题4. 由算术平均数类比几何平均数,容易得出30302110201211b b b b b b =. 三、解答题5. 解(1)证明:由3n n n a b =,得1113n n n a b +++=, ∴1111333n n n n n n a a b b +++-=-=所以数列{}n b 是等差数列,首项11b =,公差为13∴121(1)33n n b n +=+-=(2)13(2)3n n n n a b n -==+⨯n n a a a S +++=∴ 2113)2(3413-⨯+++⨯+⨯=n n ----① n n n S 3)2(343332⨯+++⨯+⨯=∴ -------------------②①-②得n n n n S 3)2(33313212⨯+-++++⨯=--n n n 3)2(3331212⨯+-+++++=-n n n 3)2(233⨯+-+=23)2(433nn n n S +++-=∴6. 解:(Ⅰ)在2)21(1+--=-n n n a S 中,令n=1,可得1121a a S n =+--=,即211=a . 当2≥n 时,2)21(211+--=---n n n a S ∴111)21(---++-=-=n n n n n n a a S S a ,∴11)21(2--+=n n n a a ,即12211+=--n n n n a a .∵n n n a b 2=,∴11+=-n n b b ,即当2≥n 时,11=--n n b b . 又1211==a b ,∴数列{b n }是首项和公差均为1的等差数列.于是n n n a n n b 21)1(1==⋅-+=,∴nn n a 2= (Ⅱ)∵nn a nc 2log ==n n =2log 2, ∴22211(2)2n n+==-c c n n+n n+, ∴)211()1111()5131()4121()311(+-++--++-+-+-=n n n n T n =2111211+-+-+n n 由n T 2125<,得2111211+-+-+n n 2125<,即42132111>+++n n , =)(n f 2111+++n n 单调递减,∵4213)5(,209)4(==f f , ∴n 的最大值为47. 解:(1)因为{}n a 是一个等差数列,所以34544342,14a a a a a ++==∴=.设数列{}n a 的公差为d ,则84416d a a =-=,故4d =;故4(4)42n a a n d n =+-=-(2)29n a n n b λλ+=+=+.假设存在这样的λ使得{}n b 为等比数列,则212n n n b b b ++=⋅,即122(9)(9)(9)n n n λλλ+++=+⋅+,整理可得0λ=. 即存在0λ=使得{}n b 为等比数列(3)∵12,23,n n n c n n -⎧=⎨-⎩为奇数为偶数,∴242221(223)2(243)22(223)n n T n -=+⨯-++⨯-++++⨯- 242212224(12)3n n n -=++++++++-214(1)414321423n n n n n n n -+-=+⨯-=+-- 8. 解:(Ⅰ)由122(n n a S n +=+∈ N +)得122(n n a S n -=+∈N +,2n ≥), 两式相减得:12n n n a a a +-=, 即13(n n a a n +=∈N +,2n ≥),∵{}n a 是等比数列,所以213a a = ; 又2122,a a =+则11223a a +=,∴12a =, ∴132-⨯=n n a(Ⅱ)由(1)知132-⨯=n n a ,则nn a 321⨯=+∵1(1)n n n a a n d +=++ , ∴1341+⨯=-n d n n∵123111n T d d d =+++1nd + ∴1210341344343342-⨯+++⨯+⨯+⨯=n n n T ① nn n n n T 34134344343342311321⨯++⨯++⨯+⨯+⨯=- ② ①-②得nn n n T 3413413413413413423213210⨯+-⨯++⨯+⨯+⨯+⨯=-n n n 3413113113141211⨯+--⎪⎭⎫ ⎝⎛-⨯+=-n n 385285⨯+-= ∴1316521615-⨯+-=n n n T 9. 解:(1)当1n =时,11121a S a ==-,∴11a =当2n ≥时,111(21)(21)22n n n n n n n a S S a a a a ---=-=---=-, 即12nn a a -= ∴数列{}n a 是以11a =为首项,2为公比的等比数列,∴12,21n n n n a S -==- 设{}n b 的公差为,d 111b a ==,4137b d =+=,∴2d = ∴1(1)221n b n n =+-⨯=-(2)111111()(21)(21)22121n n n c b b n n n n +===--+-+ ∴11111111(1...)(1)2335212122121n n T n n n n =-+-++-=-=-+++ 由n T >10012012,得21n n +>10012012,解得n >100.1∴n T >10012012的最小正整数n 是10110.解:(Ⅰ)设数列{}由题意得首项的公差为,1a d a n且⎩⎨⎧=+=+⎩⎨⎧==++941563915115432d a d a a a a a 即 解得⎩⎨⎧==211d a所以数列{}12-=n a a n n 的通项公式为 (Ⅱ)由(Ⅰ)可得n n n ab 3231==+所以n n n n b a3..21=+所以+++=323.33.23.11n S 13.+n n两式相减得++++-=433333(22n S 13.)3+++n n n 10 分43).12(323..1233.31313111+++-+=-+=+---=n n n n n n S n n n 即)()(11.12.13.14. 【解析】:(Ⅰ)设{}n a 的公差为d ,{}n b 的公比为q由341b b q =,得354272q ==,从而3q = 因此11132--⋅=⋅=n n n q b b又123223361824a a a a b b ++==+=+=,28a ∴= 从而216d a a =-=,故466)1(1-=⋅-+=n n a a n (Ⅱ)13)23(4-⋅-⋅==n n n n n b a c令122103)23(3)53(373431--⋅-+⋅-++⨯+⨯+⨯=n n n n n Tn n n n n T 3)23(3)53(37343131321⋅-+⋅-++⨯+⨯+⨯=-两式相减得13)13(3313)23(333333331211321--⨯+=⋅--⨯++⨯+⨯+⨯+=---n nn n n Tnn 3)23(⋅--n 1n 9(31)13n 2)32--=+--⋅(73(67)44n n n T -∴=+,又n n n S 4T 7(6n 7)3==+-⋅15.16. (20)解:(Ⅰ)因为{}n a 是一个等差数列,所以3454384a a a a ++==,即428a =. 所以,数列{}n a 的公差9473289945a a d --===-, 所以,*4(4)289(4)98()n a a n d n n n =+-=+-=-∈N (Ⅱ)对*m ∈N ,若 299m m n a <<,则 298998m m n +<<+,因此 121919m m n --+≤≤, 故得 2199m m m b -=-(lb ylfx) 于是 123...m m S b b b b =++++35212121(999...9)(199...9)9(181)19181199109180m m m m m m --+=++++-++++⨯--=----⨯+=17.解:(Ⅰ)()113,213n n n n a S n n a S n +-=-+≥=--+ 时, ,,12,111-=-=-∴++n n n n n a a a a a 即 112(1),(2,),n n a a n n +∴-=-≥∈N* 2221(1)232n n n a a --∴-=-=∙=n a ⎩⎨⎧≥+∙=-2,1231,22n n n (Ⅱ)113322n n n S a n n -+=+-=∙+- ,123-∙=∴n n nb⎪⎭⎫⎝⎛++++=∴-1222322131n n n T⎪⎭⎫ ⎝⎛++++=n n n T 2232221312132 相减得,⎪⎭⎫⎝⎛-++++=-n n n n T 22121211312112 ,n n n nT 23221134∙-⎪⎭⎫ ⎝⎛-=∴﹤34∴结论成立.18.解:(Ⅰ)设等差数列{}n a 的公差为d ,由题设知0d ≠,由11391,,,a a a a =成等比数列,得1218112d dd++=+ 解得1,0d d ==(舍去).故{}n a 的通项公式为11)1=+(n a n n -⨯=(Ⅱ)由(I)知22n a n n a n ⋅=⋅,1231122232(1)22n n n S n n -=⨯+⨯+⨯++-⨯+⨯ , (1)23412122232(1)22n n n S n n +⨯=⨯+⨯+⨯++-⨯+⨯ ,(2) (1)(2)-,得123122222n n n S n +-=++++-⨯所以11222.12n n n S n ++--=-⨯-从而1(1)2 2.=nS n +-⨯+19.∵T n <m 恒成立对N n *∈∴2≥m ∴m 的最小值是220.解:(Ⅰ)2111==a n 时222213221na a a a n n =+++- (1)21222123221-=+++--n a a a a n n (2) (1)-(2)得2121=-n n a 即n n a 21=(n 2≥),又211=a 也适合上式∴n n a 21=21.解 :(1)令(2)-(1)是等差数列(2)---①---②①-②所以22. (1)由122(n n a S n +=+∈ Z *)得122(n n a S n -=+∈ Z *,2n ≥),两式相减得:12n n n a a a +-=, 即13(n n a a n +=∈ Z *,2n ≥),∵{}n a 是等比数列,所以213a a = ; 又2122,a a =+则11223a a +=,∴12a =, ∴132-⨯=n n a(2)由(1)知132-⨯=n n a ,则n n a 321⨯=+ ∵1(1)n n n a a n d +=++ ,∴1341+⨯=-n d n n∵123111n T d d d =+++1nd +∴1210341344343342-⨯+++⨯+⨯+⨯=n n n T ① nn n n n T 34134344343342311321⨯++⨯++⨯+⨯+⨯=- ② ①-②得nn n n T 3413413413413413423213210⨯+-⨯++⨯+⨯+⨯+⨯=- n n n 3413113113141211⨯+--⎪⎭⎫ ⎝⎛-⨯+=-nn 385285⨯+-= ∴1316521615-⨯+-=n n n T 23.解(1)由题意知0,212>+=n n n a S a当1=n 时,21212111=∴+=a a a当2≥n 时,212,21211-=-=--n n n n a S a S两式相减得1122---=-=n n n n n a a S S a整理得:21=-n n a a∴数列{}n a 是以21为首项,2为公比的等比数列.211122212---=⨯=⋅=n n n n a a(2)42222--==n b n n a∴n b n 24-=,nn n n n nn a b C 28162242-=-==-nn n nn T 28162824282028132-+-⋯+-++=- ① 13228162824202821+-+-+⋯++=n n n n n T ② ①-②得1322816)212121(8421+--+⋯++-=n n n nT 1112816)211442816211)2112184+-+----=----⋅-=n n n nn (( n n 24= .28n n n T =∴24.解:(Ⅰ)设}{n a 的公比为q ,由5121161552263==⋅=q q a a a 得21=q , ∴n n n q a a )21(22=⋅=-22211211()2122()2log 2log 2=log 2log 21111()(21)(21)22121n n nn n a a b n n n n -++=⋅⋅==--+-+∴)1211215131311(21+--++-+-=n n T n 111)22n 121nn =-=++( (Ⅱ)①当n 为偶数时,由2-<n T n λ恒成立得,322)12)(2(--=+-<nn n n n λ恒成立,即m in )322(--<nn λ, 而322--n n 随n 的增大而增大,∴2=n 时0)322(m in =--nn ,∴0<λ; ②当n 为奇数时,由2+<n T n λ恒成立得,522)12)(2(++=++<nn n n n λ恒成立,即m in )522(++<n n λ,而95222522=+⋅≥++n n n n ,当且仅当122=⇒=n nn 等号成立,∴9<λ综上,实数λ的取值范围0∞(-,)25.解:(1)由121n n a S +=+----① 得121n n a S -=+----②,①-②得112()n n n n a a S S +--=-,13n n a a +∴=13n n a -∴=;5326,3b b d d ∴-==∴= 36n b n ∴=-(2)因为 1223,3n n n a b n +++==所以 1333n n nn nc+==所以032111<-=-++n n n nc c1113n n c c c +<<⋅⋅⋅<=所以113n n c c +<≤26.解: (1)设{}n a 的公差为d , 36535a S =⎧∴⎨=⎩;则1125656362a d a d +=⎧⎪⎨⨯+=⎪⎩即112556a d a d +=⎧⎨+=⎩,解得112a d =⎧⎨=⎩,*12(1)21,()n a n n n N ∴=+-=-∈(2) 2122na n nb -==135212222n n T -∴=++++2(14)2(41)143n n --==-27.28.解:(Ⅰ)∵{}n a 为其等差数列,设公差为d1n =,则有11112a a =+,∴12a = 2n =,有122142a a a +=+,∴24a =,∴21422d a a =-=-=∴2+2(1)2n a n n =-=,(22)(1)2n n n S n n +==+ (Ⅱ)若2221,,k k k a a a -+成等比数列,则有22221k k k a a a -+= 即24(22)22(21)k k k -=⋅+,整理得22940k k -+=, 解得4k =或12k =(舍) ∴469,,a a a 成等比数列,6432a q a ==。

