555时基电路应用和工作原理

合集下载

555时基电路工作原理

555时基电路工作原理

555时基电路工作原理概述:555时基电路是一种常用的集成电路,广泛应用于定时器、脉冲调制、频率分频、振荡器等电子电路中。

本文将详细介绍555时基电路的工作原理及其相关参数。

一、555时基电路的基本原理555时基电路由比较器、RS触发器、RS锁存器、输出驱动器等组成。

其基本工作原理如下:1. 稳态工作:当电源接通时,电容C1通过R1和R2开始充电。

当电容电压达到2/3 Vcc时,比较器1的输出变为高电平,将RS触发器置为复位状态,输出为低电平。

同时,比较器2的输出变为低电平,将RS锁存器置为设置状态,输出为高电平。

此时,输出驱动器将输出端Y连接到Vcc,电路处于稳态工作状态。

2. 触发状态:当外部触发脉冲信号施加在触发端TRIG上时,电容C1会被快速放电,比较器1的输出变为低电平,将RS触发器置为设置状态,输出为高电平。

此时,输出驱动器将输出端Y连接到地,电路进入触发状态。

3. 复位状态:当电容电压降至1/3 Vcc时,比较器2的输出变为高电平,将RS锁存器置为复位状态,输出为低电平。

此时,输出驱动器将输出端Y连接到Vcc,电路进入复位状态。

二、555时基电路的参数及其作用555时基电路有许多参数,下面将介绍其中几个重要的参数及其作用:1. R1和R2:R1和R2是555时基电路中的两个电阻,它们决定了电容C1的充电和放电速度,从而影响了输出频率和占空比。

2. C1:C1是555时基电路中的电容,它与R1和R2共同决定了输出频率和占空比。

3. Vcc:Vcc是555时基电路的电源电压,它决定了输出电平的高低。

4. 控制电压Vc:控制电压Vc可以通过改变电阻R2的电压分压来调节输出频率。

5. 阈值电压Vth:阈值电压Vth是比较器1的输入电压,当电容电压达到2/3 Vcc时,比较器1的输出将发生变化。

6. 触发电压Vtr:触发电压Vtr是比较器2的输入电压,当电容电压降至1/3 Vcc时,比较器2的输出将发生变化。

实验八555时基电路及其应用

实验八555时基电路及其应用

实验⼋555时基电路及其应⽤实验⼋555时基电路及其应⽤⼀、实验⽬的1、熟悉555定时电路的结构、⼯作原理及其特点;2、掌握使⽤555定时器组成单稳态电路、多谐振荡电路和施密特电路;⼆、实验原理参考董宏伟编《数字电⼦技术实验指导书》P61。

555电路的功能表如表8—1所⽰。

表8—1 555电路的功能表555定时器主要是与电阻、电容构成充放电电路,并由两个⽐较器来检测电容器上的电压,以确定输出电平的⾼低和放电开关管的通断。

这就可以构成从⼏微秒到数⼗分钟的延时电路,⽅便地构成单稳态触发器,多谐振荡器,施密特触发器等脉冲产⽣或波形变换电路。

三、实验设备与器件 l 、万⽤表⼀只2、双踪⽰波器⼀台3、555时基IC ⼀⽚,电阻器100k Ω×1(实验箱上已配置)、可变电阻器10k Ω×1(实验箱上已配置),电阻5.1k Ω×2,电容器0.01µF ×2、100µF ×1。

四、555定时器的实验内容1、⽤555集成电路构成单稳态触发器(详细⼯作过程参考相关教材)图8—2是由555定时器和外接定时元件R 、C 构成的单稳态触发器,暂稳态的持续时间t w (即为延时时间,如图8—3所⽰)决定于外接元件R 、C 值的⼤⼩,其理论值由下式决定图8—1 555定时器引脚排列 GND ?R Dv Ov I2t W =1.1RC通过改变R 、C 的⼤⼩,可使延时时间在⼏个微秒到⼏⼗分钟之间变化。

实验步骤如下:(1)按照图8—2在图8—4中模拟连接好电路。

(2)按图8—4接好实物电路图,输⼊端v I (2脚)接实验箱的单次负脉冲发⽣源(接好后先不要按动此按钮),检查电路⽆误后,通电,⽤万⽤表测量v O (3脚)端的电压值,这是稳态时的电压,做好记录,填在表8—2中。

万⽤表继续保留图8—3单稳态电路的延迟时间vv(2/3)V图8—2单稳态触发器单次脉冲源 -5V +5V地 100µ0.01µ图8—4单稳态电路实物连接图在此位置上不要撤出。

555时基电路及其应用实验报告

555时基电路及其应用实验报告

555时基电路及其应用实验报告一、导言555时基电路是一种常用的集成电路,广泛应用于各种电子设备中。

本实验旨在通过对555时基电路的实验搭建和应用实验,探索其工作原理和应用特点。

二、实验设备和材料1. 555时基电路芯片2. 电阻、电容和电感元件3. 电源、示波器和信号发生器等实验仪器4. 连接线等实验辅助材料三、实验步骤1. 555时基电路搭建实验根据555时基电路的原理图,将实验设备和材料连接起来。

