集合间的基本关系学案答案
河北省辛集中学高中数学必修一学案:集合间的基本关系 PDF版
河北辛集中学高一B 级部数学学案(五)1.1.2集合间的基本关系编者:张朵例1:已知集合(1){}0;(2){}∅;(3){3}x m x m <<;(4){2}x a x a +<<;(5)2{250,}x x x x R ++=∈ 其中一定是空集的是______________练习1:1.判断下列关系其中正确的是____________(1){}{}a a ⊆;(2){}{}1,2,33,2,1=;(3){}0⊂∅≠;(4){}00∈;(5){}0∅∈;(6){}0∅= 2.已知集合{}{}0,1,A B x x A ==⊆,则下列关于集合A 与B 的关系正确的是( )A.A B ⊆B.A B ⊂≠C. B A ⊂≠D.A B ∈例2:已知集合M 满足{1,2}{1,2,3,4,5}M ⊆⊆,求所有满足条件的集合M练习2:已知集合2{320,}A x x x x R =-+=∈,{05,}B x x x N *=<<∈,写出满足条件A C B ⊆⊆的集合C .例3:设集合2{40,}A x x x x R =+=∈,22{2(1)10,}B x x a x a x R =+++-=∈,若B A ⊆,求实数a 的取值范围.练习3:1.设2{230}M x x x =--=,{10}N x ax =-=,若N M ⊆,求所有满足条件的a 的取值集合.2.已知集合2{(1)320}A x a x x =-+-=,2{320}B x x x =-+=,若A B ⊆,求实数a 的取值范围.例4:设集合{},A x y =,{}20,B x =,若A B =,求实数,x y 的值.练习4:已知集合,,1y A x x ⎧⎫=⎨⎬⎩⎭,{}2,,0B x x y =+,若A B =,则20152016x y +=__________ 例5:已知集合{25}A x x =-≤≤,{121}B x m x m =+≤≤-,若B A ⊆,求实数m 的取值范围.变式:已知集合{45}A x x x =≥<-或,{13,}B x a x a a R =+≤≤+∈,若B A ⊆,求实数a 的取值范围.练习5:1.已知集合{(3)(5)0}A x x x =+-≤,{223}B x m x m =-<<-,且B A ⊆,求实数m 的取值范围.2.已知集合{14}A x x x =<->或,{23}B x a x a =≤≤+,若B A ⊆,求实数a 的取值范围.。
高中数学必修一 《1 2 集合间的基本关系》获奖说课导学案
【新教材】1.2 集合的基本关系学案(人教A版)1. 了解集合之间包含与相等的含义,能识别给定集合的子集.2. 理解子集.真子集的概念.3. 能使用venn图表达集合间的关系,体会直观图示对理解抽象概念的作用。
重点:集合间的包含与相等关系,子集与其子集的概念.难点:难点是属于关系与包含关系的区别.一、预习导入阅读课本7-8页,填写。
1.集合与集合的关系(1)一般地,对于两个集合A,B,如果集合A中_____________元素都是集合B中的元素,我们就说这两个集合有_____________关系,称集合A为B的______.记作:A_________ B(或B _________ A)读作:A包含于B(或B包含A).图示:(2)如果两个集合所含的元素完全相同(A______ B且B ______ A),那么我们称这两个集合相等.记作:A ______B读作:A等于B.图示:2. 真子集A ,存在元素x______ B且x______ A,则称集合A是集合B的真子集。
若集合B记作:A ______B (或B ______A ) 读作:A 真包含于B (或B 真包含A )3.空集__________________的集合称为空集,记作:∅. 规定:空集是任何集合的子集。
4.常用结论(1)A __________ A (类比a a ≤)(2)空集是__________的子集,是_____________的真子集。
(3)若,,A B B C ⊆⊆则A __________ C (类比b a ≤,c b ≤则c a ≤)(4)一般地,一个集合元素若为n 个,则其子集数为________个,其真子集数为________个,特别地,空集的子集个数为________,真子集个数为________。
1.判断(正确的打“√”,错误的打“×”)(1)空集中只有元素0,而无其余元素. ( ) (2)任何一个集合都有子集. ( ) (3)若A =B ,则A ⊆B . ( ) (4)空集是任何集合的真子集. ( ) 2.用适当的符号填空(1) a______{a,b,c} (2) 0_______{x|x 2=0} (3) ∅________{x ∈R|x 2+1=0} (4) {0,1}_____N(5) {∅}_____{x|x 2=x} (6){2,1}____{x|x 2−3x +2=0} 3.设a ∈R ,若集合{2,9}={1-a,9},则a =________.例1 (1)写出集合{0,1,2}的所有子集,并指出其中哪些是它的真子集;(2)填写下表,并回答问题:由此猜想:含n 个元素的集合{a 1,a 2,…,a n}的所有子集的个数是多少?真子集的个数及非空真子集的个数呢?例2 下列能正确表示集合M={-1,0,1}和N={x|x 2+x=0}的关系的维恩图是( )例3 已知集合A={x|-5<x<2},B={x|2a-3<x<a-2}. (1)若a=-1,试判断集合A,B 之间是否存在子集关系; (2)若A ⊇B,求实数a 的取值范围.变式1. [变条件] 【例3】(2)中,是否存在实数a,使得A ⊆B?若存在,求出实数a 的取值范围;若不存在,试说明理由.变式2. [变条件] 若集合A={x|x<-5或x>2},B={x|2a-3<x<a-2},且A ⊇B,求实数a 的取值范围.1.已知集合A ={2,-1},集合B ={m 2-m ,-1},且A =B ,则实数m 等于( )A .2B .-1C .2或-1D .42.已知集合A ={x|-1-x<0},则下列各式正确的是( )A .0⊆AB .{0}∈AC .∅∈AD .{0}⊆A3.已知集合A ⊆{0,1,2},且集合A 中至少含有一个偶数,则这样的集合A 的个数为( )A .6B .5C.4 D.34.已知集合A={x|x=3k,k∈Z},B={x|x=6k,k∈Z},则A与B之间的关系是( ) A.A⊆B B.A=BC.A B D.A B5.已知集合A={x|ax2+2x+a=0,a∈R},若集合A有且仅有两个子集,则a的值是( ) A.1 B.-1C.0,1 D.-1,0,1=1},则A,B的关系是________.6.设x,y∈R,A={(x,y)|y=x},B={(x,y)|yx7.已知集合A={x|x<3},集合B={x|x<m},且A⊆B,则实数m满足的条件是________.8.已知A={x∈R|x<-2或x>3},B={x∈R|a≤x≤2a-1},若B⊆A,求实数a的取值范围.答案小试牛刀1.答案:(1) ×(2) √(3) √ (4)×2.(1)∈(2)= (3)=(4)⊆(5)⊈(6)=3.-1自主探究例1【答案】见解析【解析】分析:(1)利用子集的概念,按照集合中不含任何元素、含有一个元素、含有两个元素、含有三个元素这四种情况分别写出子集.(2)由特殊到一般,归纳得出.解:(1)不含任何元素的子集为⌀;含有一个元素的子集为{0},{1},{2};含有两个元素的子集为{0,1},{0,2},{1,2};含有三个元素的子集为{0,1,2}.故集合{0,1,2}的所有子集为⌀,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2}.其中除去集合{0,1,2},剩下的都是{0,1,2}的真子集.(2)由此猜想:含n 个元素的集合{a 1,a 2,…,a n}的所有子集的个数是2n,真子集的个数是2n-1,非空真子集的个数是2n-2. 例2【答案】B【解析】∵N={x|x 2+x=0}={x|x=0或x=-1}={0,-1},∴N ⫋M,故选B. 例3【答案】见解析【解析】分析:(1)令a=-1,写出集合B,分析两个集合中元素之间的关系,判断其子集关系;(2)根据集合B 是否为空集进行分类讨论;然后把两集合在数轴上标出,根据子集关系确定端点值之间的大小关系,进而列出参数a 所满足的条件.解:(1)若a=-1,则B={x|-5<x<-3}. 如图在数轴上标出集合A,B.由图可知,B ⫋A. (2)由已知A ⊇B.①当B=⌀时,2a-3≥a-2,解得a ≥1.显然成立. ②当B ≠⌀时,2a-3<a-2,解得a<1.由已知A ⊇B,如图在数轴上表示出两个集合, 由图可得{2a -3≥-5,a -2≤2,解得-1≤a≤4.又因为a<1,所以实数a 的取值范围为-1≤a<1 变式1.【答案】见解析【解析】因为A={x|-5<x<2},所以若A ⊆B,则B 一定不是空集.此时有{2a -3≤-5,a -2≥2,即{a ≤-1,a ≥4,显然实数a 不存在.变式2.【答案】见解析【解析】①当B=⌀时,2a-3≥a-2,解得a ≥1.显然成立. ②当B ≠⌀时,2a-3<a-2,解得a<1.由已知A ⊇B,如图在数轴上表示出两个集合,由图可知2a-3≥2或a-2≤-5,解得a ≥52 或a ≤-3.又因为a<1,所以a ≤-3.综上,实数a 的取值范围为a ≥1或a ≤-3. 当堂检测1-5.CDADD 6.B A 7.m≥38.【答案】见解析【解析】∵B ⊆A ,∴B 的可能情况有B ≠∅和B =∅两种. ①当B =∅时,由a>2a -1,得a<1. ②当B≠∅时,∵B ⊆A ,∴⎩⎪⎨⎪⎧a>3,a≤2a-1或⎩⎪⎨⎪⎧2a -1<-2,a≤2a-1成立,解得a>3;综上可知,实数a 的取值范围是{a|a<1或a>3}.。
2020_2021学年新教材高中数学第1章预备知识1集合1.2集合的基本关系学案含解析北师大版必修一
