常用统计分布

合集下载

63常用统计量的分布

63常用统计量的分布

§6.3常用统计量的分布一、样本均值的分布1、单个正态总体下的样本均值的分布2、两个正态总体下的样本均值的分布3、非正态总体下的样本均值的近似分布二、-分布1、分布定义2、分布的性质3、分布的典型模式4、分布的上α分位点2χ2χ2χ2χ2χ三、t-分布1、t 分布的定义2、t(n)的性质3、t(n)的典型模式4、t(n)分布的上α分位点四、F-分布1、F分布的定义2、F分布的性质3、F分布的典型模式4、F分布的上α分位点五、正态总体样本均值与样本方差的分布1、单个正态总体下样本均值与样本方差的分布2、两个正态总体下样本均值差与样本方差比的分布)2.3(1)(1)1()(1)(1)1()(,,,2,1,)(,)(,,,1)1.3(),(~11,,,,),,(1.31222121112212121212n n nX D n X n D X D n nX E n X n E X E n i X D X E X X X X nN X n X nX n X X X X X N X n i i n i i n i i n i i i i n ni i ni i n σσµµσµσµσµσµ=⋅====⋅========∑∑∑∑∑∑======于是有相互独立同分布,故与:由于注的正态分布,即,方差为服从均值为值的一个样本,则样本均为来自服从正态总体设总体定理本均值的分布、单个正态总体下的样一、样本均值的分布"""这点处。

望取值几乎集中在数学期时且当高的集中程度远比总体要的取值于即倍的方差的的方差却只是但有相同的数学期望与由上述可知注µµX n X nX X X X ,,,1,,:2∞→212(1,0.2),,,,,{0.9 1.1}0.95?n X N n X X X X P X n ≤<≥"例 设总体服从正态分布从中抽取容量为的样本欲使样本均值满足不等式试求样本容量最小应为取多大2110.2:~(1,)1.110.910.95{0.9 1.1}0.20.2()()2()1222ni i X X N nnP X n n n n n==⎛⎞⎛⎞−−≤≤<=Φ−Φ⎜⎟⎜⎟⎝⎠⎝⎠=Φ−Φ−=Φ−∑解由题设知故0.951()0.975; 1.96,15.3664222,16n n n n +Φ≥=≥≥即查表得故因此样本容量最少应取。

统计学常见分布、概念

统计学常见分布、概念

统计学常见分布、概念⾮常有必要搞清楚统计学种⼀些常⽤的分布离散型随机变量分布1.两点分布/伯努利分布伯努利分布是⼆项分布在n=1时的特例。

⼀次随机试验,成功概率为p,失败概率为q=1-p。

2.⼆项分布⼆项分布(Binomial distribution)是n重伯努利试验成功次数的离散概率分布。

⼆项分布的典型例⼦是扔硬币,硬币正⾯朝上概率为p, 重复扔n次硬币,k次为正⾯的概率即为⼀个⼆项分布概率。

3.超⼏何分布对N件产品(其中M件次品)进⾏不放回抽样,在n次抽样种抽到次品数X,服从超⼏何分布。

4.⼏何分布X记⾸次成功的概率,服从⼏何分布。

5.负⼆项分布X记第k次成功时总的实验次数,当k=1时,为⼏何分布。

“⼆项分布”是固定试验总次数N的独⽴试验中,成功次数k的分布;⽽“负⼆项分布”是所有到成功r次时即终⽌的独⽴试验中,失败次数k的分布。

例⼦:Pat is required to sell candy bars to raise money for the 6th grade field trip. There are thirty houses in the neighborhood, and Pat is not supposed to return home until five candy bars have been sold. So the child goes door to door, selling candy bars. At each house, there is a 0.4 probability of selling one candy bar and a 0.6 probability of selling nothing.What's the probability of selling the last candy bar at the nth house?6.泊松分布有些事件,我们可以预估这些事件的总数,但是没法知道具体的发⽣时间。

[课件]概率与统计 6.2 常用统计分布

[课件]概率与统计 6.2 常用统计分布
2 Y = ∑Xi , 1 i =1 n 1
2 Y = ∑ Xi 2 i =n +1 1
电子科技大学
n +n2 1
常用统计分布