按照标准的接线顺序,将电源、电阻、电容和555芯片等元件逐一连接。

注意检查接线是否正确,以确保电路能够正常工作。

2. 555时基电路测试接下来,将示波器连接到555芯片的输出引脚上,调节示波器的参数,观察波形的变化。

通过改变电阻和电容的数值,可以调节输出波形的频率和占空比。

记录下不同参数下的波形特征,并进行分析和比较。

3. 555时基电路应用实验在实验中,可以将555时基电路应用于脉冲发生器、定时器、频率计等实际电子电路中。

通过改变电路的连接方式和参数设置,可以实现不同的应用功能。

例如,可以将555时基电路连接到脉冲发生器电路中,生成稳定的脉冲信号;也可以将555时基电路作为定时器,控制电路的工作时间。

四、实验结果与分析1. 555时基电路工作特点通过实验观察,我们发现555时基电路可以产生稳定的方波信号。

在输入电压为5V的情况下,根据电路参数的不同设置,可以得到不同频率和占空比的输出波形。

通过改变电阻和电容的数值,可以调节频率的范围。

而通过改变电路的连接方式,如添加电感元件,可以实现更丰富的波形变化。

2. 555时基电路的应用实验结果通过将555时基电路应用于脉冲发生器和定时器电路中,我们成功实现了不同功能的电路设计。

脉冲发生器可以产生稳定的脉冲信号,其频率和占空比可以通过调节电路参数来控制。

定时器电路可以在预设的时间段内控制其他电路的工作状态。

五、实验结论通过本次实验,我们了解了555时基电路的工作原理和应用特点。

时基电路及其应用实验报告

时基电路及其应用实验报告

时基电路及其应用实验报告一、实验目的本次实验旨在深入了解时基电路的工作原理、特性以及其在实际应用中的多种功能。

通过实验操作和数据分析,掌握时基电路的使用方法,培养实际动手能力和电路分析能力。

二、实验原理1、时基电路概述时基电路是一种能够产生精确时间间隔的集成电路,最常见的时基电路是 555 定时器。

它由分压器、比较器、RS 触发器和输出级等部分组成。

2、 555 定时器的工作原理555 定时器的工作电压范围较宽,在 45V 18V 之间。

其内部的两个比较器将电源电压进行分压,分别与外部输入的控制电压进行比较,从而决定 RS 触发器的状态,进而控制输出端的电平。

3、时基电路的基本工作模式单稳态模式:在触发信号作用下,输出一个固定宽度的脉冲。

多谐振荡器模式:产生一定频率的方波信号。

施密特触发器模式:对输入信号进行整形和变换。

三、实验器材1、 555 定时器芯片2、电阻、电容若干3、示波器4、电源5、面包板6、导线若干四、实验步骤1、单稳态电路实验按照电路图在面包板上搭建单稳态电路,选择合适的电阻和电容值。

给触发端施加一个触发信号,用示波器观察输出端的脉冲宽度。

改变电阻或电容的值,观察脉冲宽度的变化,并记录相关数据。

2、多谐振荡器实验搭建多谐振荡器电路,选择合适的电阻和电容值。

用示波器观察输出端的方波信号,测量其频率和占空比。

调整电阻或电容的值,研究频率和占空比的变化规律。

3、施密特触发器实验构建施密特触发器电路,输入不同幅度和形状的信号。

用示波器观察输入和输出信号的波形,分析施密特触发器的整形效果。

五、实验数据及分析1、单稳态电路当电阻 R =10kΩ,电容 C =01μF 时,触发后输出脉冲宽度约为11ms。

增大电阻值,脉冲宽度增加;减小电容值,脉冲宽度减小。

2、多谐振荡器R1 =10kΩ,R2 =100kΩ,C =001μF 时,输出方波频率约为5kHz。

增大电容值,频率降低;改变电阻比值,频率和占空比均发生变化。

555时基电路及其应用实验报告总结

555时基电路及其应用实验报告总结

555时基电路及其应用实验报告总结引言555时基电路是一种广泛应用于电子系统中的定时器电路,其简单可靠的特点使得其成为电子工程师们经常使用的电路之一。

在本次实验中,我们将学习555时基电路的基本原理和应用,并利用实验的方法来进一步了解其特性和应用。

实验目的1. 了解555时基电路的基本原理和特点;2. 学习555时基电路的应用;3. 掌握555时基电路的实际电路设计和调试能力。

实验原理555时基电路是一种基于电容充放电周期的定时器电路,由控制电压,比较电压和输出电压三个部分组成。

在充电过程中,电容通过R1和R2两个电阻器来充电,当电容电压达到比较电压时,输出从高电平变为低电平,此时电容通过R2和输出端的电阻放电。

当电容电压低于比较电压时,输出从低电平变为高电平,电容重新开始充电,这样就形成了一个基于电容充放电周期的定时器电路。

实验材料1. 555时基电路芯片2. 电阻器3. 电容器4. LED灯5. 面包板等实验工具实验步骤1. 将555时基电路芯片插入面包板上;2. 连接电阻器和电容器,并将它们与555时基电路芯片的引脚相连;3. 将LED灯连接到555时基电路芯片的输出端;4. 通过调节电阻器和电容器来改变555时基电路的输出频率和占空比。