1.2 集合的基本关系学习目标核心素养1.理解集合的包含与相等的含义.(难点) 2.能识别集合的子集、真子集,会判断集合间的关系.(难点、易混点)1.通过对集合之间包含与相等的含义以及子集、真子集概念的学习,培养数学抽象素养.2.借助子集、真子集的应用,培养逻辑推理素养.1.Venn图为了直观地表示集合间的关系,常用平面上封闭曲线的内部表示集合,称为Venn图.2.子集文字叙述对于两个集合A与B,如果集合A中的任何一个元素都属于集合B,即若a∈A,则a∈B,那么称集合A是集合B的子集.符号表示若a∈A⇒a∈B,则A⊆B.图形表示性质(1)任何一个集合都是它本身的子集,即A⊆A.(2)空集是任何集合的子集,即∅⊆A.(3)若A⊆B,B⊆C,则A⊆C.思考1:符号“∈”与“⊆”有何不同?提示:“∈”表示元素与集合的关系,而“⊆”表示集合与集合的关系.3.集合相等对于两个集合A与B,如果集合A是集合B的子集,且集合B也是集合A的子集,那么称集合A与集合B相等,记作A=B.思考2:如何证明集合相等?提示:证明这两个集合互为子集.4.真子集对于两个集合A与B,如果A⊆B,且A≠B,那么称集合A是集合B的真子集,记作A B.1.设M={}1,2,3,N={}1,则下列关系正确的是( )A.N∈M B.N MC .N ⊆MD .N ⊇MC [由1∈M ,知N ⊆M .]2.已知集合A ={x |x 是平行四边形},B ={x |x 是矩形},C ={x |x 是正方形},D ={x |x 是菱形},则( )A .A ⊆B B .C ⊆B C .D ⊆CD .A ⊆DB [根据四边形的定义和分类,可知选B.] 3.集合{}0,1的子集有________个.4 [集合{}0,1的子集分别是∅,{}0,{}1,{}0,1.] 4.已知集合{}16⊆{}a 2,a +3,7,求实数a 的值.[解] (1)由已知,得16∈{}a 2,a +3,7,所以a 2=16或a +3=16,解得a =-4,4或13,当a =4时,a +3=7,集合{}a 2,a +3,7的元素不满足互异性,所以,实数a 的值为-4,13.集合间的关系的判断【例1】 判断下列各组中集合间的关系.(1)A ={} |x x 是等腰三角形,B ={x |x 是等边三角形}; (2)A ={} |x x ()x -1=0,B ={}0,1; (3)A ={} |x -1<x <4,B ={} |x x <5;(4)A =⎩⎨⎧⎭⎬⎫ |x x =n +12,n ∈Z ,B ={x ⎪⎪⎪x =12n +1,n ∈Z }.[解] (1)因为等边三角形一定是等腰三角形,但等腰三角形不一定是等边三角形,故B A .(2)A =B .(3)把集合A 与B 在数轴上表示出来,根据定义易得A B . (4)A =⎩⎨⎧⎭⎬⎫ |x x =2n +12,n ∈Z ,B =⎩⎨⎧⎭⎬⎫ |x x =n +22,n ∈Z ,又{} |x x =2n +1,n ∈Z {} |x x =n +2,n ∈Z ,所以AB .判断两集合关系的常用方法(1)化简集合,从元素的属性中寻找两集合间的关系; (2)利用列举法表示各集合,从元素中寻找关系.提醒:在判断集合间的关系时,要注意数轴及Venn 图的应用,它可以直观地帮助我们发现集合间的关系.[跟进训练] 1.设A ={}|x x =2n -1,n ∈Z ,B ={}|x x =2n +1,n ∈Z ,C ={} |x x =4n -1,n ∈Z ,判断它们之间的关系.[解] 因为A ={} |x x =2n -1,n ∈Z ={x |x =2()n -1+1,n ∈Z }⊆B ,B ={} |x x =2n +1,n ∈Z ={}x |x =2()n +1-1,n ∈Z ⊆A ,所以A =B .因为C ={} |x x =4n -1,n ∈Z ={x |x =2×2n -1,n ∈Z }⊆A ,又-3∈A ,但-3C ,所以C A .综上,C A =B .子集个数问题【例2】 已知{}1,2M ⊆{}1,2,3,4,5,试写出满足条件的所有集合M . [思路点拨] 先分析集合M 中元素的特点,然后分类列举.[解] 集合M 含有元素1,2,且含有3,4,5中的至少一个元素,依据集合元素的个数分类列举如下:含有3个元素:{}1,2,3,{}1,2,4,{}1,2,5;含有4个元素:{}1,2,3,4,{}1,2,3,5,{}1,2,4,5; 含有5个元素:{}1,2,3,4,5. 故满足条件的集合M 共有上述7个集合.1.解决此类问题,一般先分析集合元素的特征,然后按集合元素个数分类列举. 2.若一个集合有n 个元素,则它有2n个子集;有2n-1个真子集.[跟进训练]2.已知集合B ={}1,2,A ={}x |x ⊆B , (1)写出集合A ;(2)判断B 与A 的关系.[解] (1)集合B 的子集分别是∅,{}1,{}2,{}1,2,所以A ={}∅,{}1,{}2,{}1,2;(2)B A .集合间的关系的应用 [探究问题]1.已知{}x |-1≤x ≤1⊆{}x |a ≤x ≤b ,试求a ,b 满足的条件. 提示:a ≤-1且b ≥1.2.已知{}x |a ≤x ≤b ⊆{}x |-1≤x ≤1,试求a ,b 满足的条件. 提示:对集合{}x |a ≤x ≤b 是否为空集讨论, 当{}x |a ≤x ≤b 为空集,即a >b 时,满足题意; 当{}x |a ≤x ≤b 非空时,-1≤a ≤b ≤1, 故a ,b 满足的条件是a >b 或-1≤a ≤b ≤1.【例3】 已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},且B ⊆A ,求实数m 的取值范围.[思路点拨] 将集合间的关系转化为元素间的关系,由于B 可能为空集,故需分B =∅与B ≠∅两种情况讨论.[解] 当B =∅时,有m +1≥2m -1,得m ≤2,当B ≠∅时,有⎩⎪⎨⎪⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上得m ≤4.1.对于本例中的集合A ,B ,是否存在实数m 使A ⊆B?[解] 若A ⊆B ,则⎩⎪⎨⎪⎧m +1<-22m -1>7 ,该不等式组无解,故实数m 不存在.2.若将本例中的“A ={x |-2≤x ≤7}”改为“A ={}x |x ≤-2,或x ≥7”,其他条件不变,求实数m 的取值范围.[解] 当B =∅时,有m +1≥2m -1,得m ≤2,当B ≠∅时,有⎩⎪⎨⎪⎧m +1<2m -1,2m -1≤-2,或⎩⎪⎨⎪⎧m +1<2m -1,m +1≥1,解得m ≥6,综上得x ≤2或m ≥6.1.对于B ⊆A ,在未指明B 非空时,应分B =∅与B ≠∅两种情况讨论.2. 对于B ≠∅这种情况,在确定参数的取值时,可借助数轴来完成,将两个集合在数轴上表示出来,分清实心点与空心圈,由集合之间的关系,列出关于参数的不等式,解不等式求出参数的取值范围.1.在判断集合间的关系时,要注意数轴及Venn 图的应用,它可以直观的帮助我们发现集合间的关系,这是数形结合思想的应用.2.若一个集合有n 个元素,则它的有2n个子集;有2n-1个真子集. 3.由集合间的关系求参数的取值范围时,要考虑空集是否符合题意.1.思考辨析(正确的画“√”,错误的画“×”) (1)空集是任何集合的真子集.( )(2)任何一个集合不可能是其自身的真子集. ( ) (3)任何一个集合至少有两个子集.( ) (4)若A 不是B 的子集,则A 中至少存在一个元素不属于B . ( )[答案] (1)× (2)√ (3)× (4)√2.集合A ={}x ∈N |0≤x <3真子集的个数是( ) A .3 B .4 C .7 D .8C [因为A ={}0,1,2,所以其真子集的个数是23-1=7.]3.设x ,y ∈R ,A ={}()x ,y |y =x ,B =⎩⎨⎧⎭⎬⎫()x ,y ⎪⎪⎪y x=1,则集合A ,B 的关系是________.[答案] B A4.已知集合A ={x |1≤x ≤2},B ={x |1≤x ≤a ,a ≥1}. (1)若A B ,求实数a 的取值范围; (2)若B ⊆A ,求实数a 的取值范围. [解] (1)当A B 时,a >2. (2)当B ⊆A 时,1≤a ≤2.。
高中数学人教版(新教材)必修1学案1:1.2 集合间的基本关系
1.2 集合间的基本关系学习目标1.了解集合之间包含与相等的含义,能识别给定集合的子集;2.理解子集、真子集的概念;3.能使用Venn 图表达集合间的关系,体会直观图示对理解抽象概念的作用,体会数形结合的思想.重点难点重点:集合间的包含与相等关系,子集与其子集的概念;难点:属于关系与包含关系的区别.知识梳理1.集合与集合的关系(1)一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为B 的子集.记作:()A B B A ⊆⊇或读作:A 包含于B (或B 包含A ).图示:(2)如果两个集合所含的元素完全相同(A B B A ⊆⊆且),那么我们称这两个集合相等.记作:A =B读作:A 等于B. 图示:2. 真子集 若集合A B ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集.记作:A B (或B A )读作:A 真包含于B (或B 真包含A )3.空集不含有任何元素的集合称为空集,记作:∅.规定:空集是任何集合的子集.学习目标探究一子集1.观察以下几组集合,并指出它们元素间的关系:①A ={1,2,3},B ={1,2,3,4,5};②A 为立德中学高一(2)班全体女生组成的集合, B 为这个班全体学生组成的集合; ③A ={x |x >2},B ={x |x >1}.2.子集定义:一般地,对于两个集合A 、B ,如果集合A 中都是集合B 中的元素,我们就说这两个 集合有包含关系,称集合A 为集合B 的.记作:(A B B A ⊆⊇或)读作:(或“”)符号语言:任意有则.3.韦恩图(Venn 图):用一条封闭曲线(圆、椭圆、长方形等)的内部来代表集合叫集合的韦恩图表示.牛刀小试1:图中A 是否为集合B 的子集?牛刀小试2:判断集合A 是否为集合B 的子集,若是则在()打√,若不是则在()打×:①A ={1,3,5}, B ={1,2,3,4,5,6} ( )②A ={1,3,5}, B ={1,3,6,9} ( )③A ={0}, B={x | x 2+2=0} ( )④A ={a,b,c,d }, B ={d,b,c,a } ( )探究二集合相等BB A,A1.观察下列两个集合,并指出它们元素间的关系(1)A ={x |x 是两条边相等的三角形},B ={x |x 是等腰三角形};2.定义:如果集合A 的都是集合B 的元素,同时集合B 都是集合A 的元素,我们就说集合A 等于集合B ,记作.牛刀小试3:()(){}{}12012A x x x B A B =++==--,,.集合与什么关系?探究三真子集1.观察以下几组集合,并指出它们元素间的关系:(1)A ={1,3,5}, B ={1,2,3,4,5,6};(2)A ={四边形}, B ={多边形}.2.定义:如果集合A ⊆B ,但存在元素,且,称集合A 是集合B 的真子集.记作:(或)读作:“A 真含于B ”(或B 真包含A ).探究四空集1.我们把的集合叫做空集,记为φ,并规定:空集是任何集合的子集.空集是任何非空集合的真子集.即φB ,(B φ≠) 例如:方程x 2+1=0没有实数根,所以方程 x 2+1=0的实数根组成的集合为φ.问题:你还能举几个空集的例子吗?2.深化概念:(1)包含关系{}a A ⊆与属于关系a A ∈有什么区别?(2)集合A B 与集合A B ⊆有什么区别?(3)0,{0}与 Φ三者之间有什么关系?3.