Y +Y = ∑ 1 2
n +n2 1 i =1
2 Xi
相互独立, 且Xi , i=1,2,…,n1+n2 相互独立,Xi~N(0,1), 从而 Y1+Y2~ χ2 (n1+n2).
电子科技大学
常用统计分布
总体, 总体,个体 简单随机样本 正态总体的 2个抽样定理 个抽样定理
统计量
样本均值 样本方差 样本矩(样本相关系数) 样本矩(样本相关系数)
统计量的分布
χ2分布
t 分布 F分布 分布
分位数 结构定理
电子科技大学
常用统计分布
设随机变量X 服从正态分布N(0,1), 对给 例6.2.1 设随机变量 服从正态分布 定的α(0<α<1),数uα满足 , 定的 , P{X > uα} = α
电子科技大学
T~t(n) ~
又称学生氏分布--第一个研究者以 又称学生氏分布--第一个研究者以Student --第一个研究者
常用统计分布
定理6.2.2 设随机变量 Y 相互独立 X 设随机变量X, 相互独立, 定理 ~N(0,1),Y~ χ2(n),则 , ~ ,
X T= ~ t(n) Yn
即随机变量 T 服从自由度为 n 的 t 分布 服从自由度为 分布.
电子科技大学
常用统计分布
χ2分布的三条性质: 分布的三条性质 三条性质:
性质1. 数字特征 数字特征) 性质 (数字特征 设 χ2 ~ χ2(n) ,则有 E( χ2 ) = n , 证明 D( χ2 ) = 2n

4.3常用的统计分布

4.3常用的统计分布
§4.3 常用的统计分布
一、分位数 定义4.4 给定随机变量X,对给定的实数α, ( 0 1), 如果实数 F 满足条件 P{ X F } 则称 F 为X的分布的 水平α的上侧分位数. P X F 1 P{ X F }
X 当X是连续型随机变量时, ~ f ( x )
X i ~ N 0, 0.52 , 解



7
i 1

X 1 , X 2 ,..., X 7 相互独立,
Xi 0 ~ N ( 0, 1 ) 0.5
X1 0 X 2 0 X7 0 也相互独立. , , ..., 0.5 0.5 0.5 7 7 X 0 2 2 2 Xi i 4 ~ (7) i 1 i 1 0.5
的F分布, 记为 X ~ F ( m, n )
m 称为第一自由度, n 称为第二自由度.
X ~ F ( m , n ), 即 X ~ f ( x; m, n)
1 m m m , n n n x 2 2 f ( x; m , n) 0,
给定的
2
2 1
( n ) ( n)
2
2
( n )
2
2
2 分布 可用正态分布近似. 当n较大时,
当n≤45时, 分布 的上侧分位数 有表可查.
2
例 设 X ~ 2 (13),
P282
2 0.05 (13) 22.362 P X 1 0.05, 1
1 推论 若随机变量 X ~ F ( m, n ), 则 ~ F ( n, m ) X
3. F分布的 水平α的上侧分位数

常用的统计分布

常用的统计分布

(419)
则Z的密度函数为
f
(x;
m,
n)
1 B(m,
n)
(m)(m nn
m
x) 2
1(1
m
n
x) 1(mn) 2
x0
(420)
22
其中
B(
p,
q)
1
0x
p1(1
x)q1dx
(
p
0,
q
0)

B(贝塔)函数
如果随机变量X的密度函数由(420)给出 则称X服从第
一自由度为m 第二自由度为n的F分布 记作X~F(m n)
n
22
1 ( n )
n 1 1 x
x2 e 2 ,
2
(x 0)
则称X服从以n为自由度的2分布 记作X~2(n)
说明
根据命题41 若X1 X2 Xn是n个相互独立的标准 正态随机变量 则
X
X12
X
2 2
X
2 n
~
2(n)
9
定义46(2分布)
如果随机变量X的密度函数为
2 (x; n)
n
22
n)
1 B(1 ,
n)
1
(1
x2 )
n1 2
x
nn
22
则称X服从自由度为n的t分布 记作X~t(n)
当自由度n很大时 t分布接
近于标准正态分布 这是因为
lim(1
x2
)
n1 2
e
1 x2 2
n n
19
t分布的分位数
附表5对于一些充分小的值给出了t分布的水平的上
侧分位数t(n)之值 当X~t(n)时 有