归纳等差数列与等比数列中二级结论

归纳等差数列与等比数列中二级结论

归纳等差数列与等比数列中二级结论一、等差数列常见结论1、判断给定的数列{}n a 是等差数列的方法(1)定义法:1n n a a d +-=是常数*()n N ∈⇔数列{}n a 是等差数列;(2)通项公式法:(,)n a kn b k b =+是常数⇔数列{}n a 是等差数列;(3)前n 项和法:数列{}n a 的前n 项和 222(,0)n An Bn A B B S =++≠是常数,A ⇔数列{}n a 是等差数列;(4)等差中项法:*212()n n n n N a a a +++=∈⇔数列{}n a 是等差数列;2、等差数列的通项公式的推广和公差的公式:*()(,)n m a a n m d n m N =+-∈*(,,)n m a a d n m N n m n m-⇒=∈≠-; 3、若A 是a 与b 的等差中项2A a b ⇔=+4、列{}n a ,{}n b 都是等差数列且项数相同,则{},{},{},{}n n n n n n n kb a b a b pa qb +-+都是等差数列;5、数列{}n a 中,若项数成等差数列,则对应的项也成等差数列;6、数列{}n a 中,隔相同的项抽出一项所得到的数列仍为等差数列;7、若数列{}n a 是等差数列,且项数*,,,(,,,)m n p q m n p q N ∈满足m n p q +=+,则m n p q a a a a +=+,反之也成立;当p q =时,2m n p a a a +=,即p m n a a a 是和的等差中项;8、若数列{}n a 是等差数列的充要条件是前n 项和公式()n S f n =,是n 的二次函数或一次函数且不含常数项,即222(,0)n An Bn A B B S =++≠是常数,A ;9、若数列{}n a 的前n 项和2(,)n An Bn C A B s =++≠是常数,C 0,则数列{}n a 从第二项起是等差数列;10、若数列{}n a 是等差数列,前n 项和为n S ,则{}n S n 也是等差数列,其首项和{}n a 的首项相同,公差是{}n a 公差的12;11、若数列{}n a ,{}n b 都是等差数列,其前n 项和分别为,n n S T ,则2121n n n n a S b T --=; 12、若三个数成等差数列,则通常可设这三个数分别为,,x d x x d -+;若四个数成等差数列,则通常可设这四个数分别为3,,,3x d x d x d x d --++;13、等差数列{}n a 的前n 项和为n S ,且234,,,m m m m S S S S ⋅⋅⋅⋅⋅⋅分别为数列{}n a 的前m 项,2m 项,3m 项,4m 项,……的和,则232,,,m m m m m S S S S S --⋅⋅⋅⋅⋅⋅成等差数列(等差数列的片段和性质);14等差数列{}n a 中,若项数n 为奇数,设奇数项的和和偶数项的和分别为S S 奇偶,,则11S n S n +=-奇偶;若项数n 为偶数,221nn a S S a =+奇偶; 15、在等差数列{}n a 中,若公差0d >,则等差数列{}n a 为递增数列;若公差0d <,则等差数列{}n a 为递减数列;若公差0d =,则等差数列{}n a 为常数列;16.有关等差数列{}n a 的前n 项和为n S 的最值问题:(1)何时存在最大值和最小值①若10,0a d ><,则前n 项和为n S 存在最大值②若10,0a d <>,则前n 项和为n S 存在最小值(2)如何求最值①方法一:(任何数列都通用)通过100n n a a +≥⎧⎨≤⎩解出n 可求前n 项和为n S 的最大值;通过100n n a a +≤⎧⎨≥⎩解出n 可求前n 项和为n S 的最小值; ②方法二:利用等差数列前n 项和n S 的表达式为关于n 的二次函数且常数项为0(若为一次函数,数列为常数列,则前n 项和n S 不存在最值),利用二次函数求最值的方法进行求解;有以下三种可能:若对称轴n 正好取得正整数,则此时n 就取对称轴;若对称轴不是正整数,而是靠近对称轴的相邻的两个整数的中点值,则n 取这两个靠近对称轴的相邻的两个整数;若对称轴即不是正整数,又不是靠近对称轴的相邻的两个整数的中点值,则n 就取靠近对称轴的那个正整数;17、用方程思想处理等差数列中求相关参数问题,对于1,,,,n n a n S a d 这五个量,知任意三个可以求出其它的两个,即“知三求二”二、【等比数列】中的二级结论1、对等比数列定义的理解(1)是从第二项开始,每一项与前一项的比(2)每一项与前一项的比试同一个常数,且这个常数不为0(3)等比数列中任何一项都不为0(4)符号语言的描述:若数列{}n a 中满足1n n a q a +=(不为0的常数),则数列{}n a 为等比数列;2、当且仅当两个数a 和b同号是才存在等比中项,且等比中项为G =3、若,,a G b 成等比数列,则2G ab =4、判断给定的数列{}n a 是等比数列的方法(1)定义法:1n na q a +=(不为0的常数)⇔数列{}n a 为等比数列; (2)中项法:221n n n a a a ++=⇔数列{}n a 为等比数列;(3)前n 项和法:数列{}n a 的前n 项和=A-Aq nn S (A 是常数,0,0,1A q q ≠≠≠)⇔数列{}n a 为等比数列;5、等比数列通项公式的推广:若{}n a 为等比数列,则*(,)n m n m a a q n m N -=∈6、若数列{}n a 是等比数列,且项数*,,,(,,,)m n p q m n p q N ∈满足m n p q +=+,则m n p q a a a a =,反之也成立;当p q =时,2m n p a a a =,即p m n a a a 是和的等比中项;7、等比数列{}n a 中,若项数成等差数列,则对应的项也等比数列;8、等比数列{}n a 中,隔相同的项抽出一项所得到的数列仍为等比数列;9、若数列{}n a ,{}n b 都是等比数列且项数相同,则2{}(0),{},{}{}n n n n n na ka k ab a b ≠,都是等比数列; 10、若等比数列{}n a 的公比q 为参数,则在求前n 项和n S 时应分1q =和1q ≠两种情况讨论,即111(1)(1)(1)11n n n na q S a a q a q q q q =⎧⎪=--⎨=≠⎪--⎩;当1q ≠时1(1)(,0,0,1)1n n a S A q A A q q q=-=≠≠≠- 11、若三个数成等比数列,通常可设这三个数分别为,,x x xq q ; 12、(等比数列的片段和性质)公比不为1-的等比数列{}n a 前n 项和为n S ,则232,,,n n n n n S S S S S --⋅⋅⋅⋅⋅⋅成等比数列;13、用方程思想处理等比数列相关参数问题,对于1,,,,n n a n S a q 这五个量,知任意三个可以求出其它的两个,即“知三求二”;三、等差与等比数列综合二级结论1、若正项数列{}n a 为等比数列,则数列{log }an a 为等差数列; 2、若数列{}n a 为等差数列,则数列{}n a b 为等比数列; 3、任意两数,a b 都存在等差中项为2a b +,但不一定都存在等比中项,当且仅当,a b 同号时才存在等比中项为4、任意常数列都是等差数列,但不一定都是等比数列,当且仅当非零的常数列即是等差数列又是等比数列;。