结论:由上述集合之间的基本关系,可以得到下列结论:(1)任何一个集合是它本身的子集,即.(2)对于集合A 、B 、C ,若,,A B B C ⊆⊆则(类比b a ≤,c b ≤则c a ≤). 例1.写出集合{a ,b }的所有子集,并指出哪些是它的真子集.例2.判断下列各题中集合A 是否为集合B 的子集,并说明理由.(1)A ={1,2,3},B ={x |x 是8的约数};(2)A ={x |x 是长方形},B ={x |x 是两条对角线相等的平行四边形}达标检测1.集合A ={-1,0,1},A 的子集中含有元素0的子集共有( )A .2个B .4个C .6个D .8个2.已知集合M={x|-3<x<2,x∈Z},则下列集合是集合M的子集的为( ) A.P={-3,0,1}B.Q={-1,0,1,2}C.R={y|-π<y<-1,y∈Z}D.S={x||x|≤,x∈N}3.①0∈{0},②∅{0},③{0,1}⊆{(0,1)},④{(a,b)}={(b,a)}.上面关系中正确的个数为( )A.1 B.2C.3 D.44.设集合A={x|1<x<2},B={x|x<a},若A⊆B,则a的取值范围是( )A.{a|a≤2}B.{a|a≤1}C.{a|a≥1}D.{a|a≥2}5.已知集合A={(x,y)|x+y=2,x,y∈N},试写出A的所有子集.——★ 参*考*答*案★——学习过程:探究一1.集合A的元素都属于集合B2.任何一个元素子集集合A含于集合B集合B包含集合Ax∈A,x∈BA⊆B牛刀小试1 集合A不是集合B的子集牛刀小试2 ①√ ②×③×④√探究二集合相等1.(1)中集合A中的元素和集合B中的元素相同.2.任何一个元素任何一个元素A=B牛刀小试3 A=B探究三真子集1.集合A中元素都是集合B的元素,但集合B有的元素不属于集合A.2.x∈Bx AA BB A探究四空集1.不含任何元素2.(1)前者为集合之间关系,后者为元素与集合之间的关系.(2) A = B或A B(3){0}与Φ :{0}是含有一个元素0的集合,Φ是不含任何元素的集合.如Φ{0}不能写成Φ ={0},Φ ∈{0}3.(1)(2)例1.解:集合{a,b}的子集:,{a},{b} ,{a, b}.集合{a,b}真子集:,{a},{b}.例2.解:(1)因为3不是8的约数,所以集合A不是集合B的子集.三、达标检测1.『解析』根据题意,在集合A的子集中,含有元素0的子集有{0}、{0,1}、{0,-1}、{-1,0,1}四个,故选B.『答案』B2.『解析』集合M={-2,-1,0,1},集合R={-3,-2},集合S={0,1},不难发现集合P 中的元素-3∉M,集合Q中的元素2∉M,集合R中的元素-3∉M,而集合S={0,1}中的任意一个元素都在集合M中,所以S⊆M.故选D.『答案』D3.『解析』①正确,0是集合{0}的元素;②正确,∅是任何非空集合的真子集;③错误,集合{0,1}含两个元素0,1,而{(0,1)}含一个元素点(0,1),所以这两个集合没关系;④错误,集合{(a,b)}含一个元素点(a,b),集合{(b,a)}含一个元素点(b,a),这两个元素不同,所以集合不相等.故选B.『答案』B4.『解析』由A={x|1<x<2},B={x|x<a},A⊆B,则{a|a≥2}.『答案』D5.『解』因为A={(x,y)|x+y=2,x,y∈N},所以A={(0,2),(1,1),(2,0)}.所以A的子集有:∅,{(0,2)},{(1,1)},{(2,0)},{(0,2),(1,1)},{(0,2),(2,0)},{(1,1),(2,0)},{(0,2),(1,1),(2,0)}.。
高一数学必修一精品教案:1.1.2集合间的基本关系Word版含答案
课题:§1.2集合间的基本关系教材分析:类比实数的大小关系引入集合的包含与相等关系了解空集的含义课 型:新授课教学目的:(1)了解集合之间的包含、相等关系的含义;(2)理解子集、真子集的概念;(3)能利用Venn 图表达集合间的关系;(4)了解与空集的含义。
教学重点:子集与空集的概念;用Venn 图表达集合间的关系。
教学难点:弄清元素与子集 、属于与包含之间的区别;教学过程:一、引入课题1、 复习元素与集合的关系——属于与不属于的关系,填以下空白:(1)0 N ;(2;(3)-1.5 R2、 类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(宣布课题)二、新课教学(一) 集合与集合之间的“包含”关系;A={1,2,3},B={1,2,3,4}集合A 是集合B 的部分元素构成的集合,我们说集合B 包含集合A ;如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset )。
记作:)(A B B A ⊇⊆或读作:A 包含于(is contained in )B ,或B 包含(contains )A当集合A 不包含于集合B 时,记作A B用Venn)(A B B A ⊇⊆或(二)A B B A ⊆⊆且,则B A =中的元素是一样的,因此B A =即 ⎩⎨⎧⊆⊆⇔=AB B A B A 练习结论:任何一个集合是它本身的子集(三) 真子集的概念⊆若集合B A ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集(proper subset )。
记作:A B (或B A )读作:A 真包含于B (或B 真包含A )举例(由学生举例,共同辨析)(四) 空集的概念(实例引入空集概念)不含有任何元素的集合称为空集(empty set ),记作:∅规定:空集是任何集合的子集,是任何非空集合的真子集。
(五) 结论:○1A A ⊆ ○2B A ⊆,且C B ⊆,则C A ⊆ (六) 例题(1)写出集合{a ,b}的所有的子集,并指出其中哪些是它的真子集。
1.2集合间的基本关系(导学案)答案版
《1.2集合间的基本关系》导学案参考答案 新课导学(一)新知导入【想一想】 (1)集合A 中的元素都是B 的元素.(2)A 是B 的子集.(3)故事中的“白马非马”意为白马组成的集合与所有马组成的集合不相等。
【思考1】 (1)从元素与集合间的关系来分析集合间的关系。
(2)在每组的两个集合中,第一个集合中任何一个元素都是第二个集合的元素。
(3)前两组例子中,后一个集合中的元素有的不在前一个集合中,第三组例子 中,后一个集合中的元素都在前一个集合中。
(二)子集1. 集合A 中任意一个元素都是集合B 中的元素 (B A A B ⊆⊇或) “A 含于B” (或“B 包含A”)2. Venn 图:用平面上封闭曲线的内部代表集合,这种图称为Venn 图.上述集合A 与B 之间的关系用Veen 图可表示为:【做一做】 1. (1)(否) (2)(否) (3) (是)2. (1)√ (2)× (3)×【探究1】(1)任何一个集合是它本身的子集,即A ⊆A ;(2)对于集合A ,B ,C ,如果A ⊆B ,且B ⊆C ,那么A ⊆C .(集合包含关系的传递性)【探究2】 符号“∈”表达的是元素与集合的从属关系,“⊆”表达的是集合与集合间的包含关系。
【做一做】= ∈(三)集合相等【思考2】(1)集合B={x|x2=x}={0,1},所以两个集合中的元素完全相同,这两个集合相等;(2)集合B={x|x2=x}={0,1},集合A中的元素都属于集合B,所以集合A是B的子集;反之,集合B中元素都属于集合A,所以集合B是A子集,即两个集合互为子集,这两个集合相等。
集合相等:A=B A⊆B B⊆A【做一做】相等(四)真子集【思考3】(1)是的(2)不全是.真子集:A⊆B x∈B x A A B(或B A)“A真含于B”(或B真包含A)【探究3】判断集合A是集合B的真子集时,首先满足集合A是集合B的子集,同时在集合B中含有不属于集合A的元素。
学案:集合之间的基本关系[1]
学案:集合之间的基本关系【预习达标】⒈如果集合A 中的__________________集合B 的元素,那么集合A 叫做_________________,记作_________或__________,读作______________或________________. ⒉任意一个集合A_______________的子集,即________________.⒊规定:空集是_______________的子集,即_____________.⒋如果集合A 是集合B 的子集,并且B 中__________________________________,那么集合A 叫做集合B 的真子集,记作__________或___________,读作________________或___________________.⒌我们常用_____________________________表示一个集合,这个区域通常叫做维恩图. ⒍一般地,如果集合A 的_________________集合B 的元素,反过来,集合B 的________________也都是集合A 的元素,那么我们就说____________________,记作___________.即,如果____________,又___________,则A=B ;反之,A=B,则_________________________.7.如果集合A 有n 个元素,则它一共有________个子集,有_______个真子集,有_______个非空子集。