常见统计分布及其特点

常见统计分布及其特点

常见统计分布及其特点统计分布是描述数据集合中数据分布情况的一种方法。

统计学中存在着很多常见的统计分布,每个分布都具有其独特的特点和应用领域。

以下是一些常见的统计分布及其特点的介绍。

1. 正态分布(Normal Distribution)正态分布是最常见的分布之一,也被称为高斯分布。

它的特点是呈钟形曲线,对称分布,均值和标准差完全决定了其形状。

正态分布有广泛的应用,尤其在自然科学和社会科学中。

2. 二项分布(Binomial Distribution)二项分布是指在一系列独立的试验中,每次试验只有两个可能的结果:成功或失败。

每次试验的成功概率由固定的参数p确定。

二项分布的特点是具有两个参数n和p,其中n为试验的次数,p为每次试验的成功概率。

二项分布在生物学、医学、工程等领域中经常被使用。

3. 泊松分布(Poisson Distribution)泊松分布用于描述单位时间内事件发生的次数的概率分布。

这个分布有一个参数λ,表示单位时间内事件的平均发生率。

泊松分布的特点是时间间隔内事件的数量是不确定的,但平均发生率λ是已知的。

泊松分布在物理学、生物学、通信技术等领域中被广泛应用。

4. 均匀分布(Uniform Distribution)均匀分布是指在一个有限的区间内,每个数出现的概率相等。

均匀分布的特点是概率密度函数在区间内是常数。

均匀分布在模拟、随机数生成等领域中经常被使用。

5. 指数分布(Exponential Distribution)指数分布用于描述一个事件发生之间的时间间隔的概率分布。

指数分布的特点是具有一个参数λ,表示事件的平均发生率。

指数分布在可靠性工程、生物学、等领域中被广泛应用。

6. t分布(t Distribution)t分布是用于小样本情况下的假设检验和置信区间估计的重要分布。

与正态分布相比,t分布的尾部更厚,更适合于小样本情况的推断。

t分布在统计学中常用于处理样本容量较小的情况。

7. F分布(F Distribution)F分布是用于分组之间方差的比较的一种分布。

统计学分布类型

统计学分布类型

统计学分布类型
统计学分布是根据数据分析所有可能的可能的量的范围,把它们分类成多个分组,并建立相应的概率函数,以描述这些变量出现的可能性。

统计学分布由以下几种类型:
1、正态分布:正态分布是最常见的统计学分布,又称钟形曲线。

它具有两个参数:平均值μ和标准差σ,针对一些机器运行正态分布可以用来模拟变量的分布情况;
2、均匀分布:均匀分布是指变量的概率分布在一个给定的范围内是均匀的,它由两个参数:最小值a和最大值b决定;
3、伽马分布:伽马分布又称卡方分布,是描述连续随机变量采样期望值与其标准差之比的分布。

它包含一个参数,即期望值与标准差之比γ;
4、负指数分布:负指数分布也称指数分布,是一个经典的概率分布,它可以解释一系列以负指数或非负指数的累积概率分布,它包含一个参数λ,它是和具体分布有关的常数;
5、卡方分布:卡方分布是一种统计分布,又称伽马分布,是描述连续随机变量采样期望值与其标准差之比的分布。

卡方分布由一个参数ν决定,变量ν是采样期望与标准差之比;。

统计学常用分布

统计学常用分布

统计学常用分布一、引言在统计学中,分布是描述数据变化规律和概率的重要工具。

不同的数据类型和问题背景需要采用不同的分布来描述。

本篇文章将介绍统计学中常用的几种分布,包括正态分布、二项分布与泊松分布、指数分布与对数正态分布、卡方分布与t分布等。

二、正态分布正态分布是最常见的连续概率分布之一,它在自然现象、工程技术和社会科学等领域都有广泛的应用。

正态分布的曲线呈钟形,数据值集中在均值附近,随着远离均值,概率逐渐减小。

正态分布在统计学中具有重要地位,许多统计方法和模型都以正态分布为基础。

三、二项分布与泊松分布1.二项分布:二项分布是用来描述伯努利试验中的随机事件的概率分布,其中每次试验只有两种可能的结果,并且每次试验都是独立的。

二项分布适用于计数数据,尤其在生物实验和可靠性工程等领域有广泛应用。

2.泊松分布:泊松分布是二项分布在伯努利试验次数趋于无穷时的极限形式,常用于描述单位时间内随机事件的次数。

泊松分布在概率论和统计学中具有重要地位,广泛应用于保险、通信和生物医学等领域。

四、指数分布与对数正态分布1.指数分布:指数分布描述的是随机事件之间的独立间隔时间或者随机变量的概率分布。

指数分布常用于描述寿命测试和等待时间等问题,例如电话呼叫的间隔时间和电子元件的寿命等。

2.对数正态分布:对数正态分布在统计学中用于描述那些其自然对数呈正态分布的随机变量。

许多生物学、经济学和社会科学中的数据都服从对数正态分布,例如人的身高、体重以及股票价格等。

五、卡方分布与t分布1.卡方分布:卡方分布在统计学中主要用于描述离散型概率分布。

卡方分布是通过对两个独立的随机变量进行平方和运算得到的,常用于拟合检验和置信区间的计算。

2.t分布:t分布在统计学中广泛应用于样本数据的参数估计和假设检验。

相比于正态分布,t分布在数据量较小或参数偏离正态性时具有更好的稳定性。

t分布在金融、生物医学和可靠性工程等领域有广泛应用。

六、结论在统计学中,不同的数据类型和问题背景需要采用不同的分布来描述。

第3节 常用统计分布(三个常用分布)

