2019-2020北师大版八年级数学上册第一章勾股定理单元测试题有答案
第一章 勾股定理数学八年级上册-单元测试卷-北师大版(含答案)
第一章勾股定理数学八年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、已知一个直角三角形的面积为84cm2,其中一条直角边的长为7cm,则该直角三角形的斜边的长为()A.23cmB.24cmC.25cmD.26cm2、已知三角形三边的长分别为3、2、,则该三角形的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定3、如图,△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点D,G 分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为()A.1B.2C.12 ﹣6D.6 ﹣64、若线段a,b,c组成直角三角形,则它们的比可以为()A.2∶3∶4B.7∶24∶25C.5∶12∶14D.4∶6∶105、三个正方形的面积如下图,正方形A的面积为()A.6B.36C.64D.86、已知函数y= 的图象如图所示,点P是y轴负半轴上一动点,过点P作y 轴的垂线交图象于A,B两点,连接OA、OB.下列结论:①若点M1(x1, y1),M2(x2, y2)在图象上,且x1<x2<0,则y1<y2;②当点P坐标为(0,﹣3)时,△AOB是等腰三角形;③无论点P在什么位置,始终有S△AOB=7.5,AP=4BP;④当点P移动到使∠AOB=90°时,点A的坐标为(2 ,﹣).其中正确的结论个数为()A.1B.2C.3D.47、如图,小半圆的直径与大半圆的直径AB重合,圆心重合,弦CD与小半圆相切,CD=10,则阴影部分面积为()A.100πB.50πC.25πD.12.5π8、如图,在菱形中,,,O为对角线的中点,过O点作,垂足为E.则下列说法错误的是()A.点O为菱形的对称中心B.C. 为等边三角形D.9、四个三角形的边长分别是①2,3,4;②3,4,5;③5,6,7;④5,12,13.其中直角三角形是()A.①②B.①③C.②④D.③④10、有五组数:①25,7,24;②16,20,12;③9,40,41;④4,6,8;⑤32,42,52,以各组数为边长,能组成直角三角形的个数为()A.1B.2C.3D.411、已知等边△ABC,点A在坐标原点,B点的坐标为(6,0),则点C的坐标为()A.(3,3)B.(3,2 )C.(2 ,3)D.(3,3 )12、如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A.2,3,4B.3,4,5C.6,8,10D. ,,113、若一个直角三角形的一条直角边长是7cm,另一条直角边比斜边短1cm,则斜边长为()A.18 cmB.20 cmC.24 cmD.25 cm14、若直角三角形的两直角边长分别为5、12,则这个直角三角形的斜边长是()A.13B.C.169D.15、下列各组线段中的三个长度:①9,12,15;②7,24,25;③32, 42, 52;④3a,4a,5a(a>0);⑤m2-n2, 2mn,m2+n2(m,n为正整数,且m>n)其中可以构成直角三角形的有()组。
最新2019-2020年度北师大版八年级数学上册《勾股定理的应用》同步练习题及答案解析-精品试题
八上1.3勾股定理的应用一.选择题(共10小题)1.如图,一根垂直于地面的旗杆在离地面5m处撕裂折断,旗杆顶部落在离旗杆底部12m处,旗杆折断之前的高度是()A.5m B.12m C.13m D.18m2.如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于()A.195cm B.200cm C.205cm D.210cm3.如图,有两棵树,一棵高10米,另一棵树高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米B.10米C.12米D.14米4.如图,一个圆桶儿,底面直径为16cm,高为18cm,则一只小虫底部点A爬到上底B处,则小虫所爬的最短路径长是(π取3)()A.20cm B.30cm C.40cm D.50cm5.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D 点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.5cm6.已知蚂蚁从长、宽都是3,高是8的长方形纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是()A.8 B.10 C.12 D.167.在一块平地上,张大爷家屋前9米远处有一颗大树,在一次强风中,这课大树从离地面6米处折断倒下,量得倒下部分的长是10米,大树倒下时能砸到张大爷的房子吗?()A.一定不会 B.可能会C.一定会D.以上答案都不对8.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺9.一艘轮船以16海里∕小时的速度从港口A出发向东北方向航行,另一轮船12海里∕小时从港口A出发向东南方向航行,离开港口3小时后,则两船相距()A.36海里B.48海里C.60海里D.84海里10.如图,一场大风后,一棵与地面垂直的树在离地面1m处的A点折断,树尖B点触地,经测量BC=3m,那么树高是()A.4m B.m C.(+1)m D.(+3)m二.填空题(共10小题)11.如图,在一根长90cm的灯管上,缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为.12.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm到D,则橡皮筋被拉长了cm.13.如图是一个三级台阶,它的每一级的长、宽和高分别为25dm、3dm、3dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是.(结果保留根号)14.在一棵树的10米高的B处有两只猴子为抢吃池塘边水果,一只猴子爬下树跑到A处(离树20米)的池塘边.另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高米.15.小明要把一根长为70cm的长的木棒放到一个长、宽、高分别为50cm,40cm,30cm的木箱中,他能放进去吗?(填“能”或“不能”).16.一艘船由于风向的原因先向正东方向航行了160km,然后向正北方向航行了120km,这时它离出发点有km.17.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间的距离为50m,则这辆小汽车的速度是m/s.18.如图,一圆柱高8cm,底面半径为cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是cm.19.如图,一个无盖的长廊体盒子紧贴地面,一只蚂蚁由A出发,在盒子表面上爬到点G,已知,AB=7,BC=5,CG=5,求这只蚂蚁爬行的最短距离.20.如图示(单位:mm)的矩形零件上两孔中心A和B的距离为mm.三.解答题(共10小题)21.在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上另一停靠站B的距离为400米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否而需要暂时封锁?请通过计算进行说明.22.如图,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?23.一架方梯AB长13米,如图,斜靠在一面墙上,梯子底端离墙OB为5米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了3米,那么梯子的底端在水平方向滑动了几米?24.如图,某地方政府决定在相距50km的A、B两站之间的公路旁E点,修建一个土特产加工基地,且使C、D两村到E点的距离相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E应建在离A站多少千米的地方?25.八年级三班小明和小亮同学学习了“勾股定理”之后,为了测得下图风筝CE的高度,他们进行了如下操作:(1)测得BD的长度为25米.(2)根据手中剩余线的长度计算出风筝线BC的长为65米.(3)牵线放风筝的小明身高1.6米.求风筝的高度CE.26.有一只喜鹊在一棵5m高的小树上觅食,它的巢筑在距该树6m的一棵大树上,大树高14m,且巢离树顶部1m,当它听到巢中幼鸟的叫声时,立即赶过去,若它飞行速度为5m/s,则它至少需要多少时间才能赶回巢中?27.如图,有一条小路穿过长方形的草地ABCD,若AB=30m,BC=42m,AE=50m,则这条小路的面积是多少?28.如图,小颖和她的同学荡秋千,秋千AB在静止位置时,下端B离地面0.6米,荡秋千到AB 的位置时,下端B距静止位置的水平距离EB,等于2.4米,距地面1.4米,求秋千AB的长.29.如图,某居民楼A与公路MN相距60m(AB=60m),在公路MN上行驶的汽车在距居民楼A100m的点P处就可使其受到噪音的影响,求在公路上以10m/s的速度行驶的汽车给居民楼A的居民带来多长时间的噪音影响.30.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街道上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方30米C处,过了2秒后,小汽车行驶到B处,测得小汽车与车速检测仪间距离为50米,(1)求BC的长;(2)这辆小汽车超速了吗?八上1.3个勾股定理的应用参考答案与试题解析一.选择题(共10小题)1.(2016春•庐江县期末)如图,一根垂直于地面的旗杆在离地面5m处撕裂折断,旗杆顶部落在离旗杆底部12m处,旗杆折断之前的高度是()A.5m B.12m C.13m D.18m【分析】图中为一个直角三角形,根据勾股定理两个直角边的平方和等于斜边的平方.此题要求斜边和直角边的长度,解直角三角形即可.【解答】解:旗杆折断后,落地点与旗杆底部的距离为12m,旗杆离地面5m折断,且旗杆与地面是垂直的,所以折断的旗杆与地面形成了一个直角三角形.根据勾股定理,折断的旗杆为=13m,所以旗杆折断之前高度为13m+5m=18m.故选D.【点评】本题考查的是勾股定理的正确应用,找出可以运用勾股定理的直角三角形是关键.2.(2016春•临沭县期中)如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于()A.195cm B.200cm C.205cm D.210cm【分析】作出直角三角形后分别求得直角三角形的两直角边的长后即可利用勾股定理求得斜边AB 的长.【解答】解:如图,由题意得:AC=15×5=75cm,BC=30×6=180cm,故AB===195cm.故选A.【点评】本题考查了勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形,难度不大.3.(2015•岳池县模拟)如图,有两棵树,一棵高10米,另一棵树高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米B.10米C.12米D.14米【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【解答】解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6m,在Rt△AEC中,AC==10(m),故小鸟至少飞行10m.故选:B.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.4.(2015•伊宁市校级一模)如图,一个圆桶儿,底面直径为16cm,高为18cm,则一只小虫底部点A爬到上底B处,则小虫所爬的最短路径长是(π取3)()A.20cm B.30cm C.40cm D.50cm【分析】先将圆柱的侧面展开为一矩形,而矩形的长就是底面周长的一半,高就是圆柱的高,再根据勾股定理就可以求出其值.【解答】解:展开圆柱的侧面如图,根据两点之间线段最短就可以得知AB最短.由题意,得AC=3×16÷2=24,在Rt△ABC中,由勾股定理,得AB===30cm.故选B.【点评】本题考查了圆柱侧面展开图的运用,两点之间线段最短的运用,勾股定理的运用.在解答时将圆柱的侧面展开是关键.5.(2015秋•滨湖区期末)如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.5cm【分析】根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.【解答】解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.故选A.【点评】此题主要考查了等腰三角形的性质以及勾股定理的应用.6.(2015秋•新泰市期末)已知蚂蚁从长、宽都是3,高是8的长方形纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是()A.8 B.10 C.12 D.16【分析】根据”两点之间线段最短”,将点A和点B所在的两个面进行展开,展开为矩形,则AB 为矩形的对角线,即蚂蚁所行的最短路线为AB.【解答】解:将点A和点B所在的两个面展开,则矩形的长和宽分别为6和8,故矩形对角线长AB==10,即蚂蚁所行的最短路线长是10.故选B.【点评】考查了平面展开﹣最短路径问题,本题的关键是将点A和点B所在的面展开,运用勾股定理求出矩形的对角线.7.(2015春•北流市期中)在一块平地上,张大爷家屋前9米远处有一颗大树,在一次强风中,这课大树从离地面6米处折断倒下,量得倒下部分的长是10米,大树倒下时能砸到张大爷的房子吗?()A.一定不会 B.可能会C.一定会D.以上答案都不对【分析】由题意知树折断的两部分与地面形成一直角三角形,根据勾股定理求出BC的长即可解答.【解答】解:如图所示,AB=10米,AC=6米,根据勾股定理得,BC===8米<9米.故选:A.【点评】此题考查了勾股定理在生活中的应用.善于观察题目的信息是解题以及学好数学的关键.8.(2015春•青山区期中)如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【解答】解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+()2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),故选D.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.9.(2014春•台山市校级期末)一艘轮船以16海里∕小时的速度从港口A出发向东北方向航行,另一轮船12海里∕小时从港口A出发向东南方向航行,离开港口3小时后,则两船相距()A.36海里B.48海里C.60海里D.84海里【分析】根据方位角可知两船所走的方向正好构成了直角.然后根据路程=速度×时间,得两条船分别走了48,36.再根据勾股定理,即可求得两条船之间的距离.【解答】解:∵两船行驶的方向是东北方向和东南方向,∴∠BAC=90°,两小时后,两艘船分别行驶了16×3=48,12×3=36海里,根据勾股定理得:=60(海里).故选C.【点评】本题考查了勾股定理的应用,熟练运用勾股定理进行计算,基础知识,比较简单.10.(2013秋•东兴市校级期末)如图,一场大风后,一棵与地面垂直的树在离地面1m处的A点折断,树尖B点触地,经测量BC=3m,那么树高是()A.4m B.m C.(+1)m D.(+3)m【分析】由题意知树枝折断部分、竖直部分和折断部分构成了直角三角形,根据题目提供数据分别求出竖直部分和折断部分,二者的和即为本题的答案.【解答】解:由题意知:AC=1,BC=3,由勾股定理得:AB===,∴树高为:AC+AB=(+1)m,故选C.【点评】本题考查了勾股定理的相关知识,解决本题时,先由勾股定理求得树枝折断部分,然后与竖直部分加在一起即为本题的解.二.填空题(共10小题)11.(2016•富顺县校级模拟)如图,在一根长90cm的灯管上,缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为150cm .【分析】根据题意抽象出直角三角形,利用勾股定理求得彩色丝带的长即可.【解答】解:如下图,彩色丝带的总长度为=150cm,故答案为:150cm.【点评】本题考查了勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形,难度不大.12.(2016春•潮州期末)如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm到D,则橡皮筋被拉长了 2 cm.【分析】根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.【解答】解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.【点评】此题主要考查了等腰三角形的性质以及勾股定理的应用.13.(2016春•武冈市期中)如图是一个三级台阶,它的每一级的长、宽和高分别为25dm、3dm、3dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是dm .(结果保留根号)【分析】先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.【解答】解:三级台阶平面展开图为长方形,长为25dm,宽为(3+3)×3dm,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B点最短路程为xdm,由勾股定理得:x2=252+[(3+3)×3]2=949,解得x=.故答案为dm.【点评】此题主要考查了平面展开﹣最短路径问题,用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.14.(2015秋•苏州校级期末)在一棵树的10米高的B处有两只猴子为抢吃池塘边水果,一只猴子爬下树跑到A处(离树20米)的池塘边.另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高15 米.【分析】根据两只猴子所经过的距离相等,将两只猴子所走的路程表示出来,根据勾股定理列出方程求解.【解答】解:如图,设树的高度为x米,因两只猴子所经过的距离相等都为30米.由勾股定理得:x2+202=[30﹣(x﹣10)]2,解得x=15m.故这棵树高15m.【点评】把实际问题转化为数学模型,构造直角三角形,然后利用勾股定理解决.15.(2015秋•东明县期末)小明要把一根长为70cm的长的木棒放到一个长、宽、高分别为50cm,40cm,30cm的木箱中,他能放进去吗?能(填“能”或“不能”).【分析】在长方体的盒子中,一角的顶点与斜对的不共面的顶点的距离最大,根据木箱的长,宽,高可求出最大距离,然后和木棒的长度进行比较.【解答】解:可设放入长方体盒子中的最大长度是xcm,根据题意,得x2=502+402+302=5000,702=4900,因为4900<5000,所以能放进去.【点评】本题的关键是求出木箱内木棒的最大长度.16.(2015春•岳池县期末)一艘船由于风向的原因先向正东方向航行了160km,然后向正北方向航行了120km,这时它离出发点有200 km.【分析】两段航行的路线正好互相垂直,构成直角三角形,利用勾股定理即可解答即可.【解答】解:如图,A为出发点,B为正东方向航行了160km的地点,C为向正北方向航行了120km的地点,故AB=160km,BC=120km,在Rt△ABC中,由勾股定理得:AC===200km.故答案为200.【点评】本题考查直角三角形的性质及勾股定理的应用,关键是要根据题意画出图形即可解答.17.(2015秋•蓝田县期末)如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间的距离为50m,则这辆小汽车的速度是20 m/s.【分析】求小汽车是否超速,其实就是求BC的距离,直角三角形ABC中,有斜边AB的长,有直角边AC的长,那么BC的长就很容易求得,根据小汽车用2s行驶的路程为BC,那么可求出小汽车的速度.【解答】解:在Rt△ABC中,AC=30m,AB=50m;据勾股定理可得:BC==40(m),故小汽车的速度为v==20m/s.故答案为:20.【点评】本题考查了勾股定理的应用,是将实际问题转化为直角三角形中的数学问题,可把条件和问题放到直角三角形中,进行解决.18.(2015秋•宜兴市校级期中)如图,一圆柱高8cm,底面半径为cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是10 cm.【分析】此题最直接的解法,就是将圆柱展开,然后利用两点之间线段最短解答.【解答】解:底面圆周长为2πr,底面半圆弧长为πr,即半圆弧长为:×2π×=6(cm),展开得:∵BC=8cm,AC=6cm,根据勾股定理得:AB==10(cm).故答案为:10.【点评】此题主要考查了立体图形的展开和两点之间线段最短,解题的关键是根据题意画出展开图,表示出各线段的长度.19.(2014秋•平山区校级月考)如图,一个无盖的长廊体盒子紧贴地面,一只蚂蚁由A出发,在盒子表面上爬到点G,已知,AB=7,BC=5,CG=5,求这只蚂蚁爬行的最短距离cm .【分析】将长方体盒子按不同方式展开,得到不同的矩形,求出不同矩形的对角线,最短者即为正确答案.【解答】解:如图(1),AG===13cm;(2)AG==cm.故答案为cm.【点评】此题考查了平面展开﹣最短路径问题,解答时要进行分类讨论,利用勾股定理是解题的关键.20.(2012秋•上蔡县校级期中)如图示(单位:mm)的矩形零件上两孔中心A和B的距离为100 mm.【分析】根据图形标出的长度,可以知道AC和BC的长度,从而构造直角三角形,根据勾股定理就可求出斜边A和B的距离.【解答】解:∵AC=120﹣60=60mm,BC=140﹣60=80mm,∴AB===100(mm).故答案为:100.【点评】本题考查了勾股定理的应用,善于观察题目的信息是解题以及学好数学的关键.三.解答题(共10小题)21.(2016春•浠水县期末)在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上另一停靠站B的距离为400米,且CA ⊥CB,如图,为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否而需要暂时封锁?请通过计算进行说明.【分析】如图,本题需要判断点C到AB的距离是否小于250米,如果小于则有危险,大于则没有危险.因此过C作CD⊥AB于D,然后根据勾股定理在直角三角形ABC中即可求出AB的长度,然后利用三角形的公式即可求出CD,然后和250米比较大小即可判断需要暂时封锁.【解答】解:如图,过C作CD⊥AB于D,∵BC=400米,AC=300米,∠ACB=90°,∴根据勾股定理得AB=500米,∵AB•CD=BC•AC,∴CD=240米.∵240米<250米,故有危险,因此AB段公路需要暂时封锁.【点评】本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.22.(2016春•重庆校级期中)如图,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?【分析】设旗杆在离底部x米的位置断裂,在直角三角形中利用勾股定理即可得出关于x的一元二次方程,解方程求出x的值,此题得解.【解答】解:设旗杆在离底部x米的位置断裂,在给定图形上标上字母如图所示.∵AB=x,AB+AC=16,∴AC=16﹣x.在Rt△ABC中,AB=x,AC=16﹣x,BC=8,∴AC2=AB2+BC2,即(16﹣x)2=x2+82,解得:x=6.故旗杆在离底部8米的位置断裂.【点评】本题考查了勾股定理的应用,解题的关键是利用勾股定理得出关于x的一元二次方程.本题属于基础题,难度不大,解决该题型题目时,构建直角三角形,利用勾股定理表示出三边关系是关键.23.(2016春•广州校级期中)一架方梯AB长13米,如图,斜靠在一面墙上,梯子底端离墙OB 为5米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了3米,那么梯子的底端在水平方向滑动了几米?【分析】(1)在Rt△ABO中,根据勾股定理AO=,即可求出梯子顶端距地面的高度;(2)在Rt△A′B′O中,根据勾股定理OB′=,先求出OB′的长,梯子底部在水平方向滑动的长度即是BB′=OB′﹣OB的长,.【解答】解:(1)∵AO⊥DO,∴AO===12(m),(2)∵AA′=3m,∴A′O=AO﹣AA′=9m,∴OB′===,∴BB′=OB′﹣OB=﹣5=2﹣5(m),∴梯子的底端在水平方向滑动了2﹣5米.【点评】本题考查了勾股定理在实际生活中的运用,考查了直角三角形中勾股定理的运用,本题中正确的使用勾股定理求OB′的长度是解题的关键.24.(2015秋•龙口市期末)如图,某地方政府决定在相距50km的A、B两站之间的公路旁E点,修建一个土特产加工基地,且使C、D两村到E点的距离相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E应建在离A站多少千米的地方?【分析】由勾股定理两直角边的平方和等于斜边的平方即可求,即在直角三角形DAE和直角三角形CBE中利用斜边相等两次利用勾股定理得到AD2+AE2=BE2+BC2,设AE为x,则BE=10﹣x,将DA=8,CB=2代入关系式即可求得.【解答】解:设基地E应建在离A站x千米的地方.则BE=(50﹣x)千米在Rt△ADE中,根据勾股定理得:AD2+AE2=DE2∴302+x2=DE2…(3分)在Rt△CBE中,根据勾股定理得:CB2+BE2=CE2∴202+(50﹣x)2=CE2又∵C、D两村到E点的距离相等.∴DE=CE∴DE2=CE2∴302+x2=202+(50﹣x)2解得x=20∴基地E应建在离A站多少20千米的地方.【点评】考查了勾股定理的应用,本题主要是运用勾股定理将两个直角三角形的斜边表示出来,两边相等求解即可.25.(2013秋•亭湖区校级期末)八年级三班小明和小亮同学学习了“勾股定理”之后,为了测得下图风筝CE的高度,他们进行了如下操作:(1)测得BD的长度为25米.(2)根据手中剩余线的长度计算出风筝线BC的长为65米.(3)牵线放风筝的小明身高1.6米.求风筝的高度CE.【分析】利用勾股定理求出CD的长,再加上DE的长度,即可求出CE的高度.【解答】解:在Rt△CDB中,由勾股定理得,CD2=BC2﹣BD2=652﹣252=3600,所以,CD=±60(负值舍去),所以,CE=CD+DE=60+1.6=61.6米,答:风筝的高度CE为61.6米.【点评】本题考查了勾股定理的应用,熟悉勾股定理,能从实际问题中抽象出勾股定理是解题的关键.26.(2014春•江都市校级期中)有一只喜鹊在一棵5m高的小树上觅食,它的巢筑在距该树6m的一棵大树上,大树高14m,且巢离树顶部1m,当它听到巢中幼鸟的叫声时,立即赶过去,若它飞行速度为5m/s,则它至少需要多少时间才能赶回巢中?【分析】根据题意,构建直角三角形,利用勾股定理解答即可.【解答】解:过A做AE⊥CD,垂足为E,由题意可得AE=6,CE=14﹣1﹣5=8在Rt△ACE中,则t==2秒.答:它至少需要2秒的时间才能赶回巢中.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.27.(2014春•东莞市校级期中)如图,有一条小路穿过长方形的草地ABCD,若AB=30m,BC=42m,AE=50m,则这条小路的面积是多少?【分析】根据勾股定理求得BE的长,即可求得CE的长,则要求的平行四边形的面积即为CE•AB 的值.【解答】解:由长方形性质知:∠B=90°在Rt△ABE中,∵AB=30m,AE=50m,∴BE===40m.∴CE=BC﹣BE=42﹣40=2m.S四边形AECF=CE•AB=2×30=60m2.答:小路的面积为60m2.【点评】此题主要是勾股定理的运用.勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.28.(2014春•禹州市期中)如图,小颖和她的同学荡秋千,秋千AB在静止位置时,下端B离地面0.6米,荡秋千到AB的位置时,下端B距静止位置的水平距离EB,等于2.4米,距地面1.4米,求秋千AB的长.【分析】利用已知得出B′E的长,再利用勾股定理得出即可.【解答】解:由题意可得出:B′E=1.4﹣0.6=0.8(m),则AE=AB﹣0.8,在Rt△AEB中,AE2+BE2=AB2,∴(AB﹣0.8)2+2.42=AB2解得:AB=4,答:秋千AB的长为4m.【点评】本题考查了勾股定理的应用,善于观察题目的信息是解题以及学好数学的关键.29.(2014春•台安县期中)如图,某居民楼A与公路MN相距60m(AB=60m),在公路MN上行驶的汽车在距居民楼A100m的点P处就可使其受到噪音的影响,求在公路上以10m/s的速度行驶的汽车给居民楼A的居民带来多长时间的噪音影响.【分析】设汽车行驶到点P′处噪音影响结束,连接AP′,则AP′=AP.由勾股定理得到AP的长,然后求得PP′长,利用速度路程时间之间的关系求得时间即可.【解答】解:如图,设汽车行驶到点P′处噪音影响结束,连接AP′,则AP′=AP.∵由勾股定理得到:PB===80,∴PP′=2PB=2×80=160米,∴影响时间为160÷10=16秒,答:影响时间为16秒.【点评】本题考查了勾股定理的应用,解题的关键是从实际问题中整理出直角三角形.30.(2014秋•兴化市校级月考)“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街道上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方30米C处,过了2秒后,小汽车行驶到B处,测得小汽车与车速检测仪间距离为50米,(1)求BC的长;(2)这辆小汽车超速了吗?【分析】(1)在直角三角形ABC中,已知AB,AC根据勾股定理即可求出小汽车2秒内行驶的距离BC;(2)根据小汽车在两秒内行驶的距离BC可以求出小汽车的平均速度,求得数值与70千米/时比较,即可计算小汽车是否超速.【解答】解:(1)在直角△ABC中,已知AC=30米,AB=50米,。
