2.集合间的基本关系练习题

合集下载

高一数学集合间的基本关系练习题及答案

高一数学集合间的基本关系练习题及答案

1.集合{a, b}的子集有( )之巴公井开创作创作时间:二零二一年六月三十日A.1个B.2个C.3个 D.4个【解析】集合{a, b}的子集有Ø, {a}, {b}, {a, b}共4个, 故选D.【谜底】D2.下列各式中, 正确的是( )A.23∈{x|x≤3} B.23∉{x|x≤3}C.23⊆{x|x≤3} D.{23}{x|x≤3}【解析】23暗示一个元素, {x|x≤3}暗示一个集合, 但23不在集合中, 故23∉{x|x≤3}, A、C不正确, 又集合{23}⃘{x|x≤3}, 故D不正确.【谜底】B3.集合B={a, b, c}, C={a, b, d}, 集合A满足A⊆B, A⊆C.则集合A的个数是________.【解析】若A=Ø, 则满足A⊆B, A⊆C;若A≠Ø, 由A⊆B, A⊆C知A是由属于B且属于C的元素构成, 此时集合A可能为{a}, {b}, {a, b}.【谜底】44.已知集合A={x|1≤x<4}, B={x|x<a}, 若A⊆B, 求实数a的取值集合.【解析】将数集A暗示在数轴上(如图所示), 要满足A⊆B, 暗示数a的点必需在暗示4的点处或在暗示4的点的右边, 所以所求a的集合为{a|a≥4}.一、选择题(每小题5分, 共20分)1.集合A={x|0≤x<3且x∈Z}的真子集的个数是( )A.5 B.6C.7 D.8【解析】由题意知A={0,1,2}, 其真子集的个数为23-1=7个, 故选C.【谜底】C2.在下列各式中毛病的个数是( )①1∈{0,1,2};②{1}∈{0,1,2};③{0,1,2}⊆{0,1,2};④{0,1,2}={2,0,1}A.1 B.2C.3 D.4【解析】①正确;②错.因为集合与集合之间是包括关系而非属于关系;③正确;④正确.两个集合的元素完全一样.故选A.【谜底】A3.已知集合A={x|-1<x<2}, B={x|0<x<1}, 则( )A.A>B B.A BC.B A D.A⊆B【解析】如图所示,, 由图可知, B A.故选C.【谜底】C4.下列说法:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若ØA, 则A≠Ø. 其中正确的有( )A .0个B .1个C .2个D .3个【解析】 ①空集是它自身的子集;②当集合为空集时说法毛病;③空集不是它自身的真子集;④空集是任何非空集合的真子集.因此, ①②③错, ④正确.故选B.【谜底】 B二、填空题(每小题5分, 共10分)5.已知Ø{x|x 2-x +a =0}, 则实数a 的取值范围是________.【解析】 ∵Ø{x|x 2-x +a =0}, ∴方程x 2-x +a =0有实根,∴Δ=(-1)2-4a≥0, a≤14. 【谜底】 a≤146.已知集合A ={-1,3,2m -1}, 集合B ={3, m 2}, 若B ⊆A, 则实数m =________.【解析】 ∵B ⊆A, ∴m 2=2m -1, 即(m -1)2=0∴m=1, 当m =1时, A ={-1,3,1}, B ={3,1}满足B ⊆A.【谜底】 1三、解答题(每小题10分, 共20分)7.设集合A ={x, y}, B ={0, x 2}, 若A =B, 求实数x, y.【解析】 从集合相等的概念入手, 寻找元素的关系, 必需注意集合中元素的互异性.因为A =B, 则x =0或y =0.(1)当x =0时, x 2=0, 则B ={0,0}, 不满足集合中元素的互异性, 故舍去.(2)当y =0时, x =x 2, 解得x =0或x =1.由(1)知x =0应舍去.综上知:x =1, y =0.8.若集合M ={x|x 2+x -6=0}, N ={x|(x -2)(x -a)=0}, 且N ⊆M, 求实数a 的值.【解析】 由x 2+x -6=0, 得x =2或x =-3.因此, M ={2, -3}.若a =2, 则N ={2}, 此时N M ;若a =-3, 则N ={2, -3}, 此时N =M ;若a≠2且a≠-3, 则N ={2, a},此时N 不是M 的子集,故所求实数a 的值为2或-3.9.(10分)已知集合M ={x|x =m +16, m∈Z }, N ={x|x =n 2-13, n∈Z }, P ={x|x =p 2+16, p∈Z }, 请探求集合M 、N 、P 之间的关系.【解析】 M ={x|x =m +16, m∈Z } ={x|x =6m +16, m∈Z }.N ={x|x =n 2-13, n∈Z } =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|x =3n -26 n∈Z P ={x|x =p 2+16, p∈Z } ={x|x =3p +16, p∈Z }. ∵3n-2=3(n -1)+1, n∈Z .∴3n-2,3p +1都是3的整数倍加1, 从而N =P.而6m +1=3×2m+1是3的偶数倍加1, ∴M N =P.创作时间:二零二一年六月三十日。

高一数学集合间的基本关系练习题及答案

高一数学集合间的基本关系练习题及答案

精心整理1.集合{a,b}的子集有()A.1个B.2个C.3个D.4个【解析】集合{a,b}的子集有?,{a},{b},{a,b}共4个,故选D.【答案】 D2.下列各式中,正确的是()【解析】由题意知A={0,1,2},其真子集的个数为23-1=7个,故选C.【答案】 C2.在下列各式中错误的个数是()①1∈{0,1,2};②{1}∈{0,1,2};③{0,1,2}?{0,1,2};④{0,1,2}={2,0,1}A.1B.2【解析】①正确;②错.因为集合与集合之间是包含关系而非属于关系;③正确;④正确.两个集合的元素完全一样.故选A.【答案】 A3.已知集合A={x|-1<x<2},B={x|0<x<1},则()A.A>BB...A?B【答案】 C.下列说法:其中正确的有A.0.已知2-】∵∴方程x2-x+a=0有实根,∴Δ=(-1)2-4a≥0,a≤.【答案】a≤6.已知集合A={-1,3,2m-1},集合B={3,m2},若B?A,则实数m=________.【解析】∵B?A,∴m2=2m-1,即(m-1)2=0∴m=1,当m=1时,A={-1,3,1},B={3,1}满足B?A.三、解答题(每小题10分,共20分)7.设集合A={x,y},B={0,x2},若A=B,求实数x,y.【解析】从集合相等的概念入手,寻找元素的关系,必须注意集合中元素的互异性.因为A=B,则x=0或y=0.(1)当x=0时,x2=0,则B={0,0},不满足集合中元素的互异性,故舍去.23},此时N{2,a},={x|x=,p∈Z}.∵3n-2=3(n-1)+1,n∈Z.∴3n-2,3p+1都是3的整数倍加1,从而N=P.而6m+1=3×2m+1是3的偶数倍加1,∴=P.。

高中数学必修一1.2 集合间的基本关系-单选专项练习(4)(人教A版,含答案及解析)

高中数学必修一1.2 集合间的基本关系-单选专项练习(4)(人教A版,含答案及解析)

1.2 集合间的基本关系1.已知集合,,则的子集个数为 A .B .C .D .2.如果集合|,3n A x x n Z ⎧⎫==∈⎨⎬⎩⎭,1|,3B x x n n Z ⎧⎫==±∈⎨⎬⎩⎭,2|,3C x x n n Z ⎧⎫==±∈⎨⎬⎩⎭,那么下列结论中正确的是( )A .BC ≠B .ABC .C B A =⊆D .A C ⊆ 3.已知集合{}1,2,3A ⊆,且A 中至少有一个奇数,则这样的集合个数为( ). A .4个 B .5个 C .6个 D .7个 4.已知A B ⊆,A C ⊆,{2,0,1,8}B =,{1,9,3,8}C =,则集合A 可以为A .{1,8}B .{2,3}C .{0}D .{9}5.已知集合{}220A x Z x x =∈-++>,则集合A 的真子集个数为( )A .3B .4C .7D .86.下列集合的说法中正确的是( )A .绝对值很小的数的全体形成一个集合B .方程2(1)0x x -=的解集是{1,0,1}C .集合{}1,,,a b c 和集合{},,,1c b a 相等D .空集是任何集合的真子集7.若{}|1P x x =<,{}|0Q x x =>,全集为R ,则 A .P Q ⊆ B .Q P ⊆ C .R Q C P ⊆ D .R C P Q ⊆8.设集合A =1,2,4},B =x|x 2﹣4x+m =0}.若A∩B=1},则集合B 的子集个数为( ) A .1B .2C .3D .49.集合M=16x x m m ⎧⎫=+∈⎨⎬⎩⎭Z ,,N=}1-23n x x n -⎧=∈⎨⎩Z ,,P=126p x x p ⎧⎫=+∈⎨⎬⎩⎭Z ,,则M ,N ,P 之间的关系是( ) A .M=N ⫋P B .M ⫋N=P C .M ⫋N ⫋P D .N ⫋P=M 10.满足的集合的个数为A .6B .7C .8D .911.已知集合{}0,1,2,4,6A =,{}*233nB n =∈<N ,则集合A B 的子集个数为( )A .8B .7C .6D .412.已知集合N =1,3,5},则集合N 的真子集个数为( )A .5B .6C .7D .813.已知集合{}3A x N x =∈<,则( ) A .0A ∉B .1A -∈C .{}0A ⊆D .{}1A -⊆14.已知集合{}{}1,,1,1A xax a R B ==∈=-∣,若A B ⊆,则所有a 的取值构成的集合为( ) A .{}1- B .{}1,1- C .{}0,1 D .{}1,0,1-15.已知S 1,S 2,S 3为非空集合,且S 1,S 2,S 3⊆Z ,对于1,2,3的任意一个排列i ,j ,k ,若x∈S i ,y∈S j ,则x -y∈S k ,则下列说法正确的是( ) A .三个集合互不相等 B .三个集合中至少有两个相等 C .三个集合全都相等D .以上说法均不对16.已知集合S =0,1,2,3,4,5},A 是S 的一个子集,当x∈A 时,若有1x A -∉,且x +1∉A ,则称x 为A 的一个“孤立元素”,那么S 中无“孤立元素”的非空子集的个数为( ) A .16 B .17C .18D .2017.下列表示方法正确的是( )A .3∈[0,3)B .0 ⊆[0,3)C .1∈[0,3)D .{2}∈[0,3)18.已知集合{}2230A x x x =--=,{}10B x ax =-=,若B A ⊆,则实数a 的值构成的集合是( ) A .11,03⎧⎫-⎨⎬⎩⎭,B .{}1,0-C .11,3⎧⎫-⎨⎬⎩⎭D .103⎧⎫⎨⎬⎩⎭,19.已知集合{}220A x x x =+-=,若{}B x x a =≤,且A B ,则a 的取值范围是( )A .1a >B .1a ≥C .2a ≥-D .2a ≤- 20.下列有关集合的写法正确的是( )A .{0}{0,1,2}∈B .{0}∅=C .0∈∅D .{}∅∈∅参考答案1.A详解:试题分析:,所以集合的子集个数为,故选A.考点:集合2.C3.C4.A5.A6.C7.D8.D9.B10.A详解:试题分析:由题意得,满足的集合有:{}{}{}{}{}{}a b c a b d a b e a b c d a b c e a b d e,共有6个,故选A. ,,,,,,,,,,,,,,,,,,,,考点:集合真子集的运算.11.A12.C详解:集合N=1,3,5},则集合N的子集个数328=.除去集合N本身,还有8-1=7个.故选C.13.C14.D15.B16.D17.C19.B 20.D【参考解析】1.2.解析:用列举法分别列出集合,,A B C 即可判断. 详解: 因为集合54211245|,,,,1,,,0,,,1,,,333333333n A x x n Z ⎧⎫⎧⎫==∈=-----⎨⎬⎨⎬⎩⎭⎩⎭, 154211245|,,,,,,,,,,333333333B x x n n Z ⎧⎫⎧⎫==±∈=----⎨⎬⎨⎬⎩⎭⎩⎭, 254211245|,,,,,,,,,,333333333C x x n n Z ⎧⎫⎧⎫==±∈=----⎨⎬⎨⎬⎩⎭⎩⎭, 所以C B A =⊆. 故选:C. 点睛:本题主要考查了集合之间的关系.属于较易题.3.解析:由题得{1},{3},{1,2},{1,3},{2,3},{1,2,3}A =,即得解. 详解:由题得{1},{3},{1,2},{1,3},{2,3},{1,2,3}A =. 所以满足条件的集合有6个. 故选:C 点睛:本题主要考查集合的关系,意在考查学生对这些知识的理解掌握水平.4.解析:由A B ⊆,A C ⊆,则A B C ⊆,又{}1,8B C ⋂=,从而可得答案. 详解:由A B ⊆,A C ⊆,则A B C ⊆. 又{}1,8B C ⋂=,所以{}1,8A ⊆所以选项B 、C 、D 不满足,选项A 满足.点睛:本题考查集合的子集的运用和交集的运算,属于基础题.5.解析:求出集合A ,确定集合A 的元素个数,利用真子集个数公式可得出集合A 的真子集个数. 详解:{}{}{}220120,1A x Z x x x Z x =∈-++>=∈-<<=,所以,集合A 的真子集个数为2213-=. 故选:A. 点睛:本题考查集合真子集个数的计算,同时也考查了一元二次不等式的求解,解答的关键就是确定集合元素的个数,考查计算能力,属于基础题.6.解析:逐项分析选项A,B 不符合集合的三要素,选项C 满足集合三要素,选项D 不符合真子集的定义,即可得出结论. 详解:选项A:不满足集合的确定性,错误; 选项B:不满足集合的互异性,错误;选项C:集合无序性,只需集合元素相同,则集合相等,正确; 选项D: 空集不是本身的真子集,错误. 故选: C 点睛:本题考查对集合概念的理解,以及空集的性质,属于基础题.7.解析:根据集合的基本关系和补集运算,即可求出结果. 详解:因为{}|1P x x =<,所以{}=|1R C P x x ≥,又{}|0Q x x =>, 所以R C P Q ⊆, 故选:D. 点睛:本题主要考查集合之间的基本关系,熟练掌握集合间的基本关系是解题的关键.8.解析:由题意知1是方程x 2﹣4x+m =0的实数根,求出m 的值和集合B ,即知集合B 的子集个数. 详解:集合A =1,2,4},B =x|x 2﹣4x+m =0},若A∩B=1},则1是方程x 2﹣4x+m =0的实数根, ∴m=4﹣1=3,∴集合B =x|x 2﹣4x+3=0}=x|x =1或x =3}=1,3}, ∴集合B 的子集有22=4(个). 故选D . 点睛:本题考查了集合的定义与运算问题,是基础题.9.解析:通分化简,再利用集合之间的包含关系即可求解. 详解: M=616m x x m Z ⎧⎫+=∈⎨⎬⎩⎭,, N=3-23(-1)166n n x x n Z ⎧+⎫==∈⎨⎬⎭⎩,, P=316p x x p Z ⎧⎫+=∈⎨⎬⎩⎭,. 由于3(n-1)+1和3p+1都表示被3除余1的数,而6m+1表示被6除余1的数, 所以M ⫋N=P . 故选:B 点睛:本题考查了集合的包含关系,考查了基本知识掌握情况,属于基础题. 10.11.解析:首先确定集合B ,求出A B 后可得其子集个数. 详解:由题意{1,2,3,4,5}B =,{1,2,4}A B ⋂=,其子集个数为328=. 故选:A . 点睛:本题考查集合的运算,考查子集的个数,确定集合中的元素是解题关键. 12.13.解析:根据集合的概念判断. 详解:集合A 是由小于3的自然数组成,0A ∈,1A -∉,只有C 正确,故选:C.14.解析:根据子集的概念求得参数a的值可得.详解:a=时,A=∅满足题意,a≠时,1ax=得1xa=,所以11a=或11a=-,1a=或1a=-,所求集合为{1,0,1}-.故选:D.15.解析:根据条件,若x∈Si ,y∈Sj,则y﹣x∈Sk,从而(y-x)-y=-x∈Si,这便说明Si中有非负元素,从而三个集合中都有非负元素.可以看出若0∈Si ,任意x∈Sj,都有x-0=x∈Sk ,从而说明Sj⊆S k,而同理可得到S k⊆S j,从而便可得出S j=S k,这便得出3个集合中至少有两个相等.详解:解:若x∈Si ,y∈Sj,则y-x∈Sk,从而(y-x)-y=-x∈Si,所以Si中有非负元素,由i,j,k的任意性可知三个集合中都有非负元素,若三个集合都没有0,则取S1∪S2∪S3中最小的正整数a(由于三个集合中都有非负整数,所以这样的a存在),不妨设a∈S1,取S2∪S3中的最小正整数b,并不妨设b∈S2,这时b>a(否则b不可能大于a,只能等于a,所以b-a=0∈S3,矛盾),但是,这样就导致了0<b-a<b,且b-a∈S3,这时与b为S2∪S3中的最小正整数矛盾,∴三个集合中必有一个集合含有0.∵三个集合中有一个集合含有0,不妨设0∈S1,则对任意x∈S2,有x-0=x∈S3,∴S2包含于S3,对于任意y∈S3,有y-0=y∈S2,∴S3包含于S2,则S2=S3,综上所述,这三个集合中必有两个集合相等,故选:B.16.解析:由集合S=0,1,2,3,4,5},结合x∈A时,若有1x A-∉,且x+1∉A,则称x 为A的一个“孤立元素”,我们用列举法列出满足条件的所有集合,即可得出答案.详解:∵当x∈A时,若有x-1∉A,且x+1∉A,则称x为A的一个“孤立元素”,∴单元素集合都含“孤立元素”.S中无“孤立元素”的2个元素的子集为0,1},1,2},2,3},3,4},4,5},共5个,S中无“孤立元素”的3个元素的子集为0,1,2},1,2,3},2,3,4},3,4,5},共4个,S中无“孤立元素”的4个元素的子集为0,1,2,3},0,1,3,4},0,1,4,5},1,2,3,4},1,2,4,5},2,3,4,5},共6个,S中无“孤立元素”的5个元素的子集为0,1,2,3,4},1,2,3,4,5},0,1,2,4,5},0,1,3,4,5},共4个,S中无“孤立元素”的6个元素的子集为0,1,2,3,4,5},共1个,故S 中无“孤立元素”的非空子集有20个,故选D. 点睛:本题考查的知识点是元素与集合关系的判断,我们根据定义列出满足条件的所有不含”孤立元素”的集合,进而求出不含”孤立元素”的集合个数.17.解析:由元素与集合的关系、集合与集合的关系的表示符号判断即可. 详解:3[0,3)∉,故A 错误;0[0,3)∈,故B 错误;1[0,3)∈,故C 正确;{2}[0,3)⊆,故D 错误. 故选:C. 点睛:本题考查元素与集合、集合与集合关系的符号表示,属于基础题.18.解析:解方程求得集合A ,分别在B =∅和B ≠∅两种情况下,根据包含关系构造方程求得结果. 详解:由2230x x --=得:1x =-或3x =,即{}1,3A =-; ①当0a =时,B =∅,满足B A ⊆,符合题意; ②当0a ≠时,{}110B x ax a ⎧⎫=-==⎨⎬⎩⎭,B A ⊆,11a ∴=-或13a=,解得:1a =-或13a =;综上所述:实数a 的值构成的集合是11,0,3⎧⎫-⎨⎬⎩⎭. 故选:A . 点睛:本题考查根据集合的包含关系求解参数值的问题,易错点是忽略子集为空集的情况,造成求解错误.19.解析:先求得集合A ,结合A B 求得a 的取值范围. 详解:()()22210x x x x +-=+-=,解得2x =-或1x =,所以{}2,1A =-,由于{}B x x a =≤,A B ,所以1a ≥. 故选:B 点睛:本小题主要考查根据真子集求参数的取值范围,属于基础题.20.解析:试题分析:元素和集合是属于或不属于的关系,空集是没有元素的集合,所以D 选项正确.考点:元素和集合的关系.。