【课前达标】⒈设集合A={x|1<x<2},B={x|x<a },且A⊆B,则实数a 的范围是( ) A.a ≥2 B.a >2 C.a ≤1 D.a >1 ⒉下列各式中,正确的是( )A.}4|{32≤⊆x x B.}4|{32≤∈x x C.}32{⊂≠}3|{≤x x D.}4|{}32{≤∈x x⒊写出集合{a ,b }的所有子集与真子集.子集有____________________,真子集有__________________.⒋若A={x|x2-3x+2=0},B={x|x2-a x+a -1=0},且B⊆A,则a 的值为__________.⒌已知集合A={x|x2-1=0},B={-1,1},则A、B之间的关系为___________________.【典例解析】例⒈已知集合A={x|x2-2x-3=0},B={x|a x-1=0},若B⊂≠A,求a的值所组成 的集合M.例⒉已知三元集合A={y x xy x -,,},B={y x |,|,0 },且A=B,求y x 与的值.【双基达标】一.选择题:⒈下列命题正确的是( )A.若A={d c b a ,,,},B={c a ,},则B∈AB.一个集合的子集就是由这个集合中的部分元素组成的集合 C.若集合M={1,2},N={(1,2)},则M=N D.∅⊂≠{0},0∈{0}均正确. ⒉如果集合A={21|x >x },那么⑴0⊆A;⑵∅⊆A;⑶{0}⊂≠A;⑷N⊆A;⑸}31{⊂≠A ,以上各式中正确的个数是( )A.1 B.2 C.3 D.4 ⒊设}1|),{(},|),{(,,====∈xy y x B x y y x A R y x 则集合A、B的关系为( )A.A⊂≠B B.B⊂≠A C.A=B D.A⊆B⒋下列四个集合中,表示空集的是( )A.{0} B.},,|),{(22R y R x x y y x ∈∈-= C.},,5|||{N x Z x x x ∉∈= D.},0232|{2N x x x x ∈=-+ ⒌已知集合A={c b a ,,},B={x|x∈A},则集合B的真子集个数最多是( )A.5个 B.6个 C.7个 D.8个 二.填空题:⒏设集合A={xy x x ,,2},B={y x ,,1},且A=B,则实数y x ,的值_________________________.三.解答题:⒐以下各组中两个对象是什么关系,用适当的符号表示出来.⑴0与{0};⑵0与∅;⑶∅与{0};⑷{0,1}与{(0,1)};⑸{(a b ,)}与{(b a ,)}⒑已知集合A={x|x<-1或x>2},B={x|4x+p<0},当B⊆A时,求实数p的取值范围.【能力达标】一.选择题:⒈设集合M=},412|{Z k k x x ∈+=,N=},214|{Z k k x x ∈+=,则正确的是( )A.M=N B.M⊂≠N C.N⊂≠M D.M∩N=∅⒉A=},1|{2N x x y y ∈+=,B=},22|{2N a a a y y ∈+-=,则A、B的关系是( )A.A=B B.A⊂≠B C.B⊂≠A D.B⊄A二.填空题:⒊已知集合A={0,2,3},B={A b a ab x x ∈=,,|},则B的子集的个数是_______________.⒋已知集合A⊂≠{2,3,7},且A中至多有一个奇数,则这样的集合共有__________________个.⒍设集合M⊆{1,2,3,4,5},且a ∈M时,6-a ∈M,则集合M=__________________________________.⒎写出满足条件{0,1}⊆M⊂≠{0,1,2,3}的集合M_________________________________________. 三.解答题:8.设集合A={04|2=+x x x },B={R a a x a x x ∈=-+++,01)1(2|22},若B⊆A,求实数a 的值.答 案三.集合之间的关系:【预习达标】⒈任意一个元素都是,集合B 的子集,A ⊆B ,B ⊇A ,“A 包含于B ”,“B 包含A ”. ⒉都是它本身,A⊆A.⒊任意一个集合的,Φ⊆A.⒋至少有一个元素不属于A,A≠⊂B,B≠⊃A,“A真包含于B”,“B真包含A”.⒌平面内一个封闭曲线的内部.⒍每一个元素都是,每一个元素,集合A等于集合B,A=B,A⊆B,B⊆A;A⊆B且B⊆A.7.n 2,12-n ,12-n 【课前达标】⒈A[解析]结合数轴可得.⒉B[解析]注意元素与集合、集合与集合之间的符号连接.⒊Φ、{a }、{b }、{a ,b };Φ、{a }、{b }.⒋2或3[解析]A={1,2},B ⊆A 则B=Φ或B={1}或B={2}或B={1,2}分别代入可求得a 的值.⒌A=B[解析]由条件知A={-1,1},又B={-1,1},由集合相等的定义可得. 【典例解析】例⒈解: A={x|x2-2x-3=0}={-1,3},且B ≠⊂A ∴① 当B =Φ时,方程a x-1=0无解∴a =0;②当B ≠Φ时,则B ={a1},若a1=-1,则a =-1;若a1=3,则a=31.综上知,a 的值为0,-1或31,故M={-1,0,31}.[点评]⒈注意B ≠Φ这种情况,防止疏漏.⒉要学会对含参数的问题进行分类讨论,讨论时要不重不漏.例⒉解: 0∈B,A=B∴0∈A x≠xy∴x=0又 0∈B,y∈B∴y≠0.从而x-y=0即x=y.这时A={x,x2,0},B={0,|x|,x}∴x2=|x|则x=0(舍去)或x=1(舍去)或x=-1.经验证:x=-1,y=-1是本题的解.[点评]⒈两个集合相等的描述有两个角度,一是从元素的角度,两集合的元素必须完全相同;二应是 从包含关系的角度,A=B⇔A⊆B且B⊆A.⒉灵活运用元素的互异性是解好本题的关键. 【双基达标】一.⒈D[解析]选项A中的符号错误,应是B≠⊂A;选项B,C由定义可以判断.⒉A[解析]由条件知集合A中的元素为大于21的实数,不含0和31,故只有(2)正确.⒊B[解析]由条件知集合A 表示直线y =x 的所有点,而集合B 表示直线y =x 上除(0,0)外的所有点,故选B .⒋D[解析]选项B中有元素(0,0)不空;而选项D中方程的解为-2和21,均不是自然数,故D中集合为空.⒌C[解析]由条件知B中元素为c b a ,,,则真子集个数为23-1=7个.故选C. 二.6.x=-1,y=0[解析]由集合相等的定义可得.三.7解:⑴0∈{0};⑵0∈Φ;⑶Φ与{0}都是集合,两者的关系是“包含与否”的关系,∴Φ≠⊂{0},也可Φ⊆{0};⑷{0,1}是含两个元素0,1的集合,而{(0,1)}是有序数对为元素的集合,它只含一个元素.∴{0,1}≠{(0,1)};⑸当a =b 时,{(a ,b )}={(b ,a )};当a ≠b 时,{(a ,b )}={(b ,a )}.8.解: B ={x|4x+p <0}={x|x<-4p }. 又 A={x|x<-1或x>2},B⊆A.∴-4p ≤-1 ∴p≥4.[点评]可结合数轴进行分析. 【能力达标】一.⒈B[解析]由条件知集合M中的元素为x=412+k ,集合N中的元素为x=42+k ,k∈Z ∴k+2表示整数,2k+1表示奇数,故选B.⒉A[解析]由条件知,集合A 中的元素为自然数的平方加1,而集合B 中y=(a -1)2+1,∵a ∈N∴a -1比自然数集多了一个元素-1,但(-1)2=1,依然表示自然数的平方加1,故A=B. 二.⒊16个[解析]由条件知,集合B 含有0,4,6,9共4个元素,故子集个数为24=16个.⒋5个[解析]由条件知,集合A 只能含有元素3和7中的一个,或一个也不包含.则A={2}或{3}或{7}或{2,3}或{2,7}.5.{3},或{1,5},{2,4},{1,3,5},{2,3,4},{1,2,4,5},{1,2,3,4,5}.[解析]由条件知若a =3则6-a =3,M中只有一个元素3;若a =1,则必含元素5;若a =2,则必含元素4;故将其组合可得答案. 6.{0,1},{0,1,2},{0,1,3}[解析]由条件知集合M中必会有元素0,1,可以有元素2或3,但M≠{0,1,2,3}.三.7.解:由条件知集合A={x|x2+4x=0}={0,-4},又 B⊆A∴当B =Φ时,∆=4(a+1)2-4⨯1⨯(a2-1)<0即a<-1;当B≠Φ时, 若B中只有一个元素,则∆=0即a=-1,此时B={x|x2=0}={0}符合.若B中含有两个元素,即B={0,-4} ∴0与-4是方程x2+2(a+1)x+a2-1=0的两根,代入得a=1.综上a的值为a≤-1或a=1.。
集合间的基本关系(学案)-人教A版2019必修第一册高一数学教材配套学案
1.2集合间的基本关系【学习目标】素养目标学科素养1. 理解子集、真子集、空集的概念;(重点)2. 能用符号和Venn图表示集合间的关系;(难点)3. 掌握列举有限集的所有子集的方法。
1、逻辑推理2、直观想象3、数形结合【自主学习】一. 子集的相关概念1.Venn图表示:在数学中,经常用平面上___ ___ 的_____代表集合,这种图称为Venn图,这种表示集合的方法叫做图示法.优点:形象直观。
2.子集、真子集、集合相等定义符号表示图形表示子集如果集合A中的元素都是集合B中的元素,就称集合A是集合B的子集A B(或B A)真子集如果集合A⊆B,但存在元素_________,就称集合A是集合B的真子集A B(或B A)集合相等如果集合A的元素都是集合B的元素,同时集合B的元素都是集合A的元素,那么集合A与集合B相等A B3.子集的性质(1)任何一个集合是它本身的,即A⊆A.(2)对于集合A,B,C,如果A⊆B,且B⊆C,那么.二. 空集定义的集合叫做空集符号用符号表示为___规定空集是任何集合的,是任何非空集合的________A【小试牛刀】1.思考辨析(正确的画“√”,错误的画“×”)(1)空集中只有元素0,而无其余元素.()(2)任何一个集合都有子集.()(3)若A=B,则A⊆B.()(4)空集是任何集合的真子集.()2.已知集合A={x|-1-x<0},则下列各式正确的是()A.0⊆A B.{0}⊆A C.⊆⊆A D.{0}⊆A【经典例题】题型一集合间关系的判断点拨:判断集合间关系的常用方法(1)列举观察法:当集合中元素较少时,可列出集合中的全部元素,通过定义得出集合之间的关系.(2)集合元素特征法:首先确定集合的代表元素是什么,弄清集合元素的特征,再利用集合元素的特征判断关系.(3)数形结合法:利用Venn图、数轴等直观地判断集合间的关系.一般地,判断不等式的解集之间的关系,适合画出数轴.例1 下列各式中,正确的个数是()⊆{0}⊆{0,1,2};⊆{0,1,2}⊆{2,1,0};⊆⊆⊆{0,1,2};⊆⊆={0};⊆{0,1}={(0,1)};⊆0={0}.A.1B.2C.3D.4【跟踪训练】1(1)若集合M={x|x2-1=0},T={-1,0,1},则M与T的关系是()A.M T B.M⊆T C.M=T D.M ⊆T(2)用Venn图表示下列集合之间的关系:A={x|x是平行四边形},B={x|x是菱形},C={x|x是矩形},D={x|x是正方形}.题型二子集、真子集的个数问题点拨:公式法求有限集合的子集个数(1)含n个元素的集合有2n个子集.(2)含n个元素的集合有(2n-1)个真子集.(3)含n个元素的集合有(2n-1)个非空子集.(4)含n个元素的集合有(2n-2)个非空真子集.例2 写出集合{a,b}的所有子集,并指出哪些是它的真子集.例2-变式写出集合{a,b,c}的所有子集? 写出集合{a,b,c,d}的所有子集?【跟踪训练】2 满足{a,b}⊆A{a,b,c,d,e}的集合A的个数是()A.2B.6 C.7D.8题型三根据集合的包含关系求参数点拨:1.分析集合间的关系时,首先要分析、简化每个集合.2.借助数轴,利用数轴分析法,将各个集合在数轴上表示出来,以形定数,还要注意验证端点值,做到准确无误,一般含“=”用实心点表示,不含“=”用空心点表示.3.此类问题要注意对空集的讨论.例3 已知集合A={x|-3≤x≤4},B={x|2m-1<x<m+1},且B⊆A.求实数m的取值范围.【跟踪训练】3 设集合A={x|x2-8x+15=0},B={x|ax-1=0}.(1)若a=15,试判定集合A与B的关系;(2)若B⊆A,求实数a的取值集合.【当堂达标】1.下列说法:⊆空集没有子集;⊆任何集合至少有两个子集;⊆空集是任何集合的真子集;⊆若⊆A,则A≠⊆.其中正确的有()A.0个B.1个C.2个D.3个2.