第3节 常用统计分布(三个常用分布)

例2
设X
~
N
(
,
2
),
Y
2
~
2 (n),且X ,Y相互独立,
试求 T X 的概率分布.
Yn
解 因为X ~ N(, 2),所以 X ~ N(0,1)
又Y
2
~
2 (n),且X ,Y独立,则
X
与Y
2
独立,
由定理得
T (X ) / X ~ t(n) (Y / 2) / n Y n
n
事实上,它们受到一个条件的约束:
Xi nX
i 1
n
i 1
Xi
X
1
n
(
i 1
Xi
nX )
1
0
0.
例1
设X1 ,
X 2 ,
,
X

6





体N
(0,1)的



本,
求C1
,
C
使
2

Y C1( X1 X 2 )2 C2( X 3 X4 X5 X6 )2
服 从 2分 布.

X1
2
4
则C1 1 2 ,C2 1 4 .
3. t 分布 定义 设 X ~ N (0, 1), Y ~ 2 (n), 且 X , Y
独立,则称随机变量 T X 服从自由度为 n Y /n
的 t 分布, 记为T ~ t(n).
t 分布又称学生氏(Student)分布. t(n) 分布的概率密度函数为
2. 2分布(卡方分布)
定义、设 X1, X 2 ,L , X n 相互独立,同服从 N (0, 1)

常见统计分布及其特点

常见统计分布及其特点

【附录一】常见分布汇总一、二项分布二项分布(Binomial Distribution),即重复n次的伯努利试验(Bernoulli Experiment),用ξ表示随机试验的结果, 如果事件发生的概率是P,则不发生的概率q=1-p,N次独立重复试验中发生K次的概率是。

二、泊松poisson分布1、概念当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。

通常当n≧10,p≦0.1时,就可以用泊松公式近似得计算。

2、特点——期望和方差均为λ。

3、应用(固定速率出现的事物。

)——在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布三、均匀分布uniform设连续型随机变量X的分布函数F(x)=(x-a)/(b-a),a≤x≤b则称随机变量X服从[a,b]上的均匀分布,记为X~U[a,b]。

四、指数分布Exponential Distribution1、概念2、特点——无记忆性(1)这种分布表现为均值越小,分布偏斜的越厉害。

(2)无记忆性当s,t≥0时有P(T>s+t|T>t)=P(T>s) 即,如果T是某一元件的寿命,已知元件使用了t小时,它总共使用至少s+t小时的条件概率,与从开始使用时算起它使用至少s小时的概率相等。

3、应用在电子元器件的可靠性研究中,通常用于描述对发生的缺陷数或系统故障数的测量结果五、正态分布Normal distribution1、概念2、中心极限定理与正态分布(说明了正态分布的广泛存在,是统计分析的基础)中心极限定理:设从均值为μ、方差为σ^2;(有限)的任意一个总体中抽取样本量为n的样本,当n充分大时,样本均值的抽样分布近似服从均值为μ、方差为σ^2/n 的正态分布。

3、特点——在总体的随机抽样中广泛存在。

常见统计分布及其特点

常见统计分布及其特点

常见统计分布及其特点常见的统计分布有:正态分布、均匀分布、二项分布、泊松分布、指数分布等。

1.正态分布:正态分布又称为高斯分布或钟形曲线分布,是最为常见的一种分布。

正态分布具有以下特点:-均值和中位数相等,分布的对称轴对称;-在均值处取得最大值,随着离均值的距离增大,分布的概率逐渐减小;-标准差决定了曲线的宽窄,标准差越大,曲线越宽;-68%的数据落在均值的一个标准差范围内,95%的数据落在均值的两个标准差范围内,99.7%的数据落在均值的三个标准差范围内。

2.均匀分布:均匀分布又称为矩形分布,是最简单的分布之一、均匀分布具有以下特点:-在一个有限的区间内,所有取值的概率相等;-分布曲线呈矩形,具有等宽;-在整个区间上积分等于13.二项分布:二项分布描述了在n次独立的重复实验中,成功的次数的分布情况。