集合间的基本关系练习题含答案

集合间的基本关系练习题含答案

集合间的基本关系练习题(1)1. 如图,已知全集U=Z,集合A={−2, −1, 0, 1, 2},B={1, 2, 3, 4},则图中阴影部分所表示的集合是()A.{3, 4}B.{−2, −1, 0}C.{1, 2}D.{2, 3, 4}2. 已知集合A={−1, 0, 1},则含有元素0的A的子集的个数为()A.2B.4C.6D.83. 设集合A={−1, 1, 2},集合B={x|x∈A 且2−x∉A},则B=()A.{−1}B.{2}C.{−1, 2}D.{1, 2}4. 已知A={−2, 2011, x2−1},B={0, 2011, x2+3x},且A=B,则x的值为()A.1或−1B.0C.−2D.−15. 定义:设A,B是非空的数集,a∈A,b∈B,若a是b的函数且b也是a的函数,则称a与b是“和谐关系”.如等式b=a2,a∈[0, +∞)中a与b是“和谐关系”,则下列等中a与b是“和谐关系”的是()A.b=sin aa ,a∈(0,π2) B.b=a3+52a2+2a+1,a∈(−2,−23)C.(a−2)2+b2=1,a∈[1, 2]D.|a|+|b|=1,a∈[−1, 1]6. 已知集合:①{0};②{⌀};③{x|3m<x<m};④{x|a+2<x<a};⑤{x|x2+ 2x+5=0, x∈R}.其中,一定表示空集的是________(填序号).7. 当a满足________时,集合A={x|3x−a<0, x∈N+}表示集合{1}.8. 已知集合M={1, 2, 3, ..., n}(n>1, n∈N∗),则M的所有非空子集的元素和为________(只需写出数学表达式)=a+2},B={(x,y)|(a2−4)x+(a−2)y=7},若A∩9. 已知集合A={(x,y)|y−2x−1B=⌀,则实数a=________.10. 集合A={1, 2}共有________子集.11. 已知集合A={1,2,3,4}.(1)若M⊆A,且M中至少有一个偶数,则这样的集合M有多少个?(2)若B={x|ax−3=0},且B⊆A,求实数a的取值集合.12. 已知集合A={x|2m−10<x<m−1},B={x|2<x<6}.(1)若m=4,求A∩B;(2)若A⊆B,求m的取值范围.参考答案与试题解析集合间的基本关系练习题(1)一、选择题(本题共计 5 小题,每题 5 分,共计25分)1.【答案】A【考点】Venn图表达集合的关系及运算【解析】由阴影部分可知对应的集合为B∩∁U A,即可得到结论.【解答】解:阴影部分可知对应的集合为B∩(∁U A),∵全集U=Z,集合A={−2, −1, 0, 1, 2},B={1, 2, 3, 4},∴B∩(∁U A)={3, 4},故选A.2.【答案】B【考点】元素与集合关系的判断【解析】由集合子集的定义找出集合A的所有子集可得答案,【解答】已知集合A={−1, 0, 3},则由集合的子集定义可得A集合的所有子集为:⌀,{−1},{1},8},1},1},4,1},则含有元素0的A的子集为{6},{−1,{0,{−2,0,个数为4个,3.【答案】C【考点】集合的包含关系判断及应用【解析】本题的关键是认清集合B的研究对象,利用列举法写出集合B的元素即可.【解答】解:∵集合A={−1, 1, 2},集合B={x|x∈A 且2−x∉A},−1∈A,且2−(−1)=3∉A,故1∈B;1∈A,但2−1=1∈A,不满足题意;2∈A,且2−2=0∉A,故2∈B;故B={−1, 2}.故选C.4.【答案】D【考点】集合的相等【解析】直接应用集合相等则集合中的元素完全相同来解决问题.【解答】解:∵A=B,即A和B中的元素完全相同,∴有{x2−1=0x2+3x=−2,解得:x=−1.故选D.5.【答案】A【考点】元素与集合关系的判断【解析】只要判断所给出的函数单调即可.【解答】解:A.∵a∈(0,π2),则a>sin a,∴b′=a cos a−sin aa2=cos a(a−sin a)a2>0,因此函数b在a∈(0,π2)上单调递增,正确;B.∵a∈(−2,−23),b′=3a2+5a+2=(3a+2)(a+1),∴a∈(−2, −1)时单调递增;a∈(−1, −23)时单调递减,因此不符合题意;C.∵(a−2)2+b2=1,a∈[1, 2],∴b=±√1−(a−2)2,b不是a的函数,舍去;D.∵|a|+|b|=1,a∈[−1, 1],∴b=±(1−|a|),b不是a的函数,舍去.故选:A.二、填空题(本题共计 5 小题,每题 5 分,共计25分)6.【答案】④⑤【考点】空集的定义、性质及运算【解析】利用单元素集、空集的定义直接求解.【解答】①{0}是单元素集;②{⌀}是单元素集;③当m<0时,{x|8m<x<m}不是空集;④{x|a+2<x<a}是空集;⑤{x|x2+7x+5=0, x∈R}是空集.∴一定表示空集的是④⑤.7.【答案】【考点】集合的含义与表示【解析】先解不等式3x−a<0,得,根据已知条件需限制a为:1<≤2,解不等式即得a满足的条件.【解答】解3x−a<0得.根据已知条件知:x=1,∴1<.解得3<a≤6.8.【答案】(n2+n)⋅2n−2【考点】子集与真子集【解析】由题意可知,集合中的元素出现的次数都是相等的,从而确定每个元素出现的次数,从而利用等差数列求和公式求和.【解答】若M={1, 2, 3, ...n},则集合M的所有非空子集中,集合M中的任何一个元素出现的次数都是相等的;考查1出现的次数,可看成集合{2, 3, 4, ...n}的子集个数,故共有2n−1个1,故M的所有非空子集的元素和为2n−1(1+2+3+4+...+n)=(n2+n)⋅2n−29.【答案】【考点】集合关系中的参数取值问题【解析】此题暂无解析【解答】此题暂无解答10.【答案】4【考点】子集与真子集【解析】对于有限集合,我们有以下结论:若一个集合中有n个元素,则它有2n个子集.【解答】解:集合A有2个元素,故有22=4个子集.故答案为:4.三、 解答题 (本题共计 2 小题 ,每题 5 分 ,共计10分 )11.【答案】解:(1)由M ⊆A ,且M 中至少有一个偶数,得满足条件的集合M 为:{2},{1,2},{2,3},{1,2,3},{4},{1,4},{3,4},{1,3,4},{2,4},{1,2,4},{2,3,4},{1,2,3,4},共12个.(2)因为B ⊆A ,所以集合B 有两种可能:B =⌀,B ≠⌀.当B =⌀时,显然a =0,当B ≠⌀时,则a ≠0,得x =3a ,则有3a =1或3a =2或3a =3或3a =4, 解得a =3或a =32或a =1或a =34.综上,实数a 的取值集合是{0,34,1,32,3}.【考点】集合的包含关系判断及应用【解析】此题暂无解析【解答】解:(1)由M ⊆A ,且M 中至少有一个偶数,得满足条件的集合M 为:{2},{1,2},{2,3},{1,2,3},{4},{1,4},{3,4},{1,3,4},{2,4},{1,2,4},{2,3,4},{1,2,3,4},共12个.12.【答案】解:(1)当m =4时,A ={x|2×4−10<x <4−1}={x|−2<x <3},B ={x|2<x <6},则A ∩B ={x|2<x <3}.(2)∵ A ⊆B ,当A ≠⌀时,{2m −10<m −12m −10≥2m −1≤6;解得,6≤m ≤7;当A =⌀时,由2m −10≥m −1得,m ≥9;故m 的取值范围为{m|m ≥9或6≤m ≤7}.【考点】交集及其运算集合的包含关系判断及应用【解析】(1)当m =3时,化简A ={x 2−3x −10≤0}=[−2, 5],B =(2, 7);从而求交集.(2)讨论当B ≠⌀时,{m −1<2m +1m −1≥−22m +1≤5;当B =⌀时,m −1≥2m +1,从而解得.【解答】解:(1)当m =4时,A ={x|2×4−10<x <4−1}={x|−2<x <3},B ={x|2<x <6},则A ∩B ={x|2<x <3}.(2)∵ A ⊆B ,当A ≠⌀时,{2m −10<m −12m −10≥2m −1≤6;解得,6≤m ≤7;当A =⌀时,由2m −10≥m −1得,m ≥9;故m 的取值范围为{m|m ≥9或6≤m ≤7}.。

高中数学必修一1.2 集合间的基本关系-单选专项练习(1)(人教A版,含解析)

高中数学必修一1.2 集合间的基本关系-单选专项练习(1)(人教A版,含解析)

