哈夫曼编码与译码的实现
哈夫曼编码和译码
哈夫曼编码和译码哈夫曼编码是一种用于数据压缩的编码方法,通过根据字符出现的频率对字符进行编码,以便能够用较少的位数来表示出现频率较高的字符。
编码过程中,根据频率最低的字符构建一棵哈夫曼树,将字符的编码表示为树的路径。
而哈夫曼译码则是将经过哈夫曼编码后的数据解码成原始数据的过程。
在给定的文本中,首先需要统计每个字符的出现频率。
然后使用这些频率构建哈夫曼树。
构建哈夫曼树的过程中使用最小堆数据结构,通过不断合并两个最小频率的字符节点来构建树。
合并两个节点的过程中,创建一个新的节点来作为它们的父节点,并将其频率设置为两个子节点频率之和。
在构建树的过程中,赋予左子节点编码为0,右子节点编码为1。
构建完成哈夫曼树后,将每个字符的编码表示为从根节点到该字符节点的路径,例如,向左走的路径可以表示为0,向右走的路径可以表示为1。
为了能够正确译码,需要将字符及其对应的编码存储在一个编码表中。
对于给定的文本数据,应用哈夫曼编码后,会得到一个压缩后的编码字符串。
在哈夫曼译码过程中,从根节点开始遍历编码字符串的每一位,如果是0,则向左子节点移动,如果是1,则向右子节点移动,直到到达叶子节点。
找到叶子节点后,将对应的字符输出,并回到根节点,继续下一位的译码,直到编码字符串结束。
哈夫曼编码可以实现无损压缩,即通过译码过程能够还原出原始数据,而不会丢失任何信息。
它是一种广泛应用于数据压缩领域的有效方法,用于减小数据存储和传输的大小。
在实际应用中,哈夫曼编码被广泛应用于图像、音频和视频等多媒体数据的压缩中。
总结起来,哈夫曼编码是一种用于数据压缩的编码方法,通过根据字符出现的频率对字符进行编码,以便用较少的位数来表示出现频率较高的字符。
哈夫曼译码则是将经过编码后的数据解码成原始数据的过程。
它通过构建哈夫曼树和编码表,实现了高效的数据压缩和解压缩。
哈夫曼编码被广泛应用于数据存储和传输领域,特别是在多媒体数据的压缩中。
哈夫曼编码的解码过程
哈夫曼编码的解码过程哈夫曼编码是一种被广泛应用于数据压缩领域的编码算法。
它通过构建一棵特殊的二叉树来实现对源数据的编码和解码。
在编码过程中,哈夫曼编码根据源数据的频率分配较短的编码给出现频率较高的字符,相反地,给出现频率较低的字符分配较长的编码,从而有效地减小编码后的数据长度。
而解码过程则是将编码后的数据转换为原始数据的过程。
一、哈夫曼编码的基本原理哈夫曼编码的基本原理是根据字符出现的频率来构建一棵哈夫曼树,以实现对字符的编码和解码。
具体步骤如下:1. 统计字符的频率:首先,需要对待编码的源数据进行扫描,并统计每个字符的出现频率。
通常可以使用哈希表等数据结构来记录字符及其对应的频率。
2. 构建哈夫曼树:根据字符的频率,构建一棵哈夫曼树。
构建哈夫曼树的算法可以采用贪心策略,即每次选择频率最小的两个节点合并,直到所有节点合并完毕,最终形成哈夫曼树。
3. 生成编码表:按照哈夫曼树的结构,为每个字符生成对应的编码。
从哈夫曼树的根节点开始,向左子树路径走一步表示编码位为0,向右子树路径走一步表示编码位为1,直到叶子节点,即可得到该字符的编码。
编码表可以使用哈希表等数据结构来存储字符和对应的编码。
4. 进行编码:将待编码的源数据字符根据编码表进行编码,生成对应的哈夫曼编码序列。
编码后的数据长度通常会显著减小,实现数据的压缩。
二、哈夫曼编码的解码过程哈夫曼编码的解码过程是将编码后的数据序列转换回原始数据的过程。
具体步骤如下:1. 读取编码序列:从编码后的数据中逐个读取编码位,直到读取到一个有效的编码。
2. 遍历哈夫曼树:从哈夫曼树的根节点开始,根据读取到的编码位,按照0表示左子树,1表示右子树的规则,不断遍历哈夫曼树,直到达到叶子节点。
3. 生成解码字符:在遍历过程中,若到达叶子节点,则表示找到了一个字符,将该字符输出。
然后重置遍历位置,继续读取编码序列,重复上述步骤,直至解码完成。
通过以上步骤,哈夫曼编码的解码过程完成,将编码后的数据序列转换回原始数据。
哈夫曼编码和译码
哈夫曼编码和译码哈夫曼编码和译码是一种常用的数据压缩算法,它通过将出现频率较高的字符用较短的编码表示,从而减小数据的存储空间。
本文将介绍哈夫曼编码和译码的原理和应用。
哈夫曼编码是由美国数学家大卫·哈夫曼于1952年提出的一种编码方法。
它的基本思想是根据字符出现的频率来构建一棵二叉树,出现频率较高的字符位于树的较低层,而出现频率较低的字符位于树的较高层。
通过这种方式,出现频率较高的字符可以用较短的编码表示,而出现频率较低的字符则用较长的编码表示。
具体来说,哈夫曼编码的过程如下:首先,统计待编码的字符出现的频率,并根据频率构建一个字符频率表。
然后,根据字符频率表构建哈夫曼树,其中每个字符对应一个叶子节点,而非叶子节点的权值为其子节点权值之和。
接下来,通过遍历哈夫曼树,给每个字符赋予对应的编码,其中左子树路径上的编码为0,右子树路径上的编码为1。
最后,将编码后的字符序列存储起来,即完成了哈夫曼编码的过程。
哈夫曼译码是哈夫曼编码的逆过程,它通过已知的哈夫曼编码和字符频率表来将编码还原为原始的字符序列。
具体来说,哈夫曼译码的过程如下:首先,根据已知的字符频率表构建哈夫曼树。
然后,从根节点开始,根据编码的0和1进行遍历,直到叶子节点。
每次遍历到叶子节点时,将对应的字符输出,并重新回到根节点,继续下一次遍历,直到所有的编码都被译码为字符。
哈夫曼编码和译码在数据压缩领域有着广泛的应用。
由于哈夫曼编码可以将出现频率较高的字符用较短的编码表示,从而减小了数据的存储空间。
在传输大量文本、图像、音频等数据时,可以使用哈夫曼编码将数据进行压缩,从而减少传输的时间和带宽消耗。
而哈夫曼译码则可以将压缩后的数据还原为原始的数据,保证了数据的完整性和准确性。
除了数据压缩,哈夫曼编码和译码还有其他的应用。
在通信领域,哈夫曼编码可以用于错误检测和纠正,通过添加冗余信息来检测和纠正传输过程中的错误。
在图像和音频处理领域,哈夫曼编码可以用于图像和音频的压缩和解压缩,从而减小存储空间和提高传输效率。
数据结构 课程设计之哈夫曼编码
(一) 哈夫曼树的设计思想对于一组具有确定权值的叶子结点可以构造出多个具有不同带权路径长度的二叉树,其中具有最小带权路径长度的二叉树称作哈夫曼树或者最优二叉树。
首先给定n 个权值创造n 个只含根结点的二叉树,得到一个二叉树林;再在这二叉树林里面找根结点的权值最小和次小的两棵树作成新的二叉树,其中新的二叉树的根结点的权值为摆布子根结点权值之和;最后在二叉树林中把组合过的二叉树删除,再重复第二步,直到最后就剩一颗二叉树的时候得到的这棵二叉树就是哈夫曼树。
(二)哈夫曼编码与解码的设计思想在数据通讯中,时常要将传送的文字转换为二进制字符0 和1 组成的二进制串,称这个过程为编码。
与子相对的是解码或者是译码,就是用与编码相同的方式将二进制串转换称编码前的文字的过程称作解码。
在这里是通过哈夫曼树实现编码与解码的,所以称作是哈夫曼编码与解码。
首先输入一个字符串,还有相应的在哈夫曼树里的权值,这样用哈夫曼树把字符串用二进制串代替它,这个过程要注意树和编码问题,其中树的问题在上面已经解决,主要看编码的问题,就是根据我们输入的字符串和权值建立相应的树模型,这一步完成那编码就已经完成为了,最后打印就行了;然后就是解码,完成编码相应的解码就相对简单了,就是先找到在编码的时候建的那个模型树,将编码中的二进制串再根据权值转换为相应的字符串,这样一步步解码就行了。
以上就是通过用哈夫曼树进行哈夫曼编码与解码如何实现的主要设计思想。
(一)哈夫曼树的流程图不 是图 1 哈夫曼树的流程图(二)编码与解码的流程图图 2 编码与解码的流程图图片说明: (左边)编码流程图, (右边)解码流程图。