高三数学数列的综合应用知识精讲

高三数学数列的综合应用知识精讲

高三数学数列的综合应用【本讲主要内容】数列的综合应用等差数列与等比数列的综合问题,数列与其他数学知识的综合问题,数列在实际问题中的应用。

【知识掌握】 【知识点精析】1. 等差数列与等比数列的综合问题,主要是运用它们的性质、通项公式、前n 项和公式将已知条件转化为数学式子(方程或不等式等)。

2. 在解决数列与其他数学知识的综合问题中,应该注意思维的角度和解题途径的选择,从“数列是特殊的函数”的角度出发,运用运动变化的观点,将问题变形转换,要分清所给问题中的数列是哪种类型,与其他数学知识的关系如何,以达到解决问题的目的。

3. 用数列解决实际应用性问题,主要有增长率问题,存贷款的利息问题,几何模型中的问题等等。

要把实际应用题转化为某种数列的模型,要分清是等差数列还是等比数列,还是有递推关系的数列,分清所涉及的量是数列中的项n a ,还是各项和n S ,有时还要注意数清项数,以使问题准确解决。

【解题方法指导】例1. (2005年全国卷三)在等差数列}{n a 中,公差d ≠0,2a 是1a 与4a 的等比中项,已知数列 ,,,,,,n k k k a a a a a 2131成等比数列,求数列}{n k 的通项n k 。

解题思路分析:这是一道等差数列与等比数列的综合问题,只需依题设条件,按已知的公式列式即可。

解:依题意得41221)1(a a a d n a a n ⋅=-+=,)3()(1121d a a d a +=+∴,整理得d a d 12= 10a d d =∴≠, ,得nd a n =所以,由已知得 ,,,,,,d k d k d k d d n 213是等比数列 由d ≠0,所以数列1,3,21k k ,,…,n k ,…也是等比数列 首项为1,公比为q=3,由此得91=k等比数列{n k }的首项91=k ,公比q=3,所以)21(33911 ,,==⨯=+-n k n n n即得到数列{n k }的通项*)(31N n k n n ∈=+例2. (2005年上海卷)假设某市2004年新建住房400万平方米,其中有250万平方米是中低价房,预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%,另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米,那么,到哪一年底,(1)该市历年所建中低价房的累计面积(以2004年为累计的第一年)将首次不少于4750万平方米?(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?解题思路分析:这是一道实际应用题,依题意,先分析出中低价房面积逐年增长后,每年的面积数成等差数列,首项为250(万平方米),公差为50(万平方米);而每年新建住房面积逐年增长后,每年的面积数成等比数列,首项是400(万平方米),公比为(1+8%),然后再依据题中条件列式,而第(1)问中,指的是中低价房的累计面积,所以应为数列的前n 项和;而第(2)问中,指的是该年建造的住房面积,应为数列的第n 项。

数列的综合运算

数列的综合运算

数列的综合运算数列是数学中常见的一种数学表达形式,它是按照一定规律排列的数的集合。

数列的综合运算是指对数列中的元素进行加减乘除等运算,从而得出数列的和、差、积等结果。

本文将介绍数列的综合运算,并给出相关的例子和解题步骤。

一、等差数列的综合运算等差数列是指数列中的相邻两个数之差恒定的数列。

常用的等差数列的通项公式为:an = a1 + (n-1)d其中,an 表示第 n 个数,a1 表示首项,d 表示公差,n 表示项数。

1. 等差数列的和等差数列的和可使用求和公式来计算。

求和公式如下:Sn = (n/2)(a1 + an)其中,Sn 表示前 n 项的和。

例如:求等差数列 2, 5, 8, 11, 14 的和。

首先确定首项 a1 = 2,公差 d = 5 - 2 = 3,项数 n = 5。

代入求和公式,得到:S5 = (5/2)(2 + 14) = 40因此,等差数列 2, 5, 8, 11, 14 的和为 40。

2. 等差数列的差等差数列的差可以通过相邻两项的差值来计算。

对于等差数列,任意两项之差都相等。

例如:对于等差数列 2, 5, 8, 11, 14,相邻两项之差均为 3。

3. 等差数列的积等差数列的积可以通过将所有项相乘来计算。

例如:求等差数列 2, 5, 8, 11, 14 的积。

将所有项相乘,得到:2 × 5 × 8 × 11 × 14 = 6160因此,等差数列 2, 5, 8, 11, 14 的积为 6160。

二、等比数列的综合运算等比数列是指数列中的相邻两个数之比恒定的数列。

常用的等比数列的通项公式为:an = a1 * q^(n-1)其中,an 表示第 n 个数,a1 表示首项,q 表示公比,n 表示项数。

1. 等比数列的和等比数列的和可使用求和公式来计算。

求和公式如下:Sn = a1 * (1 - q^n) / (1 - q)其中,Sn 表示前 n 项的和。

等差,等比综合

等差,等比综合

a1 a2
an - k a an −1 an an +1 an + k an + 2 k n−2
an + 3 k
n
1 − 10 n 0 .1, 0 .1 1, 0 .1 11, 0 .1 111, a n = L 9 0 .1, 0 .0 1, 0 . 001 , 0 . 0001 , a n = 10 − n L
㈥基本方法: 基本方法: 基本方法 ⑴ 三数成等差:a − d , a, a + d
a 成等比: q , a , aq
③ 序号成等差,各项成等差;
公差=kd
an
an + k
an + 2 k
an + 3 k
an + 4 k

﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡ …
﹡ ﹡ ﹡ ﹡
an
an+ k
an+2k
an+3k
连续的相同数量的项之和成等差数列。 ④ 连续的相同数量的项之和成等差数列。
公差 = k 2 d
a1 + L + a
3
1 1 1 1 + + +L+ = 1× 3 3 × 5 5 × 7 (2n − 1)(2n + 1)
=
1
1 1 1 1 1 1 1 1 1 1 1 n ( - + - + - +L+ − ) = (1 − )= . 2 1 3 3 5 5 7 2n - 1 2n + 1 2 2n + 1 2n + 1
S偶 ak +1 = ; S奇 ak
“倒序相加”法 倒序相加” 倒序相加

第二讲 等差、等比数列的综合

第二讲   等差、等比数列的综合

第二讲 等差、等比数列的小综合一、问题一:判断和证明数列是否为等差、等比数列 1、证明:一个数列是等差、等比数列的主要方法有三:① 定义法:对任意2≥n 时,d a a n n =--1或q a a n n=-1② 直接求出通项得:B An a n +=或1-⋅=n n q A a 即可③ 中项法:112-++=n n n a a a 或112+-⋅=n n n a a a2、证明一个数列不是等差、等比数列,采用反证,即证3122a a a +≠或3122a a a ⋅≠即可,切记不要证112-++≠n n n a a a 或112+-⋅≠n n n a a a 这样会增加计算的运算量。

二、例题讲解例1、(1)设n a 是等差数列,证明:数列{}na c 是等比数列(2)设n a 是正项等比数列,证明:数列{}log (0,1)c n a c c >≠是等差数列例2、在数列{}n a 中,241+=+n n a S ,且11=a(1)设n n n a a b 21-=+,求证:数列{}n b 是等比数列 (2)设nnn a c 2=,求证:数列{}n c 是等差数列练习:已知)4,3,2()2(,111 =+==+n S n na a n n ,证明:数列⎭⎬⎫⎩⎨⎧n S n 是等比数列(n S 为n a 的前n 项和)例3、设{}n a 是公比不为1的等比数列,其前n 项和为n S ,且435,,a a a 成等差数列证明:对任意21,,,k k k k N S S S *++∈成等差数列练习:证明{}n a 为等差数列的充要条件是对任何*∈N n 都有13221111++++n n a a a a a a 11+=n a a n二、问题二:等差数列与等比数列的相互转化(交汇问题) 例1、已知{}{}n n b a , 是各项均为正数的等比数列,设nnn a b C =,数列{}n C 能否是等比数列,证明你的结论。