1.2 集合间的基本关系一、单选题1.集合M= x ∈N*| x (x -3)< 0}的子集个数为 A .1 B .2 C .3 D .4答案:D 详解:{}{*|(3)0}{*|03}1,2M x N x x x N x =∈-<=∈<<=所以集合的子集个数为224=个,故选D .2.若集合{|11}M x x =∈-≤≤Z ,2{|,}P y y x x M ==∈,则集合M 与P 的关系是( ) A .M P = B .M P C .P MD .M P ⋂=∅答案:C解析:根据集合M ,求出集合P ,进而可得集合M 与P 的关系. 详解:解:由题意可得{1,0,1}M ,{0,1}P =,所以P M .故选:C . 点睛:本题考查了集合包含关系的判断及应用,属基础题.3.已知集合{}12A x x =<≤,{}B x x a =<.若A B ⊆,则a 的取值范围是( ) A .1a a ≥ B .1a a ≤C .{}2a a ≥D .{}2a a >答案:D解析:利用数轴法,根据集合间的关系,即可得答案; 详解: 根据题意作图:易知2a >. 故选:D.点睛:本题考查根据集合间的关系求参数的取值,求解时注意等号成立的条件. 4.已知集合{}0,1A =,{}1,0,2B a =-+,若A B ⊆,则a 的值为( ) A .2- B .1- C .0 D .1答案:B解析:根据A B ⊆可得出关于a 的等式,解出即可. 详解:集合{}0,1A =,{}1,0,2B a =-+,A B ⊆,21a ∴+=,解得1a =-. 故选:B. 点睛:本题考查利用集合的包含关系求参数,考查计算能力,属于基础题. 5.集合(1,2)(3,4)}的子集个数为( ) A .3 B .4C .15D .16答案:B解析:直接枚举求解即可. 详解:易得()(){}1,2,3,4的子集有∅,(){}1,2,(){}3,4,()(){}1,2,3,4. 故选:B 点睛:本题主要考查了集合的子集个数,属于基础题. 6.集合{1,0,1}-的非空真子集共有( ) A .5个 B .6个C .7个D .8个答案:B解析:将集合的所有非空真子集列举出来,即可得解. 详解:集合{1,0,1}-,则其非空真子集为{}1-,{0},{1},{1,0}-,{0,1},{1,1}-, 所以非空真子集共有6个, 故选:B. 点睛:本题考查了集合的真子集概念,真子集个数计算,属于基础题.7.已知集合{}0,1,2A =,则A 的子集共有( ) A .2个 B .4个 C .6个 D .8个答案:D解析:根据集合中元素的个数,以及集合子集的个数2n ,简单计算可得结果. 详解:集合A 的子集共有328=个. 故选:D. 点睛:本题考查集合子集个数的计算,识记常用结论,假设集合元素个数为n ,则该集合子集个数为2n ,真子集个数为21n -,非空子集个数为21n -,非空真子集个数为22n -,属基础题. 8.含有三个实数的集合表示为,,1b a a ⎧⎫⎨⎬⎩⎭,也可表示为{}2,,0a a b +,则20092009a b +的值为 A .0 B .-1 C .1 D .答案:B解析:根据集合的相等,分别找到元素的对应关系,排除不可能的情况,再进行分类讨论,得到答案. 详解:含有三个实数的集合表示为,,1b a a ⎧⎫⎨⎬⎩⎭,也可表示为{}2,,0a a b + 所以可得0a =或者0ba=当0a =时,因有b a,所以不成立. 故只能0b a=,即0b =此时集合分别为{},0,1a 和{}2,,0a a所以有21a =,即1a =±而由集合的互异性可知,1a =时,不成立 故1a =- 故选B 项. 点睛:本题考查集合的相等,和集合的性质,属于简单题.9.集合P 具有性质“若x P ∈,则1P x∈”,就称集合P 是伙伴关系的集合,集合111,0,,,1,2,3,432A ⎧⎫=-⎨⎬⎩⎭的所有非空子集中具有伙伴关系的集合的个数为A .3B .7C .15D .31答案:C解析:首先分析集合A 中的哪些元素能是伙伴关系的集合里的元素,然后利用集合的子集个数公式求解. 详解:根据条件可知满足伙伴关系的集合里面有111,1,,3,,232-中的某些元素,13和3,12和2都以整体出现,13和3看成一个元素,12和2也看成一个元素,∴共有4个元素,集合是非空集合,∴有42115-=个.故选C 点睛:本题主要考查集合关系的判断,利用条件确定伙伴关系的元素是解决本题的关键,意在考查分析问题和解决问题的能力.10.设A=x|2≤x≤4},B=x|2a≤x≤a+3},若B 真包含于A ,则实数a 的取值范围是( ) A .[]1,3 B .(){}3,1∞+⋃ C .{}1 D .()3,∞+答案:C解析:由B 真包含于A ,讨论B =∅与B≠∅时,求出a 的取值范围. 详解:∵A=x|2≤x≤4},B =x|2a≤x≤a+3},且B 真包含于A ; 当B =∅时,2a >a+3,解得a >3;当B≠∅时,232234a a a a ≤+⎧⎪≥⎨⎪+≤⎩解得a =1;此时A=B.∴a 的取值范围是a|a >3} 故选C . 点睛:本题考查了集合之间的基本运算,解题时容易忽略B =∅的情况,是易错题.11.集合{}1,2,3的真子集有( ) A .4个 B .6个 C .7个 D .8个答案:C解析:根据集合真子集的个数公式求解即可. 详解:集合{}1,2,3的元素个数为3个, 故真子集的个数为3217-=, 故选:C 点睛:本题主要考查了集合子集,真子集的概念,考查了集合真子集个数公式,属于容易题.12.集合{}2|4,,A y y x x N y N ==-+∈∈的真子集的个数为A .9B .8C .7D .6答案:C 详解:{}0,3,4,A =故A 有7个真子集13.已知集合{}1,1A =-,{}|10B x ax =+=,若B A ⊆,则实数a 的所有可能取值的集合为 A .{}1,0,1- B .{}1,1- C .{}1 D .{}1-答案:A 详解:试题分析:B A ⊆,∴B=φ或B =-1}或B =1},∴a=0,-1,1. 考点:子集关系点评:本题考查了子集关系,勿忘空集.14.下列四个集合中,空集是A .{}2|20x R x ∈+=B .0C .{}|84x x x ><或D .{}∅答案:A 详解:试题分析:A.因为方程2+2=0x 无解,所以{}2|20x R x ∈+= =φ;B.0中含有一个元素0,所以不是空集;C. {}|84x x x ><或含有很多元素,所以不是空集;D. {}∅含有一个元素φ,所以不是空集. 考点:集合的表示方法;空集的定义.点评:空集就是不含任何元素的集合.属于基础题型.15.下列四个关系中,正确的是( ) A .{},a a b ∈ B .{}{},a a b ∈ C .{}a a ∉D .(){},a a b ∈答案:A解析:因为a 是集合{,}a b 中的元素,判断A 选项正确;因为{}a 与{},a b 是两个集合,判断B 选项错误;因为a 是集合{}a 中的元素,判断C 选项错误;因为数a 不在集合{(,)}a b 中,判断D 选项错误. 详解:解:A 选项:因为a 是集合{,}a b 中的元素,所以{},a a b ∈,故A 选项正确; B 选项:{}a 与{},a b 是两个集合,集合之间没有属于关系,故B 选项错误; C 选项:因为a 是集合{}a 中的元素,所以{}a a ∈,故C 选项错误;D 选项:因为集合{(,)}a b 中的元素是点(,)a b ,数a 不在集合{(,)}a b 中,故D 选项错误; 故选:A. 点睛:本题考查元素与集合的属于关系、集合之间的包含关系,是基础题 16.集合{1,2,3}的子集共有 A .7个 B .8个 C .6个 D .5个答案:B 详解:集合{1,2,3}中共三个元素,子集个数为:328=. 故选B.17.集合A =(x ,y)|y =x}和B =()21,|45x y x y x y ⎧⎫-=⎧⎨⎨⎬+=⎩⎩⎭,则下列结论中正确的是 ( )A .1∈AB .B ⊆AC .(1,1)⊆BD .∅∈A答案:B解析:B =()21,|45x y x y x y ⎧⎫-=⎧⎨⎨⎬+=⎩⎩⎭=(1,1)},而A =(x ,y)|y =x},B 中的元素在A 中,所以B ⊆A故选B .18.已知集合{}22,4,A a =,{}2,6B a =+,若B A ⊆,则a =( )A .-3B .-2C .3D .-2或3答案:C解析:因为B A ⊆得到64a +=或者26a a +=,但是算出a 的值后,要将a 值代回去检验是否满足集合的互异性的条件. 详解: 因为B A ⊆,若64a +=,则2a =-,24a =,集合A 中的元素不满足互异性,舍去; 若26a a +=,则3a =或-2,因为2a ≠-,所以3a =. 故选C. 点睛:根据集合之间的包含关系求解参数的值时,一定要记得将参数的值代回集合中检验是否会有重合的元素,如果有重合的情况就要舍掉这个参数的取值,切记集合的三要素:确定性,互异性,无序性.19.设集合{}125S x x x =-++>,{}4T x x a =-≤,S T R ⋃=,则a 的取值范围为( ) A .2a ≤-或1a ≥ B .21a -≤≤ C .21a -<< D .2a <-或1a >答案:B解析:{|32},[4,=4]S x x x T a a =-=-或 ,所以432142a a a -≤-⎧⇒-≤≤⎨+≥⎩,选A. 点睛:形如|x -a|+|x -b|≥c(或≤c)型的不等式主要有三种解法:(1)分段讨论法,利用绝对值号内式子对应方程的根,将数轴分为(-∞,a],(a ,b],(b ,+∞)(此处设a <b)三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集;(2)几何法,利用|x -a|+|x -b|>c(c >0)的几何意义:数轴上到点x 1=a 和x 2=b 的距离之和大于c 的全体;(3)图象法:作出函数y 1=|x -a|+|x -b|和y 2=c 的图象,结合图象求解.20.设集合{}|12A x x =<<,{}|B x x a =<,若A B ⊆,则a 的取值范围 A .2a ≤ B .1a ≤C .1a <D .2a ≥答案:D解析:结合数轴分析即可. 详解:画出数轴可得,若A B ⊆则2a ≥.故选:D点睛:本题主要考查了根据集合的关系求参数的问题,属于基础题型.。

高中数学必修一1.2 集合间的基本关系-单选专项练习(1)(人教A版,含答案及解析)

高中数学必修一1.2 集合间的基本关系-单选专项练习(1)(人教A版,含答案及解析)

1.2 集合间的基本关系1.若集合M 满足{}1M ≠∅,{}*3|1M x x ⊆∈N ,则符合条件的集合M 的个数为( ) A .2B .3C .4D .52.设集合6|2B x Z N ⎧⎫=∈∈⎨⎬+⎩⎭x ,则集合B 的子集个数为( ). A .3B .4C .8D .16 3.满足条件{1,2,3}M{1,2,3,4,5,6}的集合M 的个数是( )A .8B .7C .6D .5 4.集合{|3,}n M x x n ==∈N ,集合{|3,}x x n N n =∈=N ,则集合M 与集合N 的关系为( ) A .M N ⊆ B .N M ⊆ C .MND .MN 且NM5.已知集合{}|11A x x =-≤≤,{}|0B x x a =-≤,若A B ⊆,则实数a 的取值范围是( )A .(],1-∞B .[)1,-+∞C .(],1-∞-D .[)1,+∞6.设集合{}1012U =-,,,,2{|1}A y y x x U ==+∈,则集合A 的真子集个数为A .2B .3C .7D .8 7.集合A=﹣1,5,1},A 的子集中,含有元素5的子集共有A .2个B .4个C .6个D .8个8.已知集合{}1,2A =,集合{}0,2B =,设集合{},,C z z xy x A y B ==∈∈,则下列结论中正确的是 A .A C φ⋂= B .A C C = C .B C B =D .AB C =9.集合{}2,1,2,3A =-的真子集个数为( ) A .16B .15C .14D .1310.已知集合{}12A x x =≤≤,{}2,B y y x a x A ==+∈,若A B ⊆,则实数a 的取值范围为( ) A .[]1,2B .[]2,1--C .[]22-,D .[]1,1-11.已知集合{}{}2|4,|1.A x x B x ax ====若B A ⊆,则实数a 的值是( )A .12B .2C .11,22-D .110,,22-12.已知函数1()lg1xf x x+=-的定义域为A , 函数()lg(1)lg(1)g x x x =+--的定义域为B ,则下述关于A B 、的关系中,不正确的为A .AB ⊇ B .A B B ⋃=C .A B B =D .B A13.若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( ) A .7个B .5个C .3个D .8个14.下列集合中表示同一集合的是 A .(){}2,3M =,(){}3,2N =B .2,3M,{}3,2N =C .(){},1M x y y x ==+,{}1N y y x ==+D .{}1M y y x ==+,{}21N y y x ==+15.已知集合{}1,2,{|20}A B x ax ==-=,若B A ⊆,则a 的值不可能是( ) A .0B .1C .2D .316.给出下列关系式:①23Q ⊆;②{}210x x x ∅∈++=;③(){}(){}21,4,23x y y x x -⊆=--;④{}[)22,x x <=+∞,其中正确关系式的个数是( ) A .0 B .1C .2D .317.下列符号表述正确的是( )A .*0N ∈B .1.732Q ∉C .{}0∅∈D .{}2x x ∅⊆≤18.已知集合{2,4}A ,则集合A 的子集个数是( ) A .2B .3C .4D .819.设集合{}2|1P x x ==,则集合P 的非空真子集的个数是( )A .2B .3C .7D .820.已知集合A =a ,b ,c },下列可以作为集合A 的子集的是A .aB .a ,c}C .a ,e}D .a ,b ,c ,d }参考答案1.C2.D3.C4.D5.D6.C7.B详解:试题分析:由集合A中的元素有﹣1,5,1共3个,含有元素5的子集,可能含有﹣1,1,代入公式得结论.解:由集合A中的元素有﹣1,5,1共3个,含有元素5的子集,可能含有﹣1,1,代入公式得:22=4,故选B.考点:子集与真子集.8.C9.B10.B11.D12.D13.A14.B15.D16.B17.D18.C19.A20.B详解:由集合的子集的定义可知:集合A=a,b,c}的子集为:∅,a},b},c},a,b},a,c},b,c},a,b,c},对应选项,则可以作为集合A的子集的是a,c}.故选B.点睛:集合A={}12n a a a ,,,的子集个数为2n ,非空真子集个数为22n -.【参考解析】1.解析:依题可知M 致少有元素1,结合子集定义即可求解. 详解:由题意可知,{}1M =或{1,2}或{1,3}或{1,2,3}. 故选:C2.解析:首先用列举法,分别取出满足题目时x 值,从而得出集合B 的元素,从而得出集B 的子集. 详解: 当666603,12,41,1620212421x x x x =⇒==⇒==⇒==-⇒=+++- 所以集合{}3,2,1,6B =,所以集合B 的子集个数为4216=. 故选D 点睛:本题主要考查就集合中子集的求法:若集合B 中有n 个元素,则集合B 的子集有2n 个,属于基础题.3.解析:根据题意,分析可得集合M 中必须有1,2,3这三个元素,且至少含有4、5、6中的一个但不能同时包含3个元素,即M 的个数应为集合{4,5,6}的非空真子集的个数,由集合的子集与元素数目的关系,分析可得答案. 详解:解:根据题意,满足题意条件的集合M 中必须有1,2,3这三个元素, 且至少含有4、5、6中的一个但不能同时包含3个元素, 则M 的个数应为集合{4,5,6}的非空真子集的个数, 集合{4,5,6}有3个元素,有3226-=个非空真子集; 故选:C . 点睛:本题考查集合间的基本关系,以及非空真子集的个数的运算.4.解析:分析集合M 和N 中元素的性质,进行比较即可得出答案. 详解:由{|3,}n M x x n ==∈N ,可得集合M 中的元素为:1,3,9,27,,3,n ;由{|3,}x x n N n =∈=N ,可得集合N 中的元素为:0,3,6,9,12,,3,n ,比较得1M ∈,但1N ∉,0N ∈,但0M ∉,3M ∈,3N ∈.∴MN 且NM .故选:D. 点睛:本题考查了两个集合关系的判断,准确分析集合中元素的特点并进行比较是解题的关键,属于一般难度的题.5.解析:根据集合的包含关系,即可求得参数a 的取值范围. 详解:集合{}|11A x x =-≤≤,{}|0B x x a =-≤,即{}|B x x a =≤ 因为A B ⊆, 则1a ≥ 即[)1,a ∈+∞ 故选:D 点睛:本题考查了集合的包含关系,求参数的取值范围,属于基础题.6.解析:先求出集合A ,进而求出其真子集的个数. 详解:因为集合{}1012U =-,,,,∴集合{|}A y y x U =∈=1, ∴真子集个数为23﹣1=7个, 故选C . 点睛:本题考查了真子集的概念及性质,考查集合的表示方法:列举法,是一道基础题. 7.8.解析:先求集合C ,再根据集合与集合的关系判断即可. 详解:由题设,{0,2,4}C =,则B C ⊆,故B C B = 选C . 点睛:本题考查的知识点是集合的包含关系判断及应用,属于基础题.9.解析:根据集合真子集的计算公式,直接得出结果. 详解:集合{}2,1,2,3A =-的真子集个数为42115-=. 故选:B. 点睛:本题主要考查求集合的真子集个数,属于基础题型.10.解析:根据题意,求得集合B ,结合A B ⊆,列出不等式组,即可求解. 详解:由题意,集合[]1,2A =,可得{}[]2,2,4B y y x a x A a a ==+∈=++, 因为A B ⊆,所以2142a a +≤⎧⎨+≥⎩,解得[]2,1a ∈--.故选:B.11.解析:计算{}2,2A =-,考虑{}2B =,{}2B =-,B =∅三种情况,计算得到答案. 详解:{}{}2|42,2A x x ===-,B A ⊆,当{}2B =时,21a =,12a =;当{}2B =-时,21a -=,12a =-;当B =∅时,0a =. 即0a =或12a =或12a =-. 故选:D. 点睛:本题考查了根据集合的包含关系求参数,意在考查学生的计算能力,忽略掉空集是容易发生的错误.12.解析:分别求出两函数的定义域,再判断集合关系. 详解: 因为1()lg1xf x x +=-,所以101x x +>-即()()110x x +-> ,解得11x -<< 故{}11A x x =-<<因为()lg(1)lg(1)g x x x =+--,所以1010x x +>⎧⎨->⎩,解得11x -<<故{}11B x x =-<< 所以A B = 故选D. 点睛:本题考查函数的定义域与集合之间的关系,属于简单题.13.解析:根据集合的补集判断集合的个数,进而求得集合的真子集个数. 详解:由题可知,集合A 有三个元素.所以A 的真子集个数为:32-1=7个.选A 点睛:集合中子集的个数为2n ,真子集的个数为2n -1,非空真子集的个数为2n -214.解析:因为有序数对()2,3与()3,2不相同,所以A 错误;由于集合中的元素具有无序性,所以集合M 与集合N 是同一集合,故B 正确;因为集合M 表示的是当1,y x x R =+∈时,所得的有序实数对(),x y 所构成的集合,而集合N 是当1,y x x R =+∈时所得的y 值所构成的集合,所以C 错误;因为M R =,[)1,N =+∞,所以D 错误, 详解:对于A 选项:有序数对()2,3与()3,2不相同,所以集合M 与集合N 不是同一集合,故A 错误; 对于C 选项:由于{}(,)1,M x y y x x R ==+∈,所以集合M 表示的是当1,y x x R =+∈时,所得的有序实数对(),x y 所构成的集合,而由{}1,N y y x x R ==+∈得集合N 是当1,y x x R =+∈时所得的y 值所构成的集合, 所以集合M 与集合N 不是同一集合,故C 错误;对于D 选项,{}1M y y x R ==+=,{}{}[)21,11,N y y x x R y y ==+∈=≥=+∞,所以集合M 与集合N 不是同一集合,故D 错误;对于B 选项:由于集合中的元素具有无序性,所以集合M 与集合N 是同一集合,故B 正确; 故选B. 点睛:本题考查集合所表示的元素的意义,在判断时需分清集合中表示的是点集还是数集,理解元素的具体含义是什么,属于基础题.15.解析:由B A ⊆,分0a =和0a ≠两种情况讨论,结合集合间的关系,即可求解. 详解:由题意,集合{}1,2,{|20}A B x ax ==-=, 因为B A ⊆,当0a =时,集合B 为空集,此时满足B A ⊆;当0a ≠时,集合2{|20}{}B x ax a =-==,可得21a或22a=,解得1a =或2a =, 综上可得,实数a 的值为{}0,1,2,所以则a 的值不可能是3. 故选:D. 点睛:本题主要考查了根据集合的包含关系求解参数问题,其中解答中熟记集合间的包含关系,合理分类讨论求解是解答的关键,着重考查推理与运算能力,属于基础题.16.解析:对于①,23Q ∈;对于②,{}210x x x ∅⊆++=;对于③,点(1,4)-在抛物线223y x x =--上,对于④,{}[)22,x x <⊆+∞.详解:对于①,元素与集合不是包含关系,故①不正确;对于②,{}210x x x ∅∉++==∅,故②不正确;对于③,点(1,4)-在抛物线223y x x =--上,故(){}(){}21,4,23x y y xx -⊆=--正确;对于④,{}[)22,x x <⊆+∞,故④不正确. 故选:B. 点睛:本题考查了元素与集合的关系,考查了集合与集合的关系,考查了空集,属于基础题.17.解析:根据元素与集合、集合与集合的关系可判断各选项的正误. 详解:对于A 选项,0N *∉,A 选项错误;对于B 选项,1.732Q ∈,B 选项错误; 对于C 选项,{}0∅⊆,C 选项错误;对于D 选项,{}2x x ∅⊆≤,D 选项正确. 故选:D. 点睛:本题考查元素与集合、集合与集合关系的判断,属于基础题.18.解析:根据子集的定义依次列出集合的子集即可得出答案. 详解:集合{}2,4A =的子集分别是:φ,{}2,{}4,{}2,4,共有4个子集. 故选:C. 点睛:本题考查集合子集的概念,属于基础题.19.解析:解出集合P ,再写出集合P 的非空真子集即可. 详解:集合{}2|1P x x ==,即{}1,1P =-,集合P 的非空真子集有{}{}1,1-, 共2个. 故选:A . 点睛:本题考查的是集合子集,真子集,是基础题. 20.。