开始输入字符串判断权值 建立路径有最小和次小 循环建立二叉树根据树对路径分左 0右 1写出对应结点的编码结束开始初始化哈夫曼链表二叉树林找最小和次小 的二叉树组合成新的二叉树 删除用过的二叉树是不是最后一 个二叉树是结束开始找到树的根结点 输入二进制串扫描根据树的路径打印对应字符继续扫描 是否结束是输出字符串结束否下面给出的是用中缀转后缀算法实现的程序的源代码:#include "stdio.h"#include "string.h"#define MAX 100struct HaffNode{int weight;int parent;char ch;int lchild;int rchild;}*myHaffTree;struct Coding{char bit[MAX];char ch;int weight;}*myHaffCode;void Haffman(int n){int i,j,x1,x2,s1,s2;for (i=n+1;i<=2*n-1;i++) {s1=s2=10000;x1=x2=0;for (j=1;j<=i-1;j++)/*定义常量*//*权值*//*双亲结点下标*//*构造哈夫曼树*//*定义数组*//*字符的权值*//*定义结构体*//*定义哈夫曼函数*//*树的初始化*//*构造哈夫曼树的非叶子结点*/{if(myHaffTree[j].parent==0&&myHaffTree[j].weight<s1){s2=s1;x2=x1;s1=myHaffTree[j].weight;x1=j;/*分配摆布结点*/}else if(myHaffTree[j].parent==0&&myHaffTree[j].weight<s2){s2=myHaffTree[j].weight;x2=j;}}myHaffTree[x1].parent=i;myHaffTree[x2].parent=i;myHaffTree[i].weight=s1+s2;myHaffTree[i].lchild=x1;myHaffTree[i].rchild=x2;/*摆布子组合为新树*/}}void HaffmanCode(int n){int start,c,f,i,j,k;char *cd;/*构造n 个结点哈夫曼编码*/cd=(char *)malloc(n*sizeof(char));myHaffCode=(struct Coding *)malloc((n+1)*sizeof(struct Coding));cd[n-1]='\0';for(i=1;i<=n;++i) /*n 个叶子结点的哈夫曼编码*/ {start=n-1;for(c=i,f=myHaffTree[i].parent;f!=0;c=f,f=myHaffTree[f].parent)if(myHaffTree[f].lchild==c) cd[--start]='0';else cd[--start]='1';for(j=start,k=0;j<n;j++){myHaffCode[i].bit[k]=cd[j];k++;}myHaffCode[i].ch=myHaffTree[i].ch; myHaffCode[i].weight=myHaffTree[i].weight; }free(cd);}Init(){int i,n,m;printf("please input the number of words:"); scanf("%d",&n); /*取编码对应的权值*//*定义有返回值的函数*/m=2*n-1;myHaffTree=(struct HaffNode *)malloc(sizeof(struct HaffNode)*(m+1)); for(i=1;i<=n;i++){printf("please input the word and the equal:");scanf("%s%d",&myHaffTree[i].ch,&myHaffTree[i].weight); myHaffTree[i].parent=0;myHaffTree[i].lchild=0;myHaffTree[i].rchild=0;}for(i=n+1;i<=m;i++){myHaffTree[i].ch ='#';myHaffTree[i].lchild=0;myHaffTree[i].parent=0;myHaffTree[i].rchild=0;myHaffTree[i].weight=0;}Haffman(n);HaffmanCode(n);for(i=1;i<=n;i++){printf("%c %d",myHaffCode[i].ch,myHaffCode[i].weight); printf("\n");}printf("init success!\n");return n;}void Caozuo_C(int m){int n,i,j;char string[50],*p;printf("please input the words :"); scanf("%s",string);n=strlen(string);for(i=1,p=string;i<=n;i++,p++){for(j=1;j<=m;j++)if(myHaffCode[j].ch==*p)printf("%s\n",myHaffCode[j].bit); }}void Caozuo_D(int n){int i,c;char code[1000],*p;printf("please input the coding:"); scanf("%s",code);for(p=code,c=2*n-1;*p!='\0';p++) {if(*p=='0'){c=myHaffTree[c].lchild;if(myHaffTree[c].lchild==0){printf("%c",myHaffTree[c].ch);c=2*n-1;continue;/* 编码函数*//*计算字符串长度*/ /*进行编码*//*解码函数*//*输入二进制编码*//*进行解码*//*结束条件*//*赋值*//* 扫描*//*结束*/}}else if(*p=='1'){c=myHaffTree[c].rchild;if(myHaffTree[c].lchild==0){printf("%c",myHaffTree[c].ch);c=2*n-1; /*赋值*/continue;}}}printf("\n");}void main(){int n;char char1;n=Init();printf("A.coding B.codeprintingwhile(1){scanf("%c",&char1);if(char1=='c')break;switch(char1){case'A':Caozuo_C(n);break;case'B':Caozuo_D(n);break;case'C':;break;}}}/*主函数*//*定义字符*//*函数的调用*/C.exit\nplease input the process:\n");/*判断字符*//*执行编码操作*//*执行解码操作*/哈夫曼编码与解码的实现(一)中缀转后缀算法的运行结果:这部份我主要遇到了如下三个问题,其内容与解决方法如下所列:问题1:刚开始不知道如何建一个好树,因为我开始试着建了几个二叉树,不知道什么原因运行的时候那编码总是不对,跟在草稿纸上自己画的那个二叉树总是不相符,就找原因。
基于哈夫曼编码的编码译码问题
基于哈夫曼编码的编码译码问题基于哈夫曼编码的编码译码问题相关问题:1.哈夫曼编码是什么?如何进行编码和译码?2.哈夫曼编码的原理是什么?3.哈夫曼编码的应用领域有哪些?4.如何生成哈夫曼编码树?5.哈夫曼编码的时间复杂度是多少?6.哈夫曼树的构建方法有哪些?7.哈夫曼编码在数据压缩中的作用是什么?8.哈夫曼编码存在的局限性是什么?9.哈夫曼编码与其他编码方法的比较有哪些特点?10.如何解决哈夫曼编码中的冲突问题?解释说明:1.哈夫曼编码是一种基于字符频率的可变长度编码方法。
它通过将出现频率高的字符用较短的编码来表示,出现频率低的字符用较长的编码来表示,以达到数据压缩的目的。
编码过程中,首先统计字符出现频率,然后构建哈夫曼树,根据树的结构生成编码表,最后对原始数据进行编码。
译码过程中,根据生成的编码表和编码数据,逐位解码还原原始数据。