已知集合A={-1,0,1},则含有元素0的A的子集的个数为()A.2 B.4 C.6 D.83.设A={x|2<x<3},B={x|x<m},若A⊆B,则m的取值范围是()A.m>3 B.m≥3 C.m<3 D.m≤34.已知集合A={x|x-3>0},B={x|2x-5≥0},则这两个集合的关系是________.5.已知A={x|x2-3x+2=0},B={x|ax-2=0},且B⊆A,求由实数a的值组成的集合C.6.已知集合A={x|x<-1,或x>4},B={x|2a≤x≤a+3},若B⊆A,求实数a的取值范围.【课堂小结】1.知识点:(1)子集、真子集、空集、集合相等的概念及集合间关系的判断.(2)求子集、真子集的个数问题.(3)由集合间的关系求参数的值或范围.2.方法归纳:数形结合、分类讨论.3.常见误区:忽略对集合是否为空集的讨论,忽视是否能够取到端点.【参考答案】【自主学习】一.1.封闭曲线内部2.任意一个 ⊆⊇ x ∈B ,且x ∉A 任何一个 任何一个 =3.子集 A ⊆C二.不含任何元素 ∅ 子集 真子集 【小试牛刀】1.(1)× (2)√ (3)√ (4)×2. D 解析:集合A ={x |-1-x <0}={x |x >-1},所以0∈A ,{0}⊆A ,D 正确. 【经典例题】例1 B 解析:(1)对于①,是集合与集合的关系,应为{0}{0,1,2};对于②,实际为同一集合,任何一个集合是它本身的子集;对于③,空集是任何集合的子集;对于④,{0}是含有单元素0的集合,空集不含任何元素,并且空集是任何非空集合的真子集,所以∅{0};对于⑤,{0,1}是含有两个元素0与1的集合,而{(0,1)}是以有序数组(0,1)为元素的单元素集合,所以{0,1}与{(0,1)}不相等;对于⑥,0与{0}是“属于与否”的关系,所以0∈{0}.故②③是正确的,应选B.【跟踪训练】1 (1)A 解析:因为M ={x |x 2-1=0}={-1,1},又T ={-1,0,1},所以M T . (2)根据几何图形的相关知识明确各元素所在集合之间的关系,再画Venn 图.如图例2 解:集合{a,b}的所有子集为∅,{a},{b},{a,b}. 真子集为∅,{a},{b}.例2-变式:集合{a,b,c}的所有子集为∅,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}. 集合{a,b,c,d}的所有子集为∅,{a},{b},{c},{d},{a,b},{a,c},{a,d},{b,c}, {b,d},{c,d},{a,b,c},{a,b,d},{a,c,d},{b,c,d},{a,b,c,d}.【跟踪训练】2 C 解析:由题意知,集合A 可以为{a ,b },{a ,b ,c },{a ,b ,d },{a ,b ,e },{a ,b ,c ,d },{a ,b ,c ,e },{a ,b ,d ,e }.例3 解:(1)因为B ⊆A ,当B =⊆时,m +1≤2m -1,解得m ≥2.(2)当B ≠⊆时,有⎩⎨⎧-3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2,综上得m ≥-1.【跟踪训练】3 解:(1)由x 2-8x +15=0得x =3或x =5,故A ={3,5},当a =15时, 由ax -1=0得x =5.所以B ={5},所以BA .(2)当B =∅时,满足B ⊆A ,此时a =0;当B ≠∅,a ≠0时,集合B =⎩⎨⎧⎭⎬⎫1a ,由B ⊆A 得1a =3或1a =5,所以a =13或a =15.综上所述,实数a 的取值集合为⎩⎨⎧⎭⎬⎫0,13,15 【当堂达标】1.B 解析:⊆空集是它本身的子集;⊆空集只有一个子集;⊆空集不是它本身的真子集;⊆空集是任何非空集合的真子集.因此,⊆⊆⊆错误,⊆正确.2.B 解析:根据题意,含有元素0的A 的子集为{0},{0,1},{0,-1},{-1,0,1},共4个.3.B 解析:因为A ={x |2<x <3},B ={x |x <m },A ⊆B ,将集合A ,B 表示在数轴上,如图所示,所以m ≥3.4.A B解析:A ={x |x -3>0}={x |x >3},B ={x |2x -5≥0}=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≥52. 结合数轴知A B .5.解:由x 2-3x +2=0,得x =1或x =2. 所以A ={1,2}.因为B ⊆A ,所以对B 分类讨论如下:①若B =∅,即方程ax -2=0无解,此时a =0; ②若B ≠∅,则B ={1}或B ={2}. 当B ={1}时,有a -2=0,即a =2; 当B ={2}时,有2a -2=0,即a =1.综上可知,符合题意的实数a 所组成的集合C ={0,1,2}. 6.解:(1)因为B ⊆A ,所以m 2=2m -1,即(m -1)2=0,所以m =1.当m =1时,A ={-1,3,1},B ={3,1},满足B ⊆A ,故m =1. (2)当B =⊆时,只需2a >a +3,即a >3; 当B ≠⊆时,根据题意作出如图所示的数轴,可得⎩⎨⎧ a +3≥2a a +3<-1或⎩⎨⎧a +3≥2a 2a >4,解得a <-4或2<a ≤3.综上可得,实数a 的取值范围为a <-4或a >2.。
1.1.2 集合间的基本关系 学案(人教A版必修1) (2)
1.1.2 集合间的基本关系——题型探究类型一 子集、真子集的概念问题【例1】 已知集合M ={x|x <2且x ∈N },N ={x|-2<x <2且x ∈Z }.(1)试判断集合M 、N 间的关系.(2)写出集合M 的子集、集合N 的真子集.[思路探索] 把用描述法表示的集合用列举法表示出来,以便于观察集合的关系和写子集与真子集.解 M ={x|x <2且x ∈N }={0,1},N ={x|-2<x <2,且x ∈Z }={-1,0,1}.(1)M N.(2)M 的子集为: ,{0},{1},{0,1},N 的真子集为: ,{-1},{0},{1},{-1,0},{-1,1},{0,1}.[规律方法] 1.写有限集合的所有子集,首先要注意两个特殊的子集: 和自身;其次按含一个元素的子集,含两个元素的子集…依次写出,以免重复或遗漏.2.若集合A 含n 个元素,那么它子集个数为2n ;真子集个数为2n -1,非空真子集个数为2n -2.【活学活用1】 已知集合A ={x|x 2-3x +2=0,x ∈R }.B ={x|0<x <5,x ∈N },则满足条件A C B 的集合C 的个数为( ).A .1B .2C .3D .4解析 易知A ={1,2},B ={1,2,3,4},又A C B.∴集合C 可以是{1,2},{1,2,3},{1,2,4},{1,2,3,4}.答案 D类型二 集合的相等问题【例2】 集合⎩⎨⎧⎭⎬⎫1,a ,b a ={0,a 2,a +b},则a 2 013+b 2 014的值为( ). A .0 B .1 C .-1 D .±1[思路探索] 集合相等 集合的元素相同 a ≠0 b =0,a 2=1 a 2013+b 2014=-1.解析 ∵⎩⎨⎧⎭⎬⎫1,a ,b a ={0,a 2,a +b}, 又a ≠0,∴b a=0,∴b =0. ∴a 2=1,∴a =±1.又a ≠1,∴a =-1,∴a 2 013+b 2 014=(-1)2 013+02 014=-1.答案 C[规律方法] 1.本题以“0”为着眼点,b a中a 不为0为突破口. 2.两个集合相等,则所含元素完全相同,与顺序无关,但要注意检验,排除与集合元素互异性或与已知矛盾的情形.例如本题中a =1不满足互异性,否则会错选D.【活学活用2】 设集合A ={1,-2,a 2-1},B ={1,a 2-3a,0},若A =B ,求实数a 的值.解 由A =B 及两集合元素特征,∴⎩⎪⎨⎪⎧ a 2-1=0,a 2-3a =-2, ∴⎩⎪⎨⎪⎧a =±1,a =1或a =2. 因此a =1,代入检验满足互异性.∴a =1.类型三 由集合间的关系求参数范围问题【例3】 已知集合A ={x|-3≤x ≤4},B ={x|2m -1<x <m +1},且B A.求实数m 的取值范围.[思路探索] 借助数轴分析,注意B 是否为空集.解 ∵B A ,(1)当B = 时,m +1≤2m -1,解得m ≥2.(2)当B ≠ 时,有⎩⎪⎨⎪⎧ -3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2,综上得m ≥-1.[规律方法] 1.(1)分析集合间的关系时,首先要分析、简化每个集合.(2)借助数轴,利用数轴分析法,将各个集合在数轴上表示出来,以形定数,还要注意验证端点值,做到准确无误,一般含“=”用实心点表示,不含“=”用空心点表示.2.此类问题要注意对空集的讨论.【活学活用3】 已知集合A ={x|1≤x ≤2},B ={x|1≤x ≤a ,a ≥1}.(1)若A B ,求a 的取值范围;(2)若B A ,求a 的取值范围.解 (1)若A B ,由图可知a >2.(2)若B A ,由图可知1≤a ≤2.方法技巧 分类讨论思想在集合关系中的应用所谓分类讨论,就是当问题所涉及的对象不能统一解决时,就需要对研究对象按某个标准进行分类,然后对每一类分别研究得出每一类结论,最后综合各类结果得到整个问题的答案.在集合包含关系或涉及集合的元素含有参数时,常借助分类讨论思想转化求解.【示例】 (2013·济南高一检测)已知集合A ={x|x 2-4x +3=0},B ={x|mx -3=0},且B A ,求实数m 的集合.[思路分析]解 由x 2-4x +3=0,得x =1或x =3.∴集合A ={1,3}.(1)当B = 时,此时m =0,满足B A.(2)当B ≠ 时,则m ≠0,B ={x|mx -3=0}=⎩⎨⎧⎭⎬⎫3m . ∵B A ,∴3m =1或3m=3,解之得m =3或m =1. 综上可知,所求实数m 的集合为{0,1,3}.[题后反思] 1.解答诸如含有集合包含关系的题目时,一定要警惕“ ”这一陷阱,考虑不周而漏掉对空集的讨论,往往造成不应有的失分,初学者要切记.2.在方程或不等式中,当一次项或二次项系数含参数时,在参数取值范围不确定的情况 下要注意分类讨论.作业1.集合{0}与∅的关系是( ).A .{0}B .{0}∈C .{0}=D .{0}解析 空集是任何非空集合的真子集,故A 正确.集合与集合之间无属于关系,故B 错;空集不含任何元素,{0}含有一个元素0,故C 、D 均错.答案 A2.已知集合A ={x|-1<x <4},B ={x|x <a},若A B ,则实数a 满足( ).A .a <4B .a ≤4C .a >4D .a ≥4解析 由A B ,结合数轴,得a ≥4.答案 D3.已知集合A ={2,9},集合B ={1-m,9},且A =B ,则实数m =________. 解析 ∵A =B ,∴1-m =2,∴m =-1.答案 -14.已知集合A ={-1,3,2m -1},集合B ={3,m 2},若B A ,则实数m =________. 解析 ∵B ={3,m 2},A ={-1,3,2m -1},且B A ,∴m 2∈{-1,3,2m -1},又m 2≠3,∴m 2=2m -1,解得m =1,经检验合题意.答案 15.已知集合A ={(x ,y)|x +y =2,x ,y ∈N },试写出A 的所有子集.解 ∵A ={(x ,y)|x +y =2,x ,y ∈N },∴A ={(0,2),(1,1),(2,0)}.∴A 的子集有: ,{(0,2)},{(1,1)},{(2,0)},{(0,2),(1,1)},{(0,2),(2,0)},{(1,1),(2,0)},{(0,2),(1,1),(2,0)}.课堂小结1.子集和真子集(1)A B 包含两种情况:A =B 和A B.当A 是B 的子集时,不要漏掉A =B 的情况.(2)在真子集的定义中,A B 首先要满足A B ,其次至少有一个x ∈B ,但x A.(3)集合与集合之间的关系有包含关系、相等关系,其中包含关系有:包含于( )、包含( ),真包含于( )、真包含( )等,用这些符号时要注意方向.2.空集(1)空集是任何集合的子集,是任何非空集合的真子集.(2)若利用“A B”或“A B”解题,要讨论A= 和A≠ 两种情况.3.涉及字母参数的集合关系时,注意数形结合思想与分类讨论思想的应用.。