2019—2020年最新北师大版八年级数学上册《勾股定理》综合测试题及答案解析(试卷).docx
《第1章勾股定理》一、填空题1.直角三角形两条直角边的长分别为5、12,则斜边长为,斜边上的高为.2.已知直角三角形的两边的长分别是3和4,则第三边长为.3.已知等腰三角形的腰长为5cm,底边长为6cm,则这个三角形的面积为cm2.4.如图所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为8,正方形A的面积是11,B的面积是10,C的面积是13,则D的面积为.5.如图,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行米.6.如图,直线l过正方形ABCD的顶点B,点A,C到直线l的距离分别是1和2,则正方形ABCD 的面积是.7.如图,是一个长方体,长4、宽3、高12,则图中阴影部分的三角形的周长为.8.在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边.若a=6,c=10,则b= ;若a=12,b=5,则C= ;若c=15,b=13,则a= .9.在△ABC中,AB=AC,AD⊥BC,若AB=13,BC=10,则AD= .10.若一个直角三角形的三边长分别是6、8、a,则a2= .11.等腰三角形的腰长为10,底边上的高为6,则底边长为.12.小颖从学校出发向南走了150m,接着向东走了80m到达书店,则学校与书店的距离是m.13.飞机在空中水平飞行,某一时刻刚好飞到小刚头顶正上方4000米处,过了20秒,飞机距离小刚5000米,则飞机每小时飞行千米.二、选择题14.下列几组数中不能作为直角三角形三边长度的是()A.a=7,b=24,c=25 B.a=1.5,b=2,c=2.5C.D.a=15,b=8,c=1715.在下列以线段a,b,c的长为三边的三角形中,不能构成直角三角形的是()A.a=9,b=41,c=40 B.a=5,b=12,c=13C.a:b:c=3:4:5 D.a=11,b=12,c=1516.△ABC中,AB=13cm,AC=15cm,高AD=12,则BC的长为()A.14 B.4 C.14或4 D.以上都不对17.“赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如果小正方形的面积为1,大正方形的面积为13,直角三角形中短直角边a,较长直角边为了b,那么(a+b)2的值为()A.13 B.14 C.25 D.16918.如图,已知矩形ABCD沿着直线BD折叠,使点C落在C处,BC交AD于E,AD=8,AB=4,则DE的长为()A.3 B.4 C.5 D.619.两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8cm,另一只朝左挖,每分钟挖6cm,10分钟后,两只小鼹鼠相距()A.50cm B.100cm C.140cm D.80cm20.一个圆桶底面直径为24cm,高32cm,则桶内所能容下的最长木棒为()A.20cm B.50cm C.40cm D.45cm21.如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形茶杯中,设筷子露在杯子外面的长为acm(茶杯装满水),则a的取值范围是.22.直角三角形的周长为24,斜边长为10,则其面积为()A.96 B.49 C.24 D.4823.有下面的判断:①△ABC中,a2+b2≠c2,则△ABC不是直角三角形.②△ABC是直角三角形,∠C=90°,则a2+b2=c2.③若△ABC中,a2﹣b2=c2,则△ABC是直角三角形.④若△ABC是直角三角形,则(a+b)(a﹣b)=c2.以上判断正确的有()A.4个B.3个C.2个D.1个三、解答题:24.在Rt△ABC中,∠C=90°,已知c=25,b=15,求a.25.甲、乙两同学在操场上,从同一旗杆处出发,甲向北走18米,乙向东走16米以后,又向北走6米,此时甲、乙两同学相距多远?26.一梯子斜靠在某建筑物上,当梯子的底端离建筑物9m时,梯子可以达到的高度是12m,你能算出梯子的长度吗?27.如图是一块地,已知AD=8cm,CD=6cm,∠D=90°,AB=26cm,BC=24cm,求这块地的面积.28.如图,滑杆在机械槽内运动,∠ACB为直角,已知滑杆AB长2.5米,顶端A在AC上运动,量得滑杆下端B距C点的距离为1.5米,当端点B向右移动0.5米时,求滑杆顶端A下滑多少米?29.如图,折叠长方形纸片ABCD,先折出折痕(对角线)BD,再折叠使AD边与BD重合,得折痕DG,若AB=4,BC=3,求AG的长.30.如图,长方形ABCD中,AB=4,BC=5,将长方形沿折痕AF折叠,点D恰好落在BC边上的点E处.(1)求BE的长;(2)求CF的长.31.已知:a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4,①∴c2(a2﹣b2)=(a2+b2)(a2﹣b2).②∴c2=a2+b2.③∴△ABC是直角三角形.问:(1)在上述解题过程中,从哪一步开始出现错误?请写出该步的代号:;(2)错误的原因为;(3)本题正确的解题过程:《第1章勾股定理》(山东省济南市兴济中学)参考答案与试题解析一、填空题1.直角三角形两条直角边的长分别为5、12,则斜边长为13 ,斜边上的高为.【考点】勾股定理.【分析】可先用勾股定理求出斜边长,然后再根据直角三角形面积的两种公式求解即可.【解答】解:由勾股定理可得:AB2=52+122,则AB=13,直角三角形面积S=×5×12=×13×CD,可得:斜边的高CD=.故答案为:13,.【点评】本题考查勾股定理及直角三角形面积公式的综合运用,解答本题的关键是熟练掌握勾股定理,此题难度不大.2.已知直角三角形的两边的长分别是3和4,则第三边长为5或.【考点】勾股定理.【专题】分类讨论.【分析】已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①3是直角边,4是斜边;②3、4均为直角边;可根据勾股定理求出上述两种情况下,第三边的长.【解答】解:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:=;②长为3、4的边都是直角边时:第三边的长为:=5;综上,第三边的长为:5或.故答案为:5或.【点评】此题主要考查的是勾股定理的应用,要注意的是由于已知的两边是直角边还是斜边并不明确,所以一定要分类讨论,以免漏解.3.已知等腰三角形的腰长为5cm,底边长为6cm,则这个三角形的面积为12 cm2.【考点】勾股定理;等腰三角形的性质.【分析】作底边上的高,根据等腰三角形三线合一和勾股定理求出高,再代入面积公式求解即可.【解答】解:如图,作底边BC上的高AD,则AB=5cm,BD=×6=3cm,∴AD===4,∴三角形的面积为:×6×4=12cm2.【点评】本题利用等腰三角形“三线合一”作出底边上的高,再根据勾股定理求出高的长度,作高构造直角三角形是解题的关键.4.如图所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为8,正方形A的面积是11,B的面积是10,C的面积是13,则D的面积为30 .【考点】勾股定理.【分析】根据正方形的面积公式,运用勾股定理可以证明:四个小正方形的面积和等于最大正方形的面积64,由此即可解决问题.【解答】解:如图记图中三个正方形分别为P、Q、M.根据勾股定理得到:A与B的面积的和是P的面积;C与D的面积的和是Q的面积;而P,Q的面积的和是M的面积.即A、B、C、D的面积之和为M的面积.∵M的面积是82=64,∴A、B、C、D的面积之和为64,设正方形D的面积为x,∴11+10+13+x=64,∴x=30.故答案为:30.【点评】此题考查了勾股定理,正方形的面积,得出正方形A,B,C,D的面积和即是最大正方形M的面积是解题的关键.5.如图,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行10 米.【考点】勾股定理的应用.【分析】从题目中找出直角三角形并利用勾股定理解答.【解答】解:过点D作DE⊥AB于E,连接BD.在Rt△BDE中,DE=8米,BE=8﹣2=6米.根据勾股定理得BD=10米.【点评】注意作辅助线构造直角三角形,熟练运用勾股定理.6.如图,直线l过正方形ABCD的顶点B,点A,C到直线l的距离分别是1和2,则正方形ABCD 的面积是 5 .【考点】全等三角形的判定与性质;勾股定理;正方形的性质.【分析】根据正方形性质得出AB=CB,∠ABC=90°,求出∠EAB=∠FBC,证△AEB≌△BFC,求出BE=CF=2,在Rt△AEB中,由勾股定理求出AB,即可求出正方形的面积.【解答】解:∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∵AE⊥EF,CF⊥EF,∴∠AEB=∠BFC=90°,∴∠ABE+∠CBF=180°﹣90°=90°,∠ABE+∠EAB=90°,∴∠EAB=∠CBF,在△AEB和△BFC中,,∴△AEB≌△BFC(AAS),∴BE=CF=2,在Rt△AED中,由勾股定理得:AB==,即正方形ABCD的面积是5,故答案为:5.【点评】本题考查了正方形性质,全等三角形的性质和判定,勾股定理的应用,关键是求出BE=CF,主要考查学生分析问题和解决问题的能力,题型较好,难度适中.7.如图,是一个长方体,长4、宽3、高12,则图中阴影部分的三角形的周长为30 .【考点】勾股定理.【分析】在底面上,阴影三角形的边长是直角三角形的斜边,根据勾股定理即可求得,阴影部分是一个直角三角形,利用两直角边求出即可.【解答】解:如图所示,在直角△BCD中,根据勾股定理,得到BC===5.在直角△ABC中,根据勾股定理,得到AC===13.所以,图中阴影部分的三角形的周长为:AB+BC+AC=12+5+13=30.故答案是:30.【点评】本题考查了勾股定理.正确认识到阴影部分的形状是直角三角形是解题的关键;主要考查空间想象能力.8.在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边.若a=6,c=10,则b= 8 ;若a=12,b=5,则C= 13 ;若c=15,b=13,则a= 2.【考点】勾股定理.【专题】计算题.【分析】画出图形,根据勾股定理直接解答.【解答】解:如图:在Rt△ABC中,a=6,c=10,则b===8;在Rt△ABC中,a=12,b=5,则c===13;在Rt△ABC中,c=15,b=13,则a===2.故答案为8,13,2.【点评】本题考查了勾股定理,要注意分清直角边和斜边,另外,解答时要注意画出图形,找到相应的边和角,再代入公式计算.9.在△ABC中,AB=AC,AD⊥BC,若AB=13,BC=10,则AD= 12 .【考点】勾股定理;等腰三角形的性质.【专题】几何图形问题.【分析】先根据等腰三角形的性质得出AD是BC边的中线,再根据勾股定理求出AD的长即可.【解答】解:∵在△ABC中,AB=AC,AD⊥BC,AB=13,BC=10,∴BD=BC=×10=5,∴AD===12.故答案为:12.【点评】本题考查的是勾股定理,熟知等腰三角形三线合一的性质及勾股定理是解答此题的关键.10.若一个直角三角形的三边长分别是6、8、a,则a2= 100或28 .【考点】勾股定理.【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边8既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求解.【解答】解:(1)若8是直角边,则第三边x是斜边,由勾股定理得:62+82=a2,所以a2=100;(2)若8是斜边,则第三边a为直角边,由勾股定理得:62+x2=82,所以a2=28.故答案为:100或28.【点评】本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.11.等腰三角形的腰长为10,底边上的高为6,则底边长为16 .【考点】勾股定理;等腰三角形的性质.【分析】根据题意画出图形,利用勾股定理求解即可.【解答】解:如图,∵AB=AC=6,AD⊥BC,AD=6,∴BD===8,∴BC=2BD=16.故答案为:16.【点评】本题考查的是勾股定理,熟知等腰三角形三线合一的性质是解答此题的关键.12.小颖从学校出发向南走了150m,接着向东走了80m到达书店,则学校与书店的距离是170 m.【考点】勾股定理的应用.【专题】计算题.【分析】根据正南方向和正东方向成九十度,利用勾股定理进行计算即可.【解答】解:∵正南方向和正东方向成90°,∴根据勾股定理得学校与书店之间的距离为=170(米).故答案为:170.【点评】此题考查的是勾股定理在实际生活中的运用,解答此题的关键是根据题意画出图形,再根据勾股定理进行计算.13.飞机在空中水平飞行,某一时刻刚好飞到小刚头顶正上方4000米处,过了20秒,飞机距离小刚5000米,则飞机每小时飞行540 千米.【考点】勾股定理的应用.【分析】先画出图形,构造出直角三角形,利用勾股定理解答.【解答】解:设A点为小刚头顶,C为正上方时飞机的位置,B为20s后飞机的位置,如图所示,则AB2=BC2+AC2,即BC2=AB2﹣AC2=9000000,∴BC=3000米,∴飞机的速度为3000÷20×3600=540(千米/小时),故答案为:540.【点评】本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.解题时注意运用数形结合的思想方法使问题直观化.二、选择题14.下列几组数中不能作为直角三角形三边长度的是()A.a=7,b=24,c=25 B.a=1.5,b=2,c=2.5C.D.a=15,b=8,c=17【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理对各个选项进行分析,从而得到答案.【解答】解:A、满足勾股定理:72+242=252,故A选项不符合题意;B、满足勾股定理:1.52+22=2.52,故B选项不符合题意;C、不满足勾股定理,不是勾股数,故C选项符合题意;D、满足勾股定理:152+82=172,故D选项不符合题意.故选:C.【点评】本题考查了用勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.15.在下列以线段a,b,c的长为三边的三角形中,不能构成直角三角形的是()A.a=9,b=41,c=40 B.a=5,b=12,c=13C.a:b:c=3:4:5 D.a=11,b=12,c=15【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理,验证四个选项中数据是否满足“较小两边平方的和等于最大边的平方”,由此即可得出结论.【解答】解:A、因为92+402=412,能构成直角三角形,此选项错误;B、因为52+122=132,能构成直角三角形,此选项错误;C、因为32+42=52,故能构成直角三角形,此选项错误.D、因为112+122≠152,不能构成直角三角形,此选项正确.故选D.【点评】本题考查了勾股定理的逆定理,解题的关键是根据勾股定理的逆定理验证四个选项.本题属于基础题,难度不大,解决该题型题目时,套入数据验证“较小两边平方的和是否等于最大边的平方”是关键.16.△ABC中,AB=13cm,AC=15cm,高AD=12,则BC的长为()A.14 B.4 C.14或4 D.以上都不对【考点】勾股定理.【专题】分类讨论.【分析】分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=CD﹣BD.【解答】解:(1)如图,锐角△ABC中,AB=13,AC=15,BC边上高AD=12,在Rt△ABD中AB=13,AD=12,由勾股定理得BD2=AB2﹣AD2=132﹣122=25,则BD=5,在Rt△ABD中AC=15,AD=12,由勾股定理得CD2=AC2﹣AD2=152﹣122=81,则CD=9,故BC=BD+DC=9+5=14;(2)钝角△ABC中,AB=13,AC=15,BC边上高AD=12,在Rt△ABD中AB=13,AD=12,由勾股定理得BD2=AB2﹣AD2=132﹣122=25,则BD=5,在Rt△ACD中AC=15,AD=12,由勾股定理得CD2=AC2﹣AD2=152﹣122=81,则CD=9,故BC的长为DC﹣BD=9﹣5=4.故选:C.【点评】本题考查了勾股定理,把三角形边的问题转化到直角三角形中用勾股定理解答.17.“赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如果小正方形的面积为1,大正方形的面积为13,直角三角形中短直角边a,较长直角边为了b,那么(a+b)2的值为()A.13 B.14 C.25 D.169【考点】勾股定理.【分析】根据正方形的面积公式以及勾股定理,结合图形进行分析发现:大正方形的面积即直角三角形斜边的平方13,也就是两条直角边的平方和是13,四个直角三角形的面积和是大正方形的面积减去小正方形的面积即2ab=12.根据完全平方公式即可求解.【解答】解:根据题意,结合勾股定理a2+b2=13,四个三角形的面积=4×ab=13﹣1,∴2ab=12,联立解得:(a+b)2=13+12=25.故选C.【点评】本题考查了勾股定理和完全平方公式的运用,解题的关键是注意观察图形:发现各个图形的面积和a,b的关系.18.如图,已知矩形ABCD沿着直线BD折叠,使点C落在C处,BC交AD于E,AD=8,AB=4,则DE的长为()A.3 B.4 C.5 D.6【考点】翻折变换(折叠问题).【分析】先根据翻折变换的性质得出CD=C′D,∠C=∠C′=90°,再设DE=x,则AE=8﹣x,由全等三角形的判定定理得出Rt△ABE≌Rt△C′DE,可得出BE=DE=x,在Rt△ABE中利用勾股定理即可求出x 的值,进而得出DE的长.【解答】解:∵Rt△DC′B由Rt△DBC翻折而成,∴CD=C′D=AB=8,∠C=∠C′=90°,设DE=x,则AE=8﹣x,∵∠A=∠C′=90°,∠AEB=∠DEC′,∴∠ABE=∠C′DE,在Rt△ABE与Rt△C′DE中,,∴Rt△ABE≌Rt△C′DE(ASA),∴BE=DE=x,在Rt△ABE中,AB2+AE2=BE2,∴42+(8﹣x)2=x2,解得:x=5,∴DE的长为5.故选C.【点评】本题考查的是翻折变换的性质及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解答此题的关键.19.两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8cm,另一只朝左挖,每分钟挖6cm,10分钟后,两只小鼹鼠相距()A.50cm B.100cm C.140cm D.80cm【考点】勾股定理的应用.【专题】应用题.【分析】首先根据题意知:它们挖的方向构成了直角.再根据路程=速度×时间,根据勾股定理即可求解.【解答】解:由图可知,AC=8×10=80cm,BC=6×10=60cm,由勾股定理得,AB===100cm.故选B.【点评】本题考查了勾股定理的应用,首先要正确理解题意,画出正确的图形,再熟练运用勾股定理进行计算.20.一个圆桶底面直径为24cm,高32cm,则桶内所能容下的最长木棒为()A.20cm B.50cm C.40cm D.45cm【考点】勾股定理的应用.【分析】如图,AC为圆桶底面直径,所以AC=24cm,CB=32cm,那么线段AB的长度就是桶内所能容下的最长木棒的长度,在直角三角形ABC中利用勾股定理可以求出AB,也就求出了桶内所能容下的最长木棒的长度.【解答】解:如图,AC为圆桶底面直径,∴AC=24cm,CB=32cm,∴线段AB的长度就是桶内所能容下的最长木棒的长度,∴AB==40cm.故桶内所能容下的最长木棒的长度为40cm.故选C.【点评】此题首先要正确理解题意,把握好题目的数量关系,然后利用勾股定理即可求出结果.21.如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形茶杯中,设筷子露在杯子外面的长为acm(茶杯装满水),则a的取值范围是11cm≤a≤12cm .【考点】勾股定理的应用.【分析】先根据题意画出图形,再根据勾股定理解答即可.【解答】解:当筷子与杯底垂直时h最大,h最大=24﹣12=12cm.当筷子与杯底及杯高构成直角三角形时a最小,如图所示:此时,AB===13cm,故a=24﹣13=11cm.所以a的取值范围是:11cm≤a≤12cm.故答案是:11cm≤a≤12cm.【点评】此题将勾股定理与实际问题相结合,考查了同学们的观察力和由具体到抽象的推理能力,解答此题的关键是根据题意画出图形求出h的最大及最小值,有一定难度.22.直角三角形的周长为24,斜边长为10,则其面积为()A.96 B.49 C.24 D.48【考点】勾股定理.【专题】方程思想.【分析】利用勾股定理求出两直角边,再代入三角形面积公式即可求解.【解答】解:直角三角形的周长为24,斜边长为10,则两直角边的和为24﹣10=14,设一直角边为x,则另一边14﹣x,根据勾股定理可知:x2+(14﹣x)2=100,解得x=6或8,所以面积为6×8÷2=24.故选C.【点评】本题考查了利用勾股定理解直角三角形的能力,即:直角三角形两直角边的平方和等于斜边的平方;本题的关键是先求出两直角边,再计算面积.23.有下面的判断:①△ABC中,a2+b2≠c2,则△ABC不是直角三角形.②△ABC是直角三角形,∠C=90°,则a2+b2=c2.③若△ABC中,a2﹣b2=c2,则△ABC是直角三角形.④若△ABC是直角三角形,则(a+b)(a﹣b)=c2.以上判断正确的有()A.4个B.3个C.2个D.1个【考点】勾股定理的逆定理;勾股定理.【分析】欲求证是否为直角三角形,这里给出三边的长,需要验证两小边的平方和等于最长边的平方即可.【解答】解:①c不一定是斜边,故错误;②正确;③正确;④若△ABC是直角三角形,c不是斜边,则(a+b)(a﹣b)≠c2,故错误.共2个正确.故选C.【点评】本题考查勾股定理的逆定理的应用.三、解答题:24.在Rt△ABC中,∠C=90°,已知c=25,b=15,求a.【考点】勾股定理.【分析】直接利用勾股定理得出a的值.【解答】解:∵∠C=90°,c=25,b=15,∴a==20.【点评】此题主要考查了勾股定理,正确应用勾股定理是解题关键.25.甲、乙两同学在操场上,从同一旗杆处出发,甲向北走18米,乙向东走16米以后,又向北走6米,此时甲、乙两同学相距多远?【考点】勾股定理的应用.【分析】根据题意画出示意图,然后根据勾股定理计算出CB的长.【解答】解:过C作CA⊥BA,由题意得:=20(米),答:此时甲、乙两同学相距20米.【点评】此题主要考查了勾股定理的应用,关键是画出示意图,掌握勾股定理.26.一梯子斜靠在某建筑物上,当梯子的底端离建筑物9m时,梯子可以达到的高度是12m,你能算出梯子的长度吗?【考点】勾股定理的应用.【专题】数形结合.【分析】如(解答)图,AB为梯子长,AC为底端离建筑物的长9m,BC为顶端离地面的长12m;根据勾股定理即可求得.【解答】:解:如图:∵AC=9m,BC=12m,∠C=90°∴AB==15m∴梯子的长度为15米.