北京市2014届高三理科数学一轮复习试题选编14:数列的综合问题(学生版) Word

北京市2014届高三理科数学一轮复习试题选编14:数列的综合问题(学生版) Word

北京市2014届高三理科数学一轮复习试题选编14:数列的综合问题一、选择题1 .(2013北京海淀二模数学理科试题及答案)若数列{}n a 满足:存在正整数T ,对于任意正整数n 都有n T n a a +=成立,则称数列{}n a 为周期数列,周期为T . 已知数列{}n a 满足1(0)a m m =>,11, 1=1, 0 1.n n n n na a a a a +->⎧⎪⎨<≤⎪⎩,则下列结论中错误..的是 ( )A .若34a =,则m 可以取3个不同的值 B.若m =则数列{}n a 是周期为3的数列 C .T ∀∈*N 且2T ≥,存在1m >,{}n a 是周期为T 的数列 D .Q m ∃∈且2m ≥,数列{}n a 是周期数列2 .(2013北京昌平二模数学理科试题及答案)设等比数列}{n a 的公比为q ,其前n 项的积为n T ,并且满足条件11a >,9910010a a ->,99100101a a -<-.给出下列结论:① 01q <<; ② 9910110a a ⋅->; ③ 100T 的值是n T 中最大的;④ 使1n T >成立的最大自然数n 等于198. 其中正确的结论是 ( )A .①③B .①④C .②③D .②④二、填空题3 .(2013届北京市延庆县一模数学理)以下是面点师一个工作环节的数学模型:如图,在数轴上截取与闭区间]4,0[对应的线段,对折后(坐标4所对应的点与原点重合)再均匀地拉成4个单位长度的线段,这一过程称为一次操作(例如在第一次操作完成后,原来的坐标1、3变成2,原来的坐标2变成4,等等).那么原闭区间]4,0[上(除两个端点外)的点,在第n 次操作完成后)1(≥n ,恰好被拉到与4重合的点所对应的坐标为)(n f ,则=)3(f ;=)(n f .4 .5 .(北京市石景山区2013届高三一模数学理试题)对于各数互不相等的整数数组(n i i i i ,,,,321⋅⋅⋅)(n 是不小于3的正整数),若对任意的q p ,∈{n ,,⋅⋅⋅3,2,1},当q p <时有q p i i >,则称q p i i ,是该数组的一个“逆序”.一个数组中所有“逆序”的个数称为该数组的“逆序数”,如数组(2,3,1)的逆序数等于2.则数组(5,2,4,3,1) 2 4(3题图)6 .(2013朝阳二模数学理科)数列{21}n-的前n 项1,3,7,,21n - 组成集合{1,3,7,,21}()n n A n *=-∈N ,从集合n A 中任取k (1,2,3,,)k n = 个数,其所有可能的k 个数的乘积的和为k T (若只取一个数,规定乘积为此数本身),记12n n S T T T =+++ .例如当1n =时,1{1}A =,11T =,11S =;当2n =时,2{1,3}A =,113T =+,213T =⨯,213137S =++⨯=.则当3n =时,3S =______;试写出n S =______.7 .(2013届西城区一模理科)记实数12,,,n x x x 中的最大数为12max{,,,}n x x x ,最小数为12min{,,,}n x x x .设△ABC 的三边边长分别为,,a b c ,且a b c ≤≤,定义△ABC 的倾斜度为m a x {,,}m i n {,a b ca tbc a b =⋅,}bc ca .(ⅰ)若△ABC 为等腰三角形,则t =______; (ⅱ)设1a =,则t 的取值范围是______.8 .(海淀区北师特学校13届高三第四次月考理科)对任意x ∈R ,函数()f x满足1(1)2f x +=,设)()]([2n f n f a n -=,数列}{n a 的前15项的和为3116-,则(15)f = . 9 .(北京市东城区2013届高三上学期期末考试数学理科试题)定义映射:f A B →,其中{(,),}A m n m n =∈R ,B =R ,已知对所有的有序正整数对(,)m n 满足下述条件:①(,1)1f m =;②若n m >,(,)0f m n =;③(1,)[(,)(,1)]f m n n f m n f m n +=+-, 则(2,2)f = ,(,2)f n = .10.(2013北京东城高三二模数学理科)在数列{}n a 中,若对任意的*n ∈N ,都有211n n n na a t a a +++-=(t 为常数),则称数列{}n a 为比等差数列,t 称为比公差.现给出以下命题:①等比数列一定是比等差数列,等差数列不一定是比等差数列;②若数列{}n a 满足122n n a n-=,则数列{}n a 是比等差数列,且比公差12t =;③若数列{}n c 满足11c =,21c =,12n n n c c c --=+(3n ≥),则该数列不是比等差数列; ④若{}n a 是等差数列,{}n b 是等比数列,则数列{}n n a b 是比等差数列. 其中所有真命题的序号是 .11.(北京市朝阳区2013届高三上学期期末考试数学理试题 )将整数1,2,3,,25 填入如图所示的5行5列的表格中,使每一行的数字从左到右都成递增数列,则第三列各数之和的最小值为 ,最大值为 .12.(2013北京房山二模数学理科试题及答案)在数列{}n a 中,如果对任意的*n ∈N ,都有211n n n na a a a λ+++-=(λ为常数),则称数列{}n a 为比等差数列,λ称为比公差.现给出以下命题:①若数列{}n F 满足1212(3)n n n F F F F F n --=+≥=1,=1,,则该数列不是比等差数列; ②若数列{}n a 满足123-⋅=n n a ,则数列{}n a 是比等差数列,且比公差0=λ;③等比数列一定是比等差数列,等差数列一定不是比等差数列; ④若{}n a 是等差数列,{}n b 是等比数列,则数列{}n n a b 是比等差数列. 其中所有真命题的序号是____ .三、解答题13.(海淀区2013届高三上学期期中练习数学(理))已知数集12{,,A a a =,}n a 12(1a a =<<,2)n a n <≥具有性质P:对任意的(2)k k n ≤≤,,(1)i j i j n ∃≤≤≤,使得k i j a a a =+成立. (Ⅰ)分别判断数集{1,3,4}与{1,2,3,6}是否具有性质P,并说明理由; (Ⅱ)求证:122n a a a ≤++1(2)n a n -+≥;(Ⅲ)若72n a =,求数集A 中所有元素的和的最小值.14.(2013届北京海滨一模理科)设(,),(,)A A B B A x y B x y 为平面直角坐标系上的两点,其中,,,A A B B x y x y ∈Z .令B A x x x ∆=-,B A y y y ∆=-,若x ∆+=3y ∆,且||||0x y ∆⋅∆≠,则称点B 为点A 的“相关点”,记作:()B A τ=. 已知0P 0000(,)(,)x y x y ∈ Z 为平面上一个定点,平面上点列{}i P 满足:1()i i P P τ-=,且点i P 的坐标为(,)i i x y ,其中1,2,3,...,i n =.(Ⅰ)请问:点0P 的“相关点”有几个?判断这些“相关点”是否在同一个圆上,若在同一个圆上,写出圆的方程;若不在同一个圆上,说明理由;(Ⅱ)求证:若0P 与n P 重合,n 一定为偶数;(Ⅲ)若0(1,0)P ,且100n y =,记0ni i T x ==∑,求T 的最大值.15.(西城区2013届高三上学期期末考试数学理科)如图,设A 是由n n ⨯个实数组成的n 行n 列的数表,其中ij a (,1,2,3,,)i j n = 表示位于第i 行第j 列的实数,且{1,1}ij a ∈-.记(,)S n n 为所有这样的数表构成的集合.对于(,)A S n n ∈,记()i r A 为A 的第i 行各数之积,()j c A 为A 的第j 列各数之积.令11()()()n ni j i j l A r A c A ===+∑∑.(Ⅰ)请写出一个(4,4)A S ∈,使得()0l A =; (Ⅱ)是否存在(9,9)A S ∈,使得()0l A =?说明理由;(Ⅲ)给定正整数n ,对于所有的(,)A S n n ∈,求()l A 的取值集合.16.(2011年高考(北京理))若数列12:,,(2)n n A a a a n ≥ 满足1||1(1,2,,1)k k a a k n +-==- ,则称n A 为E 数列.记12()n n S A a a a =+++ (Ⅰ)写出一个满足150a a ==,且5()0S A >的E 数列5A ;(Ⅱ)若112,2000a n ==,证明: E 数列n A 是递增数列的充要条件是2011n a =;(Ⅲ)对任意给定的整数(2)n n ≥,是否存在首项为0的E 数列n A ,使得()0n S A =?如果存在,写出一个满足条件的E 数列n A ;如果不存在,说明理由.17.(2013丰台二模数学理科)已知等差数列{}n a 的通项公式为23-=n a n ,等比数列{}n b 中,1143,1b a b a ==+.记集合{},*,n A x x a n N ==∈ {},*n B x x b n N ==∈,U A B =⋃,把集合U 中的元素按从小到大依次排列,构成数列{}n c .(Ⅰ)求数列{}n b 的通项公式,并写出数列{}n c 的前4项;(Ⅱ)把集合U C A 中的元素从小到大依次排列构成数列{}n d ,求数列{}n d 的通项公式,并说明理由; (Ⅲ)求数列{}n c 的前n 项和.nS18.(北京市朝阳区2013届高三第一次综合练习理科数学)设1210(,,,)x x x τ= 是数1,2,3,4,5,6,7,8,9,10的任意一个全排列,定义1011()|23|kk k S xx τ+==-∑,其中111x x =.