集合间的基本关系经典练习及答案详解
[基础巩固]1.已知集合A={1,2,3,4,5,6},B={3,4,5,x},若B⊆A,则x可以取的值为()A.1,2,3,4,5,6B.1,2,3,4,6C.1,2,3,6 D.1,2,6解析由B⊆A和集合元素的互异性可知,x可以取的值为1,2,6.答案 D2.下列集合与集合A={1,3}相等的是()A.(1,3)B.{(1,3)}C.{x|x2-4x+3=0}D.{(x,y)|x=1,y=3}解析A项不是集合,B项与D项中的集合是由点坐标组成,C项:x2-4x+3=0,即(x-3)(x-1)=0,解得x=3或x=1,集合{x|x2-4x+3=0},即集合{1,3},因为若两个集合相等,则这两个集合中的元素相同,所以与集合A={1,3}相等的是集合{x|x2-4x+3=0},故选C.答案 C3.(多选)下列表述不正确的有()A.空集没有子集B.任何集合都有至少两个子集C.空集是任何集合的真子集D.若∅A,则A≠∅.解析∅⊆∅,故A错;∅只有一个子集,即它本身.所以B错;空集是任何集合的子集,是任何非空集合的真子集,所以C错;而D正确,故选A、B、C.答案ABC4.已知集合A={-1,0,1},则A的子集中,含有元素0的子集共有________个.解析由题意得,含有元素0的集合A的子集有:{0},{0,-1},{0,1},{0,-1,1}共4个.答案 45.已知{0,1}A⊆{-1,0,1},则集合A=________.解析由题意知集合A中一定含有元素0,1,并且A中至少含三个元素,又因为A⊆{-1,0,1},所以A={-1,0,1}.答案{-1,0,1}6.已知A ={x |x 2-3x +2=0},B ={x |ax -2=0},且B ⊆A ,求实数a 组成的集合C . 解析 由x 2-3x +2=0,得x =1,或x =2.∴A ={1,2}.∵B ⊆A ,∴对B 分类讨论如下:①若B =∅,即方程ax -2=0无解,此时a =0.②若B ≠∅,则B ={1}或B ={2}.当B ={1}时,有a -2=0,即a =2;当B ={2}时,有2a -2=0,即a =1.综上可知,符合题意的实数a 所组成的集合C ={0,1,2}.[能力提升]7.(2022·长春模拟)已知集合A ={}x ∈Z | x 2<4,B ={}1,a ,B ⊆A ,则实数a 的取值集合为( )A .{}-2,-1,0B .{}-2,-1C .{-1,0}D .{}-1解析 由题意得,A ={x ∈Z |-2<x <2}={}-1,0,1,∵B ={}1,a ,B ⊆A , ∴实数a 的取值集合为{}-1,0,故选C.答案 C8.已知集合P ={x |x 2=1},集合Q ={x |ax =1},若Q ⊆P ,那么a 的值是________. 解析 P ={-1,1},Q ⊆P ,所以(1)当Q =∅时,a =0.(2)当Q ≠∅时,Q =⎩⎨⎧⎭⎬⎫1a , 所以1a =1或1a=-1, 解之得a =±1.综上知a 的值为0,±1.答案 0,±19.设集合M ={(x ,y )|x +y <0,xy >0}和P ={(x ,y )|x <0,y <0},那么M 与P 的关系为____________ .解析 ∵xy >0,∴x ,y 同号,又x +y <0,∴x <0,y <0,即集合M 表示第三象限内的点,而集合P 表示第三象限内的点,故M =P .答案 M =P10.(2022·怀仁模拟)已知集合A ={} |x -3≤x ≤4,B ={} |x 2m -1<x <m +1.(1)若m =-3,求A ∩B ;(2)若A ∪B =A ,求实数m 的取值范围.解析 (1)m =-3时B ={}x |-7<x <-2,故A ∩B ={} |x -3≤x <-2.(2)因为A ∪B =A ,故B ⊆A ,若2m -1≥m +1即m ≥2时,B =∅,符合;若m <2,则⎩⎪⎨⎪⎧ 2m -1≥-3,m +1≤4,m <2,解得-1≤m <2,综上,m ≥-1.[探索创新]11.若集合A ={x |ax 2+2x +1=0,x ∈R }至多有一个真子集,求a 的取值范围. 解析 ①当A 无真子集时,A =∅,即方程ax 2+2x +1=0无实根,所以⎩⎪⎨⎪⎧a ≠0,Δ=4-4a <0,所以a >1. ②当A 只有一个真子集时,A 为单元素集,这时有两种情况:当a =0时,方程化为2x +1=0,解得x =-12; 当a ≠0时,由Δ=4-4a =0,解得a =1.综上,当集合A 至多有一个真子集时,a 的取值范围是a =0或a ≥1.。
集合间的基本关系-高一数学同步学案(人教A版2019必修第一册)(原卷版)
1.2 集合间的基本关系【学习要求】1.理解集合之间的包含与相等的含义.2.能识别给定集合的子集、真子集,会判断集合间的关系.3.在具体情境中,了解空集的含义并会应用.【思维导图】【知识梳理】一、子集定义:一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集.记法与读法:记作A⊆B(或B⊇A),读作“A含于B”(或“B包含A”).或重要结论:(1)任何一个集合是它本身的子集,即A⊆A.(2)对于集合A,B,C,若A⊆B,且B⊆C,则A⊆C.对子集的理解:(1)“A⊆B”的含义:若x∈A就能推出x∈B.(2)如果集合A中存在着不是集合B的元素,那么集合A 不包含于B,或B不包含A.此时记作A B或B A.(3)注意符号“∈”与“⊆”的区别:“⊆”只用于集合与集合之间,如{0}⊆N,而不能写成{0}∈N;“∈”只能用于元素与集合之间,如0∈N,而不能写成0⊆N.二、集合相等如果集合A是集合B的子集(A⊆B),且集合B是集合A的子集(B⊆A),那么集合A与集合B相等,记作A=B.用Venn图表示如图所示.对集合相等的理解:(1)A=B⇔A⊆B,且B⊆A,这是证明两个集合相等的重要依据;(2)集合相等还可以用元素的观点来定义:只要构成两个集合的元素是一样的,即这两个集合中的元素完全相同,就称这两个集合相等;(3)同一个集合,可以有不同的表示方法,这也是定义两个集合相等的意义所在;三、真子集定义:如果集合A⊆B,但存在元素x∈B,且x∉A,我们称集合A是集合B的真子集.记法:记作A B(或B A).结论:(1)A B且B C,则A C;(2)A⊆B且A≠B,则A B.四、空集定义:我们把不含任何元素的集合,叫做空集.记法:∅规定:空集是任何集合的子集,即∅⊆A特性:(1)空集只有一个子集,即它本身,∅⊆∅(2)∅是任何非空集合的真子集,即若A≠∅,则∅ A【高频考点】高频考点1. 子集、真子集的概念【方法点拨】①集合A中的任何一个元素都是集合B中的元素,即由x∈A能推出x∈B,是判断A⊆B的常用方法.②不能简单地把“A ⊆B ”理解成“A 是B 中部分元素组成的集合”,因为若A =∅时,则A 中不含任何元素;若A =B ,则A 中含有B 中的所有元素.③在真子集的定义中,A ⫋B 首先要满足A ⊆B ,其次至少有一个x ∈B ,但x ∉A .【例1】(2021·梁河县高一月考)下列命题中正确的是( )A .空集没有子集B .空集是任何一个集合的真子集C .任何一个集合必有两个或两个以上的子集D .设集合B A ⊆,那么,若x A ∉,则x B ∉【变式1-1】(2021·江西省吉水县高一期中)在①{}10,1,2⊆;②{}{}10,1,2∈;③{}{}0,1,20,1,2⊆; ④{}0∅⊆ 上述四个关系中,错误的个数是( )A .1个B .2个C .3个D .4个【变式1-2】(2021•宁县校级月考)对于集合A ,B ,“A ⊆B ”不成立的含义是( )A .B 是A 的子集 B .A 中的元素都不是B 的元素C .A 中至少有一个元素不属于BD .B 中至少有一个元素不属于A【变式1-3】[多选题](2021.山东高一期中)下列命题中,正确的有( )A .空集是任何集合的真子集;B .若A ⫋B ,B ⫋C ,则A ⫋C ;C .任何一个集合必有两个或两个以上的真子集;D .如果不属于B 的元素也不属于A ,则A ⊆B【变式1-4】(2021·北京高一期末)已知集合{}{}1,2,3,4,5,61,2,3U A ==,,集合A 与B 的关系如图所示,则集合B 可能是( )A .{}2,4,5B .{}1,2,5C .{}1,6D .{}1,3高频考点2 . 集合的相等与空集【方法点拨】①利用集合相等的定义和集合中的元素的性质去解题.②利用空集的定义去解题.【例2】(2021•雨花区校级月考)[多选题]下列选项中的两个集合相等的有( )A .P ={x |x =2n ,n ∈Z },Q ={x |x =2n +2,n ∈Z }B .P ={x |x =2n ﹣1,n ∈N *},Q ={x |x =2n +1,n ∈N +}C .P ={x |x 2﹣x =0},Q ={x |x,n ∈Z }D .P ={x |y =x +1},Q ={(x ,y )|y =x +1} 【变式2-1】(2021·泰州市第二中学高一期中)已知集合{}{}2,,(),0,||,A x xy x y B x y =+=,若A B =,则223320202020()()()()x y x y x y x y ++++++++的值等于____.【变式2-3】(2021·龙湾高一期中)下列集合是空集的是( )A .