实验结果通过实验,我们成功地设计和调试了一个基于555时基电路的LED 闪烁电路,其输出频率和占空比可以通过调节电阻器和电容器来进行调整。

此外,我们还完成了一些其他应用的实验,例如555时基脉冲发生器,555时基呼吸灯等。

结论本次实验通过学习555时基电路的基本原理和应用,掌握了555时基电路的实际电路设计和调试能力。

我们成功地设计和调试了一个基于555时基电路的LED闪烁电路,并完成了其他应用实验。

555时基电路的优点在于其简单可靠,广泛应用于电子系统中,为电子工程师们提供了强大的工具。

555时基电路工作原理

555时基电路工作原理

555时基电路工作原理概述:555时基电路是一种常用的集成电路,广泛应用于定时、脉冲、频率和波形发生等电子电路中。

本文将详细介绍555时基电路的工作原理及其应用。

一、555时基电路的基本结构和引脚功能:555时基电路由比较器、RS触发器、电压比较器、输出级以及电压稳定器等组成。

它具有8个引脚,分别是VCC、GND、TRIG、THRES、OUT、RESET、CTRL和DIS。

1. VCC和GND:分别是电路的供电正负极。

2. TRIG(触发器输入):当该引脚电压低于1/3 VCC时,触发器将被置位。

3. THRES(阈值器输入):当该引脚电压高于2/3 VCC时,触发器将被复位。

4. OUT(输出):输出引脚,可以连接到其他电路。

5. RESET(复位):当该引脚电压低于1/3 VCC时,触发器将被复位。

6. CTRL(控制电压):该引脚用于控制电路的工作方式。

7. DIS(禁止):当该引脚电压高于2/3 VCC时,禁止输出。

二、555时基电路的工作原理:555时基电路可以分为单稳态(单脉冲)模式和多稳态(多脉冲)模式两种工作方式。

1. 单稳态模式:在单稳态模式下,555时基电路可以产生一个持续时间可调的单脉冲信号。

当TRIG引脚电压低于1/3 VCC时,触发器被置位,输出高电平;同时,电容C开始充电。

当电容充电至2/3 VCC时,阈值器被复位,触发器输出低电平,脉冲信号结束。

单脉冲信号的持续时间由电容充电时间决定,可以通过改变电容或电阻值来调节。

2. 多稳态模式:在多稳态模式下,555时基电路可以产生连续的方波信号或频率可调的脉冲信号。

通过控制CTRL引脚电压,可以选择不同的工作方式。

- 电压比较模式(电平触发模式):当CTRL引脚电压小于1/3 VCC时,电路工作在电压比较模式下。

此时,TRIG引脚的电压低于THRES引脚的电压,触发器被置位,输出高电平;当TRIG引脚电压高于THRES引脚电压时,触发器被复位,输出低电平。

555时基电路工作原理

555时基电路工作原理

555时基电路工作原理一、概述555时基电路是一种经典的集成电路,常用于产生精确的时间延迟、频率调制和脉冲宽度调制等应用。

本文将详细介绍555时基电路的工作原理。

二、555时基电路的组成555时基电路由比较器、RS触发器、RS锁存器、RS触发器、输出驱动等组成。

其中,比较器用于比较电压,RS触发器用于存储状态,RS锁存器用于锁定状态,输出驱动用于输出信号。

三、555时基电路的工作原理1. 稳态工作当电源正常连接时,555时基电路处于稳态工作状态。

此时,比较器的两个输入端分别接收电压比较器的两个输入端分别接收电压,若电压高于2/3Vcc,则比较器输出高电平,将RS触发器的S端置高,RS锁存器的Q端置高,同时输出驱动输出低电平。

若电压低于1/3Vcc,则比较器输出低电平,将RS触发器的R端置高,RS锁存器的Q端置低,同时输出驱动输出高电平。

当电压在1/3Vcc和2/3Vcc之间时,比较器输出保持不变。

2. 触发工作当555时基电路接收到一个触发信号时,会进入触发工作状态。

触发信号可以是一个脉冲信号或者一个持续信号。

当触发信号为脉冲信号时,触发信号的下降沿将RS触发器的R端置高,RS触发器的S端保持低电平,导致RS锁存器的Q端置低,输出驱动输出高电平。

当触发信号为持续信号时,RS触发器的R端和S端都保持低电平,RS锁存器的Q端保持不变,输出驱动输出高电平。

3. 外部控制555时基电路还可以通过外部控制引脚进行控制。

当控制引脚接收到高电平时,将禁止触发信号进入,使得555时基电路处于稳态工作状态。

当控制引脚接收到低电平时,触发信号可以进入,使得555时基电路进入触发工作状态。

四、555时基电路的应用1. 时序控制:555时基电路可以用于产生精确的时间延迟,用于控制各种时序电路的工作。

2. 脉冲生成:555时基电路可以用于产生各种频率和占空比的脉冲信号,用于驱动各种脉冲设备。

3. 频率调制:555时基电路可以用于产生频率可调的方波信号,用于调制无线电信号。

555时基电路ic原理

555时基电路ic原理

555时基电路ic原理555时基电路IC原理一、引言555时基电路IC是一种集成电路,它是由三个主要部分组成:比较器,RS触发器和双稳态多谐振荡器。

其设计初衷是为了提供一种灵活的时基应用解决方案,因此被广泛应用于定时器、频率分频器、脉冲发生器等电子电路中。

本文将详细介绍555时基电路IC的原理和工作方式。

二、比较器的作用555时基电路IC中的比较器由两个输入引脚组成,分别是非反相输入引脚(pin 6)和反相输入引脚(pin 2)。

当非反相输入引脚的电压高于反相输入引脚时,比较器的输出为高电平;反之,输出为低电平。

比较器的作用是根据输入信号的不同来产生相应的输出信号,用于控制RS触发器的状态。

三、RS触发器的作用555时基电路IC中的RS触发器由两个交叉耦合的非门组成,分别是Set(S)和Reset(R)。

当Set输入为高电平时,输出Q为高电平;当Reset输入为高电平时,输出Q为低电平。

RS触发器的作用是用于存储比较器输出的状态,并通过引脚4(Reset)和引脚8(VCC)进行控制。

四、多谐振荡器的作用555时基电路IC中的多谐振荡器由比较器和RS触发器组成。

当RS触发器的输出为高电平时,比较器的输出为低电平,此时电容开始充电。

当电容电压充到2/3 VCC时,比较器的输出为高电平,使RS触发器的输出变为低电平,电容开始放电。

当电容电压放到1/3 VCC时,比较器的输出为低电平,使RS触发器的输出变为高电平,电容再次开始充电。

如此循环,形成了多谐振荡器的工作方式。

五、555时基电路IC的应用1. 定时器:555时基电路IC可用作定时器,通过控制电容的充放电时间来实现不同的定时功能。

例如,可以将555时基电路IC用于制作闹钟、计时器等设备。

2. 频率分频器:555时基电路IC可以将输入信号的频率分频为更低的频率。

通过调整电容和电阻的数值,可以实现不同的频率分频比。

这在电子设备中,如计数器和频率计等方面非常有用。

555时基电路应用和工作原理

555时基电路应用和工作原理

555时基电路应用和工作原理图3 555电路等效R—S触发器555集成电路有双极型和CMOS型两种。

CMOS型的优点是功耗低、电源电压低、输入阻抗高,但输出功率较小,输出驱动电流只有几毫安。

双极型的优点是输出功率大,驱动电流达200毫安,其他指标则不如CMO S型的。

555的应用电路专门多,只要改变555集成电路的外部附加电路,就能够构成几百种应用电路,大体上可分为555单稳、555双稳及555无稳(即振荡器)三类。

2555单稳电路单稳电路有一个稳态和一个暂稳态,是利用电容的充放电形成暂稳态的,因此它的输入端都带有定时电阻和定时电容,常见的555单稳电路有两种:1)人工启动型将555电路的6、2脚并接起来接在RC定时电路上,在定时电容CT,两端接按钮开关SB,就成为人工启动型555单稳电路,如图4(a)所示,用等效触发器替代555,并略去与单稳工作无关的部分后见图4(b)所示,下面分析它的工作原理:稳态:接上电源后,电容CT专门快充电到VDD,从图4(b)看到,触发器输入R=1,S=1,从功能表看到输出V o=0,这是它的稳态。