二项分布具有以下特点:-每次实验只有两个可能的结果,成功或失败;-实验之间是独立的;-成功的概率和失败的概率保持不变;-成功的次数符合二项分布。

4.泊松分布:泊松分布描述了一个时间段或区域内随机事件发生的次数的分布情况。

泊松分布具有以下特点:-事件在一个固定时间段或区域内按独立的随机过程发生;-事件在一个极短时间段内发生的概率极低,即发生频率很低;-事件的平均发生次数相对较低。

5.指数分布:指数分布描述了连续发生独立随机事件的时间间隔的分布情况。

指数分布具有以下特点:-事件的发生时间间隔是独立的,事件间的时间间隔符合指数分布;-时间间隔的概率密度递减;-指数分布在实际应用中常用于描述等待时间、生命周期等。

这些统计分布常用于描述和分析随机事件的分布情况。

在实际应用中,我们可以根据样本数据的特点,选择合适的统计分布进行建模和分析。

在统计学中,概率分布函数可以帮助我们理解随机事件的分布规律,有助于对数据进行建模、预测和推断。

概率论与数理统计:常用统计分布

概率论与数理统计:常用统计分布

0,
x 0, 其它.
F-分布的性质 由F分布定义可得:
F
~
F(n1, n2 )
1 F
~
F(n2, n1)
五、F-分布与t分布的关系
定理3 若X~t(n),则Y=X2~F(1,n)。
证明:X~t(n),X的分布密度p(x)= n 1 2 nπ n 2
1
x2 n
n 1 2
Y=X2的分布函数F(y) =P{Y<y}=P{X<y}。当y≤0时,FY(y)=0,
② X 与 S2相互独立。
二、χ2-分布(卡方分布)
定义 设X1,X2,…,Xn是来自标准正态总体 N(0,1)的样本,称统计量
2
X
2 1
X
2 2
X
2 n
服从自由度为n的 χ2-分布 ,记为 2 ~ 2( n ).
2 (n)-分布的概率密度为
f
(
y
)
2n /
1
2 (
n
/
2
)
y
n 1
2e
服从正态分布,且
i 1
i 1
一、正态分布
定理2 若( X1, X 2 ,, X n )是来自总体X ~ N(,2) 的一个
样本,X 为样本均值,则 (1) X ~ N (, 2 ) ,(由上述结论可知:X 的期望与 X 的期望相同,而 X
n
的方差却比 X 的方差小的多,即 X 的取值将更向 集中.)
p(y)=0;当y>0时,FY(y) =P{-

y
y
n
n 2 1 n
Y=X的分布密度p(y)= 2,•
1 n
2 2
<X<

常用21个统计分布总结

常用21个统计分布总结

● Bernoulli ( p ) 伯努利分布说明与例:x 为伯努利试验的结果,当试验成功,则x=1,试验失败则x=0。

可以把伯努利试验理解为抛硬币,x=1为出现正面● Binomial ( n, p ) 二项分布(图以p=0.4,n=5为例)说明与例:x 是重复n 次的伯努利试验结果,即x=试验成功的次数,可以理解为抛n 次硬币,正面出现的次数。

P X x p | ()p x 1p ()1x ; x 01 , ; 0p1EXp , Var Xp 1p ()M X t ()1p ()pe t P X x n | p , ()n x ()p x1p ()nxx 012...n , , , , ; 0p 1EX np , Var X np 1p ()M x t ()pe t1p ()[]n● Multinomial ( m, p 1, ..., p n ) 多项分布图略(因为是联合分布的多维分布)说明与例:多项分布是二项分布的推广,二项分布结果只有两个,而多项分布结果可以有多个,比如仍骰子,x1表示n 次试验点数1出现的次数…x6表示点数6出现的次数。

● Geometric ( p ) 几何分布(图以p=0.4为例)说明与例:得到一次成功而进行的伯努利试验次数n ,即前面失败了n-1次,第n 次成功。

比如x 可以理解为抛硬币,出现正面所抛的次数f x 1...x n , , ()m !x 1!...x n !p 1x1...p nxnm !i 1np i x ix i !ÕP X x p | ()p 1p ()x 1 ; x 12... , , ; 0p 1EX1p, Var X1pp 2M X t ()pe t11p ()et, t log 1p ()-● Hypergeometric超几何分布(以N=10,m=5,n=4为例)说明与例:已知N 个总体中有m 个不合格的产品,现在抽取n 个,出现不合格产品的数量。