专题2 集合间的基本关系(解析版)

专题2 集合间的基本关系(解析版)

专题2 集合间的基本关系题组1 集合的包含关系1.已知集合P={x|y=},集合Q={y|y=},则P与Q的关系是()A.P=QB.P QC.P QD.P∩Q=∅【答案】B【解析】P={x|y=}=[-1,+∞),Q={y|y=}=[0,+∞),所以Q P.2.集合M=,N=,则M与N的关系为()A.M=NB.M⊆NC.N⊆MD. 无法判断【答案】C【解析】M中,x=+=N中,x=k+=n+,k=n∈Z,∴N⊆M.3.指出下列各对集合之间的关系:(1)A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)};(2)A={x|x是等边三角形},B={x|x是等腰三角形};(3)A={x|-1<x<4},B={x|x-5<0};(4)M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.【答案】(1)集合A的代表元素是数,集合B的代表元素是有序实数对,故A与B之间无包含关系.(2)等边三角形是三边相等的三角形,等腰三角形是两边相等的三角形,故A B.(3)集合B={x|x<5},用数轴表示集合A,B如图所示,由图可知A B.(4)由列举法知M={1,3,5,7,…},N={3,5,7,9,…},故N M.题组2 子集及其运算4.设B={1,2},A={x|x⊆B},则A与B的关系是()A.A⊆BB.B⊆AC.B∈AD.A=B【答案】C【解析】∵A={x|x⊆B},∴A={∅,{1},{2},{1,2}},∴B∈A.5.已知集合A={1,2,3,4,5,6},B={4,5,6,7,8},C⊆A,C⊆B,则集合C最多含有________个元素.【答案】3【解析】由题意知C最多含有3个元素:4,5,6.6.已知集合M满足关系{a,b}⊆M⊆{a,b,c,d,e},写出所有的集合M.【答案】满足条件的集合M可以是以下集合:{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e},{a,b,c,d,e},共8个,题组3 子集个数7.若集合A={1,2,3},若集合B⊆A,则满足条件的集合B有()A. 3个B. 7个C. 8个D. 9个【答案】C【解析】由集合B⊆A,则B是A的子集,则满足条件的B有23=8个,故选C.8.若M⊆P,M⊆Q,P={0,1,2},Q={0,2,4},则满足上述条件的集合M的个数是()A. 1B. 2C. 4D. 8【答案】C【解析】P,Q中的公共元素组成集合C={0,2},M⊆C,这样的集合M共有22=4个.9.定义集合运算A◇B={c|c=a+b,a∈A,b∈B},设A={0,1,2},B={3,4,5},则集合A◇B的子集个数为()A. 32B. 31C. 30D. 14【答案】A【解析】∵A={0,1,2},B={3,4,5}.又∵A◇B={c|c=a+b,a∈A,b∈B},∴A◇B={3,4,5,6,7},由于集合A◇B中共有5个元素,故集合A◇B的所有子集的个数为25=32个.故选A.10.已知a为不等于零的实数,那么集合M={x|x2-2(a+1)x+1=0,x∈R}的子集的个数为()A. 1B. 2C. 4D. 1或2或4【答案】D【解析】当Δ=4(a+1)2-4>0时,一元二次方程x2-2(a+1)x+1=0有两个不相等的实数根,所以集合M 的元素有两个,则集合M子集的个数为22=4个;当Δ=4(a+1)2-4=0即a=-2时,一元二次方程x2-2(a+1)x+1=0有两个相等的实数根,所以集合M 的元素有一个,则集合M子集的个数为21=2个;当Δ=4(a+1)2-4<0时,一元二次方程x2-2(a+1)x+1=0没有实数根,所以集合M为空集,则集合M 的子集的个数为1个.综上,集合M的子集个数为:1或2或4.故选D.11.已知M={a|a≤-2或a≥2},A={a|(a-2)(a2-3)=0,a∈M},则集合A的子集共有()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】由(a-2)(a2-3)=0,可得a=2或a=±,∵a∈M,M={a|a≤-2或a≥2},∴A={2}.∴A的子集有:∅,{2}.集合A的子集共有2个.故选B.12.设A是整数集的一个非空子集,对于k∈A,如果k-1∉A,且k+1∉A,那么称k是A的一个“好元素”.给定S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“好元素”的集合共有()A. 6个B. 12个C. 9个D. 5个【答案】A【解析】要不含“好元素”,说明这三个数必须连在一起,(要是不连在一起,分开的那个数就是“好元素”),故不含“好元素”的集合共有{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8}共6种可能.故选A.13.若x∈A则∈A,就称A是伙伴关系集合,集合M={-1,0,,,1,2,3,4}的所有非空子集中,具有伙伴关系的集合的个数为()A. 15B. 16C. 28D. 25【答案】A【解析】具有伙伴关系的元素组有-1,1,、2,、3共四组,它们中任一组、二组、三组、四组均可组成非空伙伴关系集合,穷举可知个数共15个.故选A.题组4 真子集及其运算14.已知A={x|<-1},B={x|x2-4x-m≥0},若A B,则实数m的取值范围是()A.m≥0B.m≤-3C. -3≤m≤0D.m≤-3或m≥0【答案】B15.已知集合A={x|1<x<3},B={x|x<a},若A B,则实数a满足()A.a<3B.a≤3C.a>3D.a≥3【答案】D【解析】由A B,结合数轴,得a≥3.16.已知集合A满足{0,1}A{0,1,2,3},写出满足条件的所有的集合A.【答案】满足条件的集合A即为集合{2,3}的非空真子集,∴集合A有{0,1,2},{0,1,3}.17.已知集合A={x|1≤x≤2},B={x|1≤x≤a,a≥1}.(1)若A B,求a的取值范围;(2)若B⊆A,求a的取值范围.【答案】(1)若A B,由图可知a>2.(2)若B⊆A,由图可知1≤a≤2.题组5 真子集个数18.已知集合A={1,2,3,4},那么A的真子集的个数是()A. 15B. 16C. 3D. 4【答案】A【解析】根据集合的元素数目与真子集个数的关系,n元素的真子集有2n-1个,集合A有4个元素,则其真子集个数为24-1=15,故选A.19.已知集合S={x∈N|-2<x-1<4,且x≠1},则集合S的真子集的个数是()A. 32B. 31C. 16D. 15【答案】D【解析】根据题意,-2<x-1<4可化为-1<x<5;则集合S={x∈N|-2<x-1<4,且x≠1}={x∈N|-1<x<5,且x≠1}={0,2,3,4}.其子集共24-1=16-1=15个.故选D.20.已知a为给定的实数,那么集合M={x|x2-3x-a2+2=0}的非空真子集的个数为()A. 1B. 2C. 4D. 不确定【答案】B【解析】∵集合M={x|x2-3x-a2+2=0},a为给定的实数,关于方程x2-3x-a2+2=0,∵Δ=(-3)2-4(2-a2)=4a2+1>0,∴方程有两个不同的实根,∴集合M中有两个元素,∴集合M的非空真子集的个数为:22-2=2,故选B.题组6 集合相等的概念21.已知集合P={y=x2+1},Q={y|y=x2+1},E={x|y=x2+1},F={(x,y)|y=x2+1},G={x|x≥1},则()A.P=FB.Q=EC.E=FD.Q=G【答案】D【解析】∵P={y=x2+1}是单元素集,集合中的元素是y=x2+1,Q={y|y=x2+1≥1}={y|y≥1},E={x|y=x2+1}=R,F={(x,y)|y=x2+1},集合中的元素是点坐标,G={x|x≥1}.∴Q=G.故选D.22.设集合A={x|y=x2-4},B={y|y=x2-4},C={(x,y)|y=x2-4},则下列关系:①A∩C=空集;②A=C;③A=B;④B=C,其中不正确的共有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】集合A是数集,它是二次函数y=x2-4的自变量组成的集合,即A=R,集合B也是数集,它是二次函数y=x2-4的值域,即B={y|y≥-4};而集合C是点集,是二次函数图象上所有点组成的集合.因此②③④都不正确.故选C.23.已知集合M={a,2,3+a},集合N={3,2,a2}.若集合M=N.则a等于()A. 1B. 3C. 0D. 0或1【答案】C【解析】由M=N得①或②解①得a∈∅,解②得a=0,此时M={0,2,3},N={0,2,3},满足M=N.故选C.24.含有三个实数的集合可表示为{a,,1},也可表示为{a2,a+b,0},则a2 009+b2 009的值为()A. 0B. -1C. 1D. ±1【答案】B【解析】根据题意,对于{a,,1},有a≠1,a≠0;又有{a,,1}={a2,a+b,0},则有a=0或=0;又由a≠0,故b=0;代入集合中.可得{a,1,0}={a2,a,0},必有a2=1,又由a≠1,则a=-1;则a2 009+b2 009=-1,选B.题组7 空集的性质及运算25.下面四个集合中,表示空集的是()A. {0}B. {x|x2+1=0,x∈R}C. {x|x2-1>0,x∈R}D. {(x,y)|x2+y2=0,x∈R,y∈R}【答案】B【解析】∵方程x2+1=0无实数解,∴{x|x2+1=0,x∈R}表示空集.故选B.26.在以下五个写法中:①{0}∈{0,1,2};②∅⊆{0};③{0,1,2}⊆{1,2,0};④0∈∅;⑤0∩∅=∅,写法正确的个数是()A. 1B. 2C. 3D. 4【答案】B【解析】②③正确.27.已知集合A={x|ax2-3x+2=0,a∈R}.(1)若A是空集,求a的取值范围;(2)若A中至多只有一个元素,求a的取值范围.【答案】(1)当a=0时,方程ax2-3x+2=0化为-3x+2=0,解集非空;当a≠0时,要使A是空集,则Δ=(-3)2-8a<0,解得a>.∴使A是空集的a的取值范围是(,+∞).(2)当a=0,集合A中有一个元素;当a≠0时,若A中有两个元素,则Δ=(-3)2-8a>0,解得a<.综上,使A中至多只有一个元素的a的取值范围是a=0或a≥.。

集合间的基本关系练习题及答案

集合间的基本关系练习题及答案

1.集合{a,b}的子集有()时间:2021.03.05 创作:欧阳理A.1个B.2个C.3个 D.4个【解析】集合{a,b}的子集有Ø,{a},{b},{a,b}共4个,故选D.【答案】D2.下列各式中,正确的是()A.23∈{x|x≤3} B.23∉{x|x≤3}C.23⊆{x|x≤3} D.{23}{x|x≤3}【解析】23表示一个元素,{x|x≤3}表示一个集合,但23不在集合中,故23∉{x|x≤3},A、C不正确,又集合{23}⃘{x|x≤3},故D不正确.【答案】B3.集合B={a,b,c},C={a,b,d},集合A满足A⊆B,A⊆C.则集合A的个数是________.【解析】若A=Ø,则满足A⊆B,A⊆C;若A≠Ø,由A⊆B,A⊆C知A是由属于B且属于C的元素构成,此时集合A可能为{a},{b},{a,b}.【答案】44.已知集合A={x|1≤x<4},B={x|x<a},若A⊆B,求实数a的取值集合.【解析】将数集A表示在数轴上(如图所示),要满足A⊆B,表示数a的点必须在表示4的点处或在表示4的点的右边,所以所求a的集合为{a|a≥4}.一、选择题(每小题5分,共20分)1.集合A={x|0≤x<3且x∈Z}的真子集的个数是()A.5 B.6C.7 D.8【解析】由题意知A={0,1,2},其真子集的个数为23-1=7个,故选C.【答案】C2.在下列各式中错误的个数是()①1∈{0,1,2};②{1}∈{0,1,2};③{0,1,2}⊆{0,1,2};④{0,1,2}={2,0,1}A.1 B.2C.3 D.4【解析】①正确;②错.因为集合与集合之间是包含关系而非属于关系;③正确;④正确.两个集合的元素完全一样.故选A.【答案】A3.已知集合A={x|-1<x<2},B={x|0<x<1},则()A.A>B B.A BC.B A D.A⊆B【解析】如图所示,,由图可知,B A.故选C.【答案】C4.下列说法:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若ØA,则A≠Ø.其中正确的有()A.0个 B.1个C.2个 D.3个【解析】①空集是它自身的子集;②当集合为空集时说法错误;③空集不是它自身的真子集;④空集是任何非空集合的真子集.因此,①②③错,④正确.故选B.【答案】B二、填空题(每小题5分,共10分)5.已知Ø{x|x2-x+a=0},则实数a的取值范围是________.【解析】∵Ø{x|x2-x+a=0},∴方程x2-x+a=0有实根,∴Δ=(-1)2-4a≥0,a≤1 4.【答案】a≤146.已知集合A={-1,3,2m-1},集合B={3,m2},若B⊆A,则实数m=________.【解析】∵B⊆A,∴m2=2m-1,即(m-1)2=0∴m=1,当m=1时,A={-1,3,1},B={3,1}满足B⊆A.【答案】1三、解答题(每小题10分,共20分)7.设集合A={x,y},B={0,x2},若A=B,求实数x,y.【解析】从集合相等的概念入手,寻找元素的关系,必须注意集合中元素的互异性.因为A=B,则x=0或y=0.(1)当x=0时,x2=0,则B={0,0},不满足集合中元素的互异性,故舍去.(2)当y=0时,x=x2,解得x=0或x=1.由(1)知x =0应舍去.综上知:x=1,y=0.8.若集合M={x|x2+x-6=0},N={x|(x-2)(x-a)=0},且N⊆M,求实数a的值.【解析】由x2+x-6=0,得x=2或x=-3.因此,M={2,-3}.若a=2,则N={2},此时N M;若a=-3,则N={2,-3},此时N=M;若a≠2且a≠-3,则N={2,a},此时N不是M的子集,故所求实数a的值为2或-3.9.(10分)已知集合M={x|x=m+16,m∈Z},N={x|x=n2-13,n∈Z},P={x|x=p2+16,p∈Z},请探求集合M、N、P之间的关系.【解析】M={x|x=m+16,m∈Z}={x|x=6m+16,m∈Z}.N={x|x=n2-13,n∈Z}=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|x =3n -26,n ∈Z P ={x|x =p 2+16,p ∈Z }={x|x =3p +16,p ∈Z }.∵3n -2=3(n -1)+1,n ∈Z .∴3n -2,3p +1都是3的整数倍加1, 从而N =P.而6m +1=3×2m +1是3的偶数倍加1, ∴M N =P.时间:2021.03.05创作:欧阳理。

高中数学教师资格证笔试练题:集合间的基本关系(练习)

高中数学教师资格证笔试练题:集合间的基本关系(练习)