暂稳态:按下开关SB,CT上电荷专门快放到零,相当于触发器输入R =0,S=0,输出赶忙翻转成V o=l,暂稳态开始。

开关放开后,电源又向CT 充电,通过时刻TD后,CT上电压上升到>2/3VDD时,输出又翻转成V o= O,暂稳态终止。

TD确实是单稳电路的定时时刻或延时时刻,它和定时电阻RT和定时电容CT的值有关:TD=1.1RTCT。

图4人工启动型555单稳电路2)脉冲启动型将555电路的6、7脚并接起来接在定时电容CT上,用2脚作输入就成为脉冲启动型单稳电路,如图5(a)所示,电路的2脚平常接高电平,当输入接低电平或输入负脉冲时才启动电路,用等效触发器替代555后见图5 6)所示,下面分析它的工作原理:稳态:接上电源后,R=1,S=1,输出V o=0,DIS端接地,CT上的电压为0即R=0,输出仍保持V o=0,这是它的稳态。

555时基电路原理

555时基电路原理

555时基电路原理1 555时基电路的基本概念555时基电路是一种功能强大的集成电路,由美国电子元器件公司(NEC)设计,可用于各种计时、控制和调制应用中。

由于其简单、稳定、成本低廉等优点,555时基电路在电子工程、自动控制和通信领域等广泛应用。

2 555时基电路的组成555时基电路由两部分组成,一是控制器,二是比较器。

控制器和比较器是最基本的元件,也可以称之为基本电路,它们可以完成时间延迟、分频、方波产生和脉冲宽度调制等功能。

3 555时基电路的工作原理555时基电路的工作原理相当简单,具体如下:首先,将外部电源与定时电容连接,当555时基电路接通时,会将电容充电至2/3电源电压,此时555时基电路输出高电平(通常为Vcc)。

接着,电容开始放电,当电容电压下降到1/3电源电压时,555时基电路输出低电平(通常为0V)。

此时,电容开始重新充电,不断循环,从而形成一个稳定的方波信号。

此时的输出频率取决于电容和电阻的数值。

4 555时基电路的应用举例由于555时基电路具有可靠性高、调制灵活、成本低等优点,因此在实际应用中也有广泛的应用,例如:(1)作为振荡电路,用于产生脉冲信号、方波信号及时钟信号;(2)作为稳压源,用于产生稳定的直流电压;(3)作为触发器,用于电子闹钟、定时器等应用中;(4)作为调制器,用于频率调制、脉宽调制、幅度调制等应用中。

5 555时基电路的改进随着科学技术的不断进步,人们对电子元器件的性能和功能要求也越来越高。

因此,在应用过程中,人们对原有的555时基电路进行了改进和升级,例如:(1)增加电流驱动能力,提高工作效率和速度;(2)降低耗能,提高使用寿命和可靠性;(3)增加数字控制功能,使得芯片可以与其他数字电路进行联接。