几种常用统计量的分布

几种常用统计量的分布

P{
χ2
χ
2 a
(n)
}
f
a2 (n)
x dx a
的点χa 2(n)称为 χ2 分布单侧 分位点或双侧临界值,如图11-5 所示 .
图11-5
几种常用统计量的分布
定义4
设X ~ N ( , 2 ) ,样本方差为S 2,则统计量χ2
(n
1)S 2
2
服从自由度为n
1
的χ 2分布,记作
χ2
n
/ n
几种常用统计量的分布
证明
X ~ N ( , 2 ) ,( X1.,X 2 , ,X n )是来自总体 X 的样本 ,
X
~
N ( , 2 )(i 1,2 ,
,n) ,其线性函数 X
1 n
n i 1
Xi
也服从正态分布,即
E X
E1 n
n i 1
Xi
1n E
n i1
Xi
1 n n
(
EX i i 1,2
n) ,
1 n
1
DX
D n
i 1
Xi
n2
n
D Xi
i 1
1 n2 2 (
n2
n
X1 ,X 2 , X n相互独立) ,
则X ~ N ( , 2 ) ,故 X ~ N (0 ,1) .
n
/ n
几种常用统计量的分布
例1

因为总体 X 服从正态分布N 5 ,9 ,所以 X 服从正态分布N (5 ,9 ) ,故
图11-2
几种常用统计量的分布
显然,f x随着n不同而不同,且f x为偶函数 . 当n 时,有
lim f x

13种常见的统计分布

13种常见的统计分布

9
属性
F分布 F Distribution
连续型分布 用于方差的齐性检验和方差分析
理解
10
属性
Γ分布 Γ Distribution or Gamma Distribution
连续型分布 正偏态分布,常用于正偏态分布的拟合
11
属性
圆形分布 Circular Distribution
离散型分布 用于产品质量检测及流行病学
应用 条件
描述了由有限个物件中抽出 n个物件,成功抽出指定种类 的物件的次数(不归还) 在产品质量的不放回抽检中,若N件产品中有M件次品, 抽检n件时所得次品数X=k,则P(X=k)=C(k M)·C(n-k N-M)/C(n N), C(a b)为古典概型的组合形式,a为 下限,b为上限
4
属性
Poisson分布 Poisson Distribution
离散型分布 研究稀有事件 (即小概率)的频数分布
单位时间内某事件发生次数的分布,如细菌、血细胞等单
应用
位面积内计数结果的分布 人群中某些发病率很低的传染病、某些恶性肿瘤的患病数 放射医学中放射性核素计数的数据处理 某些疾病的地区或家庭聚焦性
2
属性
负二项分布 Negative Binomial Distribution
离散型分布 用于昆虫学、寄生虫学、微生物学及流行病学
应用 条件
实验包含一系列独立的实验 每个实验都有成功、失败两种结果 成功的概率是恒定的 实验持续到r次成功,r可以为任意正数
3
属性
超几何分布 Hypergeometric Distribution
5
属性
均匀分布 Uniform Distribution