(Ⅰ)若(10,9,8,7,6,5,4,3,2,1)τ=,求()S τ的值;(Ⅱ)求()S τ的最大值; (Ⅲ)求使()S τ达到最大值的所有排列τ的个数.19.(顺义13届高三第一次统练理科)已知数列{}n a 的前n 项和为n S ,且点()n S n ,在函数221-=+x y的图像上.(I)求数列{}n a 的通项公式;(II)设数列{}n b 满足:()*,011N ∈=+=+n a b b b n n n ,求数列{}n b 的前n 项和公式;(III)在第(II)问的条件下,若对于任意的*N ∈n 不等式1+<n n b b λ恒成立,求实数λ的取值范围20.(丰台区2013届高三上学期期末理 )已知曲线2:2(0)C y x y =≥,111222(,),(,),,(,),n n n A x y A x y A x y ⋅⋅⋅⋅⋅⋅是曲线C 上的点,且满足120n x x x <<<⋅⋅⋅<<⋅⋅⋅,一列点(,0)(1,2,)i i B a i =⋅⋅⋅在x 轴上,且10(i i i B A B B -∆是坐标原点)是以i A 为直角顶点的等腰直角三角形.(Ⅰ)求1A 、1B 的坐标; (Ⅱ)求数列{}n y 的通项公式;(Ⅲ)令1,2iy i i ib c a -==,是否存在正整数N ,当n≥N 时,都有11n niii i b c ==<∑∑,若存在,求出N 的最小值并证明;若不存在,说明理由.21.(海淀区2013届高三上学期期末理科)已知函数()f x 的定义域为(0,)+∞,若()f x y x=在(0,)+∞上为增函数,则称()f x 为“一阶比增函数”;若2()f x y x=在(0,)+∞上为增函数,则称()f x 为“二阶比增函数”.我们把所有“一阶比增函数”组成的集合记为1Ω,所有“二阶比增函数”组成的集合记为2Ω. (Ⅰ)已知函数32()2f x x hx hx =--,若1(),f x ∈Ω且2()f x ∉Ω,求实数h 的取值范围; (Ⅱ)已知0a b c <<<,1()f x ∈Ω且()f x 的部分函数值由下表给出,求证:(24)0d d t +->;(Ⅲ)定义集合{}2()|(),,(0,)(),f x f x k x f x k ψ=∈Ω∈+∞<且存在常数使得任取,请问:是否存在常数M ,使得()f x ∀∈ψ,(0,)x ∀∈+∞,有()f x M <成立?若存在,求出M 的最小值;若不存在,说明理由.22.(石景山区2013届高三上学期期末理)定义:如果数列{}n a 的任意连续三项均能构成一个三角形的三边长,则称{}n a 为“三角形”数列.对于“三角形”数列{}n a ,如果函数()y f x =使得()n n b f a =仍为一个“三角形”数列,则称()y f x =是数列{}n a 的“保三角形函数”(*)n N ∈.(Ⅰ)已知{}n a 是首项为2,公差为1的等差数列,若()(1)x f x k k =>是数列{}n a 的“保三角形函数”,求k 的取值范围;(Ⅱ)已知数列{}n c 的首项为2013,n S 是数列{}n c 的前n 项和,且满足+1438052n n S S -=,证明{}n c 是“三角形”数列;(Ⅲ)若()lg g x x =是(Ⅱ)中数列{}n c 的“保三角形函数”,问数列{}n c 最多有多少项?(解题中可用以下数据 :lg20.301,lg30.477,lg2013 3.304≈≈≈)23.(朝阳区2013届高三上学期期中考试(理))给定一个n 项的实数列12,,,(N)n a a a n *∈ ,任意选取一个实数c ,变换()T c 将数列12,,,n a a a 变换为数列12||,||,,||n a c a c a c --- ,再将得到的数列继续实施这样的变换,这样的变换可以连续进行多次,并且每次所选择的实数c 可以不相同,第(N )k k *∈次变换记为()k k T c ,其中k c 为第k 次变换时选择的实数.如果通过k 次变换后,数列中的各项均为0,则称11()T c ,22()T c ,,()k k T c 为 “k 次归零变换”.(Ⅰ)对数列:1,3,5,7,给出一个 “k 次归零变换”,其中4k ≤; (Ⅱ)证明:对任意n 项数列,都存在“n 次归零变换”;(Ⅲ)对于数列231,2,3,,nn ,是否存在“1n -次归零变换”?请说明理由.24.(2013届丰台区一模理科)设满足以下两个条件的有穷数列12,,,n a a a ⋅⋅⋅为n (n=2,3,4,…,)阶“期待数列”:① 1230n a a a a ++++= ;② 1231n a a a a ++++= . (Ⅰ)分别写出一个单调递增的3阶和4阶“期待数列”;(Ⅱ)若某2k+1(*k N ∈)阶“期待数列”是等差数列,求该数列的通项公式; (Ⅲ)记n 阶“期待数列”的前k 项和为(1,2,3,,)k S k n = ,试证:(1)21≤k S ; (2)111.22ni i a in =≤-∑25.(2013北京昌平二模数学理科试题及答案)本小题满分14分)设数列{}n a 对任意*N n ∈都有112()()2()n n kn b a a p a a a +++=++ (其中k 、b 、p 是常数) .(I)当0k =,3b =,4p =-时,求123n a a a a ++++ ;(II)当1k =,0b =,0p =时,若33a =,915a =,求数列{}n a 的通项公式;(III)若数列{}n a 中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.当1k =,0b =,0p =时,设n S 是数列{}n a 的前n 项和,212a a -=,试问:是否存在这样的“封闭数列”{}n a ,使得对任意*N n ∈,都有0n S ≠,且12311111111218n S S S S <++++< .若存在,求数列{}n a 的首项1a 的所有取值;若不存在,说明理由.26.(昌平区2013届高三上学期期末理)已知每项均是正整数的数列123100,,,,a a a a ,其中等于i 的项有i k 个(1,2,3)i = ,设j j k k k b +++= 21(1,2,3)j = ,12()100m g m b b b m =+++- (1,2,3).m =(Ⅰ)设数列1240,30,k k ==34510020,10,...0k k k k =====,求(1),(2),(3),(4)g g g g ; (Ⅱ)若123100,,,,a a a a 中最大的项为50, 比较(),(1)g m g m +的大小; (Ⅲ)若12100200a a a +++= ,求函数)(m g 的最小值.27.(2013北京朝阳二模数学理科试题)已知实数12,,,n x x x (2n ≥)满足||1(1,2,3,,)i x i n ≤= ,记121(,,,)n i j i j nS x x x x x ≤<≤=∑.(Ⅰ)求2(1,1,)3S --及(1,1,1,1)S --的值; (Ⅱ)当3n =时,求123(,,)S x x x 的最小值; (Ⅲ)求12(,,,)n S x x x 的最小值. 注:1i j i j nx x ≤<≤∑表示12,,,n x x x 中任意两个数i x ,j x (1i j n ≤<≤)的乘积之和.28.(北京四中2013届高三上学期期中测验数学(理))已知A (,),B (,)是函数的图象上的任意两点(可以重合),点M 在直线21=x 上,且.(1)求+的值及+的值 (2)已知,当时,+++,求;(3)在(2)的条件下,设=,为数列{}的前项和,若存在正整数、,使得不等式成立,求和的值.29.(2013北京海淀二模数学理科试题及答案)(本小题满分13分)设A 是由m n ⨯个实数组成的m 行n 列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(Ⅰ) 数表A 如表1所示,若经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可);表1(Ⅱ) 数表A 如表2所示,若必须经过两次“操作”,才可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数..a 的所有可能值;(Ⅲ)对由m n ⨯个实数组成的m 行n 列的任意一个数表A ,能否经过有限次“操作”以后,使得到的数表每行的各数之 表2和与每列的各数之和均为非负整数?请说明理由.30.(2013北京房山二模数学理科试题)设3>m ,对于项数为m 的有穷数列{}n a ,令k b 为)(,,,21m k a a a k≤ 中的最大值,称数列{}n b 为{}n a 的“创新数列”.例如数列3,的创新数列为3,5,5,7.考查自然数)3(,,2,1>m m 的所有排列,将每种排列都视为一个有穷数列{}n c .(Ⅰ)若5m =,写出创新数列为3,5,5,5,5的所有数列{}n c ;(Ⅱ)是否存在数列{}n c 的创新数列为等比数列?若存在,求出符合条件的创新数列;若不存在,请说明理由; (Ⅲ)是否存在数列{}n c ,使它的创新数列为等差数列?若存在,求出所有符合条件的数列{}n c 的个数;若不存在,请说明理由.22221212a a a a a a a a ------31.(东城区2013届高三上学期期末考试数学理科)已知实数组成的数组123(,,,,)n x x x x 满足条件:①10nii x==∑; ②11ni i x ==∑.(Ⅰ) 当2n =时,求1x ,2x 的值; (Ⅱ)当3n =时,求证:123321x x x ++≤; (Ⅲ)设123n a a a a ≥≥≥≥ ,且1n a a >(2)n ≥,求证:111()2ni in i a xa a =≤-∑.32.(东城区普通校2013届高三3月联考数学(理)试题 )设1a ,2a ,…20a 是首项为1,公比为2的等比数列,对于满足190≤≤k 的整数k ,数列1b ,2b ,…20b 由⎩⎨⎧-++20k n k n a a 时,当时,当20-20201≤<-≤≤n k k n 确定。