6 总结总之,555时基电路是一种非常重要的集成电路,具有广泛的应用场景和丰富的功能特点。

在今后的工作和研究中,相信会有更多的人会对其进行深入的研究和应用。

555时基电路工作原理

555时基电路工作原理

555时基电路工作原理概述:555时基电路是一种集成电路,常用于产生精确的时间延迟、脉冲宽度调制、频率分频和多谐振荡等应用。

本文将详细介绍555时基电路的工作原理及其相关参数和特性。

一、555时基电路的基本原理:555时基电路由比较器、RS触发器、RS锁存器和输出驱动器组成。

其基本原理如下:1. RS触发器:555时基电路的核心是一个RS触发器,由两个交叉耦合的双稳态触发器构成。

RS触发器有两个输入端(S和R)和两个输出端(Q和Q')。

当S=0,R=1时,Q=1,Q'=0;当S=1,R=0时,Q=0,Q'=1;当S=0,R=0时,Q和Q'保持原状态。

2. 比较器:555时基电路的比较器用于将输入电压与内部参考电压进行比较,以确定RS触发器的状态。

3. RS锁存器:555时基电路的RS锁存器用于锁存RS触发器的状态,以保持输出稳定。

4. 输出驱动器:555时基电路的输出驱动器将RS触发器的状态转换为输出信号。

二、555时基电路的工作模式:555时基电路有三种基本工作模式:单稳态触发器模式、自由运行多谐振荡模式和单稳态触发器与多谐振荡器混合模式。

1. 单稳态触发器模式(Monostable mode):在单稳态触发器模式下,555时基电路可以产生一个精确的时间延迟脉冲。

当输入一个触发脉冲时,输出会在一定时间后保持高电平,然后恢复为低电平。

这个时间延迟由外部电容和电阻决定。

具体工作原理如下:- 当触发脉冲输入时,555时基电路的RS触发器被置于SET状态,输出Q=1,Q'=0。

- 同时,电容开始充电,电压逐渐增加。

- 当电容电压达到2/3 Vcc时,比较器检测到这个电压并将RS触发器置于RESET状态,输出Q=0,Q'=1。

- 输出保持在RESET状态直到电容电压通过外部电阻放电至1/3 Vcc。

- 一旦电容电压低于1/3 Vcc,RS触发器恢复到SET状态,输出Q=1,Q'=0,完成一个脉冲输出。

555时基电路工作原理

555时基电路工作原理

555时基电路工作原理555时基电路是一种常用的集成电路,广泛应用于各种电子设备中。

它的工作原理基于内部的比较器、RS触发器和放大器等组成部分,通过不同的连接方式和外部元件的控制,实现了多种功能。

本文将详细介绍555时基电路的工作原理。

一、555时基电路的基本结构和功能1.1 内部比较器的作用555时基电路内部有两个比较器,它们的作用是将输入信号与参考电压进行比较,并输出高电平或低电平的信号。

这两个比较器可以根据不同的连接方式实现不同的功能。

1.2 RS触发器的作用555时基电路内部还有一个RS触发器,它的作用是根据比较器的输出信号来改变其状态。

RS触发器有两个输入端,一个是复位端R,一个是置位端S。

当复位端接收到高电平信号时,触发器的输出为低电平;当置位端接收到高电平信号时,触发器的输出为高电平。

1.3 放大器的作用555时基电路内部还有一个放大器,它的作用是将RS触发器的输出信号放大,并输出给外部元件。

放大器通常由晶体管组成,能够将较低的输入电压放大为较高的输出电压。

二、555时基电路的工作模式2.1 单稳态模式在单稳态模式下,555时基电路的输出在触发脉冲的作用下,会产生一个固定时间的高电平输出。

这个时间可以通过外部电阻和电容的选择来调节。

2.2 双稳态模式在双稳态模式下,555时基电路的输出会在两个稳态之间来回切换。

这种模式下,外部电阻和电容的选择会决定切换的频率。

2.3 产生方波模式在产生方波模式下,555时基电路的输出会产生一个频率固定的方波信号。

这个频率可以通过外部电阻和电容的选择来调节。

三、555时基电路的应用领域3.1 电子钟555时基电路可以用于电子钟的计时功能,通过调节外部电阻和电容的数值,可以实现不同的时间间隔。

3.2 脉冲发生器555时基电路可以用作脉冲发生器,通过调节外部电阻和电容的数值,可以产生不同频率和占空比的脉冲信号。

3.3 电子闹钟555时基电路可以用于电子闹钟的报警功能,通过调节外部电阻和电容的数值,可以实现不同的报警间隔和报警方式。

555时基电路工作原理

555时基电路工作原理

555时基电路工作原理一、引言555时基电路是一种广泛应用于电子设备中的集成电路,它可以产生稳定的方波信号,被广泛应用于定时、脉冲生成、频率测量等领域。

本文将详细介绍555时基电路的工作原理。

二、555时基电路的组成555时基电路由比较器、RS触发器、RS触发器复位电路和输出级组成。

1. 比较器:555时基电路中的比较器由两个比较输入端(非反相端,反相端)和一个控制电压输入端组成。

它的作用是将输入信号与控制电压进行比较,根据比较结果控制RS触发器的状态。

2. RS触发器:555时基电路中的RS触发器由两个双稳态触发器构成。

它的作用是根据比较器的输出状态,改变输出级的状态。

3. RS触发器复位电路:555时基电路中的RS触发器复位电路由一个比较器和一个电阻网络组成。

它的作用是在特定条件下将RS触发器复位,以实现周期性的输出。

4. 输出级:555时基电路的输出级由一个输出三态门和一个输出电阻网络组成。

它的作用是输出稳定的方波信号。

三、555时基电路的工作原理555时基电路的工作原理可以分为两个阶段:充电阶段和放电阶段。

1. 充电阶段:当电源电压施加到555时基电路上时,电容开始充电。

在充电过程中,比较器的非反相端输入电压逐渐上升,当达到控制电压的2/3时,比较器的输出状态发生改变,将RS触发器的状态置为"1",同时输出级输出高电平。

此时,电容继续充电,直到电容电压达到控制电压的1/3。

2. 放电阶段:当电容电压达到控制电压的1/3时,比较器的反相端输入电压开始上升,当达到控制电压的1/3时,比较器的输出状态再次改变,将RS触发器的状态置为"0",同时输出级输出低电平。

此时,电容开始放电,直到电容电压降至0。

3. 循环过程:充电阶段和放电阶段构成了555时基电路的一个完整周期。

根据电容充放电的时间常数,可以控制输出方波的周期和占空比。

通过调整控制电压和电阻值,可以实现不同的输出频率和占空比的调节。

简述555时基电路的功能

简述555时基电路的功能

简述555时基电路的功能555时基电路是一种集成电路,由双稳态多谐振荡器、比较器和放大器组成。

它的主要功能是产生各种不同的脉冲信号和定时信号,广泛应用于计时、闪光灯、音乐合成、遥控器等领域。

一、555时基电路的原理1. 双稳态多谐振荡器555芯片中的双稳态多谐振荡器是其核心部分。

当输入电压超过阈值电平时,输出为高电平;当输入电压低于触发电平时,输出为低电平。

这使得芯片能够在两个状态之间进行切换,并产生周期性的脉冲信号。

2. 比较器和放大器555芯片中的比较器和放大器用于检测输入信号与阈值之间的差异,并将其转换为输出信号。

比较器将输入信号与参考电压进行比较,并产生高或低的数字输出信号。

放大器用于增强比较后得到的信号以便更好地控制输出。

二、555时基电路的应用1. 计时555时基电路可以用作计时器或定时开关。

通过调整元件参数,可以产生不同的时间延迟,从几微秒到数小时不等。

它可以用于定时器、闹钟、计数器等应用。

2. 闪光灯555时基电路可以用来控制摄影中的闪光灯。

通过调整元件参数和输入信号,可以产生不同的脉冲宽度和频率,从而控制闪光灯的亮度和持续时间。

3. 音乐合成555时基电路可以用于音乐合成。

通过将输入信号与输出信号相结合,可以产生各种不同的音调和节奏。

这种技术被广泛应用于电子琴、合成器和其他音乐设备中。

4. 遥控器555时基电路可以用来制作遥控器。

通过设置特定的频率和编码方式,可以将信号发送到接收器以控制设备的操作。

这种技术被广泛应用于家庭娱乐系统、汽车安全系统和其他遥控设备中。

三、555时基电路的优点1. 稳定性高555芯片具有很高的稳定性,能够在广泛的工作温度范围内保持一致性。

2. 简单易用555芯片非常容易使用,并且在设计过程中需要的元件数量较少,因此可以减少成本和复杂性。

3. 可靠性高555芯片具有很高的可靠性,能够在长时间内保持稳定的工作状态。

四、555时基电路的缺点1. 精度有限555芯片在一定程度上受到元件参数和工作温度的影响,因此其精度有限。

555时基电路工作原理

555时基电路工作原理

一、555时基电路工作原理555时基电路是一种应用十分广泛的模拟-数字混合式集成电路,国外典型产品型号有NE555、LM555、XR555、CA555、RC555、uA555、SN52555、LC555等,国内产品型号有5G1555、SL555、FX555、FD555等。

它们的内部功能结构和引脚排列序号都相同,因此可以在使用时互换。

555时基电路具有定时精度高、温度漂移小、速度快、可直接与数字电路项链、结构简单、功能多、驱动电流较大等优点。

它可以组成性能稳定的无稳态振荡器、单稳态触发器、双稳态R-S触发器和各种电子开关电路等。

555时基电路内部一共集成了21个晶体三极管、4个晶体二极管和16个电阻器,组成了两个电压比较器、一个R-S触发器、一个放电晶体管和一个由3只全等电阻组成的分压器。

555时基集成电路功能方框图见图1中去虚线所围部分,图中,A1、A2是两个高增益电压比较器,它们的输出端分别接到触发器的R端(置“0”端)和S端(置“1”端),VT是放电晶体管;R1、R2和R3的阻值相等(约为5k并组成分压器,555的名称可能就是因此而得)。