【点评】此题考查了勾股定理的应用.解题时要注意数形结合思想的应用,关键是从实际问题中整理出数学问题.27.如图是一块地,已知AD=8cm,CD=6cm,∠D=90°,AB=26cm,BC=24cm,求这块地的面积.【考点】勾股定理;勾股定理的逆定理.【分析】根据勾股定理可求出AC的长,根据勾股定理的逆定理可求出∠ACB=90°,可求出△ACB的面积,减去△ACD的面积,可求出四边形ABCD的面积.【解答】解:如图,连接AC.∵CD=6cm,AD=8cm,∠ADC=90°,∴AC==10(cm).∵AB=26cm,BC=24cm,102+242=262.即AC2+BC2=AB2,∴△ABC为直角三角形,∠ACB=90°.∴四边形ABCD的面积=S△ABC﹣S△ACD=×10×24﹣×6×8=96(cm2).【点评】本题考查了勾股定理和勾股定理的逆定理,关键判断出直角三角形从而可求出面积.28.如图,滑杆在机械槽内运动,∠ACB为直角,已知滑杆AB长2.5米,顶端A在AC上运动,量得滑杆下端B距C点的距离为1.5米,当端点B向右移动0.5米时,求滑杆顶端A下滑多少米?【考点】勾股定理的应用.【专题】应用题.【分析】由题意可知滑杆AB与AC、CB正好构成直角三角形,故可用勾股定理进行计算.【解答】解:设AE的长为x米,依题意得CE=AC﹣x.∵AB=DE=2.5,BC=1.5,∠C=90°,∴AC===2∵BD=0.5,∴在Rt△ECD中,CE====1.5.∴2﹣x=1.5,x=0.5.即AE=0.5.答:滑杆顶端A下滑0.5米.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.29.如图,折叠长方形纸片ABCD,先折出折痕(对角线)BD,再折叠使AD边与BD重合,得折痕DG,若AB=4,BC=3,求AG的长.【考点】翻折变换(折叠问题);勾股定理.【分析】首先由折叠长方形纸片ABCD,先折出折痕(对角线)BD,再折叠使AD边与BD重合,得折痕DG,即可得:∠GDA=∠GDB,AD=ED,然后过点G作GE⊥BD于E,即可得AG=EG,设AG=x,则GE=x,BE=BD﹣DE=5﹣3=2,BG=AB﹣AG=4﹣x,在Rt△BEG中利用勾股定理,即可求得AG的长.【解答】解:过点G作GE⊥BD于E,根据题意可得:∠GDA=∠GDB,AD=ED,∵四边形ABCD是矩形,∴∠A=90°,AD=BC=3,∴AG=EG,ED=3,∵AB=4,BC=3,∠A=90°,∴BD=5,设AG=x,则GE=x,BE=BD﹣DE=5﹣3=2,BG=AB﹣AG=4﹣x,在Rt△BEG中,EG2+BE2=BG2,即:x2+4=(4﹣x)2,解得:x=,故AG=.【点评】此题考查了折叠的性质、矩形的性质以及勾股定理等知识.此题综合性很强,难度适中,解题的关键是方程思想与数形结合思想的应用.30.如图,长方形ABCD中,AB=4,BC=5,将长方形沿折痕AF折叠,点D恰好落在BC边上的点E处.(1)求BE的长;(2)求CF的长.【考点】翻折变换(折叠问题).【分析】(1)根据矩形的性质得到AD=BC=5,∠D=∠B=∠C=90°,由折叠的性质得到AE=AD=BC=5,根据勾股定理即可得到结果;(2)由(1)知BE=3,于是得到CE=BC﹣BE=2,根据折叠的性质得到EF=DF=4﹣CF,根据勾股定理即可得到结论.【解答】解:(1)长方形ABCD中,∵AD=BC=5,∠D=∠B=∠C=90°,∵△AEF是△ADF沿折痕AF折叠得到的,∴AE=AD=BC=5,∴BE===3;(2)由(1)知BE=3,∴CE=BC﹣BE=2,∵△AEF是△ADF沿折痕AF折叠得到的,∴EF=DF=4﹣CF,∵EF2=CE2+CF2,∴(4﹣CF)2=22+CF2,解得:CF=.【点评】本题主要考查了图形的翻折变换,以及勾股定理、全等三角形、方程思想等知识,关键是熟练掌握勾股定理,找准对应边.31.(2011•大田县校级模拟)已知:a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4,①∴c2(a2﹣b2)=(a2+b2)(a2﹣b2).②∴c2=a2+b2.③∴△ABC是直角三角形.问:(1)在上述解题过程中,从哪一步开始出现错误?请写出该步的代号:③;(2)错误的原因为除式可能为0 ;(3)本题正确的解题过程:【考点】勾股定理的逆定理.【专题】推理填空题.【分析】(1)(2)两边都除以a2﹣b2,而a2﹣b2的值可能为零,由等式的基本性质,等式两边都乘以或除以同一个不为0的整式,等式仍然成立.(3)根据等式的基本性质和勾股定理,分情况加以讨论.【解答】解:(1)③(2)除式可能为零;(3)∵a2c2﹣b2c2=a4﹣b4,∴c2(a2﹣b2)=(a2+b2)(a2﹣b2),∴a2﹣b2=0或c2=a2+b2,当a2﹣b2=0时,a=b;当c2=a2+b2时,∠C=90°,∴△ABC是等腰三角形或直角三角形.故答案是③,除式可能为零.【点评】本题考查勾股定理的逆定理的应用、分类讨论.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.。
北师大版八年级数学上册 第一章 勾股定理 单元练习题 含答案
第1章勾股定理一.选择题(共12小题)1.下列为勾股数的是()A.2,3,4 B.,,C.6,7,8 D.5,12,132.已知a,b,c是△ABC的三边,且满足(a﹣b)(a2﹣b2﹣c2)=0,则△ABC是()A.直角三角形B.等边三角形C.等腰直角三角形D.等腰三角形或直角三角形3.在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于()A.10 B.8 C.6或10 D.8或104.已知x、y为正数,且|x2﹣4|+(y2﹣3)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为()A.5 B.25 C.7 D.155.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2D.a:b:c=3:4:66.下列各组线段中的三个长度:①9,12,15;②7,24,25;③32,42,52;④3a,4a,5a (a>0);⑤m2﹣n2,2mn,m2+n2(m,n为正整数,且m>n)其中可以构成直角三角形的有()A.5组B.4组C.3组D.2组7.△ABC中,AB=7,BC=24,AC=25.在△ABC内有一点P到各边的距离相等,则这个距离为()A.1 B.2 C.3 D.48.如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a,较短直角边为b,则ab的值是()A.4 B.6 C.8 D.109.如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.6410.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形G的边长是6cm,则正方形A,B,C,D,E,F,G的面积之和是()A.18cm2 B.36cm2C.72cm2D.108cm211.如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为()A.13cm B.12cm C.10cm D.8cm12.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,已知一条到达底部的直吸管在罐内部分的长度为a,若直吸管在罐外部分还剩余3,则吸管的总长度b(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤b≤13 B.12≤b≤15 C.13≤b≤16 D.15≤b≤16 二.填空题(共6小题)13.如图,BD为△ABC的中线,AB=10,AD=6,BD=8,△ABC的周长是.14.直角三角形两条边的长度分别为3cm,4cm,那么第三条边的长度是cm.15.如图,点A、B、C分别是正方体展开图的小正方形的顶点,则∠BAC的大小为.16.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.17.已知△ABC的三边长为a、b、c,满足a+b=10,ab=18,c=8,则此三角形为三角形.三.解答题(共10小题)18.如图为一个广告牌支架的示意图,其中AB=13m,AD=12m,BD=5m,AC=15m,求图中△ABC的周长和面积.19.如图,一根竹子高10米,折断后竹子顶端C落在竹子底端A的4米处,折断处B离地面的高度AB是多少?20.如图,在△ABD中,∠D=90°,C是BD上一点,已知BC=9,AB=17,AC=10,求AD 的长.21.已知:如图,四边形ABCD,AB=1,BC=2,CD=2,AD=3,且AB⊥BC.求四边形ABCD 的面积.22.长方形纸片ABCD中,AD=4cm,AB=10cm,按如图方式折叠,使点B与点D重合,折痕为EF,求DE的长.23.如图,在Rt△ABC中,∠C=90°,BC=6,AC=8,AB的垂直平分线DE交AB于点D,交AC于点E,连接BE.(1)求AD的长;(2)求AE的长.24.如图,一个放置在地面上的长方体,长为15cm,宽为10cm,高为20cm,点B与点C 的距离为5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?25.如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是多少?26.(1)如图1,长方体的长为4cm,宽为3cm,高为12cm.求该长方体中能放入木棒的最大长度;(2)如图2,长方体的长为4cm,宽为3cm,高为12cm.现有一只蚂蚁从点A处沿长方体的表面爬到点G处,求它爬行的最短路程.(3)若将题中的长方体换成透明圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁且离容器上沿3cm的点A处.求蚂蚁吃到饭粒需要爬行的最短路程是多少?参考答案一.选择题(共12小题)1.【解答】解:A、22+32≠42,不能构成勾股数,故错误;B、()2+()2≠()2,不能构成勾股数,故错误;C、62+72≠82,不能构成勾股数,故错误;D、52+122=132,能构成勾股数,故正确.故选:D.2.【解答】解:∵(a﹣b)(a2﹣b2﹣c2)=0,∴a﹣b=0,或a2﹣b2﹣c2=0,即a=b或a2=b2+c2,∴△ABC的形状为等腰三角形或直角三角形.故选:D.3.【解答】解:根据题意画出图形,如图所示,如图1所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得:BD==8,CD==2,此时BC=BD+CD=8+2=10;如图2所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得:BD==8,CD==2,此时BC=BD﹣CD=8﹣2=6,则BC的长为6或10.故选:C.4.【解答】解:依题意得:x2﹣4=0,y2﹣3=0,∴x=2,y=,斜边长==,所以正方形的面积=()2=7.故选:C.5.【解答】解:A、∠A+∠B=∠C,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;B、∠A:∠B:∠C=1:2:3,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;C、由a2=c2﹣b2,得a2+b2=c2,符合勾股定理的逆定理,是直角三角形;D、32+42≠62,不符合勾股定理的逆定理,不是直角三角形.故选:D.6.【解答】解:①中有92+122=152;②中有72+242=252;③(32)2+(42)2≠(52)2;④中有(3a)2+(4a)2=(5a)2;⑤中有(m2﹣n2)2+(2mn)2=(m2+n2)2,所以可以构成4组直角三角形.故选:B.7.【解答】解:∵△ABC中,AB=7,BC=24,AC=25,∴AB2+BC2=72+242=252=AC2,∴∠ABC=90°,连接AP,BP,CP.设PE=PF=PG=xS△ABC=×AB×CB=84,S△ABC=AB×x+AC×x+BC×x=(AB+BC+AC)•x=×56x=28x,则28x=84,x=3.故选:C.8.【解答】解:由题意得:大正方形的面积是9,小正方形的面积是1,直角三角形的较长直角边为a,较短直角边为b,即a2+b2=9,a﹣b=1,解得a=,b=,则ab=4.解法2,4个三角形的面积和为9﹣1=8;每个三角形的面积为2;则ab=2;所以ab=4故选:A.9.【解答】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故选:D.10.【解答】解:由图可得,A与B的面积的和是E的面积;C与D的面积的和是F的面积;而E,F的面积的和是G的面积.即A、B、C、D、E、F、G的面积之和为3个G的面积.∵G的面积是62=36cm2,∴A、B、C、D、E、F、G的面积之和为36×3=108cm2.故选:D.11.【解答】解:如下图所示:∵长方体的底面边长分别为2cm和4cm,高为5cm.∴PA=4+2+4+2=12(cm),QA=5cm,∴PQ==13cm.故选:A.12.【解答】解:如图,连接BO,AO,当吸管底部在O点时吸管在罐内部分a最短,此时a就是圆柱形的高,即a=12;当吸管底部在A点时吸管在罐内部分a最长,即线段AB的长,在Rt△ABO中,AB===13,故此时a=13,所以12≤a≤13,则吸管的总长度b(罐壁的厚度和小圆孔的大小忽略不计)范围是:15≤b≤16.故选:D.二.填空题(共6小题)13.【解答】解:∵AB=10,AD=6,BD=8,∴AB2=AD2+BD2=100,∴△ABD是直角三角形且AD⊥BD.又BD为△ABC的中线,∴AB=BC=10,AD=CD=6.∴,△ABC的周长=AB+BC+AD=2AB+2AD=20+12=32.故答案是:32.14.【解答】解:当这个直角三角形的两直角边分别为3cm,4cm时,则该三角形的斜边的长为:=5(cm).当这个直角三角形的一条直角边为3cm,斜边为4cm时,则该三角形的另一条直角边的长为:=(cm).故答案为:5或.15.【解答】解:连接BC.根据勾股定理可以得到:AB=BC=,AC=2,∵()2+()2=(2)2,即AB2+BC2=AC2,∴△ABC是等腰直角三角形.∴∠BAC=45°.故答案为:45°.16.【解答】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故答案为:10.17.【解答】解:∵a+b=10,ab=18,c=8,∴(a+b)2﹣2ab=100﹣36=64,c2=64,∴a2+b2=c2,∴此三角形是直角三角形.故答案为:直角.三.解答题(共10小题)18.【解答】解:在△ABD中,∵AB=13m,AD=12m,BD=5m,∴AB2=AD2+BD2,∴AD⊥BC,在Rt△ADC中,∵AD=12m,AC=15m,∴DC==9(m),∴△ABC的周长为42m,△ABC的面积为84m2.19.【解答】解:设竹子折断处离地面x米,则斜边为(10﹣x)米,根据勾股定理得:x2+42=(10﹣x)2解得:x=4.2.答:折断处离地面的高度是4.2米.20.【解答】解:设CD=x,则BD=BC+CD=9+x.在△ACD中,∵∠D=90°,∴AD2=AC2﹣CD2,在△ABD中,∵∠D=90°,∴AD2=AB2﹣BD2,∴AC2﹣CD2=AB2﹣BD2,即102﹣x2=172﹣(9+x)2,解得x=6,∴AD2=102﹣62=64,∴AD=8.故AD的长为8.21.【解答】解:连接AC.∵∠ABC=90°,AB=1,BC=2,∴AC=,在△ACD中,AC2+CD2=5+4=9=AD2,∴△ACD是直角三角形,∴S四边形ABCD=AB•BC+AC•CD,=×1×2+××2,=1+.故四边形ABCD的面积为1+.22.【解答】解:设DE=xcm,则BE=DE=x,AE=AB﹣BE=10﹣x,△ADE中,DE2=AE2+AD2,即x2=(10﹣x)2+16.∴x=(cm).23.【解答】解:(1)如图所示:∵在Rt△ABC中,∠C=90°,BC=6,AC=8,∴AB=10,∵DE垂直平分AB,∴AD=BD=5.(2)∵DE垂直平分AB,∴BE=AE,设EC=x,则AE=BE=8﹣x,故62+x2=(8﹣x)2,解得:x=,∴AE=8﹣=.24.【解答】解:如图所示,根据勾股定理得,AB==25cm.答:需要爬行的最短距离是25cm.25.【解答】解:三级台阶平面展开图为长方形,长为20dm,宽为(2+3)×3dm,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B点最短路程为xdm,由勾股定理得:x2=202+[(2+3)×3]2=252,解得:x=25.答:蚂蚁沿着台阶面爬到B点的最短路程是25dm.26.【解答】解:(1)由题意得:该长方体中能放入木棒的最大长度是:(cm).(2)分三种情况可得:AG=cm>AG=cm >AG=cm,所以最短路程为cm;(3)∵高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿3cm与饭粒相对的点A处,∴A′D=5cm,BD=12﹣3+AE=12cm,∴将容器侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B==13(Cm).。
北师大版2019-2020八年级数学上册第一章勾股定理单元测试题A(培优 附答案)
1.如图,A,B两个村庄分别在两条公路MN和EF的边上,且MN∥EF,某ቤተ መጻሕፍቲ ባይዱ工队在A,B,C三个村之间修了三条笔直的路.若∠MAB=65°,∠CBE=25°,AB=160km,BC=120km,则A,C两村之间的距离为()
13.如图,某农舍的大门是一个木制的长方形栅栏,它的高为2m,宽为1.5m,现需要在相对的顶点间用一块木板加固,则木板的长为________.
14.如图,在四边形ABCD中,∠A=∠C=90°,AB=AD.若这个四边形的面积为16,求BC+CD的值是_____.
15.有一根长7cm的木棒,要放进长、宽、高分别为5cm、4cm、3cm的木箱,_______(填“能”或“不能”)放进去。
19.甲、乙两只轮船同时从港口出发,甲以16海里/时的速度向北偏东75°的方向航行,乙以12海里/时的速度向南偏东15°的方向航行,计算它们出发1.5小时后两船的距离.
20.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,在边BC上有一点M,将△ABM沿直线AM折叠,点B恰好落在AC延长线上的点D处.
【详解】
∵将△ABC沿BD翻折后,点A恰好与点C重合,
∴△ABD≌△CBD,
A.250kmB.240kmC.200kmD.180km
2.下列各组数中,可以构成直角三角形的是()
A.3,4,5B.2,3,5C.5,6,7D.6,7,8
3.如图,点 在 的边 上,将 沿 翻折后,点 恰好与点 重合,若 , ,则 的长为()
A. B. C. D.
4.以下列长度的线段为边,能构成直角三角形的是()
A. B. C. D.
北师大版2019-2020八年级数学上册第一章勾股定理单元测试题A(较难-附答案)
北师大版2019-2020八年级数学上册第一章勾股定理单元测试题A(较难-附答案)work Information Technology Company.2020YEAR北师大版2019-2020八年级数学上册第一章勾股定理单元测试题A(较难附答案)1.已知如图,圆柱OO1的底面半径为13cm,高为10cm,一平面平行于圆柱OO1的轴OO1,且与轴OO1的距离为5cm,截圆柱得矩形ABB1A1,则截面ABB1A1的面积是()A.240cm2 B.240πcm2C.260cm2 D.260πcm22.图甲是第七届国际数学教育大会(简称ICME~7)的会徽,会徽的主体图案是由如图乙的一连串直角三角形演化而成的,其中OA1=A1A2=A2A3=…=A7A8=1,如果把图乙中的直角三角形继续作下去,那么OA1,OA2,…,OA25这些线段中有___条线段的长度为正整数.3.如图,Rt△ABC中,∠B=90〬,AB=9,BC=6,,将△ABC折叠,使A点与BC 的中点D重合,折痕为MN,则线段AN的长等于( )A.5 B.6 C.4 D.34.如图,将三边长分别为3,4,5的△ABC沿最长边翻转180°成△ABC1,则CC1的长等于()A. B. C. D.5.下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.6,8,10 C.2,3,4 D.1,1,2 6.三角形的三边长分别为①5,12,13;②9,40,41;③8,15,17;④13,84,85,其中能够构成直角三角形的有()A.1个 B.2个 C.3个 D.4个7.如图,在6×6的正方形网格中,连接两格点A,B,线段AB与网格线的交点为点C,则AC:CB为()A.1:3 B.1:4 C.1:5 D.1:68.若三角形的三边长分别等于,,2,则此三角形的面积为________.9.下列各组数中,能构成直角三角形的是()A.1,1, B.4,5,6 C.5,12,23 D.6,8,1110.学校的书香苑呈三角形形状,三边分别是9,12,15,那么书香苑的面积是()A.135 B.180 C.108 D.5411.如图,正方形网格中,每个小正方形的边长为1,△ABC的顶点都在格点上,则△ABC周长是_________12.求图中直角三角形中未知的长度:b=______,c=________.13.如图,圆柱的底面周长为,是底面圆的直径,高,点是母线上一点且.一只蚂蚁从点出发沿着圆柱体的表面爬行到点的最短距离是_____.14.如图,已知直线a∥b,a,b之间的距离为4,点P到直线a的距离为4,点Q到直线b的距离为2,PQ=2.在直线a上有一动点A,直线b 上有一动点B,满足AB⊥b,且PA+AB+BQ最小,此时PA+BQ=________.15.如图,图中的所有三角形都是直角三角形,所有四边形都是正方形,正方形A378,x,10,y分别表示该正方形面积,则x与y的数量关系是_____.16.在ABCD中,AB=3,BC=4,当ABCD的面积最大时,下列结论:①AC=5;②∠A+∠C=180o;③AC⊥BD;④AC=BD.其中正确的有_________.(填序号)17.如图所示,△ABC经过平移得到△DEF,已知CE=2 cm,AC=3 cm,AB=4 cm,∠A=90°,则CF=_________cm,平移的距离是_________.18.如图,已知长方体的三条棱AB、BC、BD分别为4,5,2,蚂蚁从A 点出发沿长方体的表面爬行到M的最短路程的平方是_____.19.如图,正方体的底面边长分别为2cm和3cm,高为5cm.若一只蚂蚁从P点开始经过四个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为_____cm.20.如图,长方体的底面边长分别为2 cm和4 cm,高为5 cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为______cm.21.如图,5×5的正方形网格中隐去了一些网格线,AB,CD间的距离是2个单位,CD,EF间的距离是3个单位,格点O在CD上(网格线的交点叫格点).请分别在图①、②中作格点三角形OPQ,使得∠POQ=90°,其中点P在AB上,点Q在EF上,且它们不全等.22.(1)在图中以正方形的格点为顶点,画一个三角形,使三角形的边长分别为10、25、10;(2)求此三角形的面积及最长边上的高.23.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60˚的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响为什么(2)若A城受到这次台风影响,则A城遭受这次台风影响有多长时间? 24.如图所示,在△ABC中,AB=20,AC=12,BC=16,D为BC边上一点,把△ABC沿AD折叠,使AB落在直线AC上,求重叠部分(阴影部分)的面积.25.如图,是一块由边长为20cm的正方形地砖铺设的广场,一只鸽子落在点A处,它想先后吃到小朋友撒在B、C处的鸟食,则鸽子至少需要走多远的路程?26.龙梅和玉荣是草原上的好朋友,可是有一次经过一场争吵之后,两人不欢而散,龙梅的速度是12米/秒,4分钟后她停了下来,觉得有点后悔了,玉荣走的方向好像是和龙梅成直角,她的速度是23米/秒,如果她和龙梅同时停下来,而这时候她俩正好相距200米,那么她走的方向是否成直角如果她们现在想讲和,那么原来的速度相向而行,多长时间后能相遇. 27.观察图1:每个小正方形的边长均是1,我们可以得到小正方形的面积为1.(1)图1中阴影正方形的面积是,并由面积求正方形的边长,可得边长AB长为;(2)在图2:3×3正方形方格中,由题(1)的解题思路和方法,设计一个边长为的正方形。
北师大版八年级数学上册 第一章 勾股定理 单元检测试题(有答案)