等差数列与等比数列的综合-精品

等差数列与等比数列的综合-精品

等差数列与等比数列的综合【知识点的知识】1、等差数列的性质(1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列;(2)有穷等差数列中,与首末两端“等距离”的两项和相等,并且等于首末两项之和;(3)加,则%+(〃?-〃)d;(4)若s,/,p,g€N*,且s+Z=p+q,则公+4=即+劭,其中的,/,的是数列中的项,特别地,当s+f=2p时,有as+at=2cip;(5)若数列{斯},»〃}均是等差数列,则数列佃劭+幼〃}仍为等差数列,其中〃7,%均为常数.(6)斯,a n-ifa n-2f,•,,e m仍为等差数列,公差为-d.(7)从第二项开始起,每一项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即20+1=斯+斯+2,2a t1=-川+斯+小,(〃2阳+1,n,〃氏N')(8)0〃,©〃+%,Clm+2k,4加+3”,…仍为等差数列,公差为Rd(首项不一定选).2、等比数列的性质.(1)通项公式的推广:a n=a m*q nn\(〃,mEN*).(2)若{〃“}为等比数列,且4+/=机+〃,(左,/,〃?,〃€N*),则四(3)若{如},{仇}(项数相同)是等比数列,则{入}(杉0),⑷,{斯出},仍是等比数列.a1>0(a[<01或,1={斯}是递增数列;q>l0<q<l减数列;夕=1。