图1中,A1为上比较器,A2为下比较器,由于R1、R2和R3的阻值相等,因此集成块的5脚(即控制端VC)电位固定在2/3V DD(V DD为时基集成电路的工作电压),6脚叫jiào做z uò阈yù值输入端TH。

同理,下比较器A2的同相输入端电位被固定在1/3V DD,反相输入端(即2脚)作为触发输入端TR。

A1与A2的输出端分别送到R-S触发器(即双稳态触发器)的置位端S 和复位端R,以控制输出端OUT(即第3脚)的电平状态和放电管VT的导通与截止。

图1所示外部元件电阻Rt、电容Ct与555时基电路接成单稳态电路。

由于A1的基准设在反相输入端(2/3 V DD),所以当阈值端TH电压高于或等于2/3 V DD时,A1输出高电平,使触发器复位,输出端3脚为低电平,即Q=0,非Q=1,此时放电管VT导通,时基电路的7、1两脚被VT短接,外部定时电容Ct可以通过7脚、1脚放电。

555时基电路工作原理

555时基电路工作原理

555时基电路工作原理一、引言555时基电路是一种常用的集成电路,广泛应用于定时、脉冲和振荡等电子设备中。

本文将详细介绍555时基电路的工作原理。

二、555时基电路的基本结构555时基电路由比较器、RS触发器、RS锁存器和输出级组成。

其中,比较器用于比较输入电压与参考电压,RS触发器用于产生输出脉冲,RS锁存器用于锁存输出状态,输出级用于放大输出信号。

三、555时基电路的工作原理1. RS触发器工作原理555时基电路中的RS触发器是由两个交叉耦合的双稳态触发器构成。

其中一个触发器作为SET端,另一个触发器作为RESET端。

输入电压通过SET和RESET端的控制,触发器的输出状态发生变化。

2. RS锁存器工作原理555时基电路中的RS锁存器由两个交叉耦合的NAND门构成。

其中一个NAND门的输出连接到另一个NAND门的输入,形成正反馈回路。

输入电压通过控制两个NAND门的输入,锁存器的输出状态保持不变。

3. 比较器工作原理555时基电路中的比较器用于比较输入电压与参考电压。

当输入电压大于参考电压时,比较器输出高电平;当输入电压小于参考电压时,比较器输出低电平。

4. 输出级工作原理555时基电路中的输出级由双稳态触发器和放大器构成。

当RS触发器的输出状态发生变化时,输出级的放大器放大输出信号,并输出给外部电路。

四、555时基电路的工作模式1. 单稳态模式在单稳态模式下,555时基电路在接收到触发信号后,输出一个固定宽度的脉冲。

通过调节电阻和电容的数值,可以控制脉冲的宽度。

2. 延时模式在延时模式下,555时基电路在接收到触发信号后,输出一个持续时间可调的脉冲。

通过调节电阻和电容的数值,可以控制脉冲的持续时间。

3. 振荡模式在振荡模式下,555时基电路自身产生周期性的脉冲信号。

通过调节电阻和电容的数值,可以控制脉冲的频率和占空比。

五、555时基电路的应用领域555时基电路广泛应用于各种定时、脉冲和振荡的电子设备中,如计时器、闪光灯、报警器、电子钟等。

集成555时基电路的典型应用

集成555时基电路的典型应用

集成555时基电路的典型应用1.多谐振荡器多谐振荡器又称为无稳态触发器:它没有稳定状态,只有两个暂稳态,也不需要外加触发信号,接通电源就能输出一定频率和幅度的矩形脉冲信号,由于矩形脉冲波形含有丰富的谐波,所以称为多谐振荡器。

多谐振荡器常被用作脉冲信号发生器。

(1) 多谐振荡器的电路结构及工作波形如下图(a)所示为555时基电路组成的多谐振荡器的电路结构。

图中将555时基电路的两个输入端第二脚和第六脚连在一起经(2) 多谐振荡器的工作原理按上图(a)所示连接电路。

用双踪示波器观察电容C1两端的电压的波形和输出端(3脚)的电压波形。

如上图(b)所示。

从波形图可知:电路无需外加输入信号,可自行产生振荡脉冲,且电路有两个暂稳态。

①一个暂稳态是555时基电路输出高电平,电容C进行充电的过程。

②另一个暂稳态是当电容C充电到其两端电压时,555时基电路输出转换为低电平,电容C放电的过程。

当电容C电压下降到时,555时基电路输出又变为高电平,电容C重新开始充电,回到前一个暂稳态,重复上述过程,形成振荡脉冲。

(3) 振荡周期①根据理论推导和实验证明:多谐振荡器的充电时间和放电时间为②多谐振荡器的振荡周期T为2.单稳态触发器单稳态触发器有稳态和暂稳态两种工作状态,而且只有在外界触发脉冲的作用下,才能从稳态翻转到暂稳态,在暂稳态维持一段时间以后,自动回到稳态。