1.2 集合间的基本关系一、单选题1.下列各式中:①{}{}00,1,2∈;②{}{}0,1,22,1,0⊆;③{}0,1,2∅⊆;④{}0∅=;⑤{}{}0,1(0,1)=;⑥{}00=.正确的个数是( )A .1B .2C .3D .42.集合{}=1,2,3A 的子集个数为( )A .3B .6C .7D .83.满足条件∅ M ⫋{a ,b ,c }的集合M 共有( )A .3个B .6个C .7个D .8个 4.已知集合{}20,A x x x x R =+=∈,则集合A 的非空子集个数是( )A .1B .2C .3D .45.下列表述正确的有( )①空集没有子集;②任何集合都有至少两个子集;③空集是任何集合的真子集;④若∅是A 的真子集,则A ≠∅.A .0个B .1个C .2个D .3个 6.已知集合{}123,,A a a a =的所有非空真子集的元素之和等于9,则123a a a ++=( ) A .1 B .2 C .3 D .67.设集合A ={-1,1},集合B ={x |x 2-2ax +1=0},若B ≠∅,B ⊆A ,则a 等于( )A .-1B .0C .1D .±1二、多选题8.下列关系式正确的为( )A .{}{},,a b b a ⊆B .{}0=∅C .{}00∈D .{}0∅⊆ 9.下列集合的关系,正确的是( )A .{}∅∅B .{}∅=∅C .{}0⊇∅D .{}∅∈∅10.已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 为( )A .{1,2}B .{2,3}C .{1,2,4}D .{2,3,4}11.已知集合{}{2,A x ax B =≤=-,若B A ⊆,则实数a 的值可能是( ) A .1- B .1 C .0 D .2 12.已知集合{}12A x x =<<,{}232B x a x a =-<<-,下列说法正确的是( ) A .不存在实数a 使得A B =B .当4a =时,A B ⊆C .当04a ≤≤时,B A ⊆D .存在实数a 使得B A ⊆三、填空题13.已知集合{0,1}A =,则集合A 的子集个数为_____________.14.已知集合2,1A x Z x Z x ⎧⎫=∈∈⎨⎬-⎩⎭,则集合A 的真子集的个数为_________ 15.已知集合{1,2,}M m =-,{1,3}N =,若N M ⊆,则实数m 的值为_________. 16.设集合{}|23A x x =-≤,{}|B x x t =<,若A B ⊆,则实数t 的取值范围是_____.17.已知集合212|,,{|1,}33n n A x x n Z B x x n Z +⎧⎫==∈==+∈⎨⎬⎩⎭,则集合A 、B 的关系为A ____(B 从“,,⊆⊇=”选择合适的符号填空).四、解答题18.指出下列各对集合之间的关系:(1)A ={-1,1},B ={(-1,-1),(-1,1),(1,-1),(1,1)};(2)A ={x |x 是等边三角形},B ={x |x 是等腰三角形};(3)A ={x |-1<x <4},B ={x |x -5<0};(4)M ={x |x =2n -1,n ∈N *},N ={x |x =2n +1,n ∈N *}.19.已知集合M 满足{}{}1,21,2,3,4,5M ⊆⊆,求所有满足条件的集合M .20.已知集合{}23,21,1A a a a =-++,集合{}0,1,B x =.(1)若3A -∈,求a 的值;(2)是否存在实数a ,x ,使A B =.21.已知集合{|4}A x x a =-=,集合{}1,2,B b =(1)是否存在实数a ,使得对任意实数b 都有A B ⊆成立?若存在,求出对应的a 值;若不存在,说明理由.(2)若A B ⊆成立,写出所有实数对(),a b 构成的集合.参考答案1.B解:①集合之间的关系是包含与不包含,因此{0}{0∈,1,2},不正确,应该为{0}{0,1,2};②{0,1,2}{2⊆,1,0},正确;③{0∅⊆,1,2},正确;④∅不含有元素,因此{0}∅;⑤{0,1}与{(0,1)}的元素形式不一样,因此不正确;⑥元素与集合之间的关系是属于与不属于的关系,应该为0{0}∈,因此不正确. 综上只有:②,③正确.2.D解:由题意得集合A 的子集个数为328=.3.B解:满足条件∅ M ⫋{a ,b ,c }的集合M 有:{a },{b },{c },{a ,b },{a ,c },{b ,c }.共6个,∴满足条件∅⫋M ⫋{a ,b ,c }的集合M 共有6个.4.C{}{}20,1,0A x x x x R =+=∈=-, 所以集合A 的非空子集个数为2213-=,5.B因为∅⊆∅,故①错;∅只有一个子集,即它本身.故②错;空集是任何集合的子集,是任何非空集合的真子集,故③错;空集是任何非空集合的真子集,故④正确,6.C解:集合{}123,,A a a a =的所有非空真子集为:{}{}{}{}{}{}123121323,,,,,,,,a a a a a a a a a ,则所有非空真子集的元素之和为:()12312132312339a a a a a a a a a a a a ++++++++=++=,所以1233a a a .7.D当B ={-1}时,x 2-2ax +1=0有两相等的实根-1,则()()()2224012110a a ⎧∆=--=⎪⎨---+=⎪⎩,解得a =-1; 当B ={1}时,x 2-2ax +1=0有两相等的实根1,则()222401210a a ⎧∆=--=⎪⎨-+=⎪⎩,解得a =1; 当B ={-1,1}时,x 2-2ax +1=0有两个不相等的实根-1,1,则()()()222240*********a a a ⎧∆=-->⎪⎪---+=⎨⎪-+=⎪⎩,无解,.综上:a =±1. 8.ACD解:对于选项A ,由于任何集合是它本身的子集,所以{}{},,a b b a ⊆,故A 正确;对于选项B ,{}0是指元素为0的集合,而∅表示空集,是指不含任何元素的集合,所以{}0≠∅,故B 错误;对于选项C ,{}0是指元素为0的集合,所以{}00∈,故C 正确;对于选项D ,由于空集是任何集合的子集,所以{}0∅⊆,故D 正确.9.ACDA .空集是任意非空集合的真子集,故A 正确;C.空集是任意集合的子集,因为{}0是含有一个元素的集合,所以{}0⊇∅正确;D.空集是空集构成的集合中的元素,满足属于关系,故D 正确,B 中左边是空集,右边是含有一个元素的集合,不相等,B 不正确;10.AC{}{}2320,1,2A x x x x R =-+=∈=∣ {}{05,}1,2,3,4B x x x N =<<∈=∣,A CB ⊆⊆,故四个选项中,{1,2}和{1,2,4}满足题意.11.ABC当0a =时,{}2A x ax R =≤=,显然B A ⊆,所以选项C 符合题意;当0a >时,{}22A x ax x x a ⎧⎫=≤=≤⎨⎬⎩⎭,若B A ⊆2a a ⇒即0a <≤B 符合题意;当0a <时,{}22A x ax x x a ⎧⎫=≤=≥⎨⎬⎩⎭,若B A ⊆,所以有221a a -≥⇒≥-,即10a -≤<,所以选项A 符合题意,故选:ABC12.AD选项A :若集合A B =,则有231,22,a a -=⎧⎨-=⎩,因为此方程组无解,所以不存在实数a 使得集合A B =,故选项A 正确.选项B :当4a =时,{}52B x x =<<=∅,不满足A B ⊆,故选项B 错误.若B A ⊆,则①当B =∅时,有232a a -≥-,1a ≥;②当B ≠∅时,有1,231,22a a a <⎧⎪->⎨⎪-<⎩此方程组无实数解;所以若B A ⊆,则有1a ≥,故选项C 错误,选项D 正确.故选:AD .13.4因为A 中元素个数为2,故其子集的个数为224=,14.15 因为21Z x ∈-,所以x -1是2的因数,即x -1可能是-1,-2,1,2,则2,1A x Z x Z x ⎧⎫=∈∈⎨⎬-⎩⎭={-1,0,2,3},所以真子集的个数为24-1=15.15.3-因为集合{1,2,}M m =-,{1,3}N =,且N M ⊆,所以3m -=,得3m =-,16.(5,)+∞ 由题意,集合{}|23{|15}A x x x x =-≤=-≤≤,又由{}|B x x t =<,且A B ⊆,所以5t >,即实数t 的取值范围是(5,)+∞.17.=解:由集合A 得:1|(21),3A x x n n Z ⎧⎫==+∈⎨⎬⎩⎭, 由集合B 得:1|(23),3B x x n n Z ⎧⎫==+∈⎨⎬⎩⎭, {|21x x n =+,}{|23n Z x x n ∈==+,}n Z ∈, A B ∴=,18.(1)集合A 的代表元素是数,集合B 的代表元素是有序实数对,故A 与B 之间无包含关系. (2)等边三角形是三边相等的三角形,等腰三角形是两边相等的三角形,故A B . (3)集合B ={x |x <5},用数轴表示集合A ,B 如图所示,由图可知A B .(4)由列举法知M ={1,3,5,7,…},N ={3,5,7,9,…},故N M .19.解:①当M 中含有2个元素时,M 为{}1,2;②当M 中含有3个元素时,M 为{}1,2,3,{}1,2,4,{}1,2,5;③当M 中含有4个元素时,M 为{}1,2,3,4,{}1,2,3,5,{}1,2,4,5;④当M 中含有5个元素时,M 为{}1,2,3,4,5.故满足条件的集合M 为{}1,2,{}1,2,3,{}1,2,4,{}1,2,5,{}1,2,3,4,{}1,2,3,5,{}1,2,4,5,{}1,2,3,4,5.20.(1)2a =-;(2)不存在.(1)由题意,33a -=-或213a +=-,解得0a =或2a =-,当0a =时,{}3,1,1A =-,不成立;当2a =-时,{}5,3,5A =--,成立;∴2a =-.(2)由题意,210a +≠,若30a -=,则3a =,{}0,7,10A B =≠,不合题意;若210a +=,则12a =-,750,,24A B ⎧⎫=-≠⎨⎬⎩⎭,不合题意; ∴不存在实数a ,x ,使得A B =.21.(1)不存在,理由见解析;(2){(5,9),(6,10),(3,7),(2,6)}----.解:(1)由题意,集合{|4}A x x a =-={}4,4a a =-+,因为b 是任意实数,要使A B ⊆,必有4142a a -=⎧⎨+=⎩或4241a a -=⎧⎨+=⎩, 两个方程组都没有实数解,所以不存在满足条件的实数a .(2)由(1)知{}4,4A a a =-+,要使A B ⊆,则满足414a a b -=⎧⎨+=⎩或424a a b -=⎧⎨+=⎩或441a b a -=⎧⎨+=⎩或442a b a -=⎧⎨+=⎩, 解得59a b =⎧⎨=⎩或610a b =⎧⎨=⎩或37a b =-⎧⎨=-⎩或26a b =-⎧⎨=-⎩, 所以实数对(),a b 构成的集合为()()()(){}596103726----,,,,,,,.。

集合间的基本关系(经典练习及答案详解)

集合间的基本关系(经典练习及答案详解)

集合间的基本关系1.(2020年福建高一期中)现有四个判断:2⊆{1,2};∅∈{0};{ 5 }⊆Q ;∅{0}.其中正确的个数是( )A .2B .1C .4D .3 【答案】B 【解析】元素与集合之间不能用包含关系,故2⊆{1,2}错误;∅与{0}是集合之间的关系,不能用“∈”,故∅∈{0}错误;因为 5 ∉Q ,所以{5}⊆Q 错误;空集是任何非空集合的真子集,故∅{0}正确.故选B .2.已知集合A ={x |a -1≤x ≤a +2},B ={x |3<x <5},则能使A ⊇B 成立的实数a 的取值范围是( )A .{a |3<a ≤4}B .{a |3≤a ≤4}C .{a |3<a <4}D .∅【答案】B 【解析】因为A ⊇B ,所以⎩⎪⎨⎪⎧ a -1≤3,a +2≥5.所以3≤a ≤4. 3.(2021年北京期末)下列正确表示集合M ={x |x 2-x =0}和N ={-1,0,1}关系的Venn 图是( )A BC D 【答案】D 【解析】由x 2-x =0,解得x =0或1,所以M N .故选D .4.(2020年铜仁高一期中)设集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈Z ⎪⎪ 62+x ∈N ,则集合B 的子集个数为( ) A .3B .4C .8D .16【答案】D 【解析】根据题意,集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈Z ⎪⎪ 62+x ∈N ={-1,0,1,4},有4个元素,其子集有24=16个.故选D .5.(2021年昆明期中)下列各式中,正确的个数是( )①{0}∈{0,2,4};②{0,2,4}⊆{4,2,0};③∅⊆{0,2,4};④∅={0};⑤{0,2}={(0,2)};⑥0={0}.A.1 B.2C.3 D.4【答案】B【解析】对于①,是集合与集合的关系,应为{0}{0,2,4};对于②,实际为同一集合,任何一个集合是它本身的子集;对于③,空集是任何集合的子集;对于④,{0}是含有单元素0的集合,空集不含任何元素,并且空集是任何非空集合的真子集,所以∅{0};对于⑤,{0,2}是含有两个元素0与2的集合,而{(0,2)}是以有序数组(0,2)为元素的单元素集合,所以{0,2}与{(0,2)}不相等;对于⑥,0与{0}是“属于与否”的关系,所以0∈{0}.故②③正确.6.用符号“∈”或“⊆”填空:若A={2,4,6},则4______A,{2,6}______A.【答案】∈⊆【解析】因为集合A中有4这个元素,所以4∈A,因为2∈A,6∈A,所以{2,6}⊆A.故答案为∈,⊆.7.已知集合A⊆{0,1,2},且集合A中至少含有一个偶数,则这样的集合A的个数为________.【答案】6【解析】集合{0,1,2}的子集为:∅,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2},其中含有偶数的集合有6个.8.已知集合A={x|x<3},集合B={x|x<m},且A⊆B,则实数m满足的条件是________.【答案】m≥3【解析】将数集A在数轴上表示出来,如图所示,要满足A⊆B,表示数m的点必须在表示3的点处或在其右边,故m≥3.9.设集合A={1,3,a},B={1,a2-a+1},且B⊆A,求a的值.解:因为B⊆A,所以a2-a+1=3或a2-a+1=a.当a2-a+1=3时,解得a=-1或a=2.经检验,满足题意.当a2-a+1=a时,解得a=1,此时集合A中的元素1重复,故a=1不合题意.综上所述,a=-1或a=2.B级——能力提升练10.(多选)图中反映的是“文学作品”“散文”“小说”“叙事散文”这四个文学概念之间的关系,则()A.A为小说B.B为文学作品C .C 为散文D .D 为叙事散文【答案】AB 【解析】由Venn 图可得A B ,C D B ,A 与D 之间无包含关系,A 与C 之间无包含关系.由“文学作品”“散文”“小说”“叙事散文”四个文学概念之间的关系,可得A 为小说,B 为文学作品,C 为叙事散文,D 为散文.11.已知集合A ={x |x =3k ,k ∈Z },B ={x |x =6k ,k ∈Z },则A 与B 之间的关系是( )A .A ⊆BB .A =BC .A BD .A B【答案】D 【解析】对于x =3k (k ∈Z ),当k =2m (m ∈Z )时,x =6m (m ∈Z );当k =2m -1(m ∈Z )时,x =6m -3(m ∈Z ).由此可知A B .12.(2020年太原高一期中)设集合A ={a ,b },B ={0,a 2,-b 2},若A ⊆B ,则a -b =( )A .-2B .2C .-2或2D .0【答案】C 【解析】因为集合A ={a ,b },B ={0,a 2,-b 2},且A ⊆B ,易知a ≠0且b ≠0.当 ⎩⎪⎨⎪⎧ a =a 2,b =-b 2时,因为a ≠0且b ≠0,所以⎩⎪⎨⎪⎧ a =1,b =-1,此时集合A ={1,-1},集合B ={0,1,-1},符合题意,所以a -b =2;当⎩⎪⎨⎪⎧ a =-b 2,b =a 2时,因为a ≠0且b ≠0,所以⎩⎪⎨⎪⎧a =-1,b =1,此时集合A ={1,-1},集合B ={0,1,-1},符合题意,所以a -b =-2.综上所求,a -b =2或-2.故选C .13.(2020年宁波高一期中)已知集合A =⎩⎨⎧⎭⎬⎫x ∈N |y =12x +3∈Z ,则列举法表示集合A =________,集合A 的真子集有________个.【答案】{0,1,3,9} 15 【解析】因为集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈N ⎪⎪ y =12x +3∈Z ,所以列举法表示集合A ={0,1,3,9},集合A 的真子集有24-1=15个.故答案为{0,1,3,9},15.14.(2020年安康高一期中)定义集合运算:A ⊗B ={z |z =x +y ,x ∈A ,y ∈B },设A ={0,1},B ={2,3},则集合A ⊗B 的真子集的个数为________.【答案】7 【解析】因为A ⊗B ={z |z =x +y ,x ∈A ,y ∈B },A ={0,1},B ={2,3},所以集合A ⊗B ={2,3,4},所以集合A ⊗B 的真子集的个数为23-1=7.15.已知集合A ={x |1≤x ≤2},B ={x |1≤x ≤a ,a ≥1}.(1)若A B ,求a 的取值范围;(2)若B ⊆A ,求a 的取值范围.解:(1)若A B ,由图可知a >2.故a 的取值范围为{a |a >2}.(2)若B ⊆A ,由图可知1≤a ≤2.故a 的取值范围为{a |1≤a ≤2}.C 级——探究创新练16.已知集合P ={x |x 2-3x +b =0},Q ={x |(x +1)(x 2+3x -4)=0}.(1)若b =4,是否存在集合M 使得PM ⊆Q ?若存在,求出所有符合题意的集合M ,若不存在,请说明理由;(2)P 能否成为Q 的一个子集?若能,求出b 的值或取值范围,若不能,请说明理由. 解:(1)因为集合Q ={x |(x +1)(x 2+3x -4)=0}={x |(x +1)(x +4)(x -1)=0}={-1,1,-4}, 当b =4时,集合P =∅,再由 P M ⊆Q 可得,M 是Q 的非空子集,共有 23-1=7 个,分别为{-1},{1},{-4},{-1,1},{-1,4},{1,4},{-1,1,-4}.(2)因为P ⊆Q ,对于方程x 2-3x +b =0,当P =∅,Δ=9-4b <0时,有b >94. 当P ≠∅,Δ=9-4b ≥0时,方程x 2-3x +b =0有实数根,且实数根是-1,1,-4中的数, 若-1是方程x 2-3x +b =0的实数根,则有b =-4,此时P ={-1,4},不满足P ⊆Q ,故舍去;若1是方程x 2-3x +b =0的实数根,则有b =2,此时P ={1,2},不满足P ⊆Q ,故舍去; 若-4是方程x 2-3x +b =0的实数根,则有b =-28,此时P ={-4,7},不满足P ⊆Q ,故舍去.综上可得,实数b 的取值范围为⎩⎨⎧⎭⎬⎫b ⎪⎪b >94.。