0}是常数列;qV0={a〃}是摆动数列. ai>0 (<0或{〃〃}是递0<q<l [q>l(4)单调性:第1页共1页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省2014届一轮复习数学试题选编14:等差与等比数列综合填空题1 .数列{}n a 中,12a =,1n n a a cn +=+(c 是常数,123n =,,,),且123a a a ,,成公比不为1的等比数列,则{}n a 的通项公式是______.【答案】22n a n n =-+2 .已知数列{}n a 满足143a =,()*11226n n a n N a +-=∈+,则11ni ia =∑=______. 【答案】2324n n ⋅--3 .已知各项均为正数的等比数列{a n }的前n 项和为S n ,若a 3=18,S 3=26,则{a n }的公比q =________. 【答案】34 .设数列{a n }满足:()()*3118220()n n n n a a a a a n ++=---=∈N ,,则a 1的值大于20的概率为____.【答案】145 .已知数列}{na 满足122n n aqa q +=+-(q 为常数,||1q <),若3456,,,a a a a ∈}{18,6,2,6,30---,则1a = .【答案】2-或1266 .观察下列等式:31×2×12=1-122, 31×2×12+42×3×122=1-13×22, 31×2×12+42×3×122+53×4×123=1-14×23,,由以上等式推测到一个一般的结论:对于n ∈N *, 31×2×12+42×3×122++n +2n n +1×12n =______. 【答案】()nn 2111⋅+-7 .已知等比数列{}n a 的首项是1,公比为2,等差数列{}n b 的首项是1,公差为1,把{}n b 中的各项按照如下规则依次插入到{}n a 的每相邻两项之间,构成新数列}{n c :1122334,,,,,,,a b a b b a b 564,,b b a ,,即在n a 和1n a +两项之间依次插入{}n b 中n 个项,则2013c =____.【答案】1951 8 .若数列{}n a 是各项均为正数的等比数列,则当12n n n b a a a =⋅⋅⋅时,数列{}n b 也是等比数列;类比上述性质,若数列{}n c 是等差数列,则当n d =_______时,数列{}n d 也是等差数列.【答案】nc c c n+++ 219 .已知等差数列{}n a 满足:21-=a ,02=a .若将1a ,4a ,5a 都加上同一个数,所得的三个数依次成等比数列,则所加的这个数为___________. 【答案】7-10.过点(1 0)P -,作曲线C :e x y =的切线,切点为1T ,设1T 在x 轴上的投影是点1H ,过点1H 再作曲线C 的切线,切点为2T ,设2T 在x 轴上的投影是点2H ,,依次下去,得到第1n +()n ∈N 个切点1n T +.则点1n T +的坐标为______.【答案】()e n n ,11.已知数列{a n }满足3a n +1+a n =4(n ∈N*),且a 1=9,其前n 项之和为S n ,则满足不等式|S n -n -6|<1125的最小整数n 是______. 【答案】7解答题12.数列{}n a 是公比大于1的等比数列,62=a ,263=S .(1)求数列{}n a 的通项公式;(2)在n a 与1+n a 之间插入n 个数,使这2+n 个数组成公差为n d 的等差数列.设第n 个等差数列的前n 项和是n A .求关于n 的多项式)(n g ,使得n n d n g A )(=对任意+∈N n 恒成立;(3)对于(2)中的数列1d ,2d ,3d ,⋅⋅⋅,n d ,⋅⋅⋅,这个数列中是否存在不同的三项m d ,k d ,p d (其中正整数m ,k ,p 成等差数列)成等比数列?若存在,求出这样的三项;若不存在,说明理由.【答案】13.设等差数列}{n a 的公差0≠d,数列}{n b 为等比数列,若a b a ==11,33b a =,57b a =(1)求数列}{n b 的公比q ;(2)若*,,N m n b a m n ∈=,求n 与m 之间的关系;(3)将数列}{n a ,}{n b 中的公共项按由小到大的顺序排列组成一个新的数列}{n c ,是否存在正整数r q p ,,)(r q p <<使得r q p ,,和r c q c p c r q p +++,,均成等差数列?说明理由.【答案】解:(1)设}{n b 的公比为q ,由题意⎪⎩⎪⎨⎧+=+=d a aq d a aq 6242 即⎪⎩⎪⎨⎧=-=-da aq da aq 6242 1=q 不合题意,故311142=--q q ,解得22=q 2±=∴q(2)由m n b a =得1)1(-=-+m aq d n a ,又a a aq d =-=22 2a d =∴ 1)2(211-±=-+∴m n 即2112)1(1+-±=+m m n*1N n ∈+ 0)(1>±∴-m 1221-=∴+m n m 为奇数,且(3)若}{n a 与}{n b 有公共项,不妨设m n b a = 由(2)知:1221-=+m n m 为奇数,且令)(12*N k k m ∈-=,则11122)2(---•=•=k k m a a ba c n n 12-=∴若存在正整数)(r q p r q p <<、、满足题意,则⎩⎨⎧+•++•=+•+=---)2()2()2(22111r a p a q a rp q r p q 11222--+=∴r p q ,又)""(222222211===≥++-+--时取当且仅当r p r p r P r p又r p ≠ ,211222r p r p +-->+∴又xy 2=在R 上增,2r p q +>∴.与题设2rp q +=矛盾, ∴若不存在r q p 、、满足题意数学附加题14.已知数列{}n a 的前n 项和为n S , 且1517a a +=.(1)若{}n a 为等差数列, 且856S =.①求该等差数列的公差d ;②设数列{}n b 满足3n n n b a =⋅,则当n 为何值时,n b 最大?请说明理由;(2)若{}n a 还同时满足: ①{}n a 为等比数列;②2416a a =;③对任意的正整数k ,存在自然数m ,使得2k S +、k S 、m S 依次成等差数列,试求数列{}n a 的通项公式.【答案】解: (1)①由题意,得11241782856a d a d +=⎧⎨+=⎩ 解得1d =-4分②由①知1212a =,所以232n a n =-,则2333()2n n n n b a n =⋅=⋅-因为1121233()3()22n n n n b b n n ++-=⋅--⋅-21233[3()()]23[10]22n n n n n =⋅---=⨯⋅-所以1110b b =,且当10n ≤时,{}n b 单调递增,当11n ≥时,{}n b 单调递减,故当10n =或11n =时,nb 最大(2)因为{}n a 是等比数列,则241516a a a a ==,又1517a a +=,所以15116a a =⎧⎨=⎩或15161a a =⎧⎨=⎩从而12n n a -=或1(2)n n a -=-或1116()2n n a -=⨯或1116()2n n a -=⨯-. 又因为2k S +、k S 、m S 依次成等差数列,得22k k m S S S +=+,而公比1q ≠,所以2111(1)(1)(1)2111k k m a q a q a q q q q +---=+---,即22k k m q q q +=+,从而22m kq q -=+ (*)当12n n a -=时, (*)式不成立; 当1(2)n n a -=-时,解得1m k =+;当1116()2n n a -=⨯时, (*)式不成立;当1116()2n n a -=⨯-时, (*)式不成立. 综上所述,满足条件的1(2)n n a -=-15.已知数列{}n a 是等差数列,12315a a a ++=,数列{}n b 是等比数列,12327b b b =.(1)若1243,a b a b ==.求数列{}n a 和{}n b 的通项公式;(2)若112233,,a b a b a b +++是正整数且成等比数列,求3a 的最大值.【答案】解:(1)由题得225,3a b ==,所以123a b ==,从而等差数列{}n a 的公差2d =,所以21n a n =+,从而349b a ==,所以13n n b -=(2)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,则15a d =-,13b q=,35a d =+,33b q =. 因为112233,,a b a b a b +++成等比数列,所以2113322()()()64a b a b a b +⋅+=+=. 设1133a b ma b n+=⎧⎨+=⎩,*,m n N ∈,64mn =,则3553d mq d q n ⎧-+=⎪⎨⎪++=⎩,整理得,2()5()800d m n d m n +-++-=.解得d =(舍去负根).35a d =+,∴要使得3a 最大,即需要d 最大,即n m -及2(10)m n +-取最大值.*,m n N ∈,64mn =,∴当且仅当64n =且1m =时,n m -及2(10)m n +-取最大值.从而最大的d =所以,最大的3a =16.已知数列*122{}:1,(0),{}()n n n n n a a a a a b b a a n N +==>=∈满足数列满足(1)若{}n a 是等差数列,且345,{}n b a a =求的值及的通项公式; (2)若{}n a 的等比数列,求{}n b 的前n 项和.n S【答案】解 (1)因为{}n a 是等差数列,1d a =-,1(1)n a n a =+-,[12(1)][14(1)]45a a +-+-=,解得3a =或74a -=(舍去), 21n a n =-(2)因为{}n a 是等比数列,q a =,1n n a a -=,2n n b a = 当1a =时,1n b =,n S n =;当1a ≠时, 222(1)1n n a a S a-=- 17.若数列{}n a 是首项为612t -, 公差为6的等差数列;数列{}n b 的前n 项和为3nn S t =-. (1)求数列{}n a 和{}n b 的通项公式;(2)若数列{}n b 是等比数列, 试证明: 对于任意的(,1)n n N n ∈≥, 均存在正整数n c , 使得1nn c b a +=, 并求数列{}n c 的前n 项和n T ;(3)设数列{}n d 满足n n n d a b =⋅, 且{}n d 中不存在这样的项k d , 使得“1k k d d -<与1k k d d +<”同时成立(其中2≥k , *∈N k ), 试求实数的取值范围.【答案】解: (1)因为{}n a 是等差数列,所以(612)6(1)612n a t n n t =-+-=-而数列{}n b 的前n 项和为3n n S t =-,所以当2n ≥时, 11(31)(31)23n n n n b --=---=⨯,又113b S t ==-,所以13,123,2n n t n b n --=⎧=⎨⨯≥⎩(2)证明:因为{}n b 是等比数列,所以113232t --=⨯=,即1t =,所以612n a n =-对任意的(,1)n n N n ∈≥,由于11123636(32)12n n n n b --+=⨯=⨯=⨯+-, 令1*32n nc N -=+∈,则116(23)12n n c n a b -+=+-=,所以命题成立数列{}n c 的前n 项和13112321322n n n T n n -=+=⨯+-- (3)易得6(3)(12),14(2)3,2n n t t n d n t n --=⎧=⎨-≥⎩,由于当2n ≥时, 114(12)34(2)3n nn nd d n t n t ++-=+---38[(2)]32nn t =--⨯,所以①若3222t -<,即74t <,则1n n d d +>,所以当2n ≥时,{}n d 是递增数列,故由题意得 12d d ≤,即6(3)(12)36(22)t t t --≤-,5975977444t ---+≤≤<,②若32232t ≤-<,即7944t ≤<,则当3n ≥时,{}n d 是递增数列,, 故由题意得23d d =,即234(22)34(23)3t t -=-,解得74t =③若321(,3)2m t m m N m ≤-<+∈≥,即35(,3)2424m m t m N m +≤<+∈≥,则当2n m ≤≤时,{}n d 是递减数列, 当1n m ≥+时,{}n d 是递增数列,则由题意,得1m m d d +=,即14(2)34(21)3mm t m t m +-=--,解得234m t +=综上所述,59759744t ---+≤≤234m t +=(,2)m N m ∈≥ 18.设()2012()k k k f n c c n c n c n k =+++⋅⋅⋅+∈N ,其中012,,,,k c c c c ⋅⋅⋅为非零常数,数列{a n }的首项a 1=1,前n 项和为S n ,对于任意的正整数n ,a n +S n =()k f n . (1)若k =0,求证:数列{a n }是等比数列;(2)试确定所有的自然数k ,使得数列{a n }能成等差数列.【答案】【证】(1)若0k =,则()k f n 即0()f n 为常数,不妨设0()f n c =(c 为常数).因为()n n k a S f n +=恒成立,所以11a S c +=,即122c a ==. 而且当2n ≥时,2n n a S +=, ① 112n n a S --+=, ②①-②得 120(2)n n a a n n --=∈N ,≥.若a n =0,则1=0n a -,,a 1=0,与已知矛盾,所以*0()n a n ≠∈N . 故数列{a n }是首项为1,公比为12的等比数列.【解】(2)(i) 若k =0,由(1)知,不符题意,舍去. (ii) 若k =1,设1()f n bn c =+(b ,c 为常数), 当2n ≥时,n n a S bn c +=+, ③ 11(1)n n a S b n c --+=-+, ④③-④得 12(2)n n a a b n n --=∈N ,≥.要使数列{a n }是公差为d (d 为常数)的等差数列,必须有n a b d =-(常数),而a 1=1,故{a n }只能是常数数列,通项公式为a n =1()*n ∈N ,故当k =1时,数列{a n }能成等差数列,其通项公式为a n =1()*n ∈N ,此时1()1f n n =+. (iii) 若k =2,设22()f n an bn c =++(0a ≠,a ,b ,c 是常数), 当2n ≥时,2n n a S an bn c +=++, ⑤211(1)(1)n n a S a n b n c --+=-+-+, ⑥ ⑤-⑥得 122(2)n n a a an b a n n --=+-∈N ,≥, 要使数列{a n }是公差为d (d 为常数)的等差数列,必须有 2n a an b a d =+--,且d =2a ,考虑到a 1=1,所以1(1)2221n a n a an a =+-⋅=-+()*n ∈N .故当k =2时,数列{a n }能成等差数列,其通项公式为221n a an a =-+()*n ∈N ,此时22()(1)12f n an a n a =+++-(a 为非零常数). (iv) 当3k ≥时,若数列{a n }能成等差数列,则n n a S +的表达式中n 的最高次数为2,故数列{a n }不能成等差数列.综上得,当且仅当k =1或2时,数列{a n }能成等差数列.19.已知数列{}n a ,其前n 项和为n S .⑴若对任意的n *∈N ,2-12+12,,n n n a a a 组成公差为4的等差数列,且1=1a ,220132nS n=,求n 的值; ⑵若数列{+}nnS a a 是公比为(1)q q ≠-的等比数列,a 为常数,求证:数列{}n a 为等比数列的充要条件为1=1+q a.