第一章勾股定理单元检测试题(满分120分;时间:120分钟)一、选择题(本题共计8 小题,每题3 分,共计24分,)1. 做一个直角三角形的木架,以下四组木棒中,符合条件的是()A.12cm,7cm,5cmB.12cm,15cm,17cmC.8cm,12cm,15cmD.8cm,15cm,17cm2. 已经正方体的棱长为1,则蚂蚁在表面从其中一个顶点爬行到相对应顶点的最短距离的平方为()A.8B.5C.3D.23. 下列说法正确的是()A.若a、b、c是△ABC的三边,则a2+b2=c2B.若a、b、c是Rt△ABC的三边,则a2+b2=c2C.若a、b、c是Rt△ABC的三边,∠A=90∘,则a2+b2=c2D.若a,b,c是Rt△ABC的三边,∠C=90∘,则a2+b2=c24. 下列三角形中,是直角三角形的是()A.三角形的三边满足a+b=2cB.三角形三边的平方比为3:4:5C.三角形的一边等于另一边的一半D.三角形的三边为9,40,415. 下列各组数为勾股数的是()A.6,12,13B.3,4,7C.4,7.5,8.5D.8,15,166. 一架2.5m长的梯子斜立在一竖直的墙上,这时梯足距离墙底端0.7m,如果梯子的顶端沿墙下滑0.4m,那么梯足将下滑()A.0.9mB.1.5mC.0.5mD.0.8m7. 如图,AB=AC=4,P是BC上异于B、C的一点,则AP2+BP⋅PC的值是()A.16B.20C.25D.308. 为了测算出学校旗杆的高度,爱动脑筋的小明这样设计出了一个方案如图,将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端5米处,发现此时绳子底端距离打结处约1米,则旗杆的高度是多少米?()A.12B.15C.18D.24二、填空题(本题共计10 小题,每题3 分,共计30分,)9. 一个三角形三边满足(a+b)2−c2=2ab,则这个三角形是________三角形.10. 如图,把长、宽、对角线的长分别是a、b、c的矩形沿对角线剪开,与一个直角边长为c的等腰直角三角形拼接成右边的图形,用面积割补法能够得到的一个等式是________.11. 如图,一棵大树在离地面4米高的B处折断,树顶A落在离树底端C的5米远处,则大树折断前的高度是________米(结果保留根号).12. 某农舍的大门是一个木制的矩形栅栏,它的高为4m,宽为3m,现需要在相对的顶点间用一块木棒加固,木板的长为________.13. 长方体的长、宽、高分别为8cm,4cm,5cm.一只蚂蚁沿着长方体的表面从点A爬到点B.则蚂蚁爬行的最短路径的长是________cm.14. 如图是由16个边长为1的正方形拼成的图案,任意连结这些小格点的三个顶点可得到一些三角形.与A,B点构成直角三角形ABC的顶点C的位置有________个.15. 如图,一个底面周长为24cm,高为5cm的圆柱体,一只蚂蚁沿侧表面从点A到点B 所经过的最短路线长为________.16. 如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为________cm.17. 如图,在四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90∘,则∠A+∠C=________度.18. 如图所示,小刚准备测量一条河的深度,他把一根竹竿插到离岸边1.5米远的水底,竹竿高出水面0.5米,再把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐;推断河水的深度为________米.三、解答题(本题共计7 小题,共计66分,)19. 如图,原计划从A地经C地到B地修建一条高速公路,后因技术攻关,可以打隧道由A 地到B地直接修建,已知高速公路每千米造价为300万元,隧道造价为每千米400万元,AC=160km,BC=120km,则改建后可省多少工程费用?20. 如图,在钝角△ABC中,BC=9,AB=17,AC=10,AD⊥BC于D,求AD的长.,高为2,若一只小虫从A点出发沿着圆柱体21. 如图所示的圆柱体中底面圆的半径是2π的侧面爬行到C点,则小虫爬行的最短路程是多少?(结果保留根号)22. 如图,在△ABC中,∠ACB=90∘,CD⊥AB,D为垂足,AC=6cm,BC=8cm.求:①AB的长;②斜边AB上的高CD的长.23. 如图,∠ABC=90∘,AB=6cm,AD=24cm,BC+CD=34cm,C是直线l上一动点,请你探索当C离B多远时,△ACD是一个以CD为斜边的直角三角形?24. 如图,在△ABC中,∠ACB是钝角,过A点作BC边上的高,垂足为D.已AB=17,BC=9, AC=10,求CD的长.25. 将直角△ABC绕直角顶点C旋转,使点A落在BC边上的点A′,请你先证明A′B′⊥AB,并利用阴影部分面积完成勾股定理的证明.已知:如图,在△ABC中,∠ACB=90∘,BC=a,AC=b,AB=c.求证:a2+b2=c2.证明:作△A′B′C≅△ABC,使点A的对应点A′在边BC上,连接AA′、BB′,延长B′A′交AB于点M.参考答案与试题解析一、选择题(本题共计8 小题,每题 3 分,共计24分)1.【答案】D【解答】解:A、52+72≠122,故不为直角三角形;B、122+152≠172,故不为直角三角形;C、82+122≠152,故不为直角三角形;D、82+152=172,故为直角三角形.故选:D.2.【答案】D【解答】解:设正方形的对角线长为x,由勾股定理,得x=√1+1=√2,即x2=2,则蚂蚁从其中一个顶点爬行到相对顶点的距离的平方为2.故选D.3.【答案】D【解答】A、勾股定理只限于在直角三角形里应用,故A可排除;B、虽然给出的是直角三角形,但没有给出哪一个是直角,故B可排除;C、在Rt△ABC中,直角所对的边是斜边,C中的斜边应为a,得出的表达式应为b2+c2=a2,故C也排除;D、符合勾股定理,正确.4.【答案】D【解答】解:显然A、C都不符合勾股定理的逆定理,故都不是直角三角形,故此两个选项都错误;B、∵ 三角形三边的平方比为3:4:5,假设三边的平方为3m、4m、5m,那么3m+4m=7m≠5m,∵ 此三角形不是直角三角形,故此选项错误;D、∵ 92+402=1681=412,∵ 此三角形是直角三角形,故此选项正确.故选D.5.【答案】D【解答】解:A、62+122≠132,故错误;B、32+42≠72,故错误;C、42+7.52=8.52,勾股数为正整数,故错误;D、82+152=162,勾股数为正整数,故正确.故选D.6.【答案】D【解答】解:如图所示,在Rt△ABC中,AB=2.5,BC=0.7,所以AC2=AB2−BC2,所以AC=2.4,在Rt△DCE中,DE=2.5,CD=AC−AD=2.4−0.4=2,所以CE2=DE2−CD2,所以CE=1.5,此时BE=CE−BC=1.5−0.7=0.8.故选D.7.【答案】A【解答】解:如图,过点A作AD⊥BC于D,∵ AB=AC,∵ BD=CD,∵ BP=BD−PD,PC=CD+PD=BD+PD,∵ AP2+BP⋅PC=AP2+(BD−PD)(BD+PD),=AP2+BD2−PD2,在Rt△APD中,AP2−PD2=AD2,∵ AP2+BP⋅PC=BD2+AD2,在Rt△ABD中,BD2+AD2=AB2=42=16,即AP2+BP⋅PC=16.故选A.8.【答案】A【解答】解:设旗杆的高为x米,则绳子长为x+1米,由勾股定理得,(x+1)2=x2+52,解得x=12.答:旗杆的高度是12米.故选:A.二、填空题(本题共计10 小题,每题 3 分,共计30分)9.【答案】直角【解答】解:(a+b)2−c2=2ab,即a2+b2+2ab−c2=2ab,所以a2+b2=c2,则这个三角形为直角三角形.故答案为:直角.10.【答案】a2+b2=c2【解答】解:此图可以这样理解,有三个Rt△其面积分别为12ab,12ab和12c2.还有一个直角梯形,其面积为12(a+b)(a+b).由图形可知:12(a+b)(a+b)=12ab+12ab+12c2,整理得(a+b)2=2ab+c2,a2+b2+2ab=2ab+c2,∵ a2+b2=c2.故答案为:a2+b2=c2.11.【答案】4+√41【解答】解:设这棵大树折断前的高度为x米,根据题意得,42+52=(x−4)2,∴ x=4+√41或x=4−√41<0(舍),∵ 这棵大树折断前的高度为(4+√41)米.故答案为:4+√41.12.【答案】5m【解答】解:设这条木板的长度为x米,由勾股定理得:x2=42+32,解得x=5.故答案是:5m.13.【答案】√145【解答】解:如图所示,路径一:AB=√(4+8)2+52=13;路径二:AB=√(5+4)2+82=√145;路径三:AB=√(5+8)2+42=√185;∵ √185>13>√145,∵ √145cm为最短路径.14.【答案】5【解答】当∠A为直角顶点时,有C3一点(1)当∠B为直角顶点时,有C4,C5两点,综上所述,共有5个点.故答案为:5.15.【答案】13cm【解答】将圆柱体的侧面展开,连接AB.如图所示:由于圆柱体的底面周长为24cm,=12cm.则AD=24×12又因为AC=5cm,所以AB=√52+122=13cm.即蚂蚁沿表面从点A到点B所经过的最短路线长为13cm.故答案为13 cm16.【答案】15【解答】解:沿过A的圆柱的高剪开,得出矩形EFGH,过C作CQ⊥EF于Q,作A关于EH的对称点A′,连结A′C交EH于P,连结AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,∵ AE=A′E,A′P=AP,∵ AP+PC=A′P+PC=A′C.×18cm=9cm,A′Q=12cm−4cm+4cm=12cm,∵ CQ=12在Rt△A′QC中,由勾股定理得:A′C=√122+92=15(cm),故答案为:15.17.【答案】180【解答】解:连接AC,根据勾股定理得AC=√202+152=25,∵ AD2+DC2=AC2即72+242=252,∵ 根据勾股定理的逆定理,△ADC也是直角三角形,∠D=90∘,故∠A+∠C=∠D+∠B=180∘,故填180.18.【答案】2【解答】解:若假设竹竿长x米,则水深(x−0.5)米,由题意得,x2=1.52+(x−0.5)2解之得,x=2.5所以水深2.5−0.5=2米.故答案为:2.三、解答题(本题共计7 小题,每题10 分,共计70分)19.【答案】改建后可省工程费用4000万元.【解答】解:根据勾股定理可知AB=√1602+1202=200(km),(160+120)×300−200×400=4000(万).20.【答案】解:设AD=x,BD=y,在直角△ADB中,AB2=x2+y2,在直角△ADC中,AC2=x2+(y−BC)2,解方程得y=15,x=8,即AD=8,【解答】解:设AD=x,BD=y,在直角△ADB中,AB2=x2+y2,在直角△ADC中,AC2=x2+(y−BC)2,解方程得y=15,x=8,即AD=8,21.【答案】小虫爬行的最短路程是2√2.【解答】解:圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,C是边的中点,矩形的宽即高等于圆柱的母线长.∵ AB=π⋅2π=2,CB=2.∵ AC=√AB2+BC2=√8=2√2,22.【答案】AB的长是10cm;②∵ CD⊥AB,∵ CD=AC⋅BCAB =6×810=4.8(cm).答:CD的长是4.8cm【解答】解:①∵ 在△ABC中,∠ACB=90∘,AC=6cm,BC=8cm,∵ AB=√AC2+BC2=√62+82=10(cm).23.【答案】解:设BC=xcm时,△ACD是一个以CD为斜边的直角三角形.∵ BC+CD=34cm,∵ CD=(34−x)cm,在Rt△ABC中,AC2=AB2+BC2=36+x2,在Rt△ACD中,AC2=CD2−AD2=(34−x)2−576,∵ 36+x2=(34−x)2−576,整理得:36=580−68x,解得:x=8,∵ 当点C离点B为8cm时,△ACD是一个以CD为斜边的直角三角形.【解答】解:设BC=xcm时,△ACD是一个以CD为斜边的直角三角形.∵ BC+CD=34cm,∵ CD=(34−x)cm,在Rt△ABC中,AC2=AB2+BC2=36+x2,在Rt△ACD中,AC2=CD2−AD2=(34−x)2−576,∵ 36+x2=(34−x)2−576,整理得:36=580−68x,解得:x=8,∵ 当点C离点B为8cm时,△ACD是一个以CD为斜边的直角三角形.24.【答案】解:设AD=x,BD=y,∵ 在直角△ADB中,AB2=x2+y2,即172=x2+y2,在直角△ADC中,AC2=x2+(y−BC)2,即102=x2+(y−9)2,解方程得y=15,∵ CD=BD−BC=15−9=6.【解答】解:设AD=x,BD=y,∵ 在直角△ADB中,AB2=x2+y2,即172=x2+y2,在直角△ADC中,AC2=x2+(y−BC)2,即102=x2+(y−9)2,解方程得y=15,∵ CD=BD−BC=15−9=6.25.【答案】证明:作△A′B′C≅△ABC,使点A的对应点A′在边BC上,连接AA′、BB′,延长B′A′交AB于点M,∵ ∠A′B′C=∠ABC,∠BA′M=∠B′A′C,∵ ∠BMA′=∠BCA=90∘,∵ A′B′⊥AB,∵ △A′B′C≅△ABC,∵ AC=A′C=b,BC=B′C=a,AB=A′B′=c,∵ S△ACA′+S△BCB′=S△ABB′−S△AA′B,∵ 12b2+12a2=12c(c+A′M)−12cA′M,∵ 12b2+12a2=12c2,∵ a2+b2=c2.【解答】证明:作△A′B′C≅△ABC,使点A的对应点A′在边BC上,连接AA′、BB′,延长B′A′交AB于点M,∵ ∠A′B′C=∠ABC,∠BA′M=∠B′A′C,∵ ∠BMA′=∠BCA=90∘,∵ A′B′⊥AB,∵ △A′B′C≅△ABC,∵ AC=A′C=b,BC=B′C=a,AB=A′B′=c,∵ S△ACA′+S△BCB′=S△ABB′−S△AA′B,∵ 12b2+12a2=12c(c+A′M)−12cA′M,∵ 12b2+12a2=12c2,∵ a2+b2=c2.。
最新2019-2020年度北师大版八年级数学上册《勾股定理》单元测试卷及解析-精品试题
《第1章勾股定理》一、选择题1.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A.2,3,4 B.3,4,5 C.6,8,10 D.5,12,132.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的()A.1倍B.2倍C.3倍D.4倍3.下列各组数分别为一个三角形三边的长,其中能构成直角三角形的一组是()A.1,2,3 B.2,3,4 C.3,4,5 D.4,5,64.在一个直角三角形中,若斜边的长是13,一条直角边的长为12,那么这个直角三角形的面积是()A.30 B.40 C.50 D.605.下列四组数:①5,12,13;②7,24,25;③3a,4a,5a(a>0);④32,42,52.其中可以构成直角三角形的边长有()A.1组B.2组C.3组D.4组6.三个正方形的面积如图,当B=144、C=169时,则A的值为()A.313 B.144 C.169 D.257.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,其中斜边上的高为()A.6cm B.8.5cm C.cm D.cm8.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm二、填空题:9.如图,直角三角形中未知边的长度x= .10.三角形的三边长分别是15,36,39,这个三角形是三角形.11.如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是米.12.如图,一圆柱高8cm,底面半径为cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是cm.三、解答题:13.有一个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放就比门高出1尺,斜放就恰好等于门的对角线,已知门宽4尺,求竹竿高与门高.14.如图,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?15.如图,一架长2.5米的梯子,斜靠在竖直的墙上,这时梯子底端离墙0.7米,为了安装壁灯,梯子顶端离地面2米,请你计算一下,此时梯子底端应再向远离墙的方向拉多远?参考答案与试题解析一、选择题1.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A.2,3,4 B.3,4,5 C.6,8,10 D.5,12,13【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形,分析得出即可.【解答】解:A、∵22+32≠42,∴此三角形不是直角三角形,符合题意;B、∵32+42=52,∴此三角形是直角三角形,不合题意;C、62+82=102,∴此三角形是直角三角形,不合题意;D、52+122=132,∴此三角形是直角三角形,不合题意.故选:A.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.2.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的()A.1倍B.2倍C.3倍D.4倍【考点】勾股定理.【分析】利用相似三角形的对应边成比例,运用勾股定理就可以解决.【解答】解:设直角三角形的直角边为a、b,斜边为c,直角边扩大2倍后为2a,2b,那么据勾股定理得原来c2=a2+b2,现在的斜边.即斜边扩大到原来的2倍,故选B.【点评】本题考查了勾股定理和相似三角形的性质,关键是根据相似三角形的对应边成比例解答.3.下列各组数分别为一个三角形三边的长,其中能构成直角三角形的一组是()A.1,2,3 B.2,3,4 C.3,4,5 D.4,5,6【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理得到答案.【解答】解:因为32+42=25 52=25,所以32+42=52,所以能构成直角三角形的是C.故选C.【点评】本题考查了直角三角形的判定的运用.4.在一个直角三角形中,若斜边的长是13,一条直角边的长为12,那么这个直角三角形的面积是()A.30 B.40 C.50 D.60【考点】勾股定理.【分析】首先根据勾股定理,得另一条直角边的长,进而就可以求出直角三角形的面积.【解答】解:另一直角边长是:=5.则直角三角形的面积是×12×5=30.故选A.【点评】熟练运用勾股定理由直角三角形的两条边求出第三边;直角三角形的面积等于两条直角边的乘积的一半.5.下列四组数:①5,12,13;②7,24,25;③3a,4a,5a(a>0);④32,42,52.其中可以构成直角三角形的边长有()A.1组B.2组C.3组D.4组【考点】勾股定理的逆定理.【分析】求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:①52+122=132,能构成直角三角形;②72+242=252,能构成直角三角形,能构成直角三角形;③(3a)2+(4a)2=(5a)2,能构成直角三角形;④(32)2+(42)2≠(52)2,不能构成直角三角形.故可以构成直角三角形的边长有3组.故选C.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.6.三个正方形的面积如图,当B=144、C=169时,则A的值为()A.313 B.144 C.169 D.25【考点】勾股定理.【分析】根据a2+b2=c2,结合B=144、C=169,可求出a2的值,继而可得出A的值.【解答】解:由题意可得:a2+b2=c2,解得:a2=25,即A的值为25.故选D.【点评】此题考查了勾股定理的正方形的关键,关键是根据图形得出a2+b2=c2,题目出的很好,注意掌握勾股定理的表达式.7.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,其中斜边上的高为()A.6cm B.8.5cm C.cm D.cm【考点】勾股定理.【分析】根据勾股定理求出斜边AB的长,再根据直角三角形面积的两种不同求法列出关于CD的方程即可求解.【解答】解:∵在Rt△ABC中,AC=5cm,BC=12cm,∴AB===13cm;∴S△ABC=×5×12=30cm2;∴×13CD=30,解得CD=cm.故选C【点评】本题考查了勾股定理和三角形的面积公式,巧妙利用直角三角形两种面积求法是解题的关键.8.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm【考点】翻折变换(折叠问题).【分析】根据翻折的性质可知:AC=AE=6,CD=DE,设CD=DE=x,在RT△DEB中利用勾股定理解决.【解答】解:在RT△ABC中,∵AC=6,BC=8,∴AB===10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB﹣AE=10﹣6=4,设CD=DE=x,在RT△DEB中,∵DEDE2+EB2=DB2,∴x2+42=(8﹣x)2∴x=3,∴CD=3.故选B.【点评】本题考查翻折的性质、勾股定理,利用翻折不变性是解决问题的关键,学会转化的思想去思考问题.二、填空题:9.如图,直角三角形中未知边的长度x= .【考点】勾股定理.【分析】根据勾股定理直接解答即可.【解答】解:根据勾股定理可得:52+32=x2,解得:x=或﹣(舍去).故答案为:.【点评】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.即如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.本题难度不大,注意细心运算即可.10.三角形的三边长分别是15,36,39,这个三角形是直角三角形.【考点】勾股定理的逆定理.【分析】根据勾股定理逆定理,三角形两短边的平方和等于长边的平方,即可得出其为直角三角形.【解答】解:∵152+362=392,∴可得三角形为直角三角形.【点评】熟练掌握勾股定理逆定理的应用.11.如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是12 米.【考点】勾股定理的应用.【专题】应用题.【分析】梯子和建筑物之间可构成直角三角形,梯子长为斜边,梯子的底端离建筑物的距离为一直角边,运用勾股定理可将另一直角边求出,即梯子可以到达建筑物的高度.【解答】解:∵直角三角形的斜边长为15m,一直角边长为9m,∴另一直角边长==12m,故梯子可到达建筑物的高度是12m.故答案为:12.【点评】本题的关键是建立数学模型,使实际问题转化为数学问题,进行求解.12.如图,一圆柱高8cm,底面半径为cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是10 cm.【考点】平面展开-最短路径问题.【分析】此题最直接的解法,就是将圆柱展开,然后利用两点之间线段最短解答.【解答】解:底面圆周长为2πr,底面半圆弧长为πr,即半圆弧长为:×2π×=6(cm),展开得:∵BC=8cm,AC=6cm,根据勾股定理得:AB==10(cm).故答案为:10.【点评】此题主要考查了立体图形的展开和两点之间线段最短,解题的关键是根据题意画出展开图,表示出各线段的长度.三、解答题:13.有一个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放就比门高出1尺,斜放就恰好等于门的对角线,已知门宽4尺,求竹竿高与门高.【考点】勾股定理的应用.【专题】应用题.【分析】根据题中所给的条件可知,竹竿斜放就恰好等于门的对角线长,可与门的宽和高构成直角三角形,运用勾股定理可求出门高.【解答】解:设门高为x尺,则竹竿长为(x+1)尺,根据勾股定理可得:x2+42=(x+1)2,即x2+16=x2+2x+1,解得:x=7.5,故:门高7.5尺,竹竿高=7.5+1=8.5尺.【点评】本题考查勾股定理的运用,正确运用勾股定理,将数学思想运用到实际问题中是解答本题的关键,难度一般.14.如图,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?【考点】勾股定理的应用.【分析】设旗杆在离底部x米的位置断裂,在直角三角形中利用勾股定理即可得出关于x的一元二次方程,解方程求出x的值,此题得解.【解答】解:设旗杆在离底部x米的位置断裂,在给定图形上标上字母如图所示.∵AB=x,AB+AC=16,∴AC=16﹣x.在Rt△ABC中,AB=x,AC=16﹣x,BC=8,∴AC2=AB2+BC2,即(16﹣x)2=x2+82,解得:x=6.故旗杆在离底部8米的位置断裂.【点评】本题考查了勾股定理的应用,解题的关键是利用勾股定理得出关于x的一元二次方程.本题属于基础题,难度不大,解决该题型题目时,构建直角三角形,利用勾股定理表示出三边关系是关键.15.如图,一架长2.5米的梯子,斜靠在竖直的墙上,这时梯子底端离墙0.7米,为了安装壁灯,梯子顶端离地面2米,请你计算一下,此时梯子底端应再向远离墙的方向拉多远?【考点】勾股定理的应用.【专题】探究型.【分析】在Rt△DCE中利用勾股定理求出CE的长即可解答【解答】解:在Rt△DCE中,∵DE=AB=2.5m,CD=2m,∴CE===1.5m.∴BE=CE﹣BC=1.5﹣0.7=0.8m.答:梯子底端B应再向左拉0.8m.【点评】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.。
北师大版八年级数学上《第一章勾股定理》单元测试题(含答案)