集合间的基本关系试题(含答案)

集合间的基本关系试题(含答案)

集合间的基本关系试题(含答案)1.“A⊆B”不成立的含义是A中至少有一个元素不属于B,因此选C。

2.根据xy>0知x与y同号,又x+y<0,因此x与y同为负数,等价于M=P,因此选C。

3.A={-1,1},B={0,1,2,3},A⊆C,B⊆C,因此集合C中必含有A与B的所有元素-1,0,1,2,3,故C中至少有5个元素,因此选C。

4.由于B⊆A,因此x2∈A,又x2≠1,因此x2=3或x2=x,因此x=±3或x=0,因此满足条件的实数x的个数是3,因此选C。

5.由于两集合代表元素不同,因此M与P互不包含,因此选D。

6.由于A⊆B,A⊆C,因此集合A中的元素只能由a或b构成,因此这样的集合共有22=4个,即A=∅,或A={a},或A={b}或A={a,b},因此选C。

7.M={x|x=2k+4,k∈Z},N={x|x=4k+2,k∈Z},因为2k+4=2(k+2)和4k+2=2(2k+1)都是偶数,因此M和N都是偶数的集合,但M和N不相等,因为M中的元素都比N中的元素大2,因此选B。

1b,b∈Z},则A与B的交集为________.答案]空集或∅解析]A的元素形如x=a+6a∈Z,而B的元素形如x=231b,b∈Z,所以A与B的交集为空集或∅.15.集合A={x|2x+1<5},B={x|x2-3x+2≥0},则A∩B=________.答案][1,2)解析]2x+1<5得x<2,x2-3x+2≥0得x≤1或x≥2,故A∩B=[1,2).16.集合A={x|x2-5x+6<0},B={x|2x-1≥0},则A∩B=________.答案][1,2)∪(3,+∞)解析]x2-5x+6<0得x∈(2,3),2x-1≥0得x≥12故A∩B=[1,2)∪(3,+∞).17.集合A={x|2x+1<5},B={x|x2-3x+2≥0},则A∪B=________.答案](-∞,1]∪[2,+∞)解析]2x+1<5得x<2,x2-3x+2≥0得x≤1或x≥2,故A∪B=(-∞,1]∪[2,+∞).18.集合A={x|x<2},B={x|x>1},则A×B=________.答案]{(x,y)|x<2,y>1}解析]A×B={(x,y)|x∈A,y∈B}={(x,y)|x<2,y>1}.16.已知 $A=\{x\in R|x5\}$,$B=\{x\in R|a\leq x<a+4\}$,求 $A,B$ 的关系并求实数 $a$ 的取值范围。

集合间的基本关系试题(含答案)

集合间的基本关系试题(含答案)

一、选择题1.对于集合A ,B ,“A ⊆B ”不成立的含义是( )A .B 是A 的子集B .A 中的元素都不是B 的元素C .A 中至少有一个元素不属于BD .B 中至少有一个元素不属于A[答案] C[解析] “A ⊆B ”成立的含义是集合A 中的任何一个元素都是B 的元素.不成立的含义是A 中至少有一个元素不属于B ,故选C.2.集合M ={(x ,y )|x +y <0,xy >0},P ={(x ,y )|x <0,y <0}那么( )A .P MB .M PC .M =PD .M P [答案] C[解析] 由xy >0知x 与y 同号,又x +y <0∴x 与y 同为负数∴⎩⎨⎧ x +y <0xy >0等价于⎩⎪⎨⎪⎧x <0y <0∴M =P . 3.设集合A ={x |x 2=1},B ={x |x 是不大于3的自然数},A ⊆C ,B ⊆C ,则集合C 中元素最少有( )A .2个B .4个C .5个D .6个[答案] C[解析] A ={-1,1},B ={0,1,2,3},∵A ⊆C ,B ⊆C ,∴集合C 中必含有A 与B 的全部元素-1,0,1,2,3,故C 中至少有5个元素.4.若集合A ={1,3,x },B ={x 2,1}且B ⊆A ,则满意条件的实数x 的个数是( )A .1B .2C .3D .4[答案] C[解析]∵B⊆A,∴x2∈A,又x2≠1∴x2=3或x2=x,∴x=±3或x=0.故选C.5.已知集合M={x|y2=2x,y∈R}和集合P={(x,y)|y2=2x,y∈R},则两个集合间的关系是()A.M P B.P MC.M=P D.M、P互不包含[答案] D[解析]由于两集合代表元素不同,因此M与P互不包含,故选D.6.集合B={a,b,c},C={a,b,d};集合A满意A⊆B,A⊆C.则满意条件的集合A的个数是()A.8 B.2C.4 D.1[答案] C[解析]∵A⊆B,A⊆C,∴集合A中的元素只能由a或b构成.∴这样的集合共有22=4个.即:A=∅,或A={a},或A={b}或A={a,b}.7.设集合M={x|x=k2+14,k∈Z},N={x|x=k4+12,k∈Z},则()A.M=N B.M NC.M N D.M与N的关系不确定[答案] B[解析]解法1:用列举法,令k=-2,-1,0,1,2…可得M={…-34,-14,14,34,54…},N={…0,14,12,34,1…},∴M N,故选B.解法2:集合M的元素为:x=k2+14=2k+14(k∈Z),集合N的元素为:x=k4+12=k+24(k∈Z),而2k+1为奇数,k+2为整数,∴M N,故选B.[点评]本题解法从分式的结构动身,运用整数的性质便利地获解.留意若k是随意整数,则k+m(m是一个整数)也是随意整数,而2k+1,2k-1均为随意奇数,2k 为随意偶数.8.集合A={x|0≤x<3且x∈N}的真子集的个数是()A.16 B.8C.7 D.4[答案] C[解析]因为0≤x<3,x∈N,∴x=0,1,2,即A={0,1,2},所以A的真子集个数为23-1=7.9.(09·广东文)已知全集U=R,则正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的韦恩(Venn)图是()[答案] B[解析]由N={x|x2+x=0}={-1,0}得,N M,选B.10.假如集合A满意{0,2}A⊆{-1,0,1,2},则这样的集合A个数为()A.5 B.4C.3 D.2[答案] C[解析]集合A里必含有元素0和2,且至少含有-1和1中的一个元素,故A={0,2,1},{0,2,-1}或{0,2,1,-1}.二、填空题11.设A={正方形},B={平行四边形},C={四边形},D={矩形},E={多边形},则A 、B 、C 、D 、E 之间的关系是________.[答案] A D B C E[解析] 由各种图形的定义可得.12.集合M ={x |x =1+a 2,a ∈N *},P ={x |x =a 2-4a +5,a ∈N *},则集合M 与集合P 的关系为________.[答案] M P[解析] P ={x |x =a 2-4a +5,a ∈N *}={x |x =(a -2)2+1,a ∈N *}∵a ∈N * ∴a -2≥-1,且a -2∈Z ,即a -2∈{-1,0,1,2,…},而M ={x |x =a 2+1,a ∈N *},∴M P .13.用适当的符号填空.(∈,∉,⊆,⊇,,,=) a ________{b ,a };a ________{(a ,b )};{a ,b ,c }________{a ,b };{2,4}________{2,3,4};∅________{a }.[答案] ∈,∉,,, *14.已知集合A =⎩⎨⎧⎭⎬⎫x |x =a +16,a ∈Z , B ={x |x =b 2-13,b ∈Z },C ={x |x =c 2+16,c ∈Z }.则集合A ,B ,C 满意的关系是________(用⊆,,=,∈,∉,⃘中的符号连接A ,B ,C ).[答案] A B =C[解析] 由b 2-13=c 2+16得b =c +1,∴对随意c ∈Z 有b =c +1∈Z .对随意b ∈Z ,有c =b -1∈Z ,∴B =C ,又当c =2a 时,有c 2+16=a +16,a ∈Z .∴A C .也可以用列举法视察它们之间的关系.15.(09·北京文)设A是整数集的一个非空子集,对于k∈A,假如k-1∉A,那么k 是A的一个“孤立元”.给定S={1,2,3,4,5,6,7,8},由S的3个元素构成的全部集合中,不含“孤立元”的集合共有______个.[答案] 6[解析]由题意,要使k为非“孤立元”,则对k∈A有k-1∈A.∴k最小取2.k-1∈A,k∈A,又A中共有三个元素,要使另一元素非“孤立元”,则其必为k +1.所以这三个元素为相邻的三个数.∴共有6个这样的集合.三、解答题16.已知A={x∈R|x<-1或x>5},B={x∈R|a≤x<a+4},若A B,求实数a的取值范围.[解析]如图∵A B,∴a+4≤-1或者a>5.即a≤-5或a>5.17.已知A={x|x<-1或x>2},B={x|4x+a<0},当B⊆A时,求实数a的取值范围.[解析]∵A={x|x<-1或x>2},B={x|4x+a<0}={x|x<-a 4},∵A⊇B,∴-a4≤-1,即a≥4,所以a的取值范围是a≥4.18.A={2,4,x2-5x+9},B={3,x2+ax+a},C={x2+(a+1)x-3,1},a、x∈R,求:(1)使A={2,3,4}的x的值;(2)使2∈B,B A成立的a、x的值;(3)使B=C成立的a、x的值.[解析](1)∵A={2,3,4} ∴x2-5x+9=3解得x =2或3(2)若2∈B ,则x 2+ax +a =2又B A ,所以x 2-5x +9=3得x =2或3,将x =2或3分别代入x 2+ax +a =2中得a =-23或-74(3)若B =C ,则⎩⎪⎨⎪⎧x 2+ax +a =1①x 2+(a +1)x -3=3② ①-②得:x =a +5 代入①解得a =-2或-6此时x =3或-1.*19.已知集合A ={2,4,6,8,9},B ={1,2,3,5,8},又知非空集合C 是这样一个集合:其各元素都加2后,就变为A 的一个子集,若各元素都减2后,则变为B 的一个子集,求集合C .[解析] 由题设条件知C ⊆{0,2,4,6,7},C ⊆{3,4,5,7,10},∴C ⊆{4,7},∵C ≠∅,∴C ={4},{7}或{4,7}.。

集合2 集合间的基本关系

集合2     集合间的基本关系

集合2 集合间的基本关系基本概念一、子集、真子集、集合相等已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n -个真子集,它有21n-个非空子集,它有22n-非空真子集. 三、空集空集是任何集合的子集,是任何非空集合的真子集. 注:元素与集合的关系“∈”,集合与集合的关系“⊆” 相关练习题型一 包含关系、子集和真子集 一、选择题1. 下列四个命题:① ;②空集没有子集;③任何一个集合必有两个或两个以上的子集;④空集是任何一个集合的子集.其中正确的是 A. 个B. 个C. 个D. 个2. 有下列四个关系式:① ;② ;③ ;④ .其中正确的有A. ①②B. ①③C. ①④D. ②④3. 如果集合 ,那么:① ;② ;③ ;④ ;⑤其中正确的个数为A. B. C. D.4. 集合,,之间的关系是A. B. C. D.5. 设集合,,则A. B.C. D. 与的关系不确定6. 设,,则下列关系正确的是 ( )A. B.C. D. 与没有公共元素7. 若集合,,满足,,则与之间的关系为A. B. C. D.8. 已知集合,,若,则A. B. C. 或 D. 或9. 设集合,若,则m= ( )A. 3B. 2C. -2D. -310. 集合,,若,且,则的取值为A. B. C. 或 D. 或11. 已知集合,,若,则实数的取值范围是A. B.C. D.12. 已知集合,则能使成立的实数的范围是 ( )A. B.C. D.二、填空题13. 已知集合,集合,若则实数.14. 若集合,,若,则的值.15. 已知集合,或,若,则的取值范围为.16. 集合,.若且为非空集合,则实数的取值范围是.三、解答题17. 设,,若,求实数的取值范围.18.已知集合,,若,求实数的取值范围.19.已知集合,,且,求实数的值组成的集合.20.已知集合,,若,求实数的取值范围.21.已知,,,求的取值范围.22.设集合,,若,求实数的值.题型二集合相等、元素的个数一、选择题1. 下列选项中的与相等的是A. ,B. ,C. ,D. ,2. 下列各组两个集合和,表示同一集合的是 ( )A.B.C.D.3. 下列命题正确的个数为 ( )① ,,则;② ;③;④ .A. B. C. D.4. 下列结论正确的个数为 ( )①集合,集合是的正因数,与是同一个集合;②集合与集合是同一个集合;③由,,,,这些数组成的集合有个元素;④集合是指第二和第四象限内的点集.A. B. C. D.5. 满足条件的集合的个数是A. B. C. D.6. 已知集合,且中至少有一个奇数,则这样的集合共有A. 个B. 个C. 个D. 个7. 若集合,且中至少含有一个奇数,则这样的集合有A. 个B. 个C. 个D. 个8. 已知集合,集合,若,则A. ,B. ,C. ,D. ,二、填空题(共4小题;共20分)9. 已知,,若,则.10. 若集合含有两个元素,,集合含有两个元素,,且,相等,则.11. 若,则,,.12. 已知,,且,则,,.题型三空集一、选择题1. 下列四个集合中,是空集的是A. B. 且C. D.2. 下列集合中,是空集的是A.B.C.D.3. 下列集合中为空集的是 ( )A. B.C. D.4. 若非空数集,,则能使成立的所有的集合是 ( )A. B.C. D.二、解答题5. 已知集合.Ⅰ若是空集,求的取值范围;Ⅱ若中只有一个元素,求的值;Ⅲ若中至多有一个元素,求的取值范围.6. 已知集合,,且,求实数的值组成的集合.题型一答案1. B2. A3. A4. C5. B6. B7. D8. C9. D 10. B 11. C 12. B13. 14. = 15. 或 16.17. 或.18. 因为,且,所以① 当时,,可得,所以;② 当时,,解得,此时符合,所以;③ 当时,,解得,此时不符合,舍去;④ 当时,由根与系数的关系得此时无解.综上,,即的取值范围为.19. ,若,;若,,由得,或.解得或,因此实数的值组成的集合是:.20. 因为,当时,即,得,满足.当时,要使,必须解得综上所述,的取值范围为.21. 当,即时,,满足,即;当,即时,,满足,即;当,即时,由得,即;所以.22. .因为,所以或.(1)当时,即,则,是方程的两根,代入解得.(2)当时,分两种情况:① 若,则,解得;② 若,则方程有两个相等的实数根,所以,解得,此时,满足条件.综上可知,所求实数的值为或.题型二答案1. C2. C3. B4. A5. C6. D7. D8. C9. 10. 11. ;; 12. ;;题型三答案1. B2. D3. C4. B5. (1)是空集,方程无实数根,,且,解得.即的取值范围为.(2)中只有一个元素,方程只有一个实数根.若,方程为,解得,此时;若,则,即,解得.或.(3)中至多有一个元素包含中只有一个元素和是空集两种情况,由(1)(2)可知的取值范围为或.6. ,若,;若,,由得,或.解得或,因此实数的值组成的集合是:.。

高中数学必修一1.2 集合间的基本关系-单选专项练习(50)(人教A版,含答案及解析)

高中数学必修一1.2 集合间的基本关系-单选专项练习(50)(人教A版,含答案及解析)