2.哈夫曼编码的原理是基于贪心算法,通过构建哈夫曼树,将出现频率高的字符放在树的上层,出现频率低的字符放在树的下层,以实现最优的编码效果。
在编码过程中,使用了前缀码的特性,即任何一个编码不能是另一个编码的前缀,从而保证了译码的唯一性。
3.哈夫曼编码广泛应用于数据压缩领域,可以对文本、图像、音频等数据进行压缩和解压缩。
此外,哈夫曼编码也用于数据传输中的差错检测和纠正,以及编码理论的研究等领域。
4.生成哈夫曼编码树的方法主要有两种:静态生成和动态生成。
静态生成是根据给定的字符频率进行构建,而动态生成是根据实际数据的字符频率进行构建。
5.哈夫曼编码的时间复杂度为O(nlogn),其中n为字符的个数。
这是由于在构建哈夫曼树时需要进行n-1次合并操作,每次合并的时间复杂度为O(logn)。
6.哈夫曼树的构建方法主要有两种:霍夫曼算法和优先队列算法。
霍夫曼算法是经典的构建方法,通过反复选择权值最小的两个节点合并构建树,直到所有节点合并为一棵树。
优先队列算法则先将节点插入优先队列中,每次取权值最小的两个节点合并。
哈夫曼树编码译码实验报告
数据结构课程设计设计题目:哈夫曼树编码译码课题名称院系学号姓名哈夫曼树编码译码年级专业成绩1、课题设计目的:在当今信息爆炸时代,如何采用有效的数据压缩技术节省数据文件的存储空间和计算机网络的传送时间已越来越引起人们的重视,哈夫曼编码正是一种应用广泛且非常有效的数据压缩技术。
哈夫曼编码是一种编码方式,以哈夫曼树—即最优二叉树,带权路径长度最小的二叉树,时常应用于数据压缩。
哈弗曼编码使用一张特殊的编码表将源字符(例如某文件中的一个符号)进行编码。
这张编码表的特殊之处在于,它是根据每一个源字符浮现的估算概率而建立起来的。
课题设计目的与设计意义2、课题设计意义:哈夫曼编码的应用很广泛,利用哈夫曼树求得的用于通信的二进制编码称为哈夫曼编码。
树中从根到每一个叶子都有一条路径,对路径上的各分支约定:指向左子树的分支表示“0”码,指向右子树的分支表示“1”码,取每条路径上的“0”或者“1”的序列作为和各个叶子对应的字符的编码,这就是哈夫曼编码。
哈弗曼译码输入字符串可以把它编译成二进制代码,输入二进制代码时可以编译成字符串。
指导教师:年月日第一章需求分析 (1)第二章设计要求 (1)第三章概要设计 (2)(1)其主要流程图如图 1-1 所示。
(3)(2)设计包含的几个方面 (4)第四章详细设计 (4)(1)①哈夫曼树的存储结构描述为: (4)(2)哈弗曼编码 (5)(3)哈弗曼译码 (7)(4)主函数 (8)(5)显示部份源程序: (8)第五章调试结果 (10)第六章心得体味 (12)第七章参考文献 (12)附录: (12)在当今信息爆炸时代,如何采用有效的数据压缩技术节省数据文件的存储空间和计算机网络的传送时间已越来越引起人们的重视,哈夫曼编码正是一种应用广泛且非常有效的数据压缩技术。
哈夫曼编码是一种编码方式,以哈夫曼树—即最优二叉树,带权路径长度最小的二叉树,时常应用于数据压缩。
哈弗曼编码使用一张特殊的编码表将源字符 (例如某文件中的一个符号) 进行编码。
哈夫曼编码与解码
哈夫曼编码与解码
哈夫曼编码(Huffman coding)和哈夫曼解码(Huffman decoding)是一种用于数据压缩的技术,由美国计算机科学家 David A. Huffman 于 1952 年提出。
哈夫曼编码的基本思想是根据字符在文本中出现的频率来分配二进制编码的长度。
出现频率较高的字符将被分配较短的编码,而出现频率较低的字符将被分配较长的编码。
这样,通过使用较短的编码来表示常见字符,可以实现更有效的数据压缩。
哈夫曼编码的过程包括以下步骤:
1. 统计字符出现频率:对要编码的文本进行分析,统计每个字符出现的次数。
2. 构建哈夫曼树:根据字符出现频率构建一棵二叉树,其中频率较高的字符靠近树的根节点,频率较低的字符位于树的叶子节点。
3. 分配编码:从根节点开始,根据字符出现频率为每个字符分配二进制编码。
左子节点表示 0,右子节点表示 1。
4. 编码文本:将文本中的每个字符替换为其对应的哈夫曼编码。
哈夫曼解码是哈夫曼编码的逆过程,用于将已编码的数据还原为原始文本。
解码过程根据哈夫曼树的结构和编码规则,从编码中解析出原始字符。
哈夫曼编码与解码在数据压缩领域具有广泛的应用,例如图像、音频和视频压缩。
它通过有效地利用字符频率分布的不均匀性,实现了较高的压缩率,从而减少了数据传输和存储的开销。
需要注意的是,哈夫曼编码是一种无损压缩技术,意味着解码后可以完全还原原始数据。
但在实际应用中,可能会结合其他有损压缩技术来进一步提高压缩效果。
数据结构与算法——电文的编码和译码
电文的编码和译码1.问题描述从键盘接受一串电文字符,输出对应的哈夫曼编码;同时能翻译由哈夫曼编码生成的代码串,输出对应的电文字符串。
2.设计要求(1)构造一棵哈夫曼树。
(2)实现哈夫曼编码,并用哈夫曼编码生成的代码进行译码。
(3)程序中字符和权值是可变的,实现程序的灵活性。
3.数据结构本课程设计采用结构体数组作为数据结构,来储存哈夫曼树及其编码。
4.分析与实现在电报通信中,电文是以二进制代码传送的。
在发送时,需要将电文中的字符转换成二进制代码串,即编码;在接收时,要将收到的二进制代码串转化成对应的字符序列,即译码。
字符被使用的频率是非均匀的。
在传送电文时,要想使电文总长尽可能短,就需要让使用频率高的字符编码长度尽可能短。
因此,若对某字符集进行不定长编码设计,则要求任一一个字符编码都不能使其他字符编码的前缀,这种编码称作前缀编码。
由哈弗曼树求得的编码是最优前缀码,也称哈夫曼编码。
给出字符集和各个字符的概率分布,构造哈弗曼树,将哈夫曼树中每个分支结点的左分支标0,右分支标1,从根到每个叶子的路径上的标号连起来就是给叶子所代表字符的编码。
(1)构造哈夫曼树根据哈弗曼算法,若已知n个叶结点,则构造的哈弗曼树有2n-1个结点。
第一步:先输入字符集中的n个字符(叶结点)和表示其概率分布的权值,储存在ht (HuffNode型)数组的前n个数组元素中。
然后将2n-1个结点的双亲和孩子结点均置为0。
第二步:在所有的结点中,选取双亲为零且具有最小权值m1和次小权值m2的两个结点,用p1和p2指示这两个结点在数组中的位置。
将根为ht[p1]和ht[p2]的两棵树合并,使其成为新结点ht[i]的左右孩子,ht[i]的权值为最小权值m1和次小权值m2之和;ht[p1]和ht[p2]的双亲指向i。
共进行n-1次合并,产生n-1个结点,依次放入ht数组中数组下标从n+1到2n-1。
这样就构成了一棵哈夫曼树。
(2)编码基本思想是:从哈弗曼树的叶结点ht[i] (1≤i≤n)出发,通过双亲parent找到其双亲ht[f],通过ht[f]的域left和right,可知ht[i]是ht[f]的左分支还是右分支,若是左分支,生成的代码0;若是右分支,生成代码1。
哈夫曼编码译码
哈夫曼编码译码一、【实验内容】【问题描述】利用哈夫曼编码进行住处通讯可以大大提高信道利用率,缩短住处传输时间,降低成本,但是,这要求在发送端通过一个编码系统将传输的数据预先编码,在接收端通过一个译码系统对传来的数据进行译码(复原),对于双向传输信息的信道,每端都一个完整的编码译码系统,试为这样的住处收发站写一个哈夫曼友的编码译码系统.【基本要求】:一个完整的系统应以下功能:(1) I. 初始化(Initialization)。
从终端读入字符集大小n,以及n个字符和n个权值,建立哈夫曼树,并将它存放在文件hfmTree中.(2) E. 编码(Encoding)。
利用已建立好的哈夫曼树(如不在内存,则从文件hfmTree中读入),对文件ToBeTran中的正文进行编码,然后将结果代码存(传输)到文件CodeFile中.(3) D. 译码(Decoding)。
利用已建好的哈夫曼树,对传输到达的CodeFile中的数据代码进行译码,将译码结果存入文件TextFile中.(4) P. 印文件代码(Print)。
将文件CodeFile以紧凑格式显示在终端上,每行50个代码。
同时将此字符形式的编码文件写入文件CodePrin中。
(5) T. 印哈夫曼树(TreePrinting)。