第一章勾股定理一、选择题(每题3分,共30分)1.下列由线段a,b,c组成的三角形是直角三角形的是()A.a=1,b=2,c=3B.a=2,b=3,c=4C.a=3,b=4,c=5D.a=4,b=5,c=62.如图1所示,∠AOC=∠BOC,点P在OC上,PD⊥OA于点D,PE⊥OB于点E.若OD=8,OP=10,则PE的长为()图1A.5B.6C.7D.83.下列结论中,错误的有()①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5;②△ABC的三边长分别为a,b,c,若a2+b2=c2,则∠A=90°;③在△ABC中,若∠A∶∠B∶∠C=1∶5∶6,则△ABC是直角三角形;④若三角形的三边长之比为3∶4∶5,则该三角形是直角三角形.A.0个B.1个C.2个D.3个4.如图2,将长为8cm的橡皮筋放置在地面上,固定两端点A和B,然后把中点C向上拉升3cm至点D,则橡皮筋被拉长了()图2A.2cm B.3cm C.4cm D.5cm5.将面积为8π的半圆与两个正方形按图3所示的方式摆放,则这两个正方形面积的和为()图3A.16B.32C.8πD.646.若△ABC 的三边长a ,b ,c 满足(a -b )2+|b -2|+(c 2-8)2=0,则下列对此三角形的形状描述最确切的是()A.等边三角形B.等腰三角形C.等腰直角三角形D.直角三角形7.如图4所示,AC ⊥BD ,O 为垂足,设m =AB 2+CD 2,n =AD 2+BC 2,则m ,n 的大小关系为()图4A.m <n B.m =n C.m >nD.不确定8.如图5,点D 在△ABC 的边AC 上,将△ABC 沿BD 翻折后,点A 恰好与点C 重合.若BC =5,CD =3,则BD 的长为()图5A.1B.2C.3D.49.如图6,设正方体ABCD -A 1B 1C 1D 1的棱长为1,黑甲壳虫从点A 出发,白甲壳虫从点C 1出发,它们以相同的速度分别沿棱向前爬行.黑甲壳虫爬行的路线是:AA 1→A 1D 1→D 1C 1→C 1C →CB →BA →AA 1→A 1D 1…,白甲壳虫爬行的路线是:C 1C →CB →BB 1→B 1C 1→C 1C →CB …,那么当黑、白两个甲壳虫各爬行完第2018条棱分别停止在所到的正方体顶点处时,它们之间的最短路程的平方是()图6A.2B.3C.4D.510.如图7所示,在长方形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC 重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()图7A.3B.4C.5D.6二、填空题(每题3分,共18分)11.在△ABC中,若AC2+BC2=AB2,∠A∶∠B=1∶2,则∠B的度数是________.12.古希腊的哲学家柏拉图曾指出:如果m表示大于1的整数,a=2m,b=m2-1,c=m2+1,那么a,b,c为勾股数.请你利用这个结论得出一组勾股数是____________.13.木工师傅做了一个桌面,要求桌面为长方形,现量得桌面的长为60cm,宽为32cm,对角线的长为68cm,则这个桌面________.(填“合格”或“不合格”)14.一座垂直于两岸的桥长27米,一艘小船自桥北头出发,向正南方向驶去,因水流原因,到达南岸后,发现已偏离桥南头36米,则小船实际行驶了________米.15.如图8所示,把长方形纸片ABCD沿EF,GH同时折叠,B,C两点恰好都落在AD边上的点P处,若∠FPH=90°,PF=8,PH=6,则BC边的长为________.图816.我国数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”.如图9,它是用八个全等的直角三角形拼接而成的,记图中正方形ABCD,正方形EFGH,正方形MNKT 的面积分别为S 1,S 2,S 3,若S 1+S 2+S 3=15,则S 2的值是________.图9三、解答题(共52分)17.(6分)如图10,△ABC 中,D 是BC 上的一点,AB=10,BD=6,AD=8,AC=17.(1)判断AD 与BC 的位置关系,并说明理由;(2)求△ABC 的面积.图1018.(6分)如图11所示,在长方形ABCD 中,AB=CD=24,AD=BC=50,E 是AD 上一点,且AE∶DE=9∶16,判断△BEC 的形状.图1119.(6分)如图12是某同学设计的机器人比赛时行走的路径,机器人从A处先往东走4 m,又往北走1.5m,遇到障碍后又往西走2m,再转向北走4.5m处往东一拐,仅走0.5m 就到达了B处,则点A,B之间的距离是多少?图1220.(6分)如图13所示,有两根长杆隔河相对,一杆高3m,另一杆高2m,两杆相距5m.两根长杆都与地面垂直,现两杆顶部各有一只鱼鹰,它们同时看到两杆之间的河面上E处浮出一条小鱼,于是同时以同样的速度飞下来夺鱼,结果两只鱼鹰同时叼住小鱼.求两杆底部距小鱼的距离各是多少米.(假设小鱼在此过程中保持不动)图1321.(6分)如图14,河边有A,B两个村庄,A村距河边10m,B村距河边30m,两村平行于河边方向的水平距离为30m,现要在河边建一抽水站,需铺设管道抽水到A村和B 村.(1)求铺设管道的最短长度是多少,请画图说明;(2)若铺设管道每米需要500元,则最低费用为多少?图1422.(6分)有一个如图15所示的长方体的透明鱼缸,假设其长AD=80cm,高AB=60cm,水深AE=40cm,在水面上紧贴内壁G处有一鱼饵,G在水面线EF上,且EG=60cm.一小虫想从鱼缸外的点A处沿缸壁爬到鱼缸内G处吃鱼饵.(1)小虫应该走怎样的路线才可使爬行的路程最短?请画出它的爬行路线,并用箭头标注;(2)试求小虫爬行的最短路程.图1523.(8分)如图16,在由6个大小相同的小正方形组成的方格中,设每个小正方形的边长均为1.(1)如图①,A,B,C是三个格点(即小正方形的顶点),判断AB与BC的位置关系,并说明理由;(2)如图②,连接三格和两格的对角线,求∠α+∠β的度数(要求:画出示意图,并说明理由).图1624.(8分)八年级(3)班开展了手工制作竞赛,每名同学都需在规定时间内完成一件手工作品.陈莉同学在制作手工作品时的第一、二个步骤是:①如图17,先裁下一张长BC=20cm ,宽AB=16cm 的长方形纸片ABCD;②将纸片沿着直线AE 折叠,点D 恰好落在BC 边上的点F 处.请你根据步骤①②解答下列问题:(1)找出图中∠FEC 的余角;(2)求EC 的长.图17答案1.C2.B3.C4.A5.D6.C7.B8.D9.D10.D11.60°12.答案不唯一,如20,99,10113.合格14.4515.2416.517.解:(1)AD ⊥BC .理由如下:因为BD 2+AD 2=62+82=102=AB 2,所以△ABD 是直角三角形,且∠ADB =90°,所以AD ⊥BC .(2)在Rt△ACD 中,因为CD 2=AC 2-AD 2=172-82=152,所以CD =15,所以S △ABC =12BC ·AD =12(BD +CD )·AD =12×21×8=84.18.解:因为AD =50,AE ∶DE =9∶16,所以AE =18,DE =32.在Rt△ABE 中,由勾股定理,得BE 2=AB 2+AE 2=242+182=900.在Rt△CDE 中,由勾股定理,得CE 2=DE 2+CD 2=322+242=1600.在△BCE 中,因为BE 2+CE 2=900+1600=2500=502=BC 2,所以△BEC 是直角三角形.19.解:如图,过点B 作BC ⊥AD 于点C ,由图可知AC =4-2+0.5=2.5(m),BC =4.5+1.5=6(m).在Rt△ABC 中,AB 2=AC 2+BC 2=2.52+62=42.25,所以AB =6.5(m),即点A ,B 之间的距离是6.5m.20.解:由题意可知AB =2m,CD =3m,BC =5m,AE =DE .设BE=x m,则EC=(5-x)m.在Rt△ABE中,由勾股定理,得AE2=AB2+BE2.在Rt△DCE中,由勾股定理,得DE2=CD2+EC2.所以AB2+BE2=CD2+EC2,即22+x2=32+(5-x)2,解得x=3,则5-x=2.所以杆AB底部距小鱼3m,杆CD底部距小鱼2m.21.解:(1)如图,过点A作AC⊥CE于点C,延长AC至点D,使CD=AC,连接BD,交河边于点E,连接AE,则抽水站应建在点E处,可使铺设的管道最短,最短长度为AE+BE,即BD的长.过点B作BF⊥AC于点F,由题意得:AC=10m,CF=30m,BF=30m,所以CD=AC=10m,所以DF=10+30=40(m).在Rt△BDF中,BD2=302+402=502,所以BD=50(m).即铺设管道的最短长度是50m.(2)最低费用为50×500=25000(元).22.解:(1)如图所示,AQ→QG为最短路线.(2)因为AE=40cm,AA′=120cm,所以A′E=120-40=80(cm).因为EG=60cm,所以A′G2=A′E2+EG2=802+602=10000,所以A′G=100cm,所以AQ+QG=A′Q+QG=A′G=100cm,所以小虫爬行的最短路程为100cm.23.解:(1)AB⊥BC.理由:如图①,连接AC.由勾股定理可得AB2=12+22=5,BC2=12+22=5,AC2=12+32=10,所以AB2+BC2=AC2,所以△ABC是直角三角形且∠ABC=90°,所以AB⊥BC.(2)∠α+∠β=45°.理由:如图②,由勾股定理得AB2=12+22=5,BC2=12+22=5,AC2=12+32=10,所以AB2+BC2=AC2,所以△ABC是直角三角形且∠ABC=90°.又因为AB=BC,所以△ABC是等腰直角三角形,所以∠BAC=45°,即∠α+∠γ=45°.由图可知∠β=∠γ,所以∠α+∠β=45°.24.解:(1)∠CFE,∠BAF.(2)由折叠的性质,得AF=AD=20cm,EF=DE.设EC=x cm,则EF=DE=(16-x)cm.在Rt△ABF中,BF2=AF2-AB2=202-162=144,所以BF=12(cm),所以FC=BC-BF=20-12=8(cm).在Rt△EFC中,由勾股定理,得EF2=FC2+EC2,即(16-x)2=82+x2,解得x=6,所以EC的长为6cm.。
最新2019-2020年度北师大版八年级数学上册《勾股定理》综合测试题及答案解析-精品试题
《第1章勾股定理》一、填空题1.直角三角形两条直角边的长分别为5、12,则斜边长为,斜边上的高为.2.已知直角三角形的两边的长分别是3和4,则第三边长为.3.已知等腰三角形的腰长为5cm,底边长为6cm,则这个三角形的面积为cm2.4.如图所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为8,正方形A的面积是11,B的面积是10,C的面积是13,则D的面积为.5.如图,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行米.6.如图,直线l过正方形ABCD的顶点B,点A,C到直线l的距离分别是1和2,则正方形ABCD 的面积是.7.如图,是一个长方体,长4、宽3、高12,则图中阴影部分的三角形的周长为.8.在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边.若a=6,c=10,则b= ;若a=12,b=5,则C= ;若c=15,b=13,则a= .9.在△ABC中,AB=AC,AD⊥BC,若AB=13,BC=10,则AD= .10.若一个直角三角形的三边长分别是6、8、a,则a2= .11.等腰三角形的腰长为10,底边上的高为6,则底边长为.12.小颖从学校出发向南走了150m,接着向东走了80m到达书店,则学校与书店的距离是m.13.飞机在空中水平飞行,某一时刻刚好飞到小刚头顶正上方4000米处,过了20秒,飞机距离小刚5000米,则飞机每小时飞行千米.二、选择题14.下列几组数中不能作为直角三角形三边长度的是()A.a=7,b=24,c=25 B.a=1.5,b=2,c=2.5C.D.a=15,b=8,c=1715.在下列以线段a,b,c的长为三边的三角形中,不能构成直角三角形的是()A.a=9,b=41,c=40 B.a=5,b=12,c=13C.a:b:c=3:4:5 D.a=11,b=12,c=1516.△ABC中,AB=13cm,AC=15cm,高AD=12,则BC的长为()A.14 B.4 C.14或4 D.以上都不对17.“赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如果小正方形的面积为1,大正方形的面积为13,直角三角形中短直角边a,较长直角边为了b,那么(a+b)2的值为()A.13 B.14 C.25 D.16918.如图,已知矩形ABCD沿着直线BD折叠,使点C落在C处,BC交AD于E,AD=8,AB=4,则DE的长为()A.3 B.4 C.5 D.619.两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8cm,另一只朝左挖,每分钟挖6cm,10分钟后,两只小鼹鼠相距()A.50cm B.100cm C.140cm D.80cm20.一个圆桶底面直径为24cm,高32cm,则桶内所能容下的最长木棒为()A.20cm B.50cm C.40cm D.45cm21.如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形茶杯中,设筷子露在杯子外面的长为acm(茶杯装满水),则a的取值范围是.22.直角三角形的周长为24,斜边长为10,则其面积为()A.96 B.49 C.24 D.4823.有下面的判断:①△ABC中,a2+b2≠c2,则△ABC不是直角三角形.②△ABC是直角三角形,∠C=90°,则a2+b2=c2.③若△ABC中,a2﹣b2=c2,则△ABC是直角三角形.④若△ABC 是直角三角形,则(a+b)(a﹣b)=c2.以上判断正确的有()A.4个B.3个C.2个D.1个三、解答题:24.在Rt△ABC中,∠C=90°,已知c=25,b=15,求a.25.甲、乙两同学在操场上,从同一旗杆处出发,甲向北走18米,乙向东走16米以后,又向北走6米,此时甲、乙两同学相距多远?26.一梯子斜靠在某建筑物上,当梯子的底端离建筑物9m时,梯子可以达到的高度是12m,你能算出梯子的长度吗?27.如图是一块地,已知AD=8cm,CD=6cm,∠D=90°,AB=26cm,BC=24cm,求这块地的面积.28.如图,滑杆在机械槽内运动,∠ACB为直角,已知滑杆AB长2.5米,顶端A在AC上运动,量得滑杆下端B距C点的距离为1.5米,当端点B向右移动0.5米时,求滑杆顶端A下滑多少米?29.如图,折叠长方形纸片ABCD,先折出折痕(对角线)BD,再折叠使AD边与BD重合,得折痕DG,若AB=4,BC=3,求AG的长.30.如图,长方形ABCD中,AB=4,BC=5,将长方形沿折痕AF折叠,点D恰好落在BC边上的点E处.(1)求BE的长;(2)求CF的长.31.已知:a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4,①∴c2(a2﹣b2)=(a2+b2)(a2﹣b2).②∴c2=a2+b2.③∴△ABC是直角三角形.问:(1)在上述解题过程中,从哪一步开始出现错误?请写出该步的代号:;(2)错误的原因为;(3)本题正确的解题过程:《第1章勾股定理》(山东省济南市兴济中学)参考答案与试题解析一、填空题1.直角三角形两条直角边的长分别为5、12,则斜边长为13 ,斜边上的高为.【考点】勾股定理.【分析】可先用勾股定理求出斜边长,然后再根据直角三角形面积的两种公式求解即可.【解答】解:由勾股定理可得:AB2=52+122,则AB=13,直角三角形面积S=×5×12=×13×CD,可得:斜边的高CD=.故答案为:13,.【点评】本题考查勾股定理及直角三角形面积公式的综合运用,解答本题的关键是熟练掌握勾股定理,此题难度不大.2.已知直角三角形的两边的长分别是3和4,则第三边长为5或.【考点】勾股定理.【专题】分类讨论.【分析】已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①3是直角边,4是斜边;②3、4均为直角边;可根据勾股定理求出上述两种情况下,第三边的长.【解答】解:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:=;②长为3、4的边都是直角边时:第三边的长为:=5;综上,第三边的长为:5或.故答案为:5或.【点评】此题主要考查的是勾股定理的应用,要注意的是由于已知的两边是直角边还是斜边并不明确,所以一定要分类讨论,以免漏解.3.已知等腰三角形的腰长为5cm,底边长为6cm,则这个三角形的面积为12 cm2.【考点】勾股定理;等腰三角形的性质.【分析】作底边上的高,根据等腰三角形三线合一和勾股定理求出高,再代入面积公式求解即可.【解答】解:如图,作底边BC上的高AD,则AB=5cm,BD=×6=3cm,∴AD===4,∴三角形的面积为:×6×4=12cm2.【点评】本题利用等腰三角形“三线合一”作出底边上的高,再根据勾股定理求出高的长度,作高构造直角三角形是解题的关键.4.如图所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为8,正方形A的面积是11,B的面积是10,C的面积是13,则D的面积为30 .【考点】勾股定理.【分析】根据正方形的面积公式,运用勾股定理可以证明:四个小正方形的面积和等于最大正方形的面积64,由此即可解决问题.【解答】解:如图记图中三个正方形分别为P、Q、M.根据勾股定理得到:A与B的面积的和是P的面积;C与D的面积的和是Q的面积;而P,Q的面积的和是M的面积.即A、B、C、D的面积之和为M的面积.∵M的面积是82=64,∴A、B、C、D的面积之和为64,设正方形D的面积为x,∴11+10+13+x=64,∴x=30.故答案为:30.【点评】此题考查了勾股定理,正方形的面积,得出正方形A,B,C,D的面积和即是最大正方形M的面积是解题的关键.5.如图,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行10 米.【考点】勾股定理的应用.【分析】从题目中找出直角三角形并利用勾股定理解答.【解答】解:过点D作DE⊥AB于E,连接BD.在Rt△BDE中,DE=8米,BE=8﹣2=6米.根据勾股定理得BD=10米.【点评】注意作辅助线构造直角三角形,熟练运用勾股定理.6.如图,直线l过正方形ABCD的顶点B,点A,C到直线l的距离分别是1和2,则正方形ABCD 的面积是 5 .【考点】全等三角形的判定与性质;勾股定理;正方形的性质.【分析】根据正方形性质得出AB=CB,∠ABC=90°,求出∠EAB=∠FBC,证△AEB≌△BFC,求出BE=CF=2,在Rt△AEB中,由勾股定理求出AB,即可求出正方形的面积.【解答】解:∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∵AE⊥EF,CF⊥EF,∴∠AEB=∠BFC=90°,∴∠ABE+∠CBF=180°﹣90°=90°,∠ABE+∠EAB=90°,∴∠EAB=∠CBF,在△AEB和△BFC中,,∴△AEB≌△BFC(AAS),∴BE=CF=2,在Rt△AED中,由勾股定理得:AB==,即正方形ABCD的面积是5,故答案为:5.【点评】本题考查了正方形性质,全等三角形的性质和判定,勾股定理的应用,关键是求出BE=CF,主要考查学生分析问题和解决问题的能力,题型较好,难度适中.7.如图,是一个长方体,长4、宽3、高12,则图中阴影部分的三角形的周长为30 .【考点】勾股定理.【分析】在底面上,阴影三角形的边长是直角三角形的斜边,根据勾股定理即可求得,阴影部分是一个直角三角形,利用两直角边求出即可.【解答】解:如图所示,在直角△BCD中,根据勾股定理,得到BC===5.在直角△ABC中,根据勾股定理,得到AC===13.所以,图中阴影部分的三角形的周长为:AB+BC+AC=12+5+13=30.故答案是:30.【点评】本题考查了勾股定理.正确认识到阴影部分的形状是直角三角形是解题的关键;主要考查空间想象能力.8.在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边.若a=6,c=10,则b= 8 ;若a=12,b=5,则C= 13 ;若c=15,b=13,则a= 2.【考点】勾股定理.【专题】计算题.【分析】画出图形,根据勾股定理直接解答.【解答】解:如图:在Rt△ABC中,a=6,c=10,则b===8;在Rt△ABC中,a=12,b=5,则c===13;在Rt△ABC中,c=15,b=13,则a===2.故答案为8,13,2.【点评】本题考查了勾股定理,要注意分清直角边和斜边,另外,解答时要注意画出图形,找到相应的边和角,再代入公式计算.9.在△ABC中,AB=AC,AD⊥BC,若AB=13,BC=10,则AD= 12 .【考点】勾股定理;等腰三角形的性质.【专题】几何图形问题.【分析】先根据等腰三角形的性质得出AD是BC边的中线,再根据勾股定理求出AD的长即可.【解答】解:∵在△ABC中,AB=AC,AD⊥BC,AB=13,BC=10,∴BD=BC=×10=5,∴AD===12.故答案为:12.【点评】本题考查的是勾股定理,熟知等腰三角形三线合一的性质及勾股定理是解答此题的关键.10.若一个直角三角形的三边长分别是6、8、a ,则a 2= 100或28 .【考点】勾股定理.【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边8既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求解.【解答】解:(1)若8是直角边,则第三边x 是斜边,由勾股定理得:62+82=a 2,所以a 2=100;(2)若8是斜边,则第三边a 为直角边,由勾股定理得:62+x 2=82,所以a 2=28.故答案为:100或28.【点评】本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.11.等腰三角形的腰长为10,底边上的高为6,则底边长为 16 .【考点】勾股定理;等腰三角形的性质.【分析】根据题意画出图形,利用勾股定理求解即可.【解答】解:如图,∵AB=AC=6,AD ⊥BC ,AD=6,∴BD===8,∴BC=2BD=16.故答案为:16.【点评】本题考查的是勾股定理,熟知等腰三角形三线合一的性质是解答此题的关键.12.小颖从学校出发向南走了150m,接着向东走了80m到达书店,则学校与书店的距离是170 m.【考点】勾股定理的应用.【专题】计算题.【分析】根据正南方向和正东方向成九十度,利用勾股定理进行计算即可.【解答】解:∵正南方向和正东方向成90°,∴根据勾股定理得学校与书店之间的距离为=170(米).故答案为:170.【点评】此题考查的是勾股定理在实际生活中的运用,解答此题的关键是根据题意画出图形,再根据勾股定理进行计算.13.飞机在空中水平飞行,某一时刻刚好飞到小刚头顶正上方4000米处,过了20秒,飞机距离小刚5000米,则飞机每小时飞行540 千米.【考点】勾股定理的应用.【分析】先画出图形,构造出直角三角形,利用勾股定理解答.【解答】解:设A点为小刚头顶,C为正上方时飞机的位置,B为20s后飞机的位置,如图所示,则AB2=BC2+AC2,即BC2=AB2﹣AC2=9000000,∴BC=3000米,∴飞机的速度为3000÷20×3600=540(千米/小时),故答案为:540.【点评】本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.解题时注意运用数形结合的思想方法使问题直观化.二、选择题14.下列几组数中不能作为直角三角形三边长度的是()A.a=7,b=24,c=25 B.a=1.5,b=2,c=2.5C.D.a=15,b=8,c=17【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理对各个选项进行分析,从而得到答案.【解答】解:A、满足勾股定理:72+242=252,故A选项不符合题意;B、满足勾股定理:1.52+22=2.52,故B选项不符合题意;C、不满足勾股定理,不是勾股数,故C选项符合题意;D、满足勾股定理:152+82=172,故D选项不符合题意.故选:C.【点评】本题考查了用勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.15.在下列以线段a,b,c的长为三边的三角形中,不能构成直角三角形的是()A.a=9,b=41,c=40 B.a=5,b=12,c=13C.a:b:c=3:4:5 D.a=11,b=12,c=15【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理,验证四个选项中数据是否满足“较小两边平方的和等于最大边的平方”,由此即可得出结论.【解答】解:A、因为92+402=412,能构成直角三角形,此选项错误;B、因为52+122=132,能构成直角三角形,此选项错误;C、因为32+42=52,故能构成直角三角形,此选项错误.D、因为112+122≠152,不能构成直角三角形,此选项正确.故选D.【点评】本题考查了勾股定理的逆定理,解题的关键是根据勾股定理的逆定理验证四个选项.本题属于基础题,难度不大,解决该题型题目时,套入数据验证“较小两边平方的和是否等于最大边的平方”是关键.16.△ABC中,AB=13cm,AC=15cm,高AD=12,则BC的长为()A.14 B.4 C.14或4 D.以上都不对【考点】勾股定理.【专题】分类讨论.【分析】分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=CD﹣BD.【解答】解:(1)如图,锐角△ABC中,AB=13,AC=15,BC边上高AD=12,在Rt△ABD中AB=13,AD=12,由勾股定理得BD2=AB2﹣AD2=132﹣122=25,则BD=5,在Rt△ABD中AC=15,AD=12,由勾股定理得CD2=AC2﹣AD2=152﹣122=81,则CD=9,故BC=BD+DC=9+5=14;(2)钝角△ABC中,AB=13,AC=15,BC边上高AD=12,在Rt△ABD中AB=13,AD=12,由勾股定理得BD2=AB2﹣AD2=132﹣122=25,则BD=5,在Rt△ACD中AC=15,AD=12,由勾股定理得CD2=AC2﹣AD2=152﹣122=81,则CD=9,故BC的长为DC﹣BD=9﹣5=4.故选:C.【点评】本题考查了勾股定理,把三角形边的问题转化到直角三角形中用勾股定理解答.17.“赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如果小正方形的面积为1,大正方形的面积为13,直角三角形中短直角边a,较长直角边为了b,那么(a+b)2的值为()A.13 B.14 C.25 D.169【考点】勾股定理.【分析】根据正方形的面积公式以及勾股定理,结合图形进行分析发现:大正方形的面积即直角三角形斜边的平方13,也就是两条直角边的平方和是13,四个直角三角形的面积和是大正方形的面积减去小正方形的面积即2ab=12.根据完全平方公式即可求解.【解答】解:根据题意,结合勾股定理a2+b2=13,四个三角形的面积=4×ab=13﹣1,∴2ab=12,联立解得:(a+b)2=13+12=25.故选C.【点评】本题考查了勾股定理和完全平方公式的运用,解题的关键是注意观察图形:发现各个图形的面积和a,b的关系.18.如图,已知矩形ABCD沿着直线BD折叠,使点C落在C处,BC交AD于E,AD=8,AB=4,则DE的长为()A.3 B.4 C.5 D.6【考点】翻折变换(折叠问题).【分析】先根据翻折变换的性质得出CD=C′D,∠C=∠C′=90°,再设DE=x,则AE=8﹣x,由全等三角形的判定定理得出Rt△ABE≌Rt△C′DE,可得出BE=DE=x,在Rt△ABE中利用勾股定理即可求出x的值,进而得出DE的长.【解答】解:∵Rt△DC′B由Rt△DBC翻折而成,∴CD=C′D=AB=8,∠C=∠C′=90°,设DE=x,则AE=8﹣x,∵∠A=∠C′=90°,∠AEB=∠DEC′,∴∠ABE=∠C′DE,在Rt△ABE与Rt△C′DE中,,∴Rt△ABE≌Rt△C′DE(ASA),∴BE=DE=x,在Rt△ABE中,AB2+AE2=BE2,∴42+(8﹣x)2=x2,解得:x=5,∴DE的长为5.故选C.【点评】本题考查的是翻折变换的性质及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解答此题的关键.19.两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8cm,另一只朝左挖,每分钟挖6cm,10分钟后,两只小鼹鼠相距()A.50cm B.100cm C.140cm D.80cm【考点】勾股定理的应用.【专题】应用题.【分析】首先根据题意知:它们挖的方向构成了直角.再根据路程=速度×时间,根据勾股定理即可求解.【解答】解:由图可知,AC=8×10=80cm,BC=6×10=60cm,由勾股定理得,AB===100cm.故选B.【点评】本题考查了勾股定理的应用,首先要正确理解题意,画出正确的图形,再熟练运用勾股定理进行计算.20.一个圆桶底面直径为24cm,高32cm,则桶内所能容下的最长木棒为()A.20cm B.50cm C.40cm D.45cm【考点】勾股定理的应用.【分析】如图,AC为圆桶底面直径,所以AC=24cm,CB=32cm,那么线段AB的长度就是桶内所能容下的最长木棒的长度,在直角三角形ABC中利用勾股定理可以求出AB,也就求出了桶内所能容下的最长木棒的长度.