1.2 集合间的基本关系1.集合M=}|1,2n x x n Z ⎧=+∈⎨⎩,N=}1|,2x x m m Z ⎧=+∈⎨⎩,则两集合M ,N 的关系为( )A .M∩N=∅B .M=NC .M ⊆ND .N ⊆M 2.已知集合{2,0,1},{0,1,3}M N =-=,则M N ⋃=( )A .{0,1}B .{2,1,3}-C .{2,0,1}-D .{2,0,1,3}-3.已知集合A ,B ,C 满足:A B ⊆,A C ⊆,{}0,1,2,3B =,{}1,3,8,9C =,则集合A 可以是( ) A .{}1,8B .{}1,3C .{}0D .{}94.集合{|13}P x Z x =∈-<,{}2R |9M x x =∈,则P∩M 等于A .{}1,2B .{}0,1,2C .1,0,1,2D .{|03}x x ≤≤5.设集合{}2|0log 1A x x =<<,{}|B x x a =<,若A B ⊆,则a 的取值范围是( ). A .2a ≥B .2a >C .1a <D .1a ≤6.已知集合{}20A x mx mx m =-+=有两个非空真子集,则实数m 的取值范围为( )A .{}4m m >B .{}04m m m <或>C .{}4m m ≥D .{}04m m m ≤≥或7.已知集合2{|1}M x x ==.N 为自然数集,则下列表示不正确的是( ) A .1M ∈B .{1,1}M =-C .M ∅⊆D .M N ⊆8.对于任意两个正整数,m n ,定义某种运算,法则如下:当,m n 都是正奇数时,mn m n =+ ;当,m n 不全为正奇数时,m n mn =,则在此定义下,集合(){,|M a b a=16,*,*}b a N b N =∈∈的真子集的个数是( )A .721-B .1121-C .1321-D .1421- 9.若集合{|13}A x x =<<,{|}B x x a =<,且A B B ⋃=,则a 的取值范围为( )A .3a ≥B .3a ≤C .1a ≥D .1a ≤10.已知集合A =x|x 2﹣3x+2=0},B =x|0<x <6,x∈N},则满足A ⫋C ⊆B 的集合C 的个数为( ) A .4B .7C .8D .1611.已知a R b R ∈∈,,若集合{}210b a a a b a ⎧⎫=-⎨⎬⎩⎭,,,,,则20212020a b +的值为( )A .2-B .1-C .1D .212.设集合{}210A x x =-=,则( )A .A ∅∈B .A π∈C .1A -∈D .{}11A -∈, 13.设集合A =x|x =2k +1,k ∈Z},若a =5,则有( )A .a ∈AB .-a ∉AC .a}∈AD .a}∉A14.设集合P=立方后等于自身的数},那么集合P 的真子集的个数是( )A .3B .4C .7D .815.集合|,3kA x x k Z ⎧⎫==∈⎨⎬⎩⎭,{}|,B x x k k Z ==∈,1{|,}3C x x k k Z ==+∈,2{|,}3D x x k k Z ==+∈,则下面正确的是( )A .C DB =B .CD A ⋃=C .B C A =D .B C D A =16.若集合|,2M k k Z πααπ⎧⎫==+∈⎨⎬⎩⎭,|,2N k k Z πββπ⎧⎫==-∈⎨⎬⎩⎭,|2,2P k k Z πθθπ⎧⎫==±∈⎨⎬⎩⎭,|2,2Q k k Z πϕϕπ⎧⎫==+∈⎨⎬⎩⎭,则四个集合中与其它三个集合不相等的一个集合是( )A .MB .NC .PD .Q17.已知集合2{|40}A x x =-=,则下列关系式表示正确的是( )A .A ∅∈B .{2}A -=C .2A ∈D .{2,2}- ≠⊂A 18.已知集合{}01A =,,{},,B z z x y x A y A ==+∈∈∣,则B 的子集个数为( ) A .3 B .4C .8D .619.设集合{|,}24k M x x k ππ==+∈Z ,{|,}42k N x x k ππ==+∈Z ,则( ) A .M NB .M N ⊆C .M N ⊇D .M N ⋂=∅ 20.若1,2,3} A ⊆1,2,3,4,5},则集合A 的个数为A .2B .3C .4D .5参考答案1.D 2.D 3.B 4.C 5.A 6.A 7.D 8.C 详解:由题意,当m n , 都是正奇数时,m n m n =+※ ;当m n ,不全为正奇数时,m n mn =※ ; 若a b , 都是正奇数,则由16a b =※ ,可得16a b += ,此时符合条件的数对为(115313151⋯,),(,),(,) 满足条件的共8个;若a b ,不全为正奇数时,m n mn =※ ,由16a b =※ ,可得16ab = ,则符合条件的数对分别为116284482161(,),(,),(,),(,),(,) 共5个;故集合**{|16}M a b a b a N b N ==∈∈(,)※,, 中的元素个数是13, 所以集合**{|16}M a b a b a N b N ==∈∈(,)※,,的真子集的个数是1321-.故选C .点睛:本题考查元素与集合关系的判断,解题的关键是正确理解所给的定义及熟练运用分类讨论的思想进行列举,9.A 10.B 11.B 12.C 13.A 14.C 15.D 16.D 17.C 18.C 19.C详解:集合1,2,3}是集合A 的真子集,同时集合A 又是集合1,2,3,4,5}的子集,所以集合A 只能取集合1,2,3,4},1,2,3,5}和1,2,3,4,5}. 考点:集合间的基本关系.【参考解析】1.解析:根据子集的定义判断. 详解:由题意,对于集合M ,当n 为偶数时,设n=2k (k∈Z),则x=k+1(k∈Z), 当n 为奇数时,设n=2k+1(k∈Z),则x=k+1+12(k∈Z), ∴N ⊆M , 故选:D.2.解析:根据并集的运算求解即可. 详解:因为{2,0,1},{0,1,3}M N =-=,由集合的并集运算,得{2,0,1,3}M N ⋃=-. 故选:D 点睛:本题主要考查了集合的并集运算,属于基础题.3.解析:根据题意,得()A B C ⊆,再利用交集的定义即可得到结论. 详解:由A B ⊆,A C ⊆,知()A B C ⊆, 又{}0,1,2,3B =,{}1,3,8,9C =, ∴{}1,3B C =, ∴集合A 可以为{}1,3. 故选:B. 点睛:本题考查交集的定义,集合与集合的关系,属于基础题.4.解析:先求出集合M 和集合P ,根据交集的定义,即得P M ⋂。

高中数学必修一1.2 集合间的基本关系-单选专项练习(4)(人教A版,含解析)

高中数学必修一1.2 集合间的基本关系-单选专项练习(4)(人教A版,含解析)

1.2 集合间的基本关系一、单选题1.若集合(){}|10A x x x =+≥,{B y y ==,则 A .A B = B .A B ⊆ C .A B R = D .B A ⊆答案:D解析:分别求解出集合A 和集合B ,根据集合的包含关系可确定结果. 详解:(){}(][)|10,10,A x x x =+≥=-∞-+∞,{[)0,B yy ==+∞B A ∴⊆本题正确选项:D 点睛:本题考查集合间的包含关系,属于基础题.2.已知集合{1A =,2},{|10}B x mx =-=,若A B B =,则符合条件的实数m 的值组成的集合为( ) A .{1,1}2 B .{1-,1}2C .{1,0,1}2D .{1,1}2-答案:C解析:A B B =等价于B A ⊆,分B φ=和B φ≠两类情况,分别求出m 的值,得出答案. 详解:A B B =,B A ∴⊆,当0m =时,B φ=满足要求;当B φ≠时,10m +=或210m -=,1m =-或12,∴综上,{1m ∈,0,1}2.故选:C 点睛:本题考查集合间的关系,考查转化思想和分类讨论思想,属于基础题. 3.若集合{}|sin 21A x x ==,,42k B y y k Z ππ⎧⎫==+∈⎨⎬⎩⎭,则( ) A .A B A ⋃= B .R R C B C A ⊆ C .A B =∅ D .R R C A C B ⊆答案:B解析:根据正弦函数的性质可得集合A ,由集合性质表示形式即可求得A B ⊆,进而可知满足R R C B C A ⊆.详解:依题意,{}|sin 21|,4A x x x x k k Z ππ⎧⎫====+∈⎨⎬⎩⎭; 而|,42k B y y k Z ππ⎧⎫==+∈⎨⎬⎩⎭()212|,,4242n n x x n Z x n Z ππππ+⎧⎫==+∈=+∈⎨⎬⎩⎭或()21|,,442n x x n n Z x n Z ππππ+⎧⎫==+∈=+∈⎨⎬⎩⎭或,故A B ⊆, 则R R C B C A ⊆. 故选:B. 点睛:本题考查了集合关系的判断与应用,集合的包含关系与补集关系的应用,属于中档题. 4.设{,}A a b =,{,,,,,}B a b c d e f =,集合M 满足A MB (都是真包含),这样的集合有( ) A .12个 B .14个 C .13个 D .以上都错答案:B解析:根据集合M 满足A MB ,分析出集合M 至少含3个元素,最多含5个元素再求解.详解:因为集合M 满足AMB , 所以集合M 至少含3个元素,最多含5个元素,则这样的集合有12344414C C C ++=(个).故选:B 点睛:本题主要考查集合的基本关系,属于基础题. 5.下面每一组的两个集合,相等的是( ) A .{(1,2)}M =,{(2,1)}N = B .{1,2}M =,{(1,2)}N =C .M =∅,{}N =∅D .{}2|210M x x x =-+=,{1}N =答案:D解析:由相等集合的概念一一分析每个选项中的集合,然后进行比较即可得出答案.A 选项中(1,2),(2,1)表示两个不同的点,∴M N ,∴该选项不符合;B 选项中集合M 有两个元素1,2是实数,N 有一个元素(1,2)是点,∴MN ,∴该选项不符合;C 选项中集合M 是空集,集合N 是含有一个元素∅的集合,∴M N ,∴该选项不符合;D 选项中由2210x x -+=得121x x ==,∴{1}M N ==,∴该选项符合.故选:D. 点睛:本题考查了相等集合的判断,属于基础题. 6.已知集合{0,1,2}A =,则A 的子集个数为( ) A .6 B .7 C .8 D .16答案:C解析:根据子集的个数为2n (n 为集合元素的个数),即可求得答案. 详解: {0,1,2}A =.根据子集的个数为2,n (n 为集合元素的个数)∴ A 的子集个数328=.故选:C . 点睛:本题考查了求集合子集个数问题,解题关键是掌握子集概念,考查了分析能力和计算能力,属于基础题.7.已知集合A 、B ,若A 不是B 的子集,则下列命题中正确的是 ( ) A .对任意的a A ∈,都有a B ∉ B .对任意的b B ∈,都有b A ∈ C .存在0a ,满足0a A ∈,0a B ∉ D .存在0a ,满足0a A ∈,0a B ∈答案:C解析:根据子集的定义进行判断. 详解:根据子集的定义:如果集合A 的任意一个元素都是集合B 的元素,那么集合A 称为集合B 的子集.因为A 不是B 的子集所以存在0a ,满足0a A ∈,0a B ∉ 故选:C本题主要考查了集合子集的概念,还考查了理解辨析的能力,属于基础题.8.若集合M=x|x≤6}, ) A .{}a M ⊆ B .a M ⊆C .{}a M ∈D .a M ∉答案:A解析:根据元素与集合的关系,以及集合之间的包含关系,即可求解,得到答案. 详解:根据实数的性质,可得6,所以{|6}x x ≤,则a M ∈,所以B 、D 不正确;又根据集合的包含关系可得{|6}x x ⊆≤,即{}a M ⊆,故选A . 点睛:本题主要考查了元素与集合,集合与集合的关系的判定,其中解答中熟记元素与集合的关系,以及集合间的包含关系的概念与判定是解答的关键,着重考查推理与运算能力,属于基础题.9.集合M=16x x m m ⎧⎫=+∈⎨⎬⎩⎭Z ,,N=}1-23n x x n -⎧=∈⎨⎩Z ,,P=126p x x p ⎧⎫=+∈⎨⎬⎩⎭Z ,,则M ,N ,P 之间的关系是( ) A .M=N ⫋P B .M ⫋N=P C .M ⫋N ⫋P D .N ⫋P=M 答案:B解析:通分化简,再利用集合之间的包含关系即可求解. 详解: M=616m x x m Z ⎧⎫+=∈⎨⎬⎩⎭,, N=3-23(-1)166n n x x n Z ⎧+⎫==∈⎨⎬⎭⎩,, P=316p x x p Z ⎧⎫+=∈⎨⎬⎩⎭,. 由于3(n-1)+1和3p+1都表示被3除余1的数,而6m+1表示被6除余1的数, 所以M ⫋N=P . 故选:B 点睛:本题考查了集合的包含关系,考查了基本知识掌握情况,属于基础题. 10.下列几个关系中正确的是 A .{}00∈ B .{}00= C .{}00⊆ D .{}0∅=答案:A解析:由元素与集合、集合与集合的关系即可判断是否正确. 详解:0是集合{}0 的一个元素,所以{}00∈ ,故选择A . 点睛:本题考查了元素与集合、集合与集合的关系,属于基础题概念题. 11.下列表示正确的个数是( )(1){}{}2100;(2)1,2;(3){(,)}3,435x y x y x y +=⎧∉∅∅⊆=⎨-=⎩;(4)若A B ⊆则A B A = A .0 B .1 C .2 D .3答案:D解析:选项(1)中元素与空集的关系是不属于,正确;(2)空集是非空集的子集正确;(3)集合前后不相等,一个是方程的根构成的集合,有一个元素,一个是两个实数构成的集合,故不正确;(4)根据集合子集的意义知若A B ⊆则A B A =正确.12.已知集合{|}M x x x Z <<∈=,则下列集合是集合M 的子集的为( ) A .P =-3,0,1} B .Q =-1,0,1,2}C .R =y|-π<y<-1,y∈Z}D .{|}S x x x N ∈=答案:D 详解:集合{}{}|2,1,0,1M x x x Z <<∈=--=,所以可知,P =-3,0,1}不成立,Q =-1,0,1,2}不成立,{}{}|13,2,1,0R y y y Z π<<∈=---=--,,不成立.{}{}|1,0S x x x N ∈=±=,满足.故选D.点睛:集合的表示法有描述法和列举法,本题中集合元素是整数即可利用限制条件解出,用列举法表示出来,进而将四个选项的元素与其比较,注意将描述法表示的集合转为列举法,一目了然.13.已知集合{}*3A x N x =∈<∣,则集合A 的子集个数为( ) A .3 B .4 C .5 D .6答案:B解析:先化简集合A ,再求得其子集即可. 详解:因为集合{}{}*31,2A x N x =∈<=∣,所以集合A 的子集为{}{}{},1,2,1,2∅, 所以集合A 的子集个数为4, 故选:B14.集合{}0与∅的关系是 A .{}0∅ B .{}0∈∅ C .{}0=∅ D .{}0⊆∅答案:A解析:根据空集为任意集合的子集,空集为任意非空集合的真子集,得出选项. 详解:因为空集为任意集合的子集,空集为任意非空集合的真子集,∴{}0∅,故选A . 点睛:本题考查空集的含义以及集合间的关系,属于基础题.15.设集合[)1,2M =-,(),N a =-∞,若M N ⋂=∅ ,则实数 a 的取值范围是( ) A .2a ≤ B .1a ≤- C .1a <- D .2a >答案:B解析:根据交集运算及空集的定义,可直接得到答案. 详解:[)1,2M =-,(),N a =-∞,且M N ⋂=∅,1a ∴≤-故选:B 点睛:本题主要考查交集运算以及空集,属于基础题. 16.下列关系中正确的个数为( ) ①{}00∈;②∅{}0;③{}(){}0,10,1⊆;④(){}(){}1,00,1=.A .1B .2C .3D .4答案:B解析:由集合的概念、元素与集合间的关系、集合与集合间的关系,逐项判断即可得解. 详解:对于①,因为0是{}0中的元素,所以{}00∈,故①正确; 对于②,因为空集是任何非空集合的真子集,所以∅{}0,故②正确;对于③,{}0,1为数集,(){}0,1为点集,所以{}(){}0,10,1,故③错误;对于④,集合(){}1,0、(){}0,1均为点集,但所含元素不同,故④错误. 故选:B. 点睛:本题考查了元素与集合、集合与集合间关系的判断,属于基础题.17.已知集合{}{}|15,|,x A x e B x x a =<<=<若,A B ⊆则实数a 的取值范围是( ) A .[)ln 5,+∞B .(ln5,)+∞C .(,ln5)-∞D .[)0,+∞答案:A解析:利用指数函数的性质化简集合A ,再利用包含关系求解即可. 详解:由15x e <<,得0ln5x <<,{}|0ln5A x x ∴=<<,,ln5A B a ⊆∴≥,a ∴的取值范围是[)ln 5,+∞,故选:A 点睛:本题主要考查指数函数的性质以及利用包含关系求参数,属于基础题.18.已知集合1,6M xx m m Z ⎧⎫==+∈⎨⎬⎩⎭∣,1,23n N x x n Z ⎧⎫==-∈⎨⎬⎩⎭∣,1,26p P x x p Z ⎧⎫==+∈⎨⎬⎩⎭∣,则M ,N ,P 的关系为( )A .M N P =⊆B .M N P ⊆=C .M N P ⊆⊆D .N P M ⊆⊆答案:B解析:将三个集合中的元素的公共属性分别变形为121626m x m =+=+,m Z ∈ ,1112326n n x -=-=+,n Z ∈,126p x =+,p Z ∈,比较可得答案.详解:因为121{|626m M x x m ==+=+,}m ∈Z , 111{|2326n n N x x -==-=+,}n Z ∈, 1{|26p P x x ==+,}p Z ∈, 所以M N P ⊆=. 故选:B. 点睛:本题考查了判断集合间的关系,将三个集合中的元素的公共属性分别变形是解题关键,属于基础题.19.下列各式:①{}10,1,2∈;②{}0,1,2∅⊆;③{}{}10,1,2∈;④{}{}0,1,22,0,1=,其中错误的个数是( ) A .1个 B .2个C .3个D .4个答案:A解析:根据集合与集合的关系,元素与集合的关系即可求解. 详解:由元素与集合的关系可知{}10,1,2∈正确,{}{}10,1,2∈不正确, 由集合之间的关系知{}0,1,2∅⊆正确, 由集合中元素的无序性知{}{}0,1,22,0,1=正确, 故错误的个数为1, 故选:A 点睛:本题主要考查了元素与集合的关系,集合的子集,集合的相等,属于容易题. 20.已知集合{}{}|02|20M x x N x x =≤≤=-=,,则下列说法正确的是 A .B .C .D .答案:B 详解:试题分析:{}{}|202N x x N M =-==∴⊆ 考点:集合的子集关系。