暂稳态维持时间的长短取决于电路外接定时元件的参数,与触发脉冲信号无关。

由于单稳态触发电路具有这些特点,它被广泛应用于整形、延时及定时等电路。

(1) 电路结构如下图(a)所示是用555时基电路所构成的单稳态触发器的电路结构。

R、C 为外接的定时元件,单稳态电路有一个触发信号输入端。

(2) 工作原理按上图(a)所示连接电路。

在输入端(2脚)加入触发脉冲,用双踪示波器观察电容两端的电压的波形和输出端(3脚)的电压波形。

如上图(b)所示。

从波形图上可以看出:①稳态无触发脉冲信号输入时,电路处于稳态,555时基电路输出低电平,电容两端电压近似为零。

555时基电路工作原理

555时基电路工作原理

555时基电路工作原理时基电路是一种用于产生稳定时钟信号的电路,广泛应用于各种电子设备中。

它的工作原理是基于振荡器的原理,通过产生稳定的振荡信号来提供时钟信号。

时基电路通常由以下几个核心组件组成:1. 振荡器:振荡器是时基电路的核心部份,它负责产生稳定的振荡信号。

常见的振荡器有晶体振荡器、RC振荡器和LC振荡器等。

晶体振荡器是最常用的振荡器之一,它利用晶体的压电效应来产生稳定的振荡信号。

2. 分频器:分频器用于将振荡器产生的高频振荡信号分频为所需的时钟信号。

分频器通常采用计数器和触发器的组合来实现,通过设定计数器的初始值和触发器的触发条件,可以实现不同频率的时钟信号输出。

3. 校准电路:校准电路用于调整时基电路的输出频率,以保证其稳定性和准确性。

校准电路通常采用反馈控制的方式,通过比较输出信号与参考信号的差异来调整振荡器的频率。

时基电路的工作原理可以描述如下:1. 振荡器产生高频振荡信号,通常为几十kHz到几GHz的频率范围。

2. 高频振荡信号经过分频器进行分频,得到所需的时钟信号。

分频比可以根据实际需求进行调整。

3. 分频后的时钟信号经过校准电路进行调整,以保证其频率的稳定性和准确性。

4. 调整后的时钟信号作为系统的时钟源,用于同步各个部件的工作。

时基电路在各种电子设备中起着重要的作用,例如在计算机、通信设备、音频设备和视频设备中都需要稳定的时钟信号来保证数据的传输和处理的准确性。

时基电路的性能对设备的整体性能和稳定性有着重要的影响。

需要注意的是,时基电路的设计和调试需要一定的电子技术知识和实践经验,以确保其工作稳定和准确。

在实际应用中,还需要考虑电路的抗干扰能力、功耗和成本等因素,以满足不同应用场景的需求。

总结起来,时基电路是一种用于产生稳定时钟信号的电路,通过振荡器、分频器和校准电路等组件的协同工作,实现对时钟信号的产生和调整。

它在各种电子设备中起着重要的作用,对设备的性能和稳定性有着关键影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

555时基电路应用和工作原理时间:2009-12-28 15:07:12 来源:作者:1 555时基电路的特点555集成电路开始是作定时器应用的,所以叫做555定时器或555时基电路。

但后来经过开发,它除了作定时延时控制外,还可用于调光、调温、调压、调速等多种控制及计量检测。

此外,还可以组成脉冲振荡、单稳、双稳和脉冲调制电路,用于交流信号源、电源变换、频率变换、脉冲调制等。

由于它工作可靠、使用方便、价格低廉,目前被广泛用于各种电子产品中,555集成电路部有几十个元器件,有分压器、比较器、基本R-S触发器、放电管以及缓冲器等,电路比较复杂,是模拟电路和数字电路的混合体,如图1所示。

图1 555集成电路部结构图555集成电路是8脚封装,双列直插型,如图2(A)所示,按输入输出的排列可看成如图 2(B)所示。

其中6脚称阈值端(TH),是上比较器的输入;2脚称触发端(TR),是下比较器的输入;3 脚是输出端(Vo),它有O 和1两种状态,由输入端所加的电平决 定;7脚是放电端(DIS),它是部放电管的输出,有悬空和接地 两种状态,也是由输入端的状态决定; 4脚是复位端(MR),加上低电平时可使输出为低电平;5脚是控制电压端(Vc),可用它改 变上下触发电平值;8脚是电源端,1脚是地端。

Vg DIS TH 耳b h b b) H M 3|GND TK 几 SIR (A)图2 555集成电路封装图我们也可以把555电路等效成一个带放电开关的 R-S 触发 器,如图3(A)所示,这个特殊的触发器有两个输入端:阈值端 (TH)可看成是置零端R,要求高电平,触发端(TR)可看成是置位 端S ,要求低电平,有一个输出端 Vo ,Vo 可等效成触发器的 Q 端,放电端(DIS)可看成是由部放电开关控制的一个接点,由触 发器的Q 端控制:Q=1时DIS 端接地,Q=0时DIS 端悬空。

另外 还有复位端MR 控制电压端Vc,电源端VDD 和 地端GND 这个特殊的触发器有两个特点:V ( CXD(1)两个输入端的触发电平要求一高一低,置零端 R 即阈值端(TH)要求高电平,而置位端 s 即触发端(TR)则要求低电乎;(2)两个输入端的触发电平使输出发生翻转的阈值电压值也不同,当V c 端不接控制电压时,对 TH(R)端来讲,>2/3VDD 是高电平1,<2/3VDD 是低电平0:而对TR(S)端来讲,>1/3VDD 是 高电平1,V1/3VDD 是低电平0。

如果在控制端(Vc)上控制电压Vc 时,这时上触发电平就变成 Vc 值,下触发电平就变成1/2VC 值,可 见改变控制端的控制电压值就可以改变上下触发电平值。

它的功能表见图3(B)所示。

(b) 555电路等效R-S 触蚩器图3 555电路等效R- S 触发器555集成电路有双极型和 CMO 型两种。

CMO 型的优点是功耗低、电源电压低、输入阻抗高,但输出功率较小,输出驱动电 流只有几毫安。

双极型的优点是输出功率大,驱动电流达200毫安,其他指标则不如 CMO 型的。

555的应用电路很多,只要改变 555集成电路的外部附 MR RSVo DIS 1 10 接地 10 1 Qn 保持*1 开路0 ★ ★V C GNP加电路,就可以构成几百种应用电路,大体上可分为555单稳、555双稳及555无稳(即振荡器)三类。

2 555单稳电路单稳电路有一个稳态和一个暂稳态,是利用电容的充放电形成暂稳态的,因此它的输入端都带有定时电阻和定时电容,常见的555单稳电路有两种:1)人工启动型将555电路的6、2脚并接起来接在RC定时电路上,在定时电容CT,两端接按钮开关SB就成为人工启动型555单稳电路,如图4(a)所示,用等效触发器替代555,并略去与单稳工作无关的部分后见图4(b)所示,下面分析它的工作原理:稳态:接上电源后,电容CT很快充电到VDD从图4(b)看到,触发器输入R=1, S=1,从功能表看到输出Vo=0,这是它的稳态。

暂稳态:按下开关SB, CT上电荷很快放到零,相当于触发器输入R=0 S=0,输出立即翻转成Vo=l,暂稳态开始。

开关放开后,电源又向CT充电,经过时间TD后,CT上电压上升到>2/3VDD 时,输出又翻转成Vo=O暂稳态结束。

TD就是单稳电路的定时时间或延时时间,它和定时电阻RT和定时电容CT的值有关:TD=1.1RTCTTR图4人工启动型555单稳电路2)脉冲启动型将555电路的6、7脚并接起来接在定时电容CT上,用2脚作输入就成为脉冲启动型单稳电路,如图5(a)所示,电路的2脚平时接高电平,当输入接低电平或输入负脉冲时才启动电路,用等效触发器替代555后见图5 6)所示,下面分析它的工作原理:稳态:接上电源后,R=1, S=1,输出Vo=0, DIS端接地,CT 上的电压为0即R=0,输出仍保持Vo=0,这是它的稳态。