【解答】解:如图,AC为圆桶底面直径,∴AC=24cm,CB=32cm,∴线段AB的长度就是桶内所能容下的最长木棒的长度,∴AB==40cm.故桶内所能容下的最长木棒的长度为40cm.故选C.【点评】此题首先要正确理解题意,把握好题目的数量关系,然后利用勾股定理即可求出结果.21.如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形茶杯中,设筷子露在杯子外面的长为acm(茶杯装满水),则a的取值范围是11cm≤a≤12cm .【考点】勾股定理的应用.【分析】先根据题意画出图形,再根据勾股定理解答即可.【解答】解:当筷子与杯底垂直时h最大,h最大=24﹣12=12cm.当筷子与杯底及杯高构成直角三角形时a最小,如图所示:此时,AB===13cm,故a=24﹣13=11cm.所以a的取值范围是:11cm≤a≤12cm.故答案是:11cm≤a≤12cm.【点评】此题将勾股定理与实际问题相结合,考查了同学们的观察力和由具体到抽象的推理能力,解答此题的关键是根据题意画出图形求出h的最大及最小值,有一定难度.22.直角三角形的周长为24,斜边长为10,则其面积为()A.96 B.49 C.24 D.48【考点】勾股定理.【专题】方程思想.【分析】利用勾股定理求出两直角边,再代入三角形面积公式即可求解.【解答】解:直角三角形的周长为24,斜边长为10,则两直角边的和为24﹣10=14,设一直角边为x,则另一边14﹣x,根据勾股定理可知:x2+(14﹣x)2=100,解得x=6或8,所以面积为6×8÷2=24.故选C.【点评】本题考查了利用勾股定理解直角三角形的能力,即:直角三角形两直角边的平方和等于斜边的平方;本题的关键是先求出两直角边,再计算面积.23.有下面的判断:①△ABC中,a2+b2≠c2,则△ABC不是直角三角形.②△ABC是直角三角形,∠C=90°,则a2+b2=c2.③若△ABC中,a2﹣b2=c2,则△ABC是直角三角形.④若△ABC 是直角三角形,则(a+b)(a﹣b)=c2.以上判断正确的有()A.4个B.3个C.2个D.1个【考点】勾股定理的逆定理;勾股定理.【分析】欲求证是否为直角三角形,这里给出三边的长,需要验证两小边的平方和等于最长边的平方即可.【解答】解:①c不一定是斜边,故错误;②正确;③正确;④若△ABC是直角三角形,c不是斜边,则(a+b)(a﹣b)≠c2,故错误.共2个正确.故选C.【点评】本题考查勾股定理的逆定理的应用.三、解答题:24.在Rt△ABC中,∠C=90°,已知c=25,b=15,求a.【考点】勾股定理.【分析】直接利用勾股定理得出a的值.【解答】解:∵∠C=90°,c=25,b=15,∴a==20.【点评】此题主要考查了勾股定理,正确应用勾股定理是解题关键.25.甲、乙两同学在操场上,从同一旗杆处出发,甲向北走18米,乙向东走16米以后,又向北走6米,此时甲、乙两同学相距多远?【考点】勾股定理的应用.【分析】根据题意画出示意图,然后根据勾股定理计算出CB的长.【解答】解:过C作CA⊥BA,由题意得:=20(米),答:此时甲、乙两同学相距20米.【点评】此题主要考查了勾股定理的应用,关键是画出示意图,掌握勾股定理.26.一梯子斜靠在某建筑物上,当梯子的底端离建筑物9m时,梯子可以达到的高度是12m,你能算出梯子的长度吗?【考点】勾股定理的应用.【专题】数形结合.【分析】如(解答)图,AB为梯子长,AC为底端离建筑物的长9m,BC为顶端离地面的长12m;根据勾股定理即可求得.【解答】:解:如图:∵AC=9m,BC=12m,∠C=90°∴AB==15m∴梯子的长度为15米.【点评】此题考查了勾股定理的应用.解题时要注意数形结合思想的应用,关键是从实际问题中整理出数学问题.27.如图是一块地,已知AD=8cm,CD=6cm,∠D=90°,AB=26cm,BC=24cm,求这块地的面积.【考点】勾股定理;勾股定理的逆定理.【分析】根据勾股定理可求出AC的长,根据勾股定理的逆定理可求出∠ACB=90°,可求出△ACB 的面积,减去△ACD的面积,可求出四边形ABCD的面积.【解答】解:如图,连接AC.∵CD=6cm,AD=8cm,∠ADC=90°,∴AC==10(cm).∵AB=26cm,BC=24cm,102+242=262.即AC2+BC2=AB2,∴△ABC为直角三角形,∠ACB=90°.∴四边形ABCD的面积=S△ABC﹣S△ACD=×10×24﹣×6×8=96(cm2).【点评】本题考查了勾股定理和勾股定理的逆定理,关键判断出直角三角形从而可求出面积.28.如图,滑杆在机械槽内运动,∠ACB为直角,已知滑杆AB长2.5米,顶端A在AC上运动,量得滑杆下端B距C点的距离为1.5米,当端点B向右移动0.5米时,求滑杆顶端A下滑多少米?【考点】勾股定理的应用.【专题】应用题.【分析】由题意可知滑杆AB与AC、CB正好构成直角三角形,故可用勾股定理进行计算.【解答】解:设AE的长为x米,依题意得CE=AC﹣x.∵AB=DE=2.5,BC=1.5,∠C=90°,∴AC===2∵BD=0.5,∴在Rt△ECD中,CE====1.5.∴2﹣x=1.5,x=0.5.即AE=0.5.答:滑杆顶端A下滑0.5米.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.29.如图,折叠长方形纸片ABCD,先折出折痕(对角线)BD,再折叠使AD边与BD重合,得折痕DG,若AB=4,BC=3,求AG的长.【考点】翻折变换(折叠问题);勾股定理.【分析】首先由折叠长方形纸片ABCD,先折出折痕(对角线)BD,再折叠使AD边与BD重合,得折痕DG,即可得:∠GDA=∠GDB,AD=ED,然后过点G作GE⊥BD于E,即可得AG=EG,设AG=x,则GE=x,BE=BD﹣DE=5﹣3=2,BG=AB﹣AG=4﹣x,在Rt△BEG中利用勾股定理,即可求得AG的长.【解答】解:过点G作GE⊥BD于E,根据题意可得:∠GDA=∠GDB,AD=ED,∵四边形ABCD是矩形,∴∠A=90°,AD=BC=3,∴AG=EG,ED=3,∵AB=4,BC=3,∠A=90°,∴BD=5,设AG=x,则GE=x,BE=BD﹣DE=5﹣3=2,BG=AB﹣AG=4﹣x,在Rt△BEG中,EG2+BE2=BG2,即:x2+4=(4﹣x)2,解得:x=,故AG=.【点评】此题考查了折叠的性质、矩形的性质以及勾股定理等知识.此题综合性很强,难度适中,解题的关键是方程思想与数形结合思想的应用.30.如图,长方形ABCD中,AB=4,BC=5,将长方形沿折痕AF折叠,点D恰好落在BC边上的点E处.(1)求BE的长;(2)求CF的长.【考点】翻折变换(折叠问题).【分析】(1)根据矩形的性质得到AD=BC=5,∠D=∠B=∠C=90°,由折叠的性质得到AE=AD=BC=5,根据勾股定理即可得到结果;(2)由(1)知BE=3,于是得到CE=BC﹣BE=2,根据折叠的性质得到EF=DF=4﹣CF,根据勾股定理即可得到结论.【解答】解:(1)长方形ABCD中,∵AD=BC=5,∠D=∠B=∠C=90°,∵△AEF是△ADF沿折痕AF折叠得到的,∴AE=AD=BC=5,∴BE===3;(2)由(1)知BE=3,∴CE=BC﹣BE=2,∵△AEF是△ADF沿折痕AF折叠得到的,∴EF=DF=4﹣CF,∵EF2=CE2+CF2,∴(4﹣CF)2=22+CF2,解得:CF=.【点评】本题主要考查了图形的翻折变换,以及勾股定理、全等三角形、方程思想等知识,关键是熟练掌握勾股定理,找准对应边.31.(2011•大田县校级模拟)已知:a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4,①∴c2(a2﹣b2)=(a2+b2)(a2﹣b2).②∴c2=a2+b2.③∴△ABC是直角三角形.问:(1)在上述解题过程中,从哪一步开始出现错误?请写出该步的代号:③;(2)错误的原因为除式可能为0 ;(3)本题正确的解题过程:【考点】勾股定理的逆定理.【专题】推理填空题.【分析】(1)(2)两边都除以a2﹣b2,而a2﹣b2的值可能为零,由等式的基本性质,等式两边都乘以或除以同一个不为0的整式,等式仍然成立.(3)根据等式的基本性质和勾股定理,分情况加以讨论.【解答】解:(1)③(2)除式可能为零;(3)∵a2c2﹣b2c2=a4﹣b4,∴c2(a2﹣b2)=(a2+b2)(a2﹣b2),∴a2﹣b2=0或c2=a2+b2,当a2﹣b2=0时,a=b;当c2=a2+b2时,∠C=90°,∴△ABC是等腰三角形或直角三角形.故答案是③,除式可能为零.【点评】本题考查勾股定理的逆定理的应用、分类讨论.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.。
北师大版八年级数学上册《第一章 勾股定理》单元测试题附答案
北师大版八年级数学上册《第一章勾股定理》单元测试题附答案一、选择题1、如图中字母A所代表的正方形的面积为().A. 4 B. 8 C. 16 D. 642、如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为( )A.16 B.17 C.18 D.193、将下列各组数据作为三角形的边长,能够组成直角三角形的是()A.4,5,6 B.1.5,2,2.5 C.2,3,4 D.1,,34、图中的△ABC是()三角形A. 锐角三角形B. 钝角三角形C. 等腰三角形D.直角三角形5、如图,分别以直角三角形的三边为边长向外作等边三角形,面积分别记为S1、S2、S3,则S1、S2、S3之间的关系是( )A.S12+S22=S32 B.S1+S2>S3 C.S1+S2<S3 D.S1+S2=S36、.若一个直角三角形的两边长为12和5,则第三边为()A. 13B.13或C. 13或5D. 157、小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m,当它把绳子的下端拉开4m后,发现下端刚好接触地面,则旗杆的高为( )m.A.7 B.7.5 C.8 D.98、下列四组线段中,能组成直角三角形的是( )A.a=1,b=2,c=3 B.a=2,b=3,c=4C.a=2,b=4,c=5 D.a=3,b=4,c=59、如图一只蚂蚁从长宽都是3cm,高是8cm的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是( )A.13cm B.10cm C.14cm D.无法确定10、若三角形的三边长分别为,,2,则此三角形的面积为()A. B. C. D.11、五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,如图,其中正确的是( )A. B. C. D.12、如图:在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,则CE2+CF2等于( )A.75 B.100 C.120 D.125二、填空题13、在△ABC中,AB=AC=5,BC=6.若点P在边AC上移动,则BP的最小值是 .14、如图,每个小正方形的边长都为1,点A、B、C都在小正方形的顶点上,则∠ABC的正切值为 .15、如图,在Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,点M,N分别在线段AC,AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△DCM为直角三角形时,折痕MN的长为16、如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为 .17、如图,在直角△ABC中,∠C=90°,AC=6,BC=8,P,Q分别为边BC,AB上的两个动点,若要使△APQ是等腰三角形且△BPQ是直角三角形,则AQ=________.18、一个三角形的三边长的比为3:4:5,且其周长为60cm,则其面积为.三、解答题19、如图,在ΔABC中,AB=AC=10,BC=8.用尺规作图作BC边上的中线AD(保留作图痕迹,不要求写作法、证明),并求AD的长.20、如图,已知△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9,求AB的长.21、如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点称为格点,请以图中的格点为顶点画一个边长为3、、的三角形.所画的三角形是直角三角形吗?说明理由.22、【阅读理解】截长补短法,是初中数学几何题中一种辅助线的添加方法.截长就是在长边上截取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一短边相等,从而解决问题.(1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.解题思路:延长DC到点E,使CE=BD,连接AE,根据∠BAC+∠BDC=180°,可证∠ABD=∠ACE易证得△ABD≌△ACE,得出△ADE是等边三角形,所以AD=DE,从而探寻线段DA、DB、DC之间的数量关系.根据上述解题思路,请直接写出DA、DB、DC之间的数量关系是 ;【拓展延伸】(2)如图2,在Rt△ABC中,∠BAC=90°,AB=AC.若点D是边BC下方一点,∠BDC=90°,探索线段DA、DB、DC之间的数量关系,并说明理由;【知识应用】(3)如图3,两块斜边长都为14cm的三角板,把斜边重叠摆放在一起,则两块三角板的直角顶点之间的距离PQ的长分别为 cm.23、如图1,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开始以1cm/s的速度沿AB边向点B运动,点Q从点B 以2cm/s的速度沿BC边向点C运动,如果P、Q同时出发,设运动时间为ts.(1)当t=2时,求△PBQ的面积.(2)当t=时,试说明△DPQ是直角三角形.(3)当运动3s时,P点停止运动,Q点以原速立即向B点返回,在返回的过程中,DP是否能平分∠ADQ?若能,求出点Q运动的时间;若不能,请说明理由.参考答案一、选择题1、D2、B3、B4、D5、D【解答】解:设直角三角形的三边从小到大是a,b,c.则S1=b2,S2=a2,S3=c2.又a2+b2=c2,则S1+S2=S3.故选:D.【点评】本题主要考查勾股定理,解题的关键是掌握勾股定理和等边三角形的面积公式.6、B7、B;8、D9、B. 10、B11、C【考点】勾股定理的逆定理.【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、72+242=252,152+202≠242,222+202≠252,故A不正确;B、72+242=252,152+202≠242,故B不正确;C、72+242=252,152+202=252,故C正确;D、72+202≠252,242+152≠252,故D不正确.故选:C. 12、B【解答】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC为直角三角形,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=100.二、填空题13、4.8 .【考点】勾股定理;垂线段最短.【分析】根据点到直线的连线中,垂线段最短,得到当BP垂直于AC时,BP的长最小,过A作等腰三角形底边上的高AD,利用三线合一得到D为BC的中点,在直角三角形ADC中,利用勾股定理求出AD的长,进而利用面积法即可求出此时BP的长.【解答】解:根据垂线段最短,得到BP⊥AC时,BP最短,过A作AD⊥BC,交BC于点D,∵AB=AC,AD⊥BC,∴D为BC的中点,又BC=6,∴BD=CD=3,在Rt△ADC中,AC=5,CD=3,根据勾股定理得:AD==4,又∵S△ABC=BC•AD=BP•AC,∴BP= = =4.8.故答案为:4.8. 14、 1 .【解答】解:如图:长方形AEFM,连接AC,∵由勾股定理得:AB2=32+12=10,BC2=22+12=5,AC2=22+12=5,∴AC2+BC2=AB2,AC=BC,即∠ACB=90°,∴tan∠ABC==1,15、或.16、4或4;【解答】解:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,∵△A′BC与△ABC关于BC所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'E=8,由勾股定理得:AB2=BC2﹣AC2,∴AB==4;②当∠A'FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4或4;故答案为:【点评】本题考查了三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.17、或 18、150cm2三、计算题19、解:(1)作图略(2)在△ABC中,AB=AC,AD是△ABC的中线,∴AD⊥BC,在Rt△ABD中,AB=10,BD=4,,.20、【考点】勾股定理.【分析】在Rt△BCD中,根据勾股定理求出CD的长,在Rt△ACD中根据勾股定理求出AD的长,故可得出AB的长.【解答】解:∵CD⊥AB于D,AC=20,BC=15,DB=9,∴在Rt△BCD中,CD2=CB2﹣DB2=152﹣92=144;在Rt△ACD中,AD2=AC2﹣CD2=202﹣144=256,∴AD=16,∴AB=AD+DB=16+9=25.21、,,因为,所以所画三角形不是直角三角形.四、综合题22、解:(1)如图1,延长DC到点E,使CE=BD,连接AE,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠BDC=120°,∴∠ABD+∠ACD=180°,又∵∠ACE+∠ACD=180°,∴∠ABD=∠ACE,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,∵∠ABC=60°,即∠BAD+∠DAC=60°,∴∠DAC+∠CAE═60°,即∠DAE=60°,∴△ADE是等边三角形,∴DA=DE=DC+CE=DC+DB,即DA=DC+DB,故答案为:DA=DC+DB;(2)DA=DB+DC,如图2,延长DC到点E,使CE=BD,连接AE,∵∠BAC=90°,∠BDC=90°,∴∠ABD+∠ACD=180°,∵∠ACE+∠ACD=180°,∴∠ABD=∠ACE,∵AB=AC,CE=BD,∴△ABD≌△ACE,∴AD=AE,∠BAD=∠CAE,∴∠DAE=∠BAC=90°,∴DA2+AE2=DE2,∴2DA2=(DB+DC)2,∴DA=DB+DC;(3)如图3,连接PQ,∵MN=14,∠QMN=30°,∴QN=MN=7,∴MQ===7,由(2)知PQ=QN+QM=7+7,∴PQ==,故答案为:.【点评】此题是三角形的综合题,主要考查了考查的是全等三角形的判定和性质、直角三角形的性质、等边三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键.23、(1)8;(2)利用勾股定理的逆定理;(3)可以,时间是45/8s。
八年级上册数学第一章勾股定理单元试题(北师大版含答案)
八年级上册数学第一章勾股定理单元试题( 北师大版含答案 )来第一章勾股定理检测题本检测题满分:100 分,时间: 90 分钟一、(每题 3 分,共 30 分)1.在△中,,,,则该三角形为()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰直角三角形2. 假如把直角三角形的两条直角边长同时扩大到本来的2倍,那么斜边长扩大到本来的()A.1倍B.2倍C.3倍D.4倍3. 以下说法中正确的选项)是(A. 已知是三角形的三边,则B.在直角三角形中,两边的平方和等于第三边的平方C.在 R t △中,∠°,因此D.在 Rt △中,∠°,因此4. 如图,已知正方形的面积为144,正方形的面积为169时,那么正方形的面积为()A.313B.144C.169D.255.如图,在 Rt △中,∠°, c , c ,则其斜边上的高为()A.6 cB.8.5 cC. cD. c6. 以下知足条件的三角形中,不是直角三角形的是()A. 三内角之比为B. 三边长的平方之比为C. 三边长之比为D. 三内角之比为7.如图,在△ 中,∠ °,,,点在上,且,,则的长为()A.6B.7C.8D.98.如图,一圆柱高 8 c,底面半径为 c ,一只蚂蚁从点爬到点处吃食,要爬行的最短行程是()A.6 cB.8 cC.10 cD.12 c9. 假如一个三角形的三边长知足,则这个三角形必定是()A. 锐角三角形B. 直角三角形C. 钝角三角形D.等腰三角形10.在△ 中,三边长知足,则互余的一对角是()A.∠与∠B.∠与∠C.∠与∠D.∠、∠ 、∠二、题(每题 3 分,共 24 分)11.已知两条线段的长分别为5 c 、12 c ,当第三条线段长为________时,这三条线段能够构成一个直角三角形 . 12.在△ 中, c , c ,⊥于点,则 _______.13.在△ 中,若三边长分别为 9、 12 、15,则以两个这样的三角形拼成的长方形的面积为 __________.14.如图,在 Rt △中,,均分,交于点,且,,则点到的距离是 ________.15. 有一组勾股数,知道此中的两个数分别是17 和 8,则第三个数是 .16.若一个直角三角形的一条直角边长是,另一条直角边长比斜边长短,则该直角三角形的斜边长为________.17.如图,全部的四边形都是正方形,全部的三角形都是直角三角形,此中最大的正方形的边长为7 c,则正方形的面积之和为___________c2.18.如图,学校有一块长方形花园,有很少量人为了避开拐角走“捷径” ,在花园内走出了一条“路” ,他们只是少走了__ ______ 步路(假定 2 步为 1 ),却踩伤了花草.三、解答题(共46 分)19. (6 分)若△三边长知足以下条件,判断△能否是直角三角形,假如,请说明哪个角是直角.(1) ;(2) .20.( 6 分)在△ 中,,,.若,如图①,依据勾股定理,则 . 若△ 不是直角三角形,如图②和图③,请你类比勾股定理,试猜想与的关系,并证明你的结论.21.( 6 分)若三角形的三个内角的比是,最短边长为1,最长边长为 2.求:( 1)这个三角形各内角的度数;(2)此外一条边长的平方.22.( 7 分)如图,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部 8 处,已知旗杆原长 16 ,你能求出旗杆在离底部多少米的地点断裂吗?23.( 7 分)察看下表:列举猜想3,4,55, 12,137, 24,25请你联合该表格及有关知识,求出的值 .24. ( 7 分)如图,折叠长方形的一边,使点落在边上的点处, c ,c,求:( 1)的长;( 2)的长 .25. ( 7 分)如图,长方体中,,,一只蚂蚁从点出发,沿长方体表面爬到点,求蚂蚁如何走最短,最短行程是多少?第一章勾股定理检测题参照答案1.B 分析:在△ 中,由,,,可推出 . 由勾股定理的逆定理知此三角形是直角三角形,应选B.2.B 分析:设原直角三角形的三边长分别是,且后的三角形的斜边长为,即斜边长扩大到本来的,则扩大2 倍,故选B.3.C 分析: A. 不确立三角形能否是直角三角形,故 A 选项错误;B. 不确立第三边能否为斜边,故B选项错误;C.∠ C=90°,因此其对边为斜边,故 C 选项正确; D. ∠ B=90°,因此,故 D 选项错误.4.D 分析:设三个正方形的边长挨次为的三边构成一个直角三角形,因此,因为三个正方形,故,即.5.C 分析:由勾股定理可知 c ,再由三角形的面积公式,有,得 .6. D 分析:在 A 选项中,求出三角形的三个内角分别是30°,60°, 90°;在B, C 选项中,都切合勾股定理的条件,所以 A,B, C 选项中都是直角三角形. 在 D 选项中,求出三角形的三个角分别是因此不是直角三角形,应选D.7.C 分析:因为 Rt△中,,因此由勾股定理得. 因为,,因此 .8.C 分析:如图为圆柱的侧面睁开图,∵为的中点,则就是蚂蚁爬行的最短路径 . ∵,∴.∵,∴ ,即蚂蚁要爬行的最短行程是10 c .9.B分析:由,整理,得,即,因此,切合,因此这个三角形必定是直角三角形.10.B分析:由,得,因此△是直角三角形,且是斜边,因此∠ B=90°,从而互余的一对角是∠与∠ .11. c或13 c分析:依据勾股定理,当12 为直角边长时,第三条线段长为;当 12 为斜边长时,第三条线段长为.12.15 c分析:如图,∵等腰三角形底边上的高、中线以及顶角的均分线三线合一,∴.∵,∴.∵ ,∴(c ).13.108分析:因为,因此△是直角三角形,且两条直角边长分别为9、12,则以两个这样的三角形拼成的长方形的面积为 .14.3 分析:如图,过点作于 .因为,,,因此.因为均分,,因此点到的距离.15.15分析:设第三个数是,①若为最长边,则,不是整数,不切合题意;②若 17 为最长边,则,三边是整数,能构成勾股数,切合题意,故答案为:15.16. 分析:设直角三角形的斜边长是,则另一条直角边长是.依据勾股定理,得,解得,则斜边长是.17.49分析:正方形 A,B, C, D 的面积之和是最大的正方形的面积,即49 .18.4分析:在Rt△ ABC中,,则,少走了(步).19.解:(1)因为,依据三边长知足的条件,能够判断△是直角三角形,此中∠为直角.(2)因为,因此,依据三边长知足的条件,能够判断△ 是直角三角形,此中∠为直角.20. 解:如图①,若△ 是锐角三角形,则有 . 证明以下:过点作,垂足为,设为,则有 . 在 Rt △ ACD中,依据勾股定理,得 AC2 CD2=AD2,即 b2 x2= AD2. 在 Rt △ABD 中,依据勾股定理,得 AD2=AB2 BD2,即 AD2= c2 (a x)2 ,即,∴.∵,∴,∴.如图②,若△是钝角三角形,为钝角,则有.证明以下:过点作,交的延伸线于点.设为,在 Rt △BCD 中,依据勾股定理,得,在Rt△ ABD 中,依据勾股定理,得AD2+ BD2= AB2,即.即 .∵,∴,∴.21.解:(1)因为三个内角的比是,因此设三个内角的度数分别为 .由,得,因此三个内角的度数分别为.(2)由( 1)知三角形为直角三角形,则一条直角边长为 1,斜边长为 2.设此外一条直角边长为,则,即.因此此外一条边长的平方为 3.22.剖析:旗杆折断的部分,未折断的部分和旗杆顶部离旗杆底部的部分构成了直角三角形,运用勾股定理可将折断的地点求出.解:设旗杆未折断部分的长为,则折断部分的长为,依据勾股定理, 得,解得:,即旗杆在离底部 6 处断裂.23. 剖析:依据已知条件可找出规律;依据此规律可求出的值.解:由 3, 4, 5:;5, 12,13:;7, 24,25: .故,,解得,,即.24.剖析:( 1)因为△ 翻折获得△ ,因此,则在 Rt △中,可求得的长,从而的长可求;(2)因为,可设的长为,在 Rt △中,利用勾股定理求解直角三角形即可.解:( 1)由题意 , 得 (c) ,在Rt △中,∵ ,∴ (c) ,∴(c ).( 2)由题意 , 得,设的长为,则 .在 Rt △中,由勾股定理 , 得,解得,即的长为 5 c .25.剖析:要求蚂蚁爬行的最短行程,需将长方体的侧面睁开,从而依据“两点之间线段最短”得出结果.解:如图(1),把长方体剪开,则成长方形,宽为,长为,连结,则构成直角三角形,由勾股定理, 得.如图(2),把长方体剪开,则成长方形,宽为,长为,连结,则构成直角三角形,同理,由勾股定理, 得 .∴蚂蚁从点出发穿过抵达点行程最短,最短行程是5.来。