数学中的统计分布

数学中的统计分布

数学中的统计分布统计分布是数学中一个极为重要和广泛应用的概念,它描述了一组数据在取值上的特征和分布规律。

在统计学中,常用的统计分布包括正态分布、二项分布、泊松分布等等。

这些分布模型有助于我们理解和分析数据的特性,提供了数学工具来支持我们对数据的解读和预测。

一、正态分布正态分布(又称高斯分布)是最经典的统计分布之一,它的概率密度函数是一个钟形曲线。

正态分布的特点是对称、均值与中位数相等、标准差决定曲线的宽窄程度。

正态分布广泛应用于自然科学、社会科学、工程技术等领域,被广泛认为是描述随机变量的理想模型。

二、二项分布二项分布描述了在一系列独立的伯努利试验中,成功事件发生的次数的概率分布。

它的概率质量函数在取值为整数的非负范围内有定义,形成了一个离散分布。

二项分布的特点是每次试验成功的概率相同,且各次试验之间互相独立。

三、泊松分布泊松分布描述了在一段时间或空间内,某个确定区域内随机事件发生的次数的概率分布。

泊松分布的概率质量函数在取值为非负整数的范围内有定义,形成了一个离散分布。

泊松分布的特点是事件的发生是独立的且随机的,平均发生率在一段时间或空间内是固定的。

四、其他常见统计分布除了正态分布、二项分布和泊松分布之外,还有很多其他常见的统计分布模型,如均匀分布、指数分布、伽玛分布等等。

这些分布模型在不同的场景中应用广泛,有助于我们对各类数据的分析和处理。

五、统计分布的应用统计分布在实际应用中有广泛的用途。

在数据分析和统计推断中,我们可以利用不同的统计分布进行假设检验、置信区间估计以及参数估计等。

在风险评估和预测模型构建中,统计分布可以帮助我们建立合适的模型来预测未来的风险和事件发生的概率。

另外,统计分布也在财务管理、工业生产、市场调研等领域起着重要的作用。

例如,在金融领域中,利用正态分布描述资产和收益的分布情况,对风险进行度量和控制。

在工业生产中,可以利用泊松分布对产品的缺陷或故障进行统计建模,从而提高质量和效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

则C1 1 2 , C2 1 4 .
2. t 分布
定义5.7
设 X ~ N (0, 1), Y ~ 2 ( n), 且 X , Y X 独立, 则称随机变量 T 服从自由度为 n Y /n 的 t 分布, 记为 T ~ t ( n).
t ( n) 分布的概率密度函数为
n 1 n 1 2 2 t 2 h( t ) 1 , t n n πn 2
对于给定的 , 0 1, 称 满 足 条 件 P{t t ( n)} 的 点 t ( n) 为 t ( n) 分 布 的 上 分 位 数 (或 分 位 点 ).
可以通过查表求 得 上分 位 数 的 值 .
由分布的对称性知 t1 ( n) t ( n).
2
二、概率分布的分位数
定 义5.9 对 于 总 体 X和 给 定 的 (0 1), 若 存 在 x , 使 P{ X x } 则 称x为X的 分 布 的 上 侧 分 位 数 .
1.正态分布的上侧分位数 u
设 X 服从标准正态分布 N (0,1), N (0,1) 的上 1 分位点 u 满足 P{ X u } 2π
x2 2


u
e
dx

1 P{ X u } 1 (u )
( u ) 1
给定 ,由附表 2可查得 u的值.
u0.05 1.645,
u0.025 1.96,
附表2-1
附表2-2
根据正态分布的对称性知
u1 u .
u
2.t分布的上侧分位数 t ( n)
F0.05 (30,14) 2.31 .
附表5-2
F分布的上分位点具有如下性质 : 1 F1 ( n1 , n2 ) . F ( n2 , n1 ) 证明 因为F ~ F ( n1 , n2 ), 所以 1 P{F F1 ( n1 , n2 )} 1 1 1 P 1 1 P F F1 ( n1 , n2 ) F F1 ( n1 , n2 ) 1 1 1 P , F F1 ( n1 , n2 ) 1 1 故 P , F F1 ( n1 , n2 )
2 当 n 充分大时, ( n)
费歇资料
n 2nu .
其中 u 是标准正态分布的上 分位数.
利用上公式,
可以求得 n 45 时, 上 分位点的近似值 .
2 例如 0.05 (120 ) 120 2 120 u0.05
120 240 1.64 145 .5.

X3 X4 X5 X6 X 3 X 4 X 5 X 6 ~ N (0,4),则 ~ N (0,1) 4 X3 X4 X5 X6 X1 X 2 且 与 相互独立 4 2
同理
X1 X 2 X 1 X 2 ~ N (0,2), 则 ~ N (0,1) 2
X1 X 2 2 X 3 X 4 X 5 X 6 2 所 以( ) ( ) ~ 2 ( 2) 4 2
F分布的概率密度曲线如 图
F分布有以下性质
(1) 若F ~ F ( n1 , n2 ),
1 则 ~ F ( n2 , n1 ). F n2 E(F ) , ( n2 2), n2 2
(2)
演示
2 2n2 ( n1 n2 2) D( F ) , (n2 4) 2 n1 (n2 2) ( n2 4)
(3) 设F ~ F ( n1 , n2 ),则 当n2 4时, 对 任 意 x有
x F E(F ) 1 t22 lim P{ x} e dt n1 D( F ) 2
这说明F分布极限分布也是正态分布.
例3 已知T ~ t (n), 试证 T ~ F (1, n).
对于不同的 , n, 可以通过查表求 得上 分位点的值.
2 0 .025 ( 8) 17.535, 2 0 .975 (10) 3.247,
2 0 .1 ( 25 ) 34.382.
附表4-1 附表4-2 附表4-3
附表4只详列到 n=45 为止.
在Matlab中求解
费歇(R.A.Fisher)证明:
2 分布的性质
性质1 ( 2 分布的可加性)
2 2 设 12 ~ 2 ( n1 ), 2 ~ 2 ( n2 ), 并且 12 , 2 独 2 立, 则 12 2 ~ 2 ( n1 n2 ).
(此性质可以推广到多个随机变量的情形)
设 i2 ~ 2 ( ni ), 并且 i2 ( i 1, 2,, m ) 相互 独立, 则 i2 ~ 2 ( n1 n2 nm ).
t分布的概率密度曲线如 图
显然图形是关于 t 0对称的. 当n充分大时, 其图 形类似于标准正态 变量概率密度的图 形.
1 因为lim h( t ) e n 2π
t2 2
,
演示
所以当n足够大时t分布近似于N (0,1)分布,
但对于较小的n, t分布与N (0,1)分布相差很大 .
t 分布具有下列性质:
2
2 2 性质3 设 ~ (n), 则对任意x, 有
lim P{
n
n
2 n
2n
x}
n i 1
x