{|0x x >或5}x <-B .{}0C .{}20x x ≤D .{}220x x += 【变式2-4】(2021·石家庄市第十八中学高一月考)若集合{}2|10A x ax ax =-+<为空集,则实数a 的取值范围是( )A .(0,4)B .[0,4)C .(0,4]D .[0,4] 高频考点3 . 集合间关系的判断【方法点拨】判断集合关系的方法有三种:①列举法:用列举法将两个集合表示出来,再通过比较两集合中的元素来判断两集合之间的关系. ②元素特征法:根据集合中元素满足的性质特征之间的关系判断.一般地,设A ={x |p (x )},B ={x |q (x )},①若p (x )推出q (x ),则A ⊆B ;②若q (x )推出p (x ),则B ⊆A ;③若p (x ),q (x )互相推出,则A =B ;④若p (x )推不出q (x ),q (x )也推不出p (x ),则集合A ,B 无包含关系.③图示法:利用数轴或Venn 图判断两集合间的关系.【例3】(2021·昆山市高一月考)若集合A ={x |x =5k -1,k ∈Z },B ={x |x =5k +4,k ∈Z },C ={x |x =10k -1,k ∈Z }.则A ,B ,C 的关系是( )A .A ⊆C ⊆B B .A =B ⊆C C .B ⊆A ⊆CD .C ⊆A =B【变式3-1】(2021·河南洛阳市·高一期末)已知集合{}*A 2,n n x x N==∈,{}*2n,n B x x N ==∈,则( )A .AB ⊆ B .B A ⊆C .A B ⋂=∅D .A B =【变式3-2】(2021·云南省大姚县第一中学高一期末)设集合1,4A x x k k Z ⎧⎫==+∈⎨⎬⎩⎭,1,24k B y y k Z ⎧⎫==-∈⎨⎬⎩⎭,则它们之间最准确的关系是( ).A .AB = B .A B ⊄C .A BD .A B ⊆【变式3-3】(2021•九龙坡区校级期中)已知集合A ={x |x 2﹣2x ﹣3≤0},集合B ={x ||x ﹣1|≤3},集合,则集合A ,B ,C 的关系为( ) A .B ⊆A B .A =B C .C ⊆B D .A ⊆C【变式3-4】(2020·浙江省高一课时练习)已知集合{|A x x =是平行四边形},{|B x x =是矩形},{|C x x =是正方形},{|D x x =是菱形},则A .AB ⊆ B .C B ⊆ C .D C ⊆ D .A D ⊆高频考点4. 有限集合子集、真子集的确定【方法点拨】1.确定所求集合,是子集还是真子集.2.求解有限集合的子集问题,关键有三点:(1)确定所求集合;(2)合理分类,按照子集所含元素的个数依次写出;(3)注意两个特殊的集合,即空集和集合本身.3.一般地,若集合A 中有n 个元素,则其子集有2n 个,真子集有2n -1个,非空真子集有2n -2个.【例4】(2021·河北衡水市·高三其他模拟)定义集合A ★B ={,,}xx ab a A b B =∈∈∣,设{2,3},{1,2}A B ==,则集合A ★B 的非空真子集的个数为( )A .12B .14C .15D .16【变式4-1】(2021·通辽新城第一中学高三其他模拟(理))已知集合(){}22,2,,M x y x y x Z y Z =+≤∈∈,则集合M 的真子集的个数为( )A .921-B .821-C .52D .421+ 【变式4-2】(2021·江苏高一期末)已知集合{}212,A x x x Z =-≤∈,则集合A 的子集个数为( )A .0B .1C .2D .4 【变式4-3】(2021·浙江高一期末)已知集合{}2(1)320A xa x x =-+-=∣,若A 的子集个数为2个,则实数a =______.【变式4-4】(2021·河南驻马店市·高一期末)已知集合M 满足{}{}1,21,2,5,6,7M ⊆Ü,则符合条件的集合M 有______个.高频考点5 . 利用集合间的关系求参数【方法点拨】(1)弄清两个集合之间的关系,谁是谁的子集;(2)将集合间的包含关系转化为方程(组)或不等式(组),求出相关参数的值或取值范围.①当集合为连续数集时,常借助数轴来建立不等关系求解,此时应注意端点处是实点还是虚点. ②当集合为不连续数集时,常根据集合包含关系,建立方程求解,此时应注意分类讨论思想的运用.(3)看集合中是否含有参数,若含参数,应考虑参数使该集合为空集的情形;【例5】(2021·西安市经开第一中学高三模拟)集合{1A x x =<-或3}x ≥,{}10B x ax =+≤若B A ⊆,则实数a 的取值范围是( )A .1,13⎡⎫-⎪⎢⎣⎭ B .1,13⎡⎤-⎢⎥⎣⎦ C .()[),10,-∞-⋃+∞ D .()1,00,13⎡⎫-⋃⎪⎢⎣⎭【变式5-1】(2021·上海虹口区·高一期末)若集合2{|560}A x x x =+-=,{|30,}B x ax a =+=∈R ,且B A ⊂,则满足条件的实数a 的取值集合为______.【变式5-2】(2021·浙江高三专题练习)已知集合{}12A x x =≤≤,{}2,B y y x a x A ==+∈,若A B ⊆,则实数a 的取值范围为( )A .[]1,2B .[]2,1--C .[]22-,D .[]1,1-【变式5-3】(2021·霞浦县宏翔高级中学高一月考)已知集合{|25}A x x =-≤≤.(1)若B A ⊆,{|121}B x m x m =+≤≤-,求实数m 的取值范围;(2)若A B ⊆,}1{2|6B x m x m =-≤≤-,求实数m 的取值范围;【变式5-4】(2021•荔湾区高一期中)已知不等式x 2﹣(a +1)x +a ≤0的解集为A .(1)若a =2,求集合A ;(2)若集合A 是集合{x |﹣4≤x ≤2}的真子集,求实数a 的取值范围.高频考点6 . 集合间关系中的新定义问题【方法点拨】【例6】(2021·福清西山学校高二月考)若对任意的x A ∈,则1A x∈,就称A 是“具有伙伴关系”的集合.集合111,0,,,1,2,3,432M ⎧⎫=-⎨⎬⎩⎭的所有非空子集中,具有伙伴关系的集合的个数为___________.【变式6-1】(2021·浙江高一课时练习)已知集合12,A A 满足{1|A x x A =∈或}2x A ∈为集合A 的一种分拆,并规定:当且仅当12A A =时,()12,A A 与()21,A A 为集合A 的同一种分拆,则集合{}1,2,3A =的不同分拆的种数是( ).A .27B .26C .9D .8【变式6-2】(2021•山东期中)若一个集合是另一个集合的子集,则称两个集合构成“鲸吞”;若两个集合有公共元素,且互不为对方子集,则称两个集合构成“蚕食”,对于集合A ={﹣1,2},B ={x |ax 2=2,a ≥0},若这两个集合构成“鲸吞”或“蚕食”,则a 的取值集合为 .【变式6-3】(2021•如皋市校级月考)对于任意两个数x ,y (x ,y ∈N *),定义某种运算“◎”如下:①当或时,x ◎y =x +y ;②当时,x ◎y =xy .则集合A ={(x ,y )|x ◎y =10}的子集个数是( )A .214个B .213个C .211个D .27个【变式6-4】(2021·云南省玉溪第一中学高一月考)设集合{}1,2,3,4I =,若非空集合A 满足:①A I ⊆;②()min()card A A ≤(其中card()A 表示集合A 中元素的个数,min()A 表示集合A 中的最小元素),则称A 为I 的一个好子集,I 的所有好子集的个数为____________.易错点1. 误解集合间的关系而致错【方法点拨】判断集合之间的关系不能仅凭表面的理解,应当注意观察集合中的元素之间的关系.集合之间一般为包含或相等、不等关系,但有时也可能为属于关系.解题时要思考两个问题:(1)两个集合中的元素分别是什么;(2)两集合中元素之间的关系是什么.【例1】已知集合2{0,1,}=A a ,{1,0,23}=+B a ,若A B =,则a 等于( )A .-1或3B .0或-1C .3D .-1【变式1】设,x y ∈R ,{(,)|}A x y y x ==,(,)|1y B x y x ⎧⎫==⎨⎬⎩⎭,则A ,B 的关系是________.【变式2】已知集合{}101M =-,,,{},,N x x ab a b M a b ==∈≠且,则集合M 与集合N 的关系是__________.数学思想1. 分类讨论思想的应用【方法点拨】分类讨论,通俗地讲,就是“化整为零,各个击破”.分类讨论要弄清楚是依据哪个参数进行分类的,采用的标准是什么.分类讨论的原则是:(1)不重不漏;(2)一次分类只能按所确定的同一个标准进行.1.两个集合相等,则所含元素完全相同,与顺序无关,但要注意检验,排除与集合元素互异性或与已知相矛盾的情形.2.若两个集合中元素均为无限多个,要看两集合的代表元素是否一致,且看代表元素满足条件是否一致,若均一致,则两集合相等.【例1】集合{}11A x x =-≤≤,{}121B x a x a =-≤≤-,若B A ⊆,则实数a 的取值范围是( )A .1a …B .1a <C .01a 剟D . 01a << 【变式1】已知集合{}12A x ax =<<,{}11B x x =-<<,求满足A B ⊆的实数a 的取值范围.【变式2】已知集合{|12},{|||1}A x ax B x x =<<=<,是否存在实数a ,使得A B ⊆.若存在,求出实数a 的取值范围;若不存在,请说明理由.【课后训练】全卷共22题 满分:150分 时间:120分钟一、选择题:本题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一项是符合题目要求的.1.(2021•东湖区高一期中)下列各式:①{a }⊆{a }②Ø⫋{0}③0⊆{0}④{1,3}⫋{3,4},其中正确的有( )A .②B .①②C .①②③D .①③④2.(2021·凌海市第三高级中学高二月考)下列集合中表示同一集合的是( )A .(){}3,2M =,(){}2,3N = B .{}3,2M =,{}2,3N = C .(){},1M x y x y =+=,{}1N y x y =+= D .{}1,2M =,(){}1,2N =3.(2021·陕西西安市·西安一中高一月考)设集合2141,,,44k k M x x k Z N x x k Z ππ⎧⎫⎧⎫-±==∈==∈⎨⎬⎨⎬⎩⎭⎩⎭,则集合,M N 的关系为( ) A .M N Ü B .M N = C .N M Ü D .M N M ⋃=4.(2020·山东省莱州一中高二月考)设{,}A a b =,{,,,,,}B a b c d e f =,集合M 满足A M B苘(都是真包含),这样的集合有( )A .12个B .14个C .13个D .以上都错 5.