北师大数学八年级上册第1章《勾股定理》单元测试卷含答案解析
2018-20佃学年度北师大版数学八年级上册第1章《勾股定理》单元测试卷考试范围:第1章《勾股定理》;考试时间:100分钟;满分:120分题号-一一 二二二 -三总分得分第I 卷(选择题)评卷人得分一 •选择题(共10小题30分)1 •以下列各组线段为边作三角形,能构成直角三角形的是( A. 2, 3, 4 B. 6, 8, 10 C . 5, 8, 13 D. 12, 13, 142•用四个边长均为a b 、c 的直角三角板,拼成如图中所示的图形,贝U 下列结3.勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有 若勾 三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成 的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,/BAC=90, AB=6, AC=8,点D , E , F , G , H , I 都是矩形KLMJ 的边上,则矩形 KLMJ 的面积为()D . c= (a+b ) c 2=a 2 - 2ab+b 2JA. 360B. 400C. 440D. 4844 •如图,甲是第七届国际数学教育大会(简称ICME〜7)的会徽,会徽的主体图案是由如图乙的一连串直角三角形演化而成的其中OAl=A l A2=A2A3=・・=AA8=1 , 如果把图乙中的直角三角形继续作下去,那么OA i, OA2,…OA5这些线段中有多少条线段的长度为正整数()圏甲圏匕A. 3B. 4C. 5D. 65. 下列说法中正确的是()A. 已知a, b, c是三角形的三边,则a2+b2=c2B. 在直角三角形中两边和的平方等于第三边的平方C. 在RgABC中,/ C=90°,所以a2+b2=c?D. 在Rt A ABC中,/ B=90°,所以a2+b2=c?6. 如图,在正方形网格中,每个小正方形的方格的边长均为1,则点A到边BC 的距离为()D. 3 77. 满足下列条件的△ ABC,不是直角三角形的是()A. b2- c?=a2B. a:b: c=3: 4: 5C.Z C=Z A-Z BD.Z A:/ B:Z C=9: 12: 158 •某中学旁边有一块三角形空地,为了保持水土,美化环境,全校师生一齐动手,在空地的三条边上栽上了树苗(如图)•已知三边上的树苗数分别为50、14、48,空地的三个角均有一棵树,且每条边上的树苗株距均为1米,那么这块空地的形状为()A.锐角三角形B•钝角三角形C.直角三角形D•不能确定9 •长方形门框ABCD中, AB=2m, AD=1.5m.现有四块长方形薄木板,尺寸分别是:①长1.4m,宽1.2m;②长2.1m,宽1.7m;③长2.7m,宽2.1m;④长3m,宽2.6m•其中不能从门框内通过的木板有()A. 0块B. 1块C. 2块D. 3块10.如图铁路上A,B两点相距40千米,C, D为两村庄,DA丄AB,CB丄AB,垂足分别为A和B, DA=24千米,CB=16千米.现在要在铁路旁修建一个煤栈E, 使得C, D两村到煤栈的距离相等,那么煤栈E应距A点()A一■■CA. 20千米B. 16千米C. 12千米D.无法确定第U卷(非选择题).填空题(共10小题30 分)11 •已知直角三角形的三边分别为6 8、x,则x __________ .12•如图,矩形ABCD中,AB=8, BC=4,将矩形沿AC折叠,点D落在点D'处, 则重叠部分△ AFC的面积为___________ .D113. 如图,在△ ABC中,/ C=90°, AC=2,点D 在BC上,/ ADC=2Z B, AD=孑, 则BC的长为 ______ .14. 观察下列式子:当n=2 时,a=2X 2=4, b=22- 1=3, c=22+1=5n=3 时,a=2x 3=6, b=32- 1=8, c=32+1=10n=4 时,a=2x 4=8, b=42-仁15, c=4^+1=17…根据上述发现的规律,用含n (n》2的整数)的代数式表示上述特点的勾股数a= ______ , b= ______ , c= _____ .15. _____________________________________________________________ 三角形的三边长a,b,c满足2ab=( a+b)2- c2,则此三角形的形状是_____________ 三角形.16. 已知一个三角形的三条边的长分别为=「和•—,那么这个三角形的最大内角的大小为______ 度.17. 如图,在四边形ABCD中,/ C=90°, AB=12cm, BC=3cm CD=4cm AD=13cm.求四边形ABCD的面积= _____ cm2.18. 如图,在一次测绘活动中,某同学站在点A的位置观测停放于B、C两处的小船,测得船B在点A北偏东75°方向150米处,船C在点A南偏东15°方向120米处,则船B与船C之间的距离为________ 米(精确到0.1m).19. 上午8时,一条船从海岛A出发,以15海里/时的速度向正北航行,10时到达海岛B处,从A、B望灯塔C,测得/ BAC=60,点C在点B的正西方向,海岛B与灯塔C之间的距离是_______ 海里.20. ________ 如图是一段楼梯,/ A=30。
北师大版2019-2020八年级数学上册第一章勾股定理单元测试题4(基础 附答案)
北师大版2019-2020八年级数学上册第一章勾股定理单元测试题4(基础附答案)1.以下列各组数为边长,能构成直角三角形的是()A.5、6、7 B.10、8、4 C.7、24、25 D.9、15、17 2.如图,Rt△ABC中,∠ACB=90°,AC=3,AB=5,D为AB边上一动点,连接CD,△ACD与△A′CD关于直线CD轴对称,连接BA′,则BA′的最小值为()A.B.1 C.D.3.如图,直角△ABC的周长为24,且AB:AC=5:3,则BC=( )A.6 B.8 C.10 D.124.如图:已知△ABC为直角三角形,分别以直角边AC、BC为直径作半圆AmC和BnC,以AB为直径作半圆ACB,记两个月牙形阴影部分的面积之和为S1,△ABC的面积为S2,则S1与S2的大小关系为()A.S1>S2B.S1<S2C.S1=S2D.不能确定5.如图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,三个圆的面积分别记为S1,S2,S3,则S1,S2,S3之间的关系是()A.B.C.D.无法确定6.葛藤是一种多年生草本植物,为获得更多的雨露和阳光,其茎蔓常绕着附近的树干沿最短路线盘旋而上.如果把树干看成圆柱体,它的底面周长是50cm,当一段葛藤绕树干盘旋2圈升高为2.4m时,这段葛藤的长是()m.A.3 B.2.6 C.2.8 D.2.57.设三角形的三边长分别等于下列各组数,能构成直角三角形的是()A.,,B.,,C.,,D.4,5,68.如图,在中,AD⊥BC于D,AB=3,DB=2,DC=1,则AC等于()A.6 B.C.D.49.如图,在△ABC和△ACD中,∠B=∠D,tanB=,BC=5,CD=3,∠BCA=90°﹣∠BCD,则AD=_____.10.△ABC中,AB=10,BC=16,BC 边上的中线AD=6,则AC= ______.11.王师傅在操场上安装一副单杠,要求单杠与地面平行,杠与两撑脚垂直,如图所示,撑脚长AB,DC为3 m,两撑脚间的距离BC为4 m,则AC=____m就符合要求.12.如图,已知直线a∥b,a,b之间的距离为4,点P到直线a的距离为4,点Q到直线b的距离为2,PQ=2.在直线a上有一动点A,直线b上有一动点B,满足AB⊥b,且P A+AB+BQ最小,此时P A+BQ=________.13.三角形的边长之比为:①1.5∶2∶2.5;②4∶7.5∶8.5;③1∶2;④3.5∶4.5∶5.5.其中可以构成直角三角形的有___________组.14.如图,正方体每个侧面的面积为平方米,用经过,,三点的平面截这个正方体,则所得的切面的周长是________米.15.如图,一棵大树在离地面9米高的B处断裂,树顶A落在离树底BC的12米处,则大树断裂之前的高度为米.16.课间,小聪拿着老师的等腰直角三角板玩,不小心掉到两墙之间(如图),,,从三角板的刻度可知,小聪很快就知道了砌墙砖块的厚度的平方(每块砖的厚度相等)为________.17.一架长25米的云梯,斜靠在一面墙上,梯子底端离墙7米,(1)求梯子顶端到地面的距离;(2)如果梯子的顶端下滑4米,那么云梯的底端在水平方向将滑多少米?18.小烨在探究数轴上两点间距离时发现:若两点在轴上或与轴平行,两点的横坐标分别为,则两点间距离为;若两点在轴上或与轴平行,两点的纵坐标分别为,则两点间距离为.据此,小烨猜想:对于平面内任意两点,两点间的距离为.(1)请你利用下图,试证明:;(2)若,试在轴上求一点,使的距离最短,并求出的最小值和点坐标.19.如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,分别按下列要求画以格点为顶点三角形和平行四边形.(1)三角形三边长为4,3,;(2)平行四边形有一锐角为45°,且面积为6.20.4个全等的直角三角形的直角边分别为a,b,斜边为c.现把它们适当拼合,可以得到如图所示的图形,利用这个图形可以验证勾股定理,你能说明其中的道理吗?请试一试.21.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A的正前方60米处的C点,过了5秒后,测得小汽车所在的B点与车速检测仪A 之间的距离为100米.求BC间的距离;这辆小汽车超速了吗?请说明理由.22.一个零件的形状如图所示,工人师傅按规定做得∠B=90°,AB=3,BC=4,CD=12,AD=13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?23.如图,在△ABC中,AC=6,BC=8,DE是△ABD的边AB上的高,且DE=4,AD=,BD=,求△ABC的边AB上的高.24.如图,在5×5的方格纸中,每一个小正方形的边长都为1。
北师大版八年级上册《第一章勾股定理》单元测试(含答案)
八年级数学勾股定理单元测试(时间: 100 分钟总分: 120 分)班级学号姓名得分一、相信你必定能选对!(每题 4 分,共 32 分)1. 三角形的三边长分别为6, 8, 10,它的最短边上的高为 ( )A . 6 B. C. D. 82. 下边几组数 : ① 7, 8, 9;② 12, 9, 15;③ m2 + n2, m2– n2, 2 mn( m, n 均为正整数 , m n);④ a 2, a 2 1, a2 2 .此中能构成直角三角形的三边长的是( )A. ①②B. ②③C. ①③D. ③④3. 三角形的三边为a、 b、 c,由以下条件不可以判断它是直角三角形的是()A .a: b: c=8∶16∶ 17B . a2- b2 =c2C.a2=(b+c)(b-c)b) 2 c 2 D . a: b: c =13∶ 5∶ 124. 三角形的三边长为(a 2ab ,则这个三角形是( )A . 等边三角形 B. 钝角三角形 C. 直角三角形 D. 锐角三角形 .5.已知一个直角三角形的两边长分别为 3 和 4,则第三边长是()A .5 B.25 C.7 D.5或76.已知 Rt△ ABC 中,∠ C=90°,若 a+b=14cm,c=10cm,则 Rt △ABC 的面积是()A. 24cm 2B. 36cm 2C. 48cm2D. 60cm27.直角三角形中向来角边的长为9,另两边为连续自然数,则直角三角形的周长为()A .121 B.120 C. 90 D.不可以确立8.下学此后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40 米 / 分,小红用15 分钟到家,小颖20 分钟到家,小红和小颖家的直线距离为()A .600 米 B. 800 米 C. 1000 米 D. 不可以确立二、你能填得又快又对吗?(每题 4 分,共 32 分)9. 在△ ABC 中,∠ C=90°, AB = 5,则AB2 + AC2 +BC2 =_______ .10. 如图,是 2002 年 8 月北京第 24 届国际数学家大会会标,由 4 个全等的直角三角形拼合而成 . 假如图中大、小正方形的面积分别为52 和 4,那么一个直角三角形的两直角边的和等于.60A0 B21 C 06140第 10 题图第 13 题图第14题图第15题图11.直角三角形两直角边长分别为 5 和 12,则它斜边上的高为_______.12.直角三角形的三边长为连续偶数,则这三个数分别为__________.13.如图,一根树在离地面9 米处断裂,树的顶部落在离底部12 米处.树折断以前有 ______米.14.如下图,是一个外轮廓为矩形的机器部件平面表示图,依据图中标出尺寸(单位:mm)计算两圆孔中心A和B的距离为.15.如图,梯子AB 靠在墙上,梯子的底端 A 到墙根 O 的距离为 2 米,梯子的顶端 B 到地面的距离为7 米.现将梯子的底端 A 向外挪动到 A ’,使梯子的底端 A ’到墙根O 的距离等于 3 米,同时梯子的顶端 B 降落至 B ’,那么 BB ’的值:①等于1米;②大于1 米 5;③小于 1 米. 此中正确结论的序号是.16. 小刚准备丈量河水的深度, 他把一根竹竿插到离岸边 1.5m 远的水底 , 竹竿超出水面0.5m,把竹竿的顶端拉向岸边, 竿顶和岸边的水面恰好相齐, 河水的深度为.三、仔细解答,必定要仔细哟!(共 72 分)17.( 5 分)右图是由16 个边长为 1 的小正方形拼成的,随意连结这些小正方形的若干个极点,可获得一些线段,试分别画出一条长度是有理数的线段和一条长度是无理数的线段.18.( 6 分)已知 a、b、c 是三角形的三边长,a= 2n2+ 2n,b= 2n+ 1, c= 2n2+ 2n+1(n 为大于 1 的自然数) , 试说明△ ABC 为直角三角形 .19.( 6 分)小东拿着一根长竹竿进一个宽为 3 米的城门,他先横着拿不进去,又竖起来拿,结果竿比城门高 1 米,当他把竿斜着时,两头恰好顶着城门的对角,问竿长多少米?20. ( 6 分)如下图 , 某人到岛上去探宝,从 A 处登岸后先往东走4km ,又往北走 1.5km ,遇到阻碍后又往西走 2km ,再折回向北走到 4.5km 处往东一拐,仅走0.5km 就找到宝藏。
2019-2020学年八年级数学上册 1 勾股定理单元检测2(含解析)(新版)北师大版.doc
2019-2020学年八年级数学上册 1 勾股定理单元检测2(含解析)(新版)北师大版一、选择题1.下列各组数中,是勾股数的是() A.5,6,7 B. 40,41,9 C.13,1,22D.0. 2,0. 3,0. 42.下列各组线段能构成直角三角形的是( )A.a b c ==B.1,a b c ===C. a = 6,b=7,c=8D. a=2,b=3,c = 43.图是由四个全等的直角三角形与中间一个小正方形拼成的大正方形.每一个直角三角形的两条直角边的长分别是2 和4,则中间的小正方形与大正方形的面积之比是()A.12B.14C.15D.1104.已知△ABC 的三边长分别为a ,b,c ,且满足()()22171580a b c -+-+-=,则 △ABC ( ) A.是以a 为斜边长的直角三角形B.是以b 为斜边长的直角三角形C.是以c 为斜边长的直角三角形D.不是直角三角形5.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要( ).A.450a 元B.225a 元C.150a 元D.300a 元6.如图,Rt △ABC 中,∠C =90°,CD ⊥AB 于点D ,AB =13,CD =6,则AC +BC 等于( ).A.5B.135C.1313D.597.如图所示,甲、乙两张不同的长方形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则() A.甲、乙都可以B.甲、乙都不可以C.甲不可以,乙可以D.甲可以,乙不可以二、填空题8.若等边三角形的边长为2,则它的面积为______.9.如图,B ,C 是河岸边两点,A 是对岸岸边一点,测得∠ABC =45°,∠ACB =45°,BC =60米,则点A 到岸边BC 的距离是______米.10.命题“如果a>b,那么ac>bc(c≠0)”的逆命题为(“如果…那么……”的形式) . 11.如图,在 Rt △ABC 中,∠ACB = 90°,AC=3, BC=4,以点A 为圆心,AC 的长为半径画弧,交AB 于点D ,则BD= .12.如图,在平面直角坐标系中,长方形OABC的顶点A,C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5 的等腰三角形时,点P的坐标为 .13. 如图所示,已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边画第2 个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边画第3个等腰Rt△ADE,…,以此类推,第n 个等腰直角三角形的斜边长是 .14.如图所示,有一块直角三角形纸片,两直角边AB=6,BC=8,将直角边AB折叠使它落在斜边AC上,折痕为AD,则BD=______.15.如图,AB=5,AC=3,BC边上的中线AD=2,则△ABC的面积为______.三、解答题16.如图,已知一块四边形草地ABCD,其中∠A=45°,∠B=∠D=90°,AB=20m,CD=10m,求这块草地的面积.17.已知:△ABC中,AB=15,AC=13,BC边上的高AD=12,求BC.18.(厦门)如图,在△ABC中,AB=AC,点E,F分别是边AB,AC的中点,点D在边BC上,若DE=DF,AD=2,BC=6,求四边形AEDF的周长.19. 如图,已知AB=5,BC=12,CD=13, DA=10,AB丄BC,求四边形ABCD的面积.20. 如图,长方形纸片ABCD沿对角线A C 折叠,设点D落在点D'处,BC交AD'于点E,AB=6 cm,BC=8 cm,求阴影部分的面积.21.如图,长方形ABCD在平面直角坐标系中,边BC在x轴的正半轴上,B点的坐标为(m,0),AB=a,BC=b,且满足8b=.(1) 求a,b的值并用m表示出点D的坐标.(2) 连接OA,AC,若△OAC为等腰三角形,求m的值•(3) △OAC能为直角三角形吗?若能,求出m的值;若不能,请说明理由.22.如图所示,有两种形状不同的直角三角形纸片各两块,其中一种纸片的两条直角边长都为3,另一种纸片的两条直角边长分别为1和3.图1、图2、图3是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.图1 图2 图3(1)请用三种方法(拼出的两个图形只要不全等就认为是不同的拼法)将图中所给四块直角三角形纸片拼成平行四边形(非矩形),每种方法要把图中所给的四块直角三角形纸片全部用上,互不重叠且不留空隙,并把你所拼得的图形按实际大小画在图1、图2、图3的方格纸上(要求:所画图形各顶点必须与方格纸中的小正方形顶点重合;画图时,要保留四块直角三角形纸片的拼接痕迹);(2)三种方法所拼得的平行四边形的面积是否是定值?若是定值,请直接写出这个定值;若不是定值,请直接写出三种方法所拼得的平行四边形的面积各是多少;(3)三种方法所拼得的平行四边形的周长是否是定值?若是定值,请直接写出这个定值;若不是定值,请直接写出三种方法所拼得的平行四边形的周长各是多少.参考答案1. B 解析勾股数为正整数,排除C,D,52+62≠72,402+92=412,故A不正确,B正确.2. B 解析 A选项,()2223+≠222∴+≠,故不能构成直角三角形;B选项,(222===11,2,3222∴+=,故能构成直角三角形;1C选项,∵62=36,72=49,82=64,∴62+72≠82,故不能构成直角三角形;D选项,∵22=4,32=9,42=16,∴22+32≠42,故不能构成直角三角形,故选B.3. C 解析大正方形的边长就是直角三角形的斜边长,又∵斜边长为=,∴S大正方形=()2=20.又∵小正方形的边长为4-2=2,故其面积为4,∴S小正方形:S大正方形=4:20=1:5.4. A 解析∵(a-17)2+│b-15│+(c-8)2=0,(a-17)2≥0,│b-15│≥0,(c-8)2≥0,∴a-17-0,b-15-0,c-8-0,∴a-17,b-15,c-8.又∵82+152=289=172,∴ΔABC是以a为斜边长的直角三角形.5.C6.B7. A 解析∵甲纸片的面积为2,沿虚线将其剪成四个全等的等腰直角三角形,其中直角边长为1,斜边长为,故甲纸片剪开后,可以拼成一个边长为,面积为2的正方形,,如图(1);∵乙纸片面积为5,沿虚线将其剪成四个全等的直角三角形与一个边长为1的小正方形,其中直角三角形的直角边长分别为1,2,∴5个小图形可以拼成一个长为的正方形,且边长为1的小正方形恰好放在中间,如图(2),故选项A正确.8..39.30.10.如果ac>bc(c≠0),那么a>b 解析根据命题写出它的逆命题,即原命题的题设是逆命题的结论,原命题的结论是逆命题的题设.AB.11. 2 解析由勾股定理得5又∵AD=AC=3,∴BD=AB-AD=5-3=2.12. (3,4)或(2,4)或(8,4)解析要使ΔODP是等腰三角形,需分情况讨论。
北师大版2019-2020八年级数学上册第一章勾股定理单元测试题2(培优 附答案)
北师大版2019-2020八年级数学上册第一章勾股定理单元测试题2(培优附答案)1.如图,设正方体ABCD﹣A1B1C1D1的棱长为1,黑、白两个甲壳虫同时从A点出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是:白甲壳虫爬行的路线是:那么当黑、白两个甲壳虫各爬行完第2008条棱分别停止在所到的正方体顶点处时,它们之间的距离是()[Failed to download image :http://192.168.0.10:8086/QBM/2018/6/4/1959595487502336/null/STEM/846c38f1abae464ca a886400e123363c.png]A.0 B.1 C.√2D.√32.已知在Rt△ABC中,∠C=90°,a+b=14,c=10,则△ABC的面积为() A.48 B.24 C.96 D.203.在直角坐标系中,点P(-2,3)到原点的距离是()A.B.C.D.24.如图,Rt△ABC中,∠B=90,AB=9,BC=6,,将△ABC折叠,使A点与BC 的中点D重合,折痕为MN,则线段AN的长等于( )A.5 B.6 C.4 D.35.以下各组数为边长,不能组成直角三角形的是().A.1.5,2,2.5 B.40,50,60 C.7,25,24 D.,1,6.下列各组线段中的三个长度:①9,12,15;②7,24,25;③32,42,52;④3a,4a,5a(a>0);⑤m2﹣n2,2mn,m2+n2(m,n为正整数,且m>n)其中可以构成直角三角形的有()A.5组B.4组C.3组D.2组7.(1)△ABC的三边的比为3∶4∶5;(2)△A′B′C′的三边的比为5∶12∶13;(3)△PMN 的三个内角的比为1∶2∶3;(4)△CDE的三个内角的比为1∶1∶2.以上四个三角形是直角三角形的有()A.(1)(2) B.(1)(2)(3) C.(1)(2)(4) D.(1)(2)(3)(4)8.下列四组线段中,可以构成直角三角形的是()A.1B.2,3,4 C.1,2,3 D.4,5,69.在△ABC中,∠C=90°,若a+b=7,△ABC的面积等于6,则边长c=_________. 10.如图ABC与ADE都是以A为直角顶点的等腰直角三角形,DE交AC于点AB=,AD=,当CEF是直角三角形时,则BD的长为__________.F,若511.在平面直角坐标系中,点(-3,1)到坐标原点的距离是_____.12.甲、乙两位探险者在沙漠进行探险,某日早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙两人相距_____千米.13.如图,将边长为2的等边三角形沿x轴正方向连续翻折2016次,依次得到点P1,P2,P3,…,P2016,则点P1的坐标是________,点P2016的坐标是________.14.有两棵树,如图,一棵高13米,另一棵高8米,两树相距12米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了_______米.15.如图,长为8 cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3 cm到点D,则橡皮筋被拉长了_____ cm.16.若△ABC的三边a,b,c满足条件:0,则△ABC 是________三角形.17.如图,某沿海城市A接到台风警报,在该城市正南方向260 km的B处有一台风中心,沿BC方向以15 km/h的速度向C移动,已知城市A到BC的距离AD=100 km,那么台风中心经过多长时间从B点移动到D点?如果在距台风中心30 km的圆形区域内都将受到台风的影响,正在D点休息的游人在接到台风警报后的几小时内撤离才可以免受台风的影响?18.如图所示,在△ABC中,AB=20,AC=12,BC=16,D为BC边上一点,把△ABC 沿AD折叠,使AB落在直线AC上,求重叠部分(阴影部分)的面积.19.某住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA=13米,且AB⊥BC,求这块草坪的面积.20.如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.21.如图,在方格纸中,线段AB的两个端点都在小方格的格点上,分别按下列要求画格点四边形.在图甲中画一个以AB为对角线的平行四边形.在图乙中画一个以AB为边的矩形.22.如图,在中,,是边的中点,以为腰向外作等腰直角三角形,,连接,交于点,交于点,连接.(1)若,则;(2)求证: ;(3)若,则.23.如果三角形ABC三边长为a,b,c,满足|a﹣5|++(13﹣c)2=0,试判断该三角形的形状.24.已知a、b、c为ABC的三条边,且满足=10a+24b+26c-338。
2019-2020学年度八年级数学(北师大版)上册第一章《勾股定理》单元试卷(有答案)