将已在内存中的哈夫曼树以直观的方式(树或凹入表的形式)显示在终端上,同时将此字符形式的哈夫曼树写入文件TreePrint中。
测试数据:(1) 利用教科书例6-2中的数据调试程序。
(2) 用下表给出的字符集和频度的计数据建立哈曼树,并实现以下报文的编码和译码:“THIS PROGRAM IS MY FAVORITE”.。
字符 A B C D E F G H I J K L M频数 186 64 13 22 32 103 21 15 47 57 1 5 32 20字符 N O P Q R S T U V W X Y Z频数 57 63 15 1 48 51 80 23 8 18 1 16 1二、实验目的树型结构是一种应用极为广泛的非线性数据结构,也是本课程的重点内容,哈夫曼树(最优二叉树)是树型结构的典型应用,本次实验突出了数据结构加操作的程序设计观点,希望能根据树型结构的非线性特点,熟悉各种存储结构的特性,达到如何应用树型结构的非线性特点,熟悉各种存储结构的特性,达到如何应用树型结构解决具体问题的目的.三、实验文档:哈夫曼编码/译码一、需求分析1、利用哈夫曼编码进行信息通信可以大大提高信道利用率,缩短信息传输时间,降低传输成本。
实验六 Huffman编码算法实现
实验六 Huffman编码算法实现---2011级通信一班尚青一、实验目的1、加深对压缩理论和技术的理解;2、增进对压缩编码算法的设计和编写能力;3、编写Vc++的Huffman编码;4、编写Matlab函数实现哈夫曼编码的算法。
(3或4选做一个即可)二、实验原理1、哈夫曼树的定义:假设有n个权值,试构造一颗有n个叶子节点的二叉树,每个叶子带权值为wi,其中树带权路径最小的二叉树成为哈夫曼树或者最优二叉树;2、哈夫曼树的构造:weight为输入的频率数组,把其中的值赋给依次建立的HT Node对象中的data属性,即每一个HT Node对应一个输入的频率。
然后根据data属性按从小到大顺序排序,每次从data取出两个最小和此次小的HT Node,将他们的data相加,构造出新的HTNode作为他们的父节点,指针parent,leftchild,rightchild赋相应值。
在把这个新的节点插入最小堆。
按此步骤可以构造构造出一棵哈夫曼树。
通过已经构造出的哈夫曼树,自底向上,由频率节点开始向上寻找parent,直到parent 为树的顶点为止。
这样,根据每次向上搜索后,原节点为父节点的左孩子还是右孩子,来记录1或0,这样,每个频率都会有一个01编码与之唯一对应,并且任何编码没有前部分是同其他完整编码一样的。
三、实验内容①初始化,统计文本文件中各字符的个数作为权值,生成哈夫曼树;②根据符号概率的大小按由大到小顺序对符号进行排序;③把概率最小的两个符号组成一个节点;④重复步骤(2)(3),直到概率和为1;⑤从根节点开始到相应于每个符号的“树叶”,概率大的标“0”,概率小的标“1”;⑥从根节点开始,对符号进行编码;⑦译码时流程逆向进行,从文件中读出哈夫曼树,并利用哈夫曼树将编码序列解码。
四、实验代码及结果function [h,l,hh,t]=huffman(p)%判断输入合不合法if (~isempty(find(p<0, 1)))error('Not a prob,negative component');endif (abs(sum(p)-1)>10e-10)error('Not a prob.vector,component do not add to 1')endn=length(p);q=p; %数组p附给qm=zeros(n-1,n); %创建(n-1)*n矩阵for i=1:n-1[q,l]=sort(q);%对概率数组q 进行从小至大的排序,并且用l 数组返回一个数组,该数组表示概率数组q 排序前的顺序编号m(i,:)=[l(1:n-i+1),zeros(1,i-1)];%由数组l 构建一个矩阵,该矩阵表明概率合并时的顺序,用于后面的编码q=[q(1)+q(2),q(3:n),1];%将排序后的概率数组q 的前两项,即概率最小的两个数加和,得到新的一组概率序列endfor i=1:n-1c(i,:)=blanks(n*n);%生成一个n-1 行n 列,并且每个元素的的长度为n 的空白数组,c 矩阵用于进行huffman 编码并且在编码中与 m矩阵有一定的对应关系endc(n-1,n)='0';%由于c矩阵的第n-1 行的前两个元素为进行huffman 编码加和运算时所得的最c(n-1,2*n)='1';%后两个概率,因此其值为0 或1,在编码时设第n-1 行的第一个空白字符为0,第二个空白字符1。
哈夫曼编码及其解码全过程
哈夫曼编码及其解码全过程1.引言1.1 概述在这篇长文中,我们将介绍哈夫曼编码及其解码的全过程。
哈夫曼编码是一种可变字长编码技术,它通过统计字符出现频率来构建编码表,使得出现频率高的字符使用较短的编码,出现频率低的字符使用较长的编码,从而实现高效的数据压缩。
在本文中,我们将详细探讨哈夫曼编码的过程,包括哈夫曼树的构建和编码表的生成。
此外,我们还将介绍哈夫曼解码的过程,包括解码表的生成和解码过程。
最后,我们将总结哈夫曼编码及其解码,并展望其在实际应用中的前景。
通过阅读本文,读者将全面了解哈夫曼编码及其解码的原理和实现方法。
【1.2 文章结构】本文共分为三个部分,分别是引言、正文和结论。
下面将对每个部分进行详细的说明。
(1) 引言部分包括三小节。
首先是概述,将简要介绍哈夫曼编码及其解码的基本概念和作用。
其次是文章结构,将列出本文的整体结构以及各个部分的内容。
最后是目的,阐述撰写这篇长文的目标和意义。
(2) 正文部分是本文的核心部分,分为两个小节。
第一个小节是哈夫曼编码过程,将详细介绍哈夫曼树的构建和编码表的生成过程。
具体而言,将介绍如何根据字符的出现频率构建哈夫曼树,并通过遍历哈夫曼树生成对应的编码表。
第二个小节是哈夫曼解码过程,将详细介绍解码表的生成和解码的具体步骤。
具体而言,将介绍如何根据编码表构建解码表,并通过解码表将编码还原成原始字符。
(3) 结论部分也包括两个小节。
首先是总结,将对整篇文章的内容进行简要回顾,并总结哈夫曼编码及其解码的关键步骤和特点。
其次是应用前景,将探讨哈夫曼编码在实际应用中的潜在价值和发展前景,展示其在数据压缩和信息传输等领域的重要性。
通过对文章结构的明确描述,读者可以清晰地了解到本文的整体内容安排,从而更好地理解和阅读本文的各个部分。
1.3 目的本文的目的是介绍哈夫曼编码及其解码的全过程。
通过详细阐述哈夫曼编码的构建和解码过程,使读者能够深入理解哈夫曼编码的原理和应用。
哈夫曼实验报告(附代码)
哈夫曼实验报告(附代码)以下是为大家整理的哈夫曼实验报告(附代码)的相关范文,本文关键词为哈夫曼,实验,报告,代码,,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在综合文库中查看更多范文。
哈弗曼编码/译码器一、程序的功能分析1.构造哈夫曼树及哈夫曼编码:从终端读入字符集大小n、n 个字符以及n个对应的权值,建立哈夫曼树;利用已经建好的哈夫曼树求每个叶结点的哈夫曼编码,并保存。
2.编码:利用已构造的哈夫曼编码对“明文”文件中的正文进行编码,然后将结果存入“密文”文件中。
3.译码:将“密文”文件中的0、1代码序列进行译码。
(读文件) 4.打印“密文”文件:将文件以紧凑格式显示在终端上,每行30个代码;同时,将此字符形式的编码文件保存。
5.打印哈夫曼树及哈夫曼编码:将已在内存中的哈夫曼树以凹入表形式显示在终端上,同时将每个字符的哈夫曼编码显示出来;并保存到文件。
二、基本要求分析1、输入输出的要求按提示内容从键盘输入命令,系统根据用户输入的需求在保证界面友好的前提下输出用户所需信息,并按要求保存文件,以便保存备份信息。
2、测试数据(1).令叶子结点个数n为4,权值集合为{1,3,5,7},字符集合为{A,b,c,D},且字符集与权值集合一一对应。