暂稳态:输入负脉冲后,输入S=0,输出立即翻转成Vo=1, DIS 端开路,电源通过RT向CT充电,暂稳态开始。

经过时间TD 后,CT 上电压上升到>2/3VDD时,输入又成为R=1, S=1,这时负脉冲已经消失,输出又翻转成Vo=0,暂稳态结束。

这时部放电开关接通,DIS端接地,CT上电荷很快放到零,为下一次定时控制作准备。

电路的定时时间TD=1.1RTCT这两种单稳电路常用作定时延时控制。

图5脉冲启动型单稳电路3 555双稳电路常见的555双稳电路有两种:1)R-S触发器型双稳将555电路的6、2脚作为两个控制输入端,7端不用,就成为一个R-S触发器。

注意两个输入端的触发电平和阈值电压不同,如图6(a)所示,有时可能只有一个控制端,这时另外一个控制端要设法接死,根据电路要求可以把R端接到电源端,如图6(b)所示,也可以把S接地,用R端作输入。

有两个输入端的双稳电路常用作电机调速、电源上下限告警等用途。

有一个输入端的双稳电路作为单端比较器用于各种检测电路。

2)施密特触发器型双稳将555电路的6、2脚并接起来接成只有一个输入端的触发器,如图7(a)所示,这个触发器输出电压和输入电压的关系是一个长方形的回线形,如图7(b)所示,从曲线可知,当输入V1=0 时输出Vo=1,当输入电压从0上升到>2/3VDD 后,Vo 翻转成0, 当输入电压从最高值下降到 V1/3VDD 后,Vo 又翻转成1。

由于它 的输入有两个不同的阈值电压, 所以,这种电路常用于电子开关, 各种控制电路、波形的变换和整形,如图 8所示。

cJT Ct图6 555构成R-S 触发器< i| ct L图7 555构成施密特触发器图8波形的变换和整形4 555无稳电路(振荡器)由555定时器构成的多谐振荡器如图9(a)所示,其工作波形见图9(b) o接通电源后,电源VDD通过R1和R2对电容C充电,当Uc<1/3VDD时,振荡器输出Vo=1,放电管截止。

当Uc充电到 >2/3VDD后,振荡器输出Vo翻转成0,此时放电管导通,使放电端(DIS)接地,电容C通过R2对地放电,使Uc下降。

当Uc下降到w 1/3VDD后,振荡器输出Vo又翻转成1,此时放电管又截止,使放电端(DIS)不接地,电源VDD通过R1和R2又对电容C 充电,又使Uc从1/3VDD上升到2/3VDD,触发器又发生翻转,如此周而复始,从而在输出端Vo得到连续变化的振荡脉冲波形。

脉冲宽度TL〜0.7R2C,由电容C放电时间决定;TH=0.7(R1+R2)C, 由电容C充电时间决定,脉冲周期T〜TH+TL图9 555构成多谐振荡器上面仅讨论了由555定时器构成的几种典型应用实例。

实际上,由于555定时器灵敏度高,功能灵活,因而在电子电路中获得广泛应用。

555定时器百科名片555定时器是一种模拟和数字功能相结合的中规模集成器件。

一般用双极性工艺制作的称为555,用CMOS工艺制作的称为7555,除单定时器外,还有对应的双定时器556/7556。

555定时器的电源电压围宽,可在 4.5V〜16V 工作,7555可在3〜18V 工作,输出驱动电流约为200mA,因而其输出可与TTL、CMOS或者模拟电路电平兼容。

目录简介555定时器555定时器成本低,性能可靠,只需要外接几个电阻、电容,就可以实现多谐振荡器、单稳态触发器及施密特触发器等脉冲产生与变换电路。

它也常作为定时器广泛应用于仪器仪表、家用电器、电子测量及自动控制等方面。

555定时器的部电路框图和外引脚排列图分别如图 2.9.1 和图2.9.2 所示。

它部包括两个电压比较器,三个等值串联电阻,一个RS触发器,一个放电管T及功率输出级。

它提供两个基准电压VCC /3 和2VCC /3555定时器的功能主要由两个比较器决定。

两个比较器的输出电压控制RS触发器和放电管的状态。

在电源与地之间加上电压,当5脚悬空时,贝U电压比较器C1的同相输入端的电压为2VCC /3 , C2的反相输入端的电压为VCC /3。

若触发输入端TR的电压小于VCC /3,贝吐匕较器C2的输出为0,可使RS触发器置1,使输出端0UT=1。

如果阈值输入端TH的电压大于2VCC/3,同时TR端的电压大于VCC /3,则C1的输出为0 , C2的输出为1,可将RS触发器置0,使输出为0电平。

它的各个引脚功能如下:1脚:外接电源负端VSS或接地,一般情况下接地。

8脚:外接电源VCC双极型时基电路VCC的围是4.5〜16V, CMO型时基电路VCC的围为3〜18V。

一般用5V。

3脚:输出端Vo2脚:低触发端6脚:TH高触发端4脚:是直接清零端。

当端接低电平,则时基电路不工作,此时不论、TH处于何电平,时基电路输出为“ 0”,该端不用时应接高电平。

5脚:VC为控制电压端。

若此端外接电压,则可改变部两个比较器的基准电压,当该端不用时,应将该端串入一只0.01 yF电容接地,以防引入干扰。

7脚:放电端。

该端与放电管集电极相连,用做定时器时电容的放电。

在1脚接地,5脚未外接电压,两个比较器A1、A2基准电压分别为的情况下,555时基电路的功能表如表 6 —1示。

表6— 1 555定时器的功能表清零端高触发端TH低触发端Q放电管T功能00导通直接清零10导通置011截止置11Q不变保持发展概述是美国Signetics 公司1972年研制的用于取代机械式定时器的中规模集成电路,因输入端设计有三个5kQ的电阻而得名。

此电路后来竟风靡世界。

目前,流行的产品主要有4个:BJT两个:555,556 (含有两个555);CMO醐个:7555,7556 (含有两个7555 )。

555定时器可以说是模拟电路与数字电路结合的典。

两个比较器C1和C2各有一个输入端连接到三个电阻R 组成的分压器上,比较器的输出接到RS触发器上。

相关文档
最新文档