高中数学必修一1.2 集合间的基本关系-单选专项练习(20)(人教A版,含解析)

高中数学必修一1.2 集合间的基本关系-单选专项练习(20)(人教A版,含解析)

1.2 集合间的基本关系一、单选题1.已知集合{}1,2A =,()(){}|10,B x x x a a R =--=∈.若A B =,则a 的值为( )A .2B .1C .-1D .-2答案:A解析:由题意可知集合{}1,2B =,解出集合B 即可求出a 的值.详解:因为A B =,所以集合B 为双元素集,即()(){}{}{}|10,1,1,2B x x x a a R a =--=∈==所以2a =.故选:A.2.已知集合A=﹣1,1},B=x|ax+2=0},若B ⊆A ,则实数a 的所有可能取值的集合为A .﹣2}B .2}C .﹣2,2}D .﹣2,0,2} 答案:D详解:试题分析:由B ⊆A 可知集合B 可以为{}{}1,1,-∅,所以方程ax+2=0的根可能为-1,1或无解,所以a=-2,0,2实数a 的所有可能取值的集合为﹣2,0,2}考点:集合的子集关系3.设集合{}20A x x x =-=,则集合A 的真子集的个数为( )A .1B .2C .3D .4答案:C解析:可用列举法列出所有真子集即可.详解:由题可解集合{}0,1A =,则集合A 的真子集有∅、{}0、{}1.故选:C.点睛:本题考查集合的真子集,可用列举法或公式计算即可,易错点为列举法容易忽略空集,属于基础题.4.已知集合{}1|0A x x =-<<,{}|B x x a =≤,若A B ⊆,则a 的取值范围为A .()0,+∞B .[)0,+∞C .()1,+∞D .[1,)+∞答案:B解析:根据两个集合的子集关系,直接列式可得答案.详解:因为{}1|0A x x =-<<,{}|B x x a =≤,且A B ⊆,所以0a ≥.故选:B点睛:本题考查了集合的子集关系,属于基础题.5.已知集合{}*220A x N x x =∈-++≥,则满足条件A B A ⋃=的集合B 的个数为( ) A .3B .4C .7D .8答案:B 解析:求出集合A ,确定集合A 的元素个数,由A B A ⋃=可得出B A ⊆,再利用子集个数公式可求得满足条件的集合B 的个数.详解:{}{}{}*2*20121,2A x N x x x N x =∈-++≥=∈-≤≤=, 又A B A =,B A ∴⊆,因此,符合条件的集合B 的个数为224=.故选:B.点睛:本题考查集合子集个数的求解,解答的关键就是求出集合的元素个数,同时也考查了一元二次不等式的求解,考查计算能力,属于基础题.6.已知集合{|13A x x =-<<,}x N ∈,{|}B C C A =⊆,则集合B 中元素的个数为( )A .6B .7C .8D .9答案:C解析:先根据题意解出集合A ,再根据题意分析B 中元素为A 中的子集,可求出. 详解:解:因为集合{|13A x x =-<<,}x N ∈,所以{0A =,1,2},因为{|}B C C A =⊆,所以B 中的元素为A 的子集个数,即B 有328=个,故选:C .点睛:本题考查集合,集合子集个数,属于基础题.7.已知集合{}{}|1,|M x x N x x a =>=>,且M N ⊆,则( )A .1a ≤B .1a <C .1a ≥D .1a >答案:A解析:根据M N ⊆,在数轴上作出,M N ,可得结果.详解:根据M N ⊆,在数轴上作出集合,M N ,如图:可得:1a ≤,故选:A.点睛:本题考查集合间的包含关系,注意利用数轴,是基础题.8.不等式|sin x+tan x|<a 的解集为N,不等式|sin x|+|tan x|<a 的解集为M,则解集M 与N 的关系是( )A .N ⊆MB .M ⊆NC .M=ND .M ⫋N答案:B解析:由题意根据|sinx+tanx|≤|sinx|+|tanx|,可得 M 、N 间的关系.详解:由于不等式|sinx+tanx|<a 的解集为N ,不等式|sinx|+|tanx|<a 的解集为M , |sinx+tanx|≤|sinx|+|tanx|,∴M ⊆N ,故选:B .点睛:本题主要考查绝对值三角不等式的应用,集合间的包含关系,属于基础题,绝对值三角不等式b a b a a b -≤±≤+,注意等号成立的条件..9.设2{|4},{|4}M x x N x x =<=<,则 ( )A .M N ≠⊂B .N M ≠⊂C .R M N ⊆D .R N M ⊆答案:B解析:利用一元二次不等式的解法化简集合N ,由真子集的定义可得结果.详解:因为2{|4}{|22}N x x x x =<=-<<,且{|4},M x x =<所以N M ≠⊂,故选B. 点睛:本题主要考查集合的子集与真子集的定义,意在考查对基础知识的掌握情况,属于基础题.10.已知a ,集合{|2}A x x ≤=,则下列表示正确的是.A .a A ∈B .a ∉ AC .{}a A ∈D .a A ⊆ 答案:A详解:因为{|2}A x x ≤=a A ∈,故选A .11.集合{}{}|11, |121A x x B x a x a =-≤≤=-≤≤-,若B A ⊆,则实数a 的取值范围是( )A .(],1-∞B .(),1-∞C .[]0,1D .()0,1答案:A解析:分0a <和0a ≥两种情况讨论即可.详解:当121a a ->-即0a <时,B =∅,满足B A ⊆当121a a -≤-即0a ≥时,由B A ⊆可得11211a a -≥-⎧⎨-≤⎩,解得01a ≤≤ 综上:实数a 的取值范围是(],1-∞故选:A点睛:本题考查的是集合间的关系,考查了分类讨论的思想,属于基础题.12.集合{}2,n M x x n N ==∈,{}2,N x x n n N ==∈,则集合M 与N 的关系是( ) A .M N ⊆B .N M ⊆C .M N ⋂=∅D .M N ⊄且N M ⊄答案:D解析:利用特殊值法判断可得出结论.详解:因为1M ∈,1N ∉且0N ∈,0M ∉,所以M N ⊄且N M ⊄.故选:D.13.集合{|212}P x N x =∈-<-<的子集的个数是( )A .7B .3C .4D .8答案:D解析:求出集合}{0,1,2P =,再由子集个数为32即可求解.详解:由题意{|13}{0P x N x =∈-<<=,1,2},有三个元素,其子集有8个.故选:D .14.已知集合2{|3100},{|121},A x x x B x m x m =--≤=+≤≤-若,B A ⊆则实数m 的取值范围是A .23m -≤≤B .32m -≤≤C .2m ≥D .3m ≤答案:D解析:先计算集合A ,再根据,B A ⊆讨论B 是否为空集得到答案.详解:2{|3100}{|25}A x x x x x =--≤=-≤≤ {|121}B x m x m =+≤≤-B A ⊆当B =∅时:121,2m m m +>-<当B ≠∅时:121,2m m m +≤-≥且215,3312m m m -≤⎧-≤≤⎨+≥-⎩即23m ≤≤ 综上所述:3m ≤故答案选D点睛:本题考查了根据集合关系求参数范围,忽略空集的情况是容易犯的错误.15.已知集合{}0,2,3A =,{},,B x x a b a b A ==⋅∈,则B 的子集的个数是( )A .10B .12C .14D .16答案:D解析:写出集合B ,确定集合B 中元素个数,利用子集个数公式可求得结果.已知集合{}0,2,3A =,{}{},,0,4,6,9B x x a b a b A ==⋅∈=,因此,B 的子集的个数4216=.故选:D.点睛:本题考查集合子集个数的求解,解题的关键就是确定集合元素的个数,考查计算能力,属于基础题.16.若集合A=x|x=5k-1,k∈Z},B=x|x=5k+4,k∈Z},C=x|x=10k-1,k∈Z}.则A ,B ,C 的关系是( )A .A ⊆C ⊆BB .A=B ⊆C C .B ⊆A ⊆CD .C ⊆A=B答案:D解析:对于集合A :()()()10125110421n k n x k n Z n k n ⎧-=⎪=-=∈⎨+=+⎪⎩,对于集合B :()511,1x k k Z =+-+∈,对于集合C :101,x k k Z =-∈,即可判断选项.详解:对于集合A :()()()10125110421n k n x k n Z n k n ⎧-=⎪=-=∈⎨+=+⎪⎩, 对于集合B :()511,1x k k Z =+-+∈,对于集合C :101,x k k Z =-∈,则C A B ⊆=.故选:D.点睛:本题主要考查了集合的包含关系.属于较易题.17.集合{}0,2,3的真子集共有( )A .5个B .6个C .7个D .8个答案:C解析:列举出集合的真子集即可.详解:解:集合{}0,2,3的真子集有{}0,{}2,{}3,{}0,2,{}0,3,{}2,3,∅,共7个.故选:C.本题考查真子集的概念,是基础题.18.已知集合{}2,4,6M =,则集合M 的真子集个数是( )A .5B .6C .7D .8答案:C解析:可写出集合M 的所有子集,然后判断.详解:集合M 的子集有:,{2},{4},{6},{2,4},{2,6},{4,6},{2,4,6}∅共8个,其中{2,4,6}和集合M 相等,其他的都是M 的真子集,共7个.故选:C .点睛:本题考查子集与真子集的概念,掌握子集与真子集的概念是解题基础.对元素较少的集合可用列举法写出它的所有子集.19.已知集合{}21,A x =,则下列说法正确的是( ) A .1A B .1A ⊆ C .1A -∉ D .1A -∈答案:C解析:利用元素与集合的关系、集合与集合的关系直接判断即可.详解:因为{}21,A x =,所以1A -∉,故1A -∈错误, 而{}1是集合,不是A 中的元素,故1A 错误,1为A 中元素,故1A ⊆是错误. 故选:C.点睛:本题考查元素与集合的关系、集合与集合的关系等基础知识,是基础题,注意元素与集合之间的关系用属于或不属于,集合与集合之间一般用包含或不包含.20.下列有关集合的写法正确的是( )A .{0}{0,1,2}∈B .{0}∅=C .0∈∅D .{}∅∈∅答案:D解析:试题分析:元素和集合是属于或不属于的关系,空集是没有元素的集合,所以D 选项正确.考点:元素和集合的关系.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.集合与集合的关系练习题班学生1.下列六个关系
式,其中正确的有( )
①{a,b}={b,a};②{a,b}⊆{b,a};③∅={∅};④{0}=∅;⑤∅{0};
⑥0∈{0}.A.6 个B.5 个C.4 个D.3 个及 3 个以下
2.已知集合A,B,若A不是B的子集,则下列命题中正确的是( )
A.对任意的a∈A,都有a∉B B.对任意的b∈B,都有b∈A
C.存在a0,满足a0∈A,a0∉B D.存在a0,满足a0∈A,a0∈B 3.设A={x|1<x<2},B={x|x<a},若A B,则a的取值范围是( )
A.a≥2 B.a≤1 C.a≥1 D.a≤2
4.集合M={x|x2-3x-a2+2=0,a∈R}的子集的个数为_______ .
5.如果A={x|x>-1},那么( )
A.0⊆A B.{0}∈A C.∅∈A D.{0}⊆A
6.已知集合A={x|-1<x<2},B={x|0<x<1},则( )
A.A>B B.A B C.B A D.A⊆B
7.定义A-B={x|x∈A且x∉B},若A={1,3,5,7,9},B={2,3,5},则A-B等于( )
A.A B.B C.{2}D.{1,7,9}
8.以下共有6组集合.
(1)A={(-5,3)},B={-5,3};(2)M={1,-3},N={3,-1};
(3)M=∅,N={0};(4)M={π},N={3.1415};
(5)M={x|x是小数},N={x|x是实数};(6)M={x|x2-3x+2=0},N={y|y2-3y+2=0}.
其中表示相等的集合有( )
A.2 组B.3 组C.4 组D.5 组
9.定义集合间的一种运算“*”满足:A*B={ω|ω=xy(x+y),x∈A,y∈B}.若集合A={0,1},B={2,3},则A*B的子集的个数是( )
A.4 B.8 C.16 D.32
10.设B={1,2},A={x|x⊆B},则A与B的关系是( )
A.A⊆B B.B⊆A C.A∈B D.B∈A
11.设x,y∈R,A={(x,y)|y=x},B={(x,y) | y=1},则A、B间的关系为______ .
12.设集合A={1,3,a},B={1,a2-a+1},且A⊇B,则a的值为 ___ .
13.已知A={x|x<-1 或x>5},B={x|a≤x<a+4},若A B,则实数a的取值范围是________ .14.已知集合A={a,a+b,a+2b},B={a,ac,ac2},若A=B,求c的值.
15.已知集合A={x|1≤x≤2},B={x|1≤x≤a,a≥1}.
(1)若A B,求a的取值范围;
(2)若B⊆A,求a的取值范围.
16.若集合A={x|x2+x-6=0},B={x|mx+1=0},且 B A,求实数m的值.
集合间的基本关系
1、在下列各式:①10,1,2;②10,1,2;③0,1,20,1,2;
④0,1,2;⑤0,1,2=2,0,1。

其中错误的个数是()
A. 1 个
B. 2 个
C. 3 个
D.4 个
2、已知非空集合A 满足:① A,1,2,3,4;②若x A,则5-x A .符合上述要求的集合A 的个数是()
A.32
B. 8
C. 5
D. 3
3、满足a M a,b,c,d的集合M 共有()个
A. 6
B. 7
C. 8
D.15
4、设集合M =x| x-30,集合N=x|(x-4)(x-10),则M与N的关系是()
A. M=N
B.M N
C. M N
D. M N
5、已知M =y R| y = x,N=x R| x = m2,则下列关系中正确的是()
A. M N
B. M=N
C. M N
D. N M
6、集合M =x|x=3k-2,k Z,P=y| y=3l+1,l Z,S =z|z =6m+1,m Z之间的关系是()
A. S P M
B. S = P M
C. S P =M
D. S P =M
7 A=x| y = x2-2x+1, B=y| y = x2-2x+1, C =x|x2-2x+1=0, D=x|x2-
2x+10, E =(x,y)| y= x2-2x+1, F =(x,y)|x2- 2x +1 = 0, y R,则下列结论正确的是()
16.若集合A={x|x2+x-6=0},B={x|mx+1=0},且 B A,求实数m的值.
A. A B C D
B. D C B A
C. E=F
D.A=B=E
8、已知集合P = x | x2= 1,集合Q = x | ax =1,若Q P ,那么a的值为_
9、设A =x |1x 2, B = x | x - a 0,若A B,则a的取值范围是_
10、已知A = x | k +1 x2k,B =x |1x 3,且A B ,求实数k的取值范围。

11 已知A = x | -1 x 2, B = y | y = 2 x - a, a R, x A,C =z | z = x2,x A,是否存在实数a,使C B?若存在,求出a的范围;若不存在,说明理由。

相关文档
最新文档