(2).令叶子结点个数n为7,权值集合为{12,6,8,18,3,20,2},字符集合为{A,b,c,D,e,F,g},且字符集与权值集合一一对应。
(3).请自行选定一段英文文本,统计给出的字符集,实际统计字符的频度,建立哈夫曼树,构造哈夫曼编码,并实现其编码和译码。
三、概要设计1.主模块的流程及各子模块的主要功能主函数负责提供选项功能,循环调控整个系统。
创建模块实现接收字符、权值、构建哈夫曼树,并保存文件,此功能是后续功能的基础。
编码模块实现利用已编好的哈夫曼树对每个字符进行哈夫曼编码,即对每个字符译出其密文代码,并保存文件。
信息论与编码课程设计(哈夫曼编码的分析与实现)
吉林建筑大学电气与电子信息工程学院信息理论与编码课程设计报告设计题目:哈夫曼编码的分析与实现专业班级:电子信息工程101学生姓名:学号:指导教师:吕卅王超设计时间:2013.11.18-2013.11.29一、设计的作用、目的《信息论与编码》是一门理论与实践密切结合的课程,课程设计是其实践性教学环节之一,同时也是对课堂所学理论知识的巩固和补充。
其主要目的是加深对理论知识的理解,掌握查阅有关资料的技能,提高实践技能,培养独立分析问题、解决问题及实际应用的能力。
通过完成具体编码算法的程序设计和调试工作,提高编程能力,深刻理解信源编码、信道编译码的基本思想和目的,掌握编码的基本原理与编码过程,增强逻辑思维能力,培养和提高自学能力以及综合运用所学理论知识去分析解决实际问题的能力,逐步熟悉开展科学实践的程序和方法二、设计任务及要求通过课程设计各环节的实践,应使学生达到如下要求:1. 理解无失真信源编码的理论基础,掌握无失真信源编码的基本方法;2. 掌握哈夫曼编码/费诺编码方法的基本步骤及优缺点;3. 深刻理解信道编码的基本思想与目的,理解线性分组码的基本原理与编码过程;4. 能够使用MATLAB 或其他语言进行编程,编写的函数要有通用性。
三、设计内容一个有8个符号的信源X ,各个符号出现的概率为:编码方法:先将信源符号按其出现的概率大小依次排列,并取概率最小的字母分别配以0和1两个码元(先0后1或者先1后0,以后赋值固定),再将这两个概率相加作为一个新字母的概率,与未分配的二进制符号的字母重新排队。
并不断重复这一过程,直到最后两个符号配以0和1为止。
最后从最后一级开始,向前返回得到各个信源符号所对应的码元序列,即为对应的码字。
哈夫曼编码方式得到的码并非唯一的。
在对信源缩减时,两个概率最小的符号合并后的概率与其他信源符号的概率相同时,这两者在缩减中的排序将会导致不同码字,但不同的排序将会影响码字的长度,一般讲合并的概率放在上面,12345678,,,,,()0.40.180.10.10.070.060.050.04X x x x x x x x x P X ⎡⎤⎧⎫=⎨⎬⎢⎥⎣⎦⎩⎭这样可获得较小的码方差。
哈夫曼编码译码器实验报告
问题解析与解题方法问题分析:设计一个哈夫曼编码、译码系统。
对一个ASCII编码的文本文件中的字符进行哈夫曼编码,生成编码文件;反过来,可将编码文件译码还原为一个文本文件。
(1)从文件中读入任意一篇英文短文(文件为ASCII编码,扩展名为txt);(2)统计并输出不同字符在文章中出现的频率(空格、换行、标点等也按字符处理);(3)根据字符频率构造哈夫曼树,并给出每个字符的哈夫曼编码;(4)将文本文件利用哈夫曼树进行编码,存储成压缩文件(编码文件后缀名.huf)(5)用哈夫曼编码来存储文件,并和输入文本文件大小进行比较,计算文件压缩率;(6)进行译码,将huf文件译码为ASCII编码的txt文件,与原txt文件进行比较。
根据上述过程可以知道该编码译码器的关键在于字符统计和哈夫曼树的创建以及解码。
哈夫曼树的理论创建过程如下:一、构成初始集合对给定的n个权值{W1,W2,W3,...,Wi,...,Wn}构成n棵二叉树的初始集合F={T1,T2,T3,...,Ti,...,Tn},其中每棵二叉树Ti中只有一个权值为Wi的根结点,它的左右子树均为空。
二、选取左右子树在F中选取两棵根结点权值最小的树作为新构造的二叉树的左右子树,新二叉树的根结点的权值为其左右子树的根结点的权值之和。
三、删除左右子树从F中删除这两棵树,并把这棵新的二叉树同样以升序排列加入到集合F中。
四、重复二和三两步,重复二和三两步,直到集合F中只有一棵二叉树为止。
因此,有如下分析:1.我们需要一个功能函数对ASCII码的初始化并需要一个数组来保存它们;2.定义代表森林的数组,在创建哈夫曼树的过程当中保存被选中的字符,即给定报文中出现的字符,模拟哈夫曼树选取和删除左右子树的过程;3.自底而上地创建哈夫曼树,保存根的地址和每个叶节点的地址,即字符的地址,然后自底而上检索,首尾对换调整为哈夫曼树实现哈弗曼编码;4.从哈弗曼编码文件当中读入字符,根据当前字符为0或者1的状况访问左子树或者右孩子,实现解码;5.使用文件读写操作哈夫曼编码和解码结果的写入;解题方法:结构体、数组、类的定义:1.定义结构体类型的signode 作为哈夫曼树的节点,定义结构体类型的hufnode 作为哈夫曼编码对照表的节点,定义HFM类实现对哈夫曼树的创建,利用其成员函数完成哈夫曼编码译码的工作。
简述哈夫曼编码译码过程
简述哈夫曼编码译码过程哈夫曼编码是一种用于数据压缩的无损编码方法,它基于字符出现频率的统计信息,将频率较高的字符用较短的二进制编码表示,而将频率较低的字符用较长的二进制编码表示。
在对数据进行解码时,需要使用相同的编码表来将编码转换回原始数据。
哈夫曼编码的过程可以分为两个主要步骤:构建哈夫曼树和生成编码表。
下面将详细介绍每个步骤的实现过程。
构建哈夫曼树:1. 统计字符的频率:遍历要编码的数据,统计每个字符出现的频率。
2. 创建叶节点列表:将每个字符及其频率作为一个叶节点,构建一个列表。
3. 构建哈夫曼树:重复执行以下操作,直到只剩下一个节点:a. 从叶节点列表中选择两个频率最低的节点作为左右子节点。
b. 创建一个新的节点,其频率为左右子节点频率之和,并将其设为左右子节点的父节点。
c. 将新的父节点添加到叶节点列表中。
d. 从叶节点列表中删除选择的两个节点。
4. 哈夫曼树的根节点即为构建完成的树。
生成编码表:1. 遍历哈夫曼树:从根节点开始,遍历哈夫曼树的每个节点。
a. 若当前节点为叶节点,记录该节点所表示字符的编码路径。
b. 若当前节点有左子节点,将路径标记为0,并继续遍历左子节点。
c. 若当前节点有右子节点,将路径标记为1,并继续遍历右子节点。
2. 将每个字符与其对应的编码路径关系保存在编码表中。
哈夫曼编码的过程中,编码表的生成是非常重要的一步。
通过遍历哈夫曼树,可以确定每个字符的唯一编码,从而在进行译码时能够将编码路径按照对应的编码表转换为原始数据。
译码过程:1. 读取编码数据:将压缩后的二进制数据按位读取。
2. 解码树的遍历:从哈夫曼树的根节点开始,按照读取的二进制位(0或1)依次向左或向右遍历。
3. 判断节点类型:若当前节点为叶节点,表示已找到对应的字符,记录该字符并重新从根节点开始遍历。
4. 判断读取结束:若读取的二进制数据已经全部解码完毕,则译码结束;否则继续读取下一位二进制数据进行遍历。
数据结构 哈夫曼编码与译码
数据结构哈夫曼编码与译码哈夫曼编码与译码是数据结构中的重要概念,它是一种可变长度编码的方法,用于压缩数据。
在本文中,我将详细介绍哈夫曼编码与译码的原理、步骤以及应用。
一、哈夫曼编码的原理哈夫曼编码是一种根据字符出现的频率来构建编码表的方法,使得频率较高的字符使用较短的编码,频率较低的字符使用较长的编码。
这样可以有效地减少数据的存储空间。
二、哈夫曼编码的步骤1. 统计字符频率:遍历待编码的文本,统计每个字符出现的频率。
2. 构建哈夫曼树:根据字符频率构建哈夫曼树。
首先将每个字符作为一个独立的树节点,然后合并频率最低的两个节点,生成一个新的节点,频率为这两个节点的频率之和。
重复此过程,直到所有节点都合并为一个根节点,得到哈夫曼树。
3. 生成编码表:从根节点开始遍历哈夫曼树,左子树路径为0,右子树路径为1,将路径上的0和1依次添加到对应字符的编码中,得到编码表。
4. 进行编码:根据编码表,将待编码的文本中的每个字符替换为对应的编码。