2019-2020学年度八年级数学(北师大版)上册第一章《勾股定理》单元试卷(有答案)时间:100分钟 满分:120分班级____________姓名____________成绩________________题号 一二三总分得分一.选择题(本大题共12小题,共36分,每小题只有一个正确选项)1.直角三角形的两直角边分别为a ,b ,斜边为c ,则下列关于a ,b ,c 三边的关系式不正确的是( )A .b 2=c 2﹣a 2B .a 2=c 2﹣b 2C .b 2=a 2﹣c 2D .c 2=a 2+b 22.如图,点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .803.在Rt △ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是( ) A .536 B . 2512C .49 D .433 4.若一个三角形的三边长的平方分别为:32,42,x 2则此三角形是直角三角形的x 2的值是 A.42 B. 52 C.7 D.52或7 5.如图满足下列条件的△ABC ,不是直角三角形的是A.b 2=c 2-a 2B.a ∶b ∶c=3∶4∶5C.∠C=∠A -∠BD.∠A ∶∠B ∶∠C=12∶13∶15 6. 如果△ABC 的三边分别为m 2-1,2 m ,m 2+1(m >1)那么A.△ABC 是直角三角形,且斜边长为m 2+1 B.△ABC 是直角三角形,且斜边长2mC.△ABC 是直角三角形,但斜边长需由m 的大小确定D.△ABC 不是直角三角形7.如图,一个梯子AB 长2.5米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 距离为1.5米,梯子滑动后停在DE 的位置上,测得BD 长为0.9米,则梯子顶端A 下落了( )A .0.9米B .1.3米C .1.5米D .2米 8.小明从家走到邮局用了8分钟,然后右转弯用同样的速度走了6分钟到达书店(如图所示).已知书店距离邮局660米,那么小明家距离书店( )A .880米B .1100米C .1540米D .1760米9.如图,盒内长、宽、高分别是6cm 、3cm 、2cm ,盒内可放木棒最长的长度是( )A .6cmB .7cmC .8cmD .9cm10.如图,长方体的底面边长分别为2cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈达到点B ,那么所用细线最短需要( )A .11cmB .342cmC .(8+102)cmD .(7+53)cm11.如图,将△ABC 放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么△ABC 中BC 的高是( )A .210 B .410 C .510 D .5 12.如图是由7个形状、大小完全相同的正六边形组成的网络,正六边形的顶点称为格点,△ABC 的顶点都在格点上,AB 边如图所示,则使△ABC 是直角三角形的点C 有( )A .6个B .8个C .10个D .12个 二.填空题(本大题共6小题,每题4分,共24分)13. 如图,在△ABC 中,∠ABC=90°,分别以BC 、AB 、AC 为边向外作正方形,面积分别记为S 1、S 2、S 3,若S 2=4,S 3=6,则S 1=______.14.如图,由四个全等的直角三角形拼成“赵爽弦图”.Rt△ABF中,∠AFB=90°,AF=4,AB=5.四边形EFGH的面积是______.15.若一个三角形的三边长分别是m+1,m+2,m+3,则当m= ,它是直角三角形。
北师大版2019-2020八年级数学上册第一章勾股定理单元测试题1(基础 附答案)
北师大版2019-2020八年级数学上册第一章勾股定理单元测试题1(基础附答案)1.以下列各组数为边长,能组成直角三角形的是()A.8、15、7 B.8、10、6 C.5、8、10 D.8、39、402.下列各组数中,以它们为边长的线段不能构成直角三角形的是()A.B.C.D.3.有一个三角形两边长为3和4,要使三角形为直角三角形,则第三边长为()A.5 B.C.5或D.无法确定4.△ABC的三边长分别为a,b,c,下列条件:①∠A=∠B-∠C;②∠A:∠B:∠C=3:4:5;③a2=(b+c)(b-c);④a:b:c=5:12:13其中能判断△ABC是直角三角形的个数有()A.1个B.2个C.3个D.4个5.如图,一根长5米的竹竿AB斜靠在一竖直的墙AO上,这时AO为4米,如果竹竿的顶端A沿墙下滑1米,竹竿底端B外移的距离BD()A.等于1米B.大于1米C.小于1米D.以上都不对6.如图,已知每个小方格的边长为1,A、B、C三点都在小方格的顶点上,则点C到AB所在直线的距离等于()AB C D7.分别以下列各组数一个三角形的三边长,其中能构成直角三角形的是()A B.1 2,C.111345,,D.2,3,48.如图,已知正方形ABCD边长为1,连接AC、BD,CE平分∠ACD交BD于点E,则DE长为()A.2-2 B.-1 C.-1 D.2-9.如图,在△ABC中,AB=15cm,AC=13cm,BC=14cm,则△ABC的面积为________cm2.10.如图,正方形ABCD的边长为2cm,正方形AEFG的边长为1cm. 正方形AEFG绕点A 旋转的过程中,线段CF的长的最小值为_______cm.11.小河两岸边各有一棵树,分别高30尺和20尺,两树的距离是50尺,每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见水面上游出一条鱼,它们立刻飞去抓鱼,速度相同,并且同时到达目标.则这条鱼出现的地方离开比较高的树的距离为___________尺.12.根据下图中的数据,确定a=_______,B=_______,x=_______.13.一个长方体同一顶点的三条棱长分别是3、4、12,则这个长方体内能容下的最长的木棒为_______.14.如图,在四边形ABCD中,∠B=135°,∠C=120°,AB=,BC=4 ,CD=,则AD边的长为__.15.若直角三角形三边长分别为6cm,8cm和Xcm,则X=_________.16.如图,矩形OABC中,AB=1,AO=2,将矩形OABC绕点O按顺时针转90o,得到矩形OA,B,C,,则BB,=_______.17.(如图,等腰直角三角形ABC中,点D在斜边BC上,以AD为直角边作等腰直角三角形ADE.(1)求证:△ABD≌△ACE;(2)求证:BD2+CD2=2AD2.18.如图,公路PQ和公路MN交于点P,且∠NPQ=45°,公路PQ上有一所学校A,AP =80米,现有一拖拉机在公路MN上以10米∕秒的速度行驶,拖拉机行驶时周围100米以内会受到噪声的影响,请判断拖拉机在行驶过程中是否对学校会造成影响,并说明理由,如果造成影响,求出造成影响的时间.19.在Rt△ABC中,∠C=90°,AC=20cm,BC=15cm,现有动点P从点A出发,沿AC向点C方向运动,动点Q从点C出发,沿线段CB也向点B方向运动,如果点P的速度是4cm/秒,点Q的速度是2cm/秒,它们同时出发,当有一点到达所在线段的端点时,就停止运动.设运动时间为t秒.求:(1)当t=3秒时,这时,P,Q两点之间的距离是多少?(2)若△CPQ的面积为S,求S关于t的函数关系式.(3)当t为多少秒时,以点C,P,Q为顶点的三角形与△ABC相似?20.已知:如图,四边形ABCD中,AB⊥BC,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.21.如图,牧童在A处放牛,其家在C处,A、C到河岸L的距离分别为AB=2km,CD=4km 且,BD=8km.(1)牧童从A处将牛牵到河边P处饮水后再回到家C,试确定P在何处,所走路程最短?请在图中画出饮水的位置(保留作图痕迹),不必说明理由.(2)求出(1)中的最短路程.22.如图,圆柱的底面周长是14cm,圆柱高为24cm,一只蚂蚁如果要沿着圆柱的表面从下底面点A爬到与之相对的上底面点B,需要爬行的最短距离是多少?23.如图所示是一块菜地,已知AD=8 m,CD=6 m,∠D=90°,AB=26 m,BC=24 m,求这块菜地的面积.24.求下列图形中阴影部分的面积.(1)如图1,AB=8,AC=6;(2)如图2,AB=13,AD=14,CD=2.参考答案1.B【解析】试题解析:A、82+72≠152,故不是直角三角形,故错误;B、62+82=102,故是直角三角形,故正确;C、52+82≠102,故不是直角三角形,故错误;D、82+32≠402,故不是直角三角形,故错误.故选B.2.B【解析】根据勾股定理的逆定理即可进行判断.∵,∴以3、4、5为边长的线段能构成直角三角形;∵,∴以2、3、4为边长的线段不能构成直角三角形;∵,∴以为边长的线段能构成直角三角形;∵,∴以7、24、25为边长的线段能构成直角三角形;故选B.3.C【解析】当第三边是斜边时,根据勾股定理得,第三边的长为;当第三边是直角边时,根据勾股定理得,第三边的长为.故选C.4.C【解析】【分析】根据三角形的内角和定理和勾股定理的逆定理分析判断即可.【详解】解:①∵∠A=∠B﹣∠C,∴∠A+∠C=∠B,∵∠A+∠B+∠C=180°,∴2∠B=180°,∴∠B =90°,∴△ABC 是直角三角形,∴①正确;②a 2=(b+c )(b ﹣c ),∴a 2=b 2﹣c 2,∴a 2+c 2=b 2,∴△BAC 是直角三角形,∴②正确;③∵a :b :c =3:4:5,∴设a =3k ,b =4k ,c =5k ,∵a 2+b 2=25k 2,c 2=25k 2,∴a 2+b 2=c 2,∴△ABC 是直角三角形,∴③正确;故选:D .【点睛】直角三角形的判定是本题的考点,熟练运用勾股定理的逆定理和三角形的内角和定理是解题的关键,此类题型属于基础题.5.A【解析】223OB AB AO =-== ,4OB ==,431BD ∴=-= 米.故选A.6.B【解析】连接AB ,BC ,AC ,找到AC 中点D ,连接BD.设C 到AB 的距离为h ,小方格边长为1,∴,,∴△ABC 为等腰三角形,∴BD ⊥AC ,且,△ABC 的面积为S=12AC ⋅BD=4. 又∵△ABC 面积=12×AB×h=4, ∴h=8AB . 故选B.7.B【解析】根据勾股定理的立逆定理,∵2227+=> ,∴A 不符合;∵22212+= ,∴B 符合; ∵22211251341445⎛⎫⎛⎫⎛⎫+=> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴C 不符合; ∵22+32=13<42,∴D 不符合; 故选B.【点睛】如果三角形三边符合“222a b c +=”,那么这个三角形是直角三角形;则只需要计算每个选项中,较小的两边长的平方的和是否等于第三边长的平方.8.C 【解析】∵正方形ABCD 边长为1,, .设 .作 于点F.∵CE 平分∠ACD ,, , . ∵DF 2+EF 2=DE 2,解之得故选C.9.84 【解析】作CD AB ⊥ ,垂足为D ,设AD=x,则BD=15-x,根据勾股定理得: 2222AC AD BC BD -=- ,即()222213-1415x x =-- 解得: 3356,55x CD == ,则S=561158452⨯⨯= .故答案为84.10 【解析】如图,当当点F 在线段AC 上时,CF 最小.222AC == , AF ==,CF AC AF ∴=-==.11.20【解析】由题意得:如图所示:AB=20尺,DC=30尺,BC=50尺,设EC为x,则BE为(50-x),在Rt△ABE中,AE2=AB2+BE2=202+(50-x)2,在Rt△DEC中,DE2=DC2+EC2=302+x2,又∵AE=DE,∴x2+302=(50-x)2+202,解得:x=20,即这条鱼出现的地方离比较高的树的树根距离为20尺.故答案是:20.12.15;144;40.x==. 【解析】根据勾股定理可得:a;B=169+25=144;40 13.13【解析】根据勾股定理可推出,在长方体中,能容纳最长棱的计算公式是,根据公式代入数值可得:=13.14.【解析】试题解析:如图,过点A,D分别作AE,DF垂直于直线BC,垂足分别为E,F,由已知可得,,,于是过点A作AG⊥DF,垂足为G,则,,在Rt△ADG中,根据勾股定理得15.10或【解析】当6和8为直角边时,;当8为斜边时,;∴x的值为10或16.【解析】试题解析:如图所示:∵矩形OABC中,AB=1,AO=2,将矩形OABC绕点O按顺时针转90°,得到矩形OA′B′C,∴BD=3,B′D=1,则17.见解析【解析】试题分析:(1)通过证BA=CA,AD=AE,∠BAD=∠CAE,得出△ABD≌△ACE;(2)证CE=BD,DE2=2AD2,再在Rt△CDE中利用勾股定理即可.解:∵△ABC,△ADE是等腰直角三角形,∴∠BAC=∠DAE=90°,BA=CA,AD=AE,∠B=∠ACB=∠ADE=∠AED=45°,∴∠BAD+∠DAC=∠CAE+∠DAC,∴∠BAD=∠CAE.在△ABD与△ACE中,BA=CA,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE.(2)∵△ABD≌△ACE,∴∠ABD=∠ACE=45°,BD=CE.∴∠ECD=∠ACE+∠ACB=90°,∴CE2+CD2=DE2.∵△ADE是等腰直角三角形,∴DE2=AD2+AE2=2AD2.∴BD2+CD2=2AD2.18.受影响的时间为12秒.【解析】试题分析:过点A作AB⊥DP于点B,则AB是点A到道路MN的最短距离,结合已知条件求出AB 的长度为80米,由80<100可知,学校要受影响;再以点A为圆心,100米为半径作圆A 交MN于点C和点D,连接AD、CD,利用已知条件求出CD的长,用CD的长度除以10,可得受影响的时间.试题解析:作AB⊥DP于B,则AB为A到道路的最短距离,在Rt△APB中,∵∠NPQ=45°,∴∠PAB=∠NPQ=45°,∴BA=BP,∴BA2+BP2=AP2=()2,∴BA=BP=80,∵80小于100,∴有影响;以点A为圆心,100米为半径作圆A交MN于点C和点D,连接AD、CD,∴在Rt△ABD中,BD=(米),∵AC=AD,AB⊥CD,∴CB=BD=60,∴受影响的时间为:(60×2)÷10=12秒.19.(1)10cm ;(2)2204S t t =-;(3)3或4011 【解析】20.36.【解析】链接AC ,先根据勾股定理求出AC 的长度,再根据勾股定理的逆定理判断出△ACD 的形状,最后利用三角形的面积公式求解即可.解:连接AC ,在Rt △ABC 中,有AC 2=AB 2+BC 2=42+32=25,又AC>0,∴AC=5∵AC 2+CD 2=52+122=169=132=AD 2∴∠ACD=90°,S 四边形ABCD =AB×BC+AC×CD=36。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版八年级数学上册第一章勾股定理单元测试题一.选择题(共10小题,每小题3分,共30分)1.如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果EF=4,AH=12,那么AB等于()A.30 B.25 C.20 D.152.勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是()A.B.C.D.3.如图,在Rt△ABC中,∠ACB=90°,正方形AEDC,BCFG的面积分别为25和144,则AB 的长度为()A.13 B.169 C.12 D.54.如图所示,正方形ABGF和正方形CDBE的面积分别是100和36,则以AD为直径的半圆的面积是()A.4πB.8πC.12πD.16π5.下列长度的三根木棒首尾顺次连接,能组成直角三角形的是()A.1,2,3 B.4,6,8 C.6,8,10 D.13,14,156.在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件中不能说明△ABC是直角三角形的是()A.a=32,b=42,c=52B.a=9,b=12,c=15C.∠A:∠B:∠C=5:2:3 D.∠C﹣∠B=∠A7.下列各组数据中,能做为直角三角形三边长的是()A.1、2、3 B.3、5、7 C.32、42、52D.5、12、138.下列各组数据中,不是勾股数的是()A.3,4,5 B.5,7,9 C.8,15,17 D.7,24,259.如图,学校有一块长方形草地,有极少数人为了避开拐角走“捷径”,在草地内走出了一条“路”,他们仅仅少走了()米路,却踩伤了花草.A.1 B.2 C.5 D.1210.如图所示,有一个高18cm,底面周长为24cm的圆柱形玻璃容器,在外侧距下底1cm的点S 处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm的点F处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是()A.16cm B.18cm C.20cm D.24cm二.填空题(共8小题,每小题3分,共24分)11.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如下图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为.12.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C的面积和是9,则正方形D的边长.13.已知,点O为数轴原点,数轴上的A,B两点分别对应﹣3,3,以AB为底边作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为.14.如图,在△ABC中,BC=5,AC=12,AB=13,则S△ABC=.15.如图所示的网格是正方形网格,则∠PAB+∠PBA=°(点A,B,P是网格线交点).16.探索勾股数的规律:观察下列各组数:(3,4,5),(5,12,13),(7,24,25),(9,40,41)…,请写出第6个数组:.17.如图,一木杆在离地面1.5m处折断,木杆顶端落在离木杆底端2m处,则木杆折断之前的高为(m).18.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为dm.三.解答题(共7小题,共66分)19.如图是边长为1的正方形网格,下面是勾股定理的探索与验证过程,请补充完整:∵S1=,S2=,S3=,∴S1+S2=S3.即2+ 2=2.20.如图,在正方形网格中,每个小正方形的边长都是1,点A、B、C、D都在格点上.(1)线段AB的长是;(2)在图中画出一条线段EF,使EF的长为,并判断AB、CD、EF三条线段的长能否成为一个直角三角形三边的长?说明理由.21.如图,一块铁皮(图中阴影部分),测得AB=3,BC=4,CD=12,AD=13,∠B=90°.求阴影部分的面积.22.已知:整式A=(n2﹣1)2+(2n)2,整式B>0.尝试化简整式A.发现A=B2,求整式B.联想由上可知,B2=(n2﹣1)2+(2n)2,当n>1时,n2﹣1,2n,B为直角三角形的三边长,如图.填写下表中B的值:直角三角形三边n2﹣1 2n B勾股数组Ⅰ/ 8勾股数组Ⅱ35 /23.学校要对如图所示的一块地ABCD进行绿化,已知AD=4米,CD=3米,AD⊥DC,AB=13米,BC=12米.(1)若连接AC,试证明:△ABC是直角三角形;(2)求这块地的面积.24.小王与小林进行遥控赛车游戏,小王的赛车从点C出发,以4米秒的速度由西向东行驶,同时小林的赛车从点B出发,以3米秒的速度由南向北行驶(如图).已知赛车之间的距离小于或等于25米时,遥控信号会产生相互干扰,AC=40米,AB=30米.(1)出发3秒钟时,遥控信号是否会产生相互干扰?(2)出发几秒钟时,遥控信号将会产生相互干扰?25.如图,长方体的底面积为30cm2,长、宽、高的比为3:2:1,则:(1)这个长方体的长、宽、高分别是多少?(2)长方体的表面积和体积分别是多少?(3)若一只蚂蚁从顶点A沿长方体表面爬行到顶点B,直接写出从点A爬行到点B的最短路程是cm.参考答案一.选择题1.解:∵△ABH≌△BCG,∴BG=AH=12,∵四边形EFGH都是正方形,∴HG=EF=4,∴BH=16,∴在直角三角形AHB中,由勾股定理得到:AB===20.故选:C.2.解:“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如图所示:故选:B.3.解:AB==13,故选:A.4.解:∵在Rt△ABD中,∠ADB=90°,AB2=100,BD2=36,∴AD2=100﹣36=64,∴AD=8,∴以AD为直径的半圆的面积是π(AD)2=πAD2=8π.故选:B.5.解:A、12+22=5≠32,故不能组成直角三角形,错误;B、42+62≠82,故不能组成直角三角形,错误;C、62+82=102,故能组成直角三角形,正确;D、132+142≠152,故不能组成直角三角形,错误.故选:C.6.解:A、∵92+162≠252,∴不能构成直角三角形,故选项正确;B、∵92+122=152,∴能构成直角三角形,故选项错误;C、∵∠A:∠B:∠C=5:2:3,∠A+∠B+∠C=180°,∴最大角∠A=90°,∴能构成直角三角形,故选项错误;D、∵∠C﹣∠B=∠A,∴∠C=∠B+∠A,∴最大角∠C=90°,∴能构成直角三角形,故选项错误.故选:A.7.解:A、12+22≠32,所以以1、2、3为边不能组成直角三角形,故本选项不符合题意;B、32+52≠72,所以以3、5、7为边不能组成直角三角形,故本选项不符合题意;C、(32)2+(42)2≠(52)2,所以以32、42、52为边不能组成直角三角形,故本选项不符合题意;D、52+122=132,所以以5、12、13为边能组成直角三角形,故本选项符合题意;故选:D.8.解:A、32+42=52,能构成直角三角形,是整数,故选项错误;B、52+72≠92,不能构成直角三角形,故选项正确;C、82+152=172,构成直角三角形,是正整数,故选项错误;D、72+242=252,能构成直角三角形,是整数,故选项错误.故选:B.9.解:由题意可得,直角三角形的斜边为:=5,则他们仅仅少走了3+4﹣5=2(米).故选:B.10.解:如图展开后连接SF,求出SF的长就是捕获苍蝇充饥的蜘蛛所走的最短路径,过S作SE⊥CD于E,则SE=BC=×24=12cm,EF=18﹣1﹣1=16cm,在Rt△FES中,由勾股定理得:SF===20(cm),答:捕获苍蝇充饥的蜘蛛所走的最短路径的长度是20cm.故选:C.二.填空题11.解:如图所示:∵(a+b)2=21,∴a2+2ab+b2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=5,故答案为:512.解:根据勾股定理的几何意义得:S D=S A+S B+S C=9,可知,D的边长为=3.故答案为:3.13.解:∵△ABC为等腰三角形,OA=OB=3,∴OC⊥AB,在Rt△OBC中,OC===,∵以O为圆心,CO长为半径画弧交数轴于点M,∴OM=OC=,∴点M对应的数为±.故答案为:.14.解:由于AB2=BC2+AC2,∴△ABC是直角三角形,∴∠C=90°,∴S△ABC=×12×5=30,故答案为:3015.解:延长AP交格点于D,连接BD,则PD2=BD2=1+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,∴∠DPB=∠PAB+∠PBA=45°,故答案为:45.16.解:∵①3=2×1+1,4=2×12+2×1,5=2×12+2×1+1;②5=2×2+1,12=2×22+2×2,13=2×22+2×2+1;③7=2×3+1,24=2×32+2×3,25=2×32+2×3+1;④9=2×4+1,40=2×42+2×4,41=2×42+2×4+1;⑤11=2×5+1,60=2×52+2×5,61=2×52+2×5+1,则⑥13=2×6+1,2×62+2×6=84,2×62+2×6+1=85,故答案为:13,84,85.17.解:∵一木杆在离地面1.5m处折断,木杆顶端落在离木杆底端2m处,∴折断的部分长为=2.5,∴折断前高度为2.5+1.5=4(m).故答案为:4.18.解:三级台阶平面展开图为长方形,长为20dm,宽为(2+3)×3dm,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.设蚂蚁沿台阶面爬行到B点最短路程为xdm,由勾股定理得:x2=202+[(2+3)×3]2=252,解得:x=25(dm).故答案为:25.三.解答题19.解:∵S1=4,S2=9,S3=13,∴S1+S2=S3.即AC2+BC2=AB2.故答案为:4,9,13,AC,BC,AB.20.解:(1)线段AB的长是:=;故答案为:;(2)如图所示:EF即为所求,AB、CD、EF三条线段的长能成为一个直角三角形三边的长理由:∵AB2=()2=5,DC2=8,EF2=13,∴AB2+DC2=EF2,∴AB、CD、EF三条线段的长能成为一个直角三角形三边的长.21.解:如图,连接AC.∵△ABC中,∠B=90°,AB=3,BC=4,∴AC==5.∵CD=12,AD=13,AC=5,∴AC2+CD2=AD2,∴△ACD是直角三角形,∴S阴影=S△ACD﹣S△ABC=×5×12﹣×3×4=30﹣6=24.22.解:A=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2,∵A=B2,B>0,∴B=n2+1,当2n=8时,n=4,∴n2+1=42+1=17;当n2﹣1=35时,n2+1=37.故答案为:17;3723.解:(1)∵AD=4,CD=3,AD⊥DC由勾股定理可得:AC===5,又∵AC2+BC2=52+122=132=AB2 ,∴△ABC是直角三角形;﹣(2)△ABC的面积﹣△ACD的面积=×5×12﹣×3×4═24(m2)所以这块地的面积是24平方米.24.解:(1)出发3秒钟时,CC1=12米,BB1=9米,∵AC=40米,AB=30米,∴AC1=28,AB1=21,∴B1C1==35>25,∴出发3秒钟时,遥控信号不会产生相互干扰;(2)设出发t秒钟时,遥控信号将会产生相互干扰,根据题意得,(40﹣4t)2+(30﹣3t)2=252,解得:t=5,t=15(不合题意舍去),答:出发5秒钟时,遥控信号将会产生相互干扰.25.解:(1)设长方体的高为xcm,则长为3xcm,宽为2xcm,由题意得3x•2x=30,解得x=,则3x=3,2x=2.答:这个长方体的长、宽、高分别是3cm、2cm、cm.(2)长方体的表面积为:(3×2+3×+2×)×2=(30+15+10)×2=110(cm2),长方体的体积为:3×2×=30.答:长方体的表面积是110cm2,体积是30cm3;(3)展开前面上面由勾股定理得AB2=(2+)2+(3)2=90;所以最短路径的长为AB==3(cm).故答案为3.。