1 t22 e dt 2
证明 由假设和定义 5.6, 2 X i2 , 其中X 1 , X 2 ,, X n
2 2 独立且每个X i ~ N (0,1),因而X 12 , X 2 , , X n 独立同分t0.05 (10) 1.8125, t0.025 (15) 2.1315.
附表3-1
附表3-2
3.
2
2 分布的上侧分位数 (n)
对于给定的正数 , 0 1, 称 满 足 条 件
2 P { 2 ( n)} 2 的 点 ( n) 为 2 ( n) 分 布 的 上 分 位 数 ( 分 位 点 .)

x2 2
3xe

x 2
3



x2 1 2 e dx 3 2
D( X i ) 3 1 2, i 1, 2, , n.
n n 2 2 2 E ( X 故 E( ) E X i i ) n, i 1 i 1 n n 2 2 D ( 2 ) D X i D ( X i ) 2 n. i 1 i 1
例2 设X ~ N ( , ),
2
Y
X 试求 T ,的概率分布 . Y n
2
~ 2 (n),且X , Y相互独立,
解 因 为X ~ N ( , ), 所 以
2
X

~ N (0,1) 与 Y
2
X ( X ) / 由定理 5.7得 T ~ t ( n) Y n (Y / 2 ) / n
2
n
2
2n
近似服从N (0,1).进而 ~ N (n,2n).
2
近似
例1 设X 1 , X 2 , , X 6为 来 自 正 态 总 体 N (0,1)的 一 组 样 本, 求C1 , C 2 使 得 Y C1 ( X 1 X 2 ) 2 C 2 ( X 3 X 4 X 5 X 6 ) 2 服 从 2 分 布.
i 1 m
性质2
( 2分布的数学期望和方差)
若 2 ~ 2 ( n), 则 E ( 2 ) n, D( 2 ) 2n.
证明
因为 X i ~ N (0, 1), 所以 E ( X i 2 ) D( X i ) 1,
2 4 2
D( X i ) E ( X i ) [ E ( X i )]2
2

Y

~ ( n),且X , Y独 立, 则
2
X
独 立,
3. F分布
定 义5.8 设 X ~ 2 ( n1 ), Y ~ 2 ( n2 ), 且X , Y 独 立, X / n1 则称随机变量 F 服从自由度为 ( n1 , n2 ) 的 F Y / n2 分 布, 记 为 F ~ F ( n1 , n2 ). n 其概率密度为: 1 n1 2 1 n n n 1 2 1 2 y 2 n2 , y0 n1 n2 ( y) n1 n2 n1 y 2 1 2 2 n2 其它 0,

E( X i2 ) 1,
D( X i2 ) 2
(i 1,2,, n)
由中心极限定理得 lim P{
n
n
2
2n
x} lim P{
n
2 X i n i 1
n
n
x}
x

1 t22 e dt 2
即 分布的极限分布是正态 分布, 也即, 当n很大时
4 F分布的上侧分位数 F (n1 , n2 )
对于给定的 , 0 1, 称 满 足 条 件 P{ F F ( n1 , n2 )} 的 点 F ( n1 , n2 ) 为 F ( n1 , n2 ) 分 布 的 上 分 位 数 .
求F ( n1 , n2 )的值, 可通过查表完成 . F0.025 (8,7) 4.90, 附表5-1
证 明 因 为T ~ t ( n),由 定 义 5.7有 X T Y n 其 中X ~ N (0,1),Y ~ 2 ( n),且X , Y独 立, 那 么 X 2 ~ 2 (1),且X 2与Y独 立,
相关文档
最新文档