5. 完成编码:得到编码后的文本。
三、哈夫曼译码的步骤1. 根据编码表,将编码后的文本逐个字符地进行译码。
从根节点开始,根据字符是0还是1,选择左子树或右子树进行下一步操作。
2. 如果到达叶子节点,则找到对应的字符,并将该字符添加到译码结果中。
3. 重复上述步骤,直到译码结束,得到原始文本。
四、哈夫曼编码与译码的应用哈夫曼编码与译码广泛应用于数据压缩领域。
通过使用哈夫曼编码,可以大大减小数据的存储空间,提高数据传输的效率。
在图像、音频、视频等大数据文件的传输和存储中,哈夫曼编码被广泛使用。
总结:哈夫曼编码与译码是一种基于字符频率的编码方法,可以有效地压缩数据。
通过统计字符频率、构建哈夫曼树、生成编码表等步骤,可以实现对数据的编码和译码。
哈夫曼编码在数据压缩领域有着广泛的应用,可以大大减小数据的存储空间,提高数据传输的效率。
哈夫曼编码译码
哈夫曼编码译码哈夫曼编码译码编码与译码是信息传输的两个基本环节,哈夫曼编码是一种基于数据压缩的编码方式,能够有效减小数据传输时所需的带宽和存储空间,广泛应用于图像、音频、视频等大数据的传输和存储中。
本文将从哈夫曼编码的定义、算法及其应用等三个方面进行探讨。
一、哈夫曼编码的定义哈夫曼编码,又称为变长编码或最优编码,是一种通过树形结构来实现数据压缩的编码方式。
其算法的基本思想是:对于频率高的字符,分配较短的编码;对于频率低的字符,分配较长的编码。
这样,可以减小数据传输时所需要的带宽和存储空间。
二、哈夫曼编码的算法哈夫曼编码的算法分为两个步骤:建立哈夫曼树和生成编码。
1. 建立哈夫曼树:首先将每个字符看作独立的一个节点,然后根据字符出现的频率来构建哈夫曼树。
具体的方法是:对于给定的一组字符,计算其出现的频率,并将其按照频率的大小进行排序。
然后将频率最小的两个字符合并为一个节点,该节点的频率为两个字符的频率之和,并将该节点插入到集合中。
重复此过程,直到集合中只剩下一个节点,即构建出了哈夫曼树。
2. 生成编码:从根节点开始,遍历树的所有节点(左子树编码为0,右子树编码为1),并记录所有节点对应的字符编码。
这样,每个字符就可以表示为一串01序列,其中该序列的长度越小,表示该字符在原数据中出现的频率越高。
三、哈夫曼编码的应用哈夫曼编码在数据压缩、网络传输、存储优化等领域都有广泛的应用。
1. 数据压缩:哈夫曼编码可将文件的体积减小到原来的三分之一左右,从而有效地减小文件的传输和存储所需要的空间。
2. 网络传输:在网络传输中,带宽和传输速率是非常宝贵的资源。
哈夫曼编码可以将传输的数据压缩到最小,从而减小网络传输的时间和成本。
3. 存储优化:在资源有限的设备上,如手机、PDA等,存储空间通常是一个非常重要的考虑因素。
使用哈夫曼编码技术,可以减小存储所需的空间,从而为设备的其他功能留出更多的空间。
总之,哈夫曼编码是一种非常重要的编码方式,广泛被应用于数据传输和存储中。
数据结构哈夫曼编码译码c语言
数据结构哈夫曼编码译码c语言哈夫曼编码是一种经典的数据压缩算法。
这种算法可以根据数据中出现频率最高的字符生成一个种类较少的编码表,然后用这个编码表来对数据进行编码,从而达到压缩数据的效果。
哈夫曼编码的核心是生成编码表,生成编码表的过程包括以下几个步骤:1. 统计字符出现频率。
遍历一遍数据,统计每个字符出现的次数。
2. 创建哈夫曼树。
将每个字符出现的次数作为权值,构造一棵哈夫曼树。
构造哈夫曼树需要用到一种优先队列。
3. 生成编码表。
对哈夫曼树进行遍历,当遇到一个叶子节点时,将它的路径上的所有节点转换成一个编码,这个编码就是该节点代表的字符的哈夫曼编码。
4. 对数据进行编码。
按照编码表,将原始数据中的每个字符都替换成对应的哈夫曼编码,得到压缩数据。
哈夫曼编码的解码操作相对简单,只需要根据编码表将每个哈夫曼编码转换成它代表的字符,再将这些字符拼接起来就可以得到原始数据。
以下是C语言实现哈夫曼编码和译码的例子:```c#include <stdio.h>#include <stdlib.h>#include <string.h>#define MAX_NODE 100typedef struct node {char data;int freq;int parent, lchild, rchild;} Node;int nodes_num;Node* nodes;void build_huffman_tree() {int i, j, min1, min2;for (i = 0; i < nodes_num - 1; i++) {min1 = min2 = -1;for (j = 0; j < nodes_num + i; j++) {if (nodes[j].parent == -1) {if (min1 == -1 || nodes[j].freq < nodes[min1].freq) {min2 = min1;min1 = j;} else if (min2 == -1 || nodes[j].freq < nodes[min2].freq) { min2 = j;}}}nodes[min1].parent = nodes_num + i;nodes[min2].parent = nodes_num + i;nodes[nodes_num + i].lchild = min1;nodes[nodes_num + i].rchild = min2;nodes[nodes_num + i].freq = nodes[min1].freq + nodes[min2].freq;}}nodes_num = 0;nodes = (Node*)malloc(MAX_NODE * sizeof(Node));for (i = 0; i < MAX_NODE; i++) {nodes[i].freq = nodes[i].parent = -1;nodes[i].lchild = nodes[i].rchild = -1;}build_huffman_tree();codes_num = 0;codes = (Code*)malloc(nodes_num * sizeof(Code));printf("src: %s\n", src);return 0;}```上述代码中,我们使用结构体来表示哈夫曼树的节点,其中包括该节点的权值(即字符出现的次数)、父节点、左右孩子节点等信息。
哈夫曼编码及译码
设计一个程序,能够利用给定的一组字符及其权值,构造哈夫曼树。
程序要求:(1)编写构造huffman 树的算法。
(2)给出哈夫曼编码算法。
(3)给出哈夫曼译码算法,并将发送的报文编码译回原文。
#include "stdio.h"# define N 9 /*叶子结点数*/# define M 2*N-1 /*总结点数*/#define maxval 1000#define codelen 100typedef int DataType;typedef struct /*哈夫曼树结点的存储结构*/{ float weight;int parent;int lchild,rchild;}HufmTree ;HufmTree tree[M+1];typedef struct /*哈夫曼编码的存储结构*/{ char bits[N]; /*保存编码的数组*/int start; /*编码的有效起始位置,从该位置之后的01串为字符的编码*/ char ch; /*字符*/}CodeType ;CodeType code[N+1]; /*字符编码数组,0号位空出*/huffman (HufmTree tree[]) /*构建哈夫曼树*/{ int i,j,p1,p2;float small_1,small_2,f;for(i=1;i<=M;i++){ tree[i].weight=0;tree[i].parent=0;tree[i].lchild=0;tree[i].rchild=0;}printf("\n\n\t请输入%d个字符的使用频率(权值):",N);for(i=1;i<=N;i++){ scanf("%f",&f);tree[i].weight=f;}for(i=N+1;i<=M;i++){ p1=1;p2=1;small_1 =maxval; small_2 =maxval;for(j=1;j<=i-1;j++)if(tree[j].parent==0)if(tree[j].weight<small_1){ small_2 =small_1; p2=p1;small_1 =tree[j].weight; p1=j;}else if(tree[j].weight<small_2){ small_2=tree[j].weight;p2=j;}tree[i].weight=tree[p1].weight+tree[p2].weight;tree[i].lchild=p1;tree[i].rchild=p2;tree[p1].parent=i;tree[p2].parent=j;}}huffmanCode(HufmTree tree[],CodeType code[]) /*哈夫曼编码*/ { int i,c,p;for(i=1;i<=N;i++){ code[i].start=N;c=i;p=tree[i].parent;while (p!=0){ code[i].start--;if(tree[p].lchild==c) code[i].bits[code[i].start] ='0';else code[i].bits[code[i].start] ='1';c=p;p=tree[p].parent;}}}decode(HufmTree tree[],CodeType code[])/*哈夫曼译码*/{ int i=M,b;int endflag=-1;int yiflag;scanf("%d",&b);while (b!=endflag){ yiflag=0;if (b==0) i=tree[i].lchild;else i=tree[i].rchild;if(tree[i].lchild==0){ printf("%c",code[i].ch);i=M;yiflag=1;}scanf("%d",&b);}if(yiflag!=1 ) printf( "\nERROR\n");}void main(){ char zifu[]={'A','B','C','D','E','F','G','H','I'}; /*待编码的字符*/int i,j,k=0;printf("\n\n\t已知%d个字符分别为:",N);/*N为全局变量,叶子结点数,即字符个数*/ for(i=1;i<=N;i++){ printf("%c ",zifu[i-1]); /*输出字符*/code[i].ch=zifu[i-1]; /*将字符保存在哈夫曼编码的存储结构中*/ }huffman(tree); /*建立哈夫曼树*/huffmanCode(tree,code); /*求得哈夫曼编码*/printf("\n\t字符的哈夫曼编码分别为:\n\t");/*输出各个字符的哈夫曼编码*/for(i=1;i<=N;i++) /*共N个字符*/{ printf("\n\t%c:",code[i].ch);for(j=code[i].start;j<N;j++) /*取出每个字符的编码*/{printf("%c",code[i].bits[j]);}}printf("\n\n\t请输入待译的0、1二进制串(-1为结束码)\n\n\t");decode(tree,code); /*输入01码,进行译码*/getchar();}运行结果如图5.33所示。
哈夫曼编码的实现及应用
哈夫曼编码的实现及应用哈夫曼编码是一种可变长度编码的方法,它是由大名鼎鼎的美国数学家大卫·哈夫曼(David Huffman)于1952年提出的,用于有效地压缩数据。
在哈夫曼编码中,出现频率较高的字符被赋予较短的编码,而出现频率较低的字符则被赋予较长的编码,以达到尽可能减少编码长度的目的。
下面将在实现和应用这两个方面详细介绍哈夫曼编码。
首先是哈夫曼编码的实现。
哈夫曼编码的实现过程可以分为两个主要步骤:构建哈夫曼树和生成编码表。
构建哈夫曼树的步骤如下:1.统计待编码的字符出现的频次,并根据频次构建一个包含这些字符的节点集合。
2.从节点集合中选取频次最小的两个节点,合并成一个新节点,频次为这两个节点的频次之和,并将新节点加入节点集合中。
3.重复上述步骤,直到节点集合中只剩下一个节点,即为哈夫曼树的根节点。
生成编码表的步骤如下:1.从哈夫曼树的根节点开始,按照左子树标记0、右子树标记1的规则,遍历树的每个节点。
2.当遇到叶子节点时,将节点的字符与路径上的标记组合成该字符的哈夫曼编码,并将字符与编码添加到编码表中。
3.继续遍历树的下一个节点,直到所有节点都被遍历完。
在实现哈夫曼编码时,可以使用优先队列(例如最小堆)来选择频次最小的节点,以提高效率。
接下来是哈夫曼编码的应用。
哈夫曼编码在数据压缩领域有着广泛的应用。
以文本文件为例,由于文本中一些字符出现的频率较高,而另一些字符出现的频率较低,使用固定长度编码(如ASCII码)来存储文本会浪费存储空间。
而利用哈夫曼编码可以将频次较高的字符用较短的编码来表示,从而实现数据的压缩。
另外,哈夫曼编码也被用于网络传输数据的压缩。
在网络传输中,数据量大、传输速率有限,因此需要将数据进行压缩以减少传输时间和带宽占用。
通过使用哈夫曼编码,可以将数据进行压缩后再传输,接收端再进行解码还原为原始数据。
这样既减小了传输数据的大小,又提高了传输效率。
此外,哈夫曼编码还被广泛应用于图像和音频等多媒体数据的压缩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据结构课程设计评阅书2011—2012学年第一学期专业:信息管理与信息系统学号: 1021024016 姓名:万永馨课程设计名称:数据结构课程设计设计题目:哈夫曼编码与译码的实现完成期限:自 2012 年 2 月 20 日至 2012 年 3 月 2 日共 2 周设计依据、要求及主要内容(可另加附页):该设计题目将按以下要求完成:哈夫曼编码与译码是信息传输中应用的经典算法,运用C或VC++结合数据结构等基础知识,按以下要求编程实现各种进制的转换。
任务要求:1)阐述设计思想,画出流程图;2)需要对哈夫曼编码/译码的相关原理有所了解,设计数据结构,建立必要的信息数据文件(最好存储成外部文件),并分析完成用户所需的基本操作功能;3)实现给定信息的编码和译码功能;4)应有较好的界面设计,说明程序测试方法;5)按照格式要求完成课程设计说明书。
设计要求:1)问题分析和任务定义:根据设计题目的要求,充分地分析和理解问题,明确问题要求做什么?(而不是怎么做?)限制条件是什么?确定问题的输入数据集合。
2)逻辑设计:对问题描述中涉及的操作对象定义相应的数据类型,并按照以数据结构为中心的原则划分模块,定义主程序模块和各抽象数据类型。
逻辑设计的结果应写出每个抽象数据类型的定义(包括数据结构的描述和每个基本操作的功能说明),各个主要模块的算法,并画出模块之间的调用关系图;3)详细设计:定义相应的存储结构并写出各函数的伪码算法。
在这个过程中,要综合考虑系统功能,使得系统结构清晰、合理、简单和易于调试,抽象数据类型的实现尽可能做到数据封装,基本操作的规格说明尽可能明确具体。
详细设计的结果是对数据结构和基本操作做出进一步的求精,写出数据存储结构的类型定义,写出函数形式的算法框架;4)程序编码:把详细设计的结果进一步求精为程序设计语言程序。
同时加入一些注解和断言,使程序中逻辑概念清楚;5)程序调试与测试:能够熟练掌握调试工具的各种功能,设计测试数据确保程序正确。
调试正确后,认真整理源程序及其注释,形成格式和风格良好的源程序清单和结果;6)结果分析:程序运行结果包括正确的输入及其输出结果和含有错误的输入及其输出结果。
算法的时间、空间复杂性分析;7)编写课程设计报告;以上要求前三个阶段的任务完成后,将设计说明书的草稿交指导老师面审,审查合格方可进入后续阶段的工作。