【答案】⑴因为21212,,n n n a a a -+成公差为4的等差数列,所以21212214,8)n n n n a a a a n *+---==+∈N (, 所以1352121,,,,,n n a a a a a -+是公差为4的等差数列,且2462135218n n a a a a a a a a n -++++=+++++,又因为11a =,所以()21352128n n S a a a a n-=+++++2(1)2[4]8462(23)2n n n n n n n n -=⨯==++++, 所以22320132nS n n==+,所以1005n = ⑵因为1(1)n nnS a a q a -+=+,所以1(1)n n n n S a q a aa -=+-, ① 所以111(1)n n n n S a q a aa +++=+-, ②②-①,得11(1)(1)[(1)]n n n n a q a a a q a -++-=-+, ③ (ⅰ)充分性:因为11q a=+,所以0,1,1a q a aq ≠≠+=,代入③式,得 1(1)(1)n n n n q q a q a +-=-,因为1q ≠-,又1q ≠,所以11n n a a q+=,*n ∈N ,所以{}n a 为等比数列, (ⅱ)必要性:设{}n a 的公比为0q ,则由③得10(1)(1)(1)n n a q q a a q -+-=-+,整理得()()00111()n a q a a q q q+-=+-,此式为关于n 的恒等式,若1q =,则左边0=,右边1=-,矛盾;1q ≠±若,当且仅当00(1,1(1(1)a q a a q a q+=⎧⎪⎨+=+⎪⎩))时成立,所以11q a =+.由(ⅰ)、(ⅱ)可知,数列{}n a 为等比数列的充要条件为1=1+q a20.已知各项均为正数的数列{}n a 前n 项的和为n S ,数列{}2na 的前n 项的和为nT ,且()2*234,n n S T n N -+=∈.⑴证明数列{}n a 是等比数列,并写出通项公式;⑵若20n n S T λ-<对*n N ∈恒成立,求λ的最小值;⑶若12,2,2x yn n n a a a ++成等差数列,求正整数,x y 的值.【答案】(1)因为2(2)34n n S T -+=,其中n S 是数列}{n a 的前n 项和,n T 是数列}{2n a 的前n 项和,且0>n a ,当1=n 时,由2211(2)34a a -+=,解得11a =, 当2n =时,由2222(12)3(1)4a a +-++=,解得212a =; 4分 由43)2(2=+-n n T S ,知43)2(121=+-++n n T S ,两式相减得03)4)((2111=+-+-+++n n n n n a S S S S ,即03)4(11=+-+++n n n a S S ,亦即221=-+n n S S ,从而122,(2)n n S S n --=≥,再次相减得11,(2)2n n a a n +=≥,又1221a a =,所以11,(1)2n n a n a +=≥所以数列}{n a 是首项为1,公比为12的等比数列, 其通项公式为121-=n n a *n ∈N(2)由(1)可得⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛-=n nn S 2112211211,11414113414nnn T ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,若02<-n n T S λ对*N n ∈恒成立,只需126321121132+-=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-=>n n nnnT Sλ对*N n ∈恒成立,因为31263<+-n对*N n ∈恒成立,所以3λ≥,即λ的最小值为3; (3)若212,2,++n yn xn a a a 成等差数列,其中y x ,为正整数,则1122,22,21+-n yn x n 成等差数列,整理得2212-+=y x,当2>y 时,等式右边为大于2的奇数,等式左边是偶数或1,等式不能成立, 所以满足条件的y x ,值为2,1==y x21.已知数列{}n a 中,12a =,23a =,其前n 项和n S 满足1121n n n S S S +-+=+,其中2n ≥,*n ∈N .(1)求证;数列{}n a 为等差数列,并求其通项公式;(2)设n n n a b -⋅=2,n T 为数列{}n b 的前n 项和,求使n T >2的n 的取值范围.(3)设λλ(2)1(41n an n n c ⋅-+=-为非零整数,*n ∈N ),试确定λ的值,使得对任意*n ∈N ,都有n n c c >+1成立.【答案】解:(1)由已知,()()111n n n n S S S S +----=(2n ≥,*n ∈N ),即11n n a a +-=(2n ≥,*n ∈N ),且211a a -=. ∴数列{}n a 是以12a =为首项,公差为1的等差数列. ∴1n a n =+(2) ∵1n a n =+,∴n n n b 21)1(⋅+= 21231111123(1) (1)22221111123(1)..........(2)22222n n n n n n T n n T n n -+∴=⨯+⨯++⋅++⋅=⨯+⨯+⋅⋅⋅+⋅++23111111(1)(2)1(1)22222n n n T n +-=++++-+⋅得:∴ n T n n 233+-=代入不等式得:01232233<-+>+-n n n n ,即设022)()1(,123)(1<+-=-+-+=+n n n n f n f n n f 则 ∴)(n f 在+N 上单调递减, ∵041)3(,041)2(,01)1(<-=>=>=f f f , ∴当n =1,n=2时,()0,3()0f n n f n ><≥当时,, 所以n 的取值范围.为3,n n *∈N ≥且(3)1,n a n =+114(1)2n n n n c λ-+∴=+-,要使1n n c c +>恒成立,即1211144(1)2(1)20n n n n n n n n c c λλ++-++-=-+--->恒成立,11343(1)20n n n λ-+∴⨯-->恒成立,∴11(1)2n n λ---<恒成立,(i)当n 为奇数时,即12n λ-<恒成立,当且仅当1n =时,12n -有最小值为1,1λ∴<.(ii)当n 为偶数时,即12n λ->-恒成立,当且仅当2n =时,12n --有最大值2-, 2λ∴>-.即21λ-<<,又λ为非零整数,则1λ=-综上所述:存在1λ=-,使得对任意的n *∈N ,都有1n n c c +>22.已知等差数列{a n }的首项a 1为a (,0)a R a ∈≠.设数列的前n 项和为S n ,且对任意正整数n 都有24121n n a n a n -=-. (1) 求数列{a n }的通项公式及S n ;(2) 是否存在正整数n 和k ,使得S n , S n +1 , S n +k 成等比数列?若存在,求出n 和k 的值;若不存在,请说明理由.【答案】23.设}{n a 是首项为a ,公差为d 的等差数列)0(≠d ,n S 是其前n 项和.记cn nS b n n+=2,*N n ∈,其中c 为实数.(1)若0=c ,且421b b b ,,成等比数列,证明:k nk S n S 2=(*,N n k ∈);(2)若}{n b 是等差数列,证明:0=c .【答案】本题主要考察等差数列等比数列的定义.通项.求和等基础知识,考察分析转化能力及推理论证能力.证明:∵}{n a 是首项为a ,公差为d 的等差数列)0(≠d ,n S 是其前n 项和 ∴d n n na S n 2)1(-+= (1)∵0=c ∴d n a n S b n n 21-+==∵421b b b ,,成等比数列 ∴4122b b b = ∴)23()21(2d a a d a +=+∴041212=-d ad ∴0)21(21=-d a d ∵0≠d ∴d a 21= ∴a d 2= ∴a n a n n na d n n na S n 222)1(2)1(=-+=-+=∴左边=a k n a nk S nk 222)(== 右边=a k n S n k 222=∴左边=右边∴原式成立(2)∵}{n b 是等差数列∴设公差为1d ,∴11)1(d n b b n -+=带入cn nS b nn +=2得: 11)1(d n b -+cn nS n +=2∴)()21()21(11121131b d c n cd n d a d b n d d -=++--+-对+∈N n 恒成立∴⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==+--=-0)(0021021111111b d c cd d a d b d d由①式得:d d 211=∵ 0≠d ∴ 01≠d 由③式得:0=c法二:证:(1)若0=c ,则d n a a n )1(-+=,2]2)1[(a d n n S n +-=,22)1(ad n b n +-=.当421b b b ,,成等比数列,4122b b b =,即:⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+2322d a a d a ,得:ad d 22=,又0≠d ,故a d 2=.由此:a n S n 2=,a k n a nk S nk 222)(==,a k n S n k 222=. 故:k nk S n S 2=(*,N n k ∈).(2)cn ad n n cn nS b nn ++-=+=22222)1(,c n ad n c a d n c a d n n ++--+-++-=2222)1(22)1(22)1( c n a d n ca d n ++--+-=222)1(22)1(. (※) 若}{n b 是等差数列,则Bn An b n +=型. 观察(※)式后一项,分子幂低于分母幂,故有:022)1(2=++-cn ad n c,即022)1(=+-a d n c ,而22)1(a d n +-≠0, 故0=c .经检验,当0=c 时}{n b 是等差数列.24.已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S S d 且1341,,a a a 成等比数列.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设⎭⎬⎫⎩⎨⎧n n a b 是首项为1,公比为3的等比数列,求数列{}n b 的前n 项和n T .【答案】解:(Ⅰ)依题意得⎪⎩⎪⎨⎧+=+=⨯++⨯+)12()3(5025452233112111d a a d a d a d a 解得⎩⎨⎧==231d a ,1212)1(23)1(1+=+=-+=-+=∴n a n n d n a a n n 即,(Ⅱ)13-=n nna b ,113)12(3--⋅+=⋅=n n n n n a b 123)12(37353-⋅+++⋅+⋅+=n n n Tn n n n n T 3)12(3)12(3735333132⋅++⋅-++⋅+⋅+⋅=-n n n n T 3)12(3232323212+-⋅++⋅+⋅+=--nnn n n 323)12(31)31(3231⋅-=+---⋅+=- ∴nn n T 3⋅=25.已知数列{}n a 的前n 项和为n S .(Ⅰ)若数列{}n a 是等比数列,满足23132a a a =+, 23+a 是2a ,4a 的等差中项,求数列{}n a 的通项公式;(Ⅱ)是否存在等差数列{}n a ,使对任意*n N ∈都有22(1)n n a S n n ⋅=+?若存在,请求出所有满足条件的等差数列;若不存在,请说明理由.【答案】解:(Ⅰ)设等比数列{}n a 的首项为1a ,公比为q ,依题意,有⎩⎨⎧+=+=+).2(2,32342231a a a a a a 即⎩⎨⎧+=+=+)2(.42)()1(,3)2(2131121q a q q a q a q a由 )1(得 0232=+-q q ,解得1=q 或2=q.当1=q 时,不合题意舍;当2=q时,代入(2)得21=a ,所以,n n n a 2221=⋅=-(Ⅱ)假设存在满足条件的数列{}n a ,设此数列的公差为d ,则 方法1: 211(1)[(1)][]2(1)2n n a n d a n d n n ++-+=+,得 222222111331()()222222d n a d d n a a d d n n +-+-+=+对*n N ∈恒成立, 则22122112,232,2310,22d a d d a a d d ⎧=⎪⎪⎪-=⎨⎪⎪-+=⎪⎩解得12,2,d a =⎧⎨=⎩或12,2.d a =-⎧⎨=-⎩此时2n a n =,或2n a n =-.故存在等差数列{}n a ,使对任意*n N ∈都有22(1)n n a S n n ⋅=+.其中2n a n =, 或2n a n =-方法2:令1n =,214a =,得12a =±,令2n =,得2212240a a a +⋅-=,①当12a =时,得24a =或26a =-,若24a =,则2d =,2n a n =,(1)n S n n =+,对任意*n N ∈都有22(1)n n a S n n ⋅=+; 若26a =-,则8d =-,314a =-,318S =-,不满足23323(31)a S ⋅=⨯⨯+. ②当12a =-时,得24a =-或26a =,若24a =-,则2d =-,2n a n =-,(1)n S n n =-+,对任意*n N ∈都有22(1)n n a S n n ⋅=+; 若26a =,则8d =,314a =,318S =,不满足23323(31)a S ⋅=⨯⨯+.综上所述,存在等差数列{}n a ,使对任意*n N ∈都有22(1)n n a S n n ⋅=+.其中2n a n =,或2n a n =-26.设数列{}n a 的前n 项和为n S ,满足21n n a S An Bn +=++(0A ≠).(1)若132a =,294a =,求证数列{}n a n -是等比数列,并求数列{}n a 的通项公式; (2)已知数列{}n a 是等差数列,求1B A-的值.【答案】27.已知各项均为正数的两个数列{}n a 和{}n b 满足:221nn n n n b a b a a ++=+,*N n ∈,(1)设n n n a b b +=+11,*N n ∈,求证:数列2n n b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是等差数列; (2)设nnn a b b •=+21,*N n ∈,且{}n a 是等比数列,求1a 和1b 的值. 【答案】解:(1)∵n n n a b b +=+11,∴1n a +=∴11n n b a ++=∴ ()2222111*n n n n n n b b b n N a a a ++⎛⎫⎛⎫⎛⎫-=-=∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.∴数列2n n b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是以1 为公差的等差数列.(2)∵00n n a >b >,,∴()()22222n n n n n n a b a b <a b +≤++.∴11n <a +=≤﹡)设等比数列{}n a 的公比为q ,由0n a >知0q >,下面用反证法证明=1q 若1,q >则212=a a <a q≤1log q n >时,11n n a a q +=与(﹡)矛盾. 若01,<q <则212=1a a >a >q ,∴当11log q n >a 时,111n n a a q <+=,与(﹡)矛盾. ∴综上所述,=1q .∴()1*n a a n N =∈,∴11<a ≤又∵11n n n n b b b a +=()*n N ∈,∴{}n b1.若1a ≠,11,于是123b <b <b . 又由221nn n n n b a b a a ++=+即1a =,得11n b a -.∴123b b b ,,中至少有两项相同,与123b <b <b 矛盾.∴1a .∴1n b -∴ 12=a b。

相关文档
最新文档