设计工作结束,经指导老师验收合格后将设计说明书装订,并答辩。
批准日期:年月日摘要在当今信息爆炸时代,如何采取有效的数据压缩技术来节省数据文件的储存空间越来越引起人们的重视。
本次课程设计的实验题目为哈夫曼编码与译码的实现。
利用哈夫曼树求得的用于通讯的二进制编码称为哈弗曼编码。
通常我们将文字转化为二进制称为编码,而将二进制转化为文字称为译码。
此次程序就是将一个简单的文件进行编码转化为二进制数存入文件并进行译码进而输出。
而将文件转化为二进制编码运用哈夫曼树的相关知识可以有效的节省存储空间与时间。
关键词:哈夫曼树;哈夫曼树的编码;哈夫曼树的译码;哈夫曼树初始化;哈夫曼树的建立开发工具:visual C++目录1.引言 (5)2.课题描述 (6)3.程序设计 (7)3.1实验目的与基本要求 (7)3.2部分函数介绍 (7)3.3主要模块程序流程图 (8)4 系统实现 (12)4.1 主函数(菜单函数) (12)4.2 建立HuffmanTree (12)4.3生成Huffman编码并写入文件 (14)4.4对文件哈夫曼译码.txt 进行译码译码 (15)5 系统调试 (16)附录源程序 (22)1.引言在课程设计过程中,我们四个人一组选择一个课题,认真研究,根据课堂讲授内容,借助书本,自己动手实践。
这样不但有助于我们消化课堂所讲解的内容,还可以增强我们的独立思考能力和动手能力;通过编写实验代码和调试运行,我们可以逐步积累调试C程序的经验并逐渐培养我们的编程能力、用计算机解决实际问题的能力。
在课程设计过程中,我们不但有自己的独立思考,还借助各种参考文献来帮助我们完成系统。
更为重要的是,我们同学之间加强了交流,在对问题的认识方面可以交换不同的意见。
同时,师生之间的互动也随之改善,我们可以通过具体的实例来从老师那学到更多的实用的知识。
数据结构课程具有比较强的理论性,同时也具有较强的可应用性和实践性。
课程设计是一个重要的教学环节。
我们在一般情况下都能够重视实验环节,但是容易忽略实验的总结,忽略实验报告的撰写。
通过这次实验让我们明白:作为一名大学生必须严格训练分析总结能力、书面表达能力。
需要逐步培养书写科学实验报告以及科技论文的能力。
只有这样,我们的综合素质才会有好的提高。
2.课题描述课题:哈夫曼编码与译码的实现问题描述:对文件哈夫曼.txt中的字符串进行编译,统计其中的字符种类、个数作为权值。
1. 从D盘的数据结构课程设计文件夹中建立哈夫曼.txt文件里读出文章(必须大写);2. 运用jsp函数统计这篇文章中的每个字符出现的次数;3. 以字符出现字数作为权值,构建哈夫曼树,并将哈夫曼树的存储结构的初态和终态进行输出;4. 对每个字符进行编码并将所编码写入程序,然后对另一文件中的编码编码进行破译。
具体介绍:在本课题中,我们在硬盘D盘中预先建立一个哈夫曼.txt 文档,在里面编辑一篇文章(大写)。
然后运行程序,调用fileopen()函数读出该文章,显示在界面;再调用jsq()函数对该文章的字符种类进行统计,并对每个字符的出现次数进行统计,并且在界面上显示;然后以每个字符出现次数作为权值,调用ChuffmanTree()函数构建哈夫曼树;并调用print1()和print2()函数将哈夫曼的存储结构的初态和终态进行输出。
然后哈夫曼树进行编码,再对另一文件哈夫曼译码.txt 编码进行译码,再输出至界面。
至此,整个工作就完成了。
3.程序设计3.1实验目的与基本要求利用赫夫曼编码进行通信可以大大提高信道利用率,缩短信息传输时间,降低传输成本。
这要求在发送端通过一个编码系统对待传输数据预先编码,在接收端将传来的数据进行译码(复原)。
对于双工信道(即可以双向传输信息的信道),每端都需要一个完整的编/译码系统。
试为这样的信息收发站编写一个赫夫曼码的编/译码系统。
一个完整的系统应具有以下功能:(1) 初始化(Initialization)。
从文件哈夫曼.txt 读入字符集,,统计字母个数作为权值,建立赫夫曼树。
(2) 编码(Encoding)。
利用已建好的赫夫曼树(如不在内存,则从文件中读入),对哈夫曼树进行编码,然后将结果存入文件哈夫曼译码.txt中。
(3) 译码(Decoding)。
利用已建好的赫夫曼树将文件哈夫曼译码.txt 中的代码进行译码3.2部分函数介绍①从硬盘读取字符串fileopen(参数)②建立HuffmanTree通过三个函数来实现:void select(参数)说明:在ht[1....k]中选择parent为0且权值最小的两个根结点的算法int jsq(参数)说明:统计字符串中各种字母的个数以及字符的种类void ChuffmanTree()说明:构造哈夫曼树③输出哈夫曼树的存储结构的初态和终态分别调用print1()和print2()来实现void print1(参数)说明:输出哈夫曼树的初态void print2(参数)说明:输出哈夫曼树的终态④哈夫曼编码和译码void HuffmanEncoding(参数)说明:哈夫曼编码char*decode(参数)说明:哈夫曼译码3.3主要模块程序流程图①主函数流程图:图 3.1流程图注释:图3.1比较简单,由该图可知主要是调用各个函数模块,首先代开已经存在的文件,然后统计总的字符数以及出现的各个字符和频率。
然后才开始建立哈夫曼树,接着在哈夫曼树的基础上对其进行编码,编码之后才是译码。
最后输出结束。
图 3.2流程图注释:图3.2是表示构造哈夫曼树的过程。
首先输入num个叶结点的权值,当i=num是循环结束。
然后进行哈夫曼树的构建,当i=2*num-1是循环结束。
最后输出所得到的字符统计情况。
③哈夫曼编码:图 3.3流程图3.3表示哈夫曼编码情况。
首先初始化,Cd[--start]=0,start=num。
然后从首地址开始进行比较,找节点的父母地址然后看节点为父母地址的左孩子是的话为’0’,反之为’1’.依次开始上溯。
将编码存入H[i].bits。
哈夫曼译码:图 3.4流程图3.4表示哈夫曼译码情况。
首先讲哈夫曼编码存入的文件打开,将哈夫曼编码导出。
然后将文件中读出的字符与哈夫曼编码cd进行比较strcmp(HC[j].bits,cd==0,相等的话开始译出str[k]=HC[j].ch。
4 系统实现各模块关键代码及算法的解释:4.1 主函数(菜单函数)主函数相对简单,只需了解顺序,依次调用即可。
这里不做解释4.2 建立HuffmanTree代码解释:该函数为在ht[1....k]中选择parent为0且权值最小的两个根结点的算法,其序号为s1和s2。
void select(HuffmanTree T,int k,int &s1,int &s2){int i,j;int min1=32767;for(i=1;i<=k;i++)if(T[i].weight<min1 &&T[i].parent==0){j=i;min1=T[i].weight;}s1=j;min1=32767;for (i=1;i<=k;i++)if(T[i].weight<min1 && T[i].parent==0 && i!=s1){j=i;min1=T[i].weight;}s2=j;}代码解释:下面函数用来统计字符串中各种字母的个数以及字符的种类。
当字符在A和z 之间时即被计数,并用str[j]保存字母到数组中,用cnt[j]统计每种字符个数。
j返回总共读取的字符数目。
int jsq(char *s,int cnt[],char str[]){int i,j,k;char *p;int temp[53];for(i=1;i<=52;i++)temp[i]=0;for(p=s; *p!='\0';p++){{if(*p>='A'&&*p<='z')k=*p-64;temp[k]++;}} //统计各种字符的个数for(i=1,j=0;i<=52;++i)if(temp[i]!=0 ){j++;str[j]=i+64; //送对应的字母到数组中cnt[j]=temp[i]; //存入对应字母的权值}return j; //j是输入字母总数}代码解释:下面函数用来构造哈夫曼树HT。