(2021·浙江高三专题练习)已知集合{}{}|1,2,3A a a =⊆,则A 的真子集个数为( ) A .7 B .8 C .255 D .256 6.(2021·河北石家庄市·高三二模)已知集合0,,a A a b b ⎧⎫=+⎨⎬⎩⎭,{}0,1,1B b =-,(a ,b R ∈),若A B =,则2+a b =( )A .2-B .2C .1-D .1 7.(2021·全国高三专题练习)已知集合2023x A x x ⎧⎫-=≤⎨⎬+⎩⎭,集合{}121B x m x m =-≤≤+,若B A ⊆,则m 的取值范围为( )A .11,22⎡⎤-⎢⎥⎣⎦B .()11,2,22⎛⎫-∞-⋃- ⎪⎝⎭C .()11,2,22⎡⎤-∞-⋃-⎢⎥⎣⎦D .()11,2,22⎛⎤-∞-⋃- ⎥⎝⎦ 8.(2021·浙江高三三模)已知集合{}21A x x =-≤≤-,{}2,B y y x a x A ==-+∈,若A B ⊆,则实数a 的取值范围是( )A .[]5,4--B .[]4,5C .[]3,6--D .[]3,6 二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.(2021·石家庄市高一月考)已知集合{}220,A x ax x a a R =++=∈,若集合A 有且仅有两个子集,则a 的值是( )A .1B .1-C .0D .210.(2021·广东汕尾市·高一期末)已知集合{}2,2,{2}A B x kx =-==,且B A ⊆,则实数k 的取值可以为( )A .1-B .0C .1D .211.(2021·广东湛江市·高三二模)已知集合{}23180A x x x =∈--<R ,{}22270B x x ax a =∈++-<R ,则下列命题中正确的是( )A .若AB =,则3a =-B .若A B ⊆,则3a =-C .若B =∅,则6a ≤-或6a ≥D .若B A Ü时,则63a -<≤-或6a ≥ 12.(2021·深圳第二外国语学校高一开学考试)若集合A 具有以下性质:①集合中至少有两个元素;②若{,}x y A ⊆,则xy ,x y A +∈,且当0x ≠ 时,y A x∈,则称集合A 是“紧密集合”以下说法正确的是( )A .整数集是“紧密集合”B .实数集是“紧密集合”C .“紧密集合”可以是有限集D .若集合A 是“紧密集合”,且x ,y A Î,则x y A -∈ 三、填空题:本题共4小题,每小题5分,共20分.13.(2020·江苏高一课时练习)已知集合2={320}A x ax x -+=,若A ≠∅,则实数a 的取值范围为___.14.(2021·上海黄浦区·格致中学高一期中)定义:对于非空集合A ,若元素x A ∈,则必有()m x A -∈,则称集合A 为“m 和集合”.已知集合={1,2,3,4,5,6,7}B ,则集合B 所有子集中,是“8和集合”的集合有_____个. 15.(2021·河北石家庄市·高一月考)已知{}22530,{1}M x x x N x mx =--===∣∣,若N M ⊆,则适合条件的实数m 的集合P 为________,P 的子集有______个;P 的非空真子集有________个. 16.(2021.广东高三专题练习)设数集32|,|43M m m x m N n n x n ⎧⎫⎧⎫=≤≤+=-≤≤⎨⎬⎨⎬⎩⎭⎩⎭,且M ,N 都是集合{|01}x x ≤≤的子集,如果把b a -叫做数集{|}x a x b ≤≤的长度,那么集合M N ⋂的长度的最小值是_________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(2020·全国高一课时练习)写出下列每组中集合之间的关系:(1)A ={x |-3≤x <5},B ={x |-1<x <2}.(2)A ={x |x =2n -1,n ∈N *},B ={x |x =2n +1,n ∈N *}.(3)A ={x |x 是平行四边形},B ={x |x 是菱形},C ={x |x 是四边形},D ={x |x 是正方形}.(4)A ={x |-1≤x <3,x ∈Z },B ={x |x =y ,y ∈A }.18.(2021·甘肃省武威高一期中)已知集合{}{}{}21,2,0,10A B x x ax b C x cx ==++==+=∣. (1)若A B =,求+a b 的值;(2)若C A ⊆,求常数c 所有可能的取值组成的集合.19.(2021·霍邱县第一中学高一月考)设集合{}21,1,33A a a a =--+-,{}2210B x x x =-+=,(){}210C x x a x a =-++=.(1)讨论集合B 与C 的关系;(2)若0a <,且C A ⊆,求实数a 的值.20.(2021·辽宁高一课时练习)设集合{}12,A x a x a a =-<<∈R ,不等式 2280x x --<的解集为B .(1)当0a =时,求集合A ,B .(2)当A B ⊆时,求实数a 的取值范围.21.(2021•武汉高一期中)已知关于x 不等式x 2﹣2mx +m +2≤0(m ∈R )的解集为M .(1)[1,2]⊆M ,求实数m 的取值范围;(2)当M 不为空集,且M ⊆[1,4]时,求实数m 的取值范围.22.(2021•南阳高一期中)集合A={x|﹣3≤x≤7},B={x|m+1≤x≤2m﹣1}.(1)若B⊆A,求实数m的取值范围;(2)当x∈R时,没有元素x使x∈A与x∈B同时成立,求实数m的取值范围.。
(新教材学案)第1章1.2集合间的基本关系含答案
1.2集合间的基本关系学习任务核心素养1.理解集合之间的包含与相等的含义.(重点)2.能识别给定集合的子集、真子集,会判断集合间的关系.(难点、易混点) 3.在具体情境中,了解空集的含义.(难点)1.通过对集合之间包含与相等的含义以及子集、真子集概念的理解,培养数学抽象素养.2.借助子集和真子集的求解,培养数学运算素养.一所学校中,所有同学组成的集合记为A,而高一年级同学组成的集合为B,你觉得集合A和B之间有怎样的关系?你能从集合元素的角度分析它们的关系吗?知识点1子集、真子集、集合的相等(1)Venn图用平面上封闭曲线的内部代表集合,这种图称为Venn图.(2)两个集合之间的关系①子集.②集合相等.③真子集.(3)子集的性质①任何一个集合是它本身的子集,即A⊆A.②对于集合A,B,C,如果A⊆B,且B⊆C,那么A⊆C.1.(1)任何两个集合之间是否有包含关系?(2)符号“∈”与“⊆”有何不同?[提示](1)不一定.如集合A={0,1,2},B={-1,0,1},这两个集合就没有包含关系.(2)符号“∈”表示元素与集合间的关系;而“⊆”表示集合与集合之间的关系.1.已知集合P={-1,0,1,2},Q={-1,0,1},则()A.P∈Q B.P⊆QC.Q P D.Q∈PC[∵-1,0,1均在集合P、Q中,而2∈P且2∉Q,∴Q P,结合选项可知C正确.]2.已知集合A={x|x2-3x+2=0},B={1,2},C={x|x<8,x∈N},用适当的符号填空:(1)A________B;(2)A________C;(3){2}________C;(4)2________C.(1)=(2)(3)(4)∈[集合A为方程x2-3x+2=0的解集,即A={1,2},而C={x|x<8,x∈N}={0,1,2,3,4,5,6,7}.故(1)A=B;(2)A C;(3){2}C;(4)2∈C.](1)方程x2+1=0的实数根组成的集合如何表示?(2)你认为可以规定∅是任意一个集合的子集吗?知识点2空集(1)定义:不含任何元素的集合叫做空集,记为∅.(2)规定:空集是任何集合的子集.2.∅与0,{0},{∅}有何区别?[提示]∅与0∅与{0}∅与{∅} 相同点都表示无的意思都是集合都是集合不同点∅是集合;0是实数∅不含任何元素;{0}含一个元素0∅不含任何元素;{∅}含一个元素,该元素是∅关系0∉∅∅{0}∅{∅} 空集是任何非空集合的真子集.3.思考辨析(正确的画√,错误的画×)(1)∅和{∅}都表示空集.()(2)任何集合都有子集和真子集.()(3)集合{x|x2+1=0,x∈R}=∅.()[答案](1)×(2)×(3)√4.下列四个集合中,是空集的为()A.{0}B.{x|x>8,且x<5}C.{x∈N|x2-1=0}D.{x|x>4}B[满足x>8且x<5的实数不存在,故{x|x>8,且x<5}=∅.]类型1子集、真子集的个数问题【例1】(对接教材P8例题)填写下表,并回答问题:集合集合的子集子集的个数∅{a}{a,b}{a,b,c}由此猜想:含n个元素的集合{a1,a2,…,a n}的所有子集的个数是多少?真子集的个数及非空真子集的个数呢?[解]集合集合的子集子集的个数∅∅ 1{a}∅,{a} 2{a,b}∅,{a},{b},{a,b} 4{a,b,c}∅,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}8由此猜想:含n个元素的集合{a1,a2,…,a n}的所有子集的个数是2n,真子集的个数是2n-1,非空真子集的个数是2n-2.子集、真子集个数有关的4个结论假设集合A中含有n个元素,则有(1)A的子集的个数有2n个;(2)A的非空子集的个数有2n-1个;(3)A的真子集的个数有2n-1个;(4)A的非空真子集的个数有2n-2个.[跟进训练]1.已知集合M满足:{1,2}M⊆{1,2,3,4,5},写出集合M所有的可能情况.[解]由题意可以确定集合M必含有元素1,2,且至少含有元素3,4,5中的一个,因此依据集合M的元素个数分类如下:含有3个元素:{1,2,3},{1,2,4},{1,2,5};含有4个元素:{1,2,3,4},{1,2,3,5},{1,2,4,5};含有5个元素:{1,2,3,4,5}.故满足条件的集合M为{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5}.类型2集合间关系的判断【例2】判断下列各组中集合之间的关系:(1)A={x|x是12的约数},B={x|x是36的约数};(2)A={x|x是平行四边形},B={x|x是菱形},C={x|x是四边形},D={x|x 是正方形};(3)A={x|-1<x<4},B={x|x<5}.[解](1)因为若x是12的约数,则必定是36的约数,反之不成立,所以A B.(2)由图形的特点可画出Venn图如图所示,从而D B A C.(3)易知A中的元素都是B中的元素,但存在元素,如-2∈B,但-2∉A,故A B.判断集合关系的方法(1)观察法:一一列举观察.(2)元素特征法:首先确定集合的元素是什么,弄清集合元素的特征,再利用集合元素的特征判断关系.(3)数形结合法:利用数轴或Venn图.提醒:若A⊆B和A B同时成立,则A B更能准确表达集合A,B之间的关系.[跟进训练]2.能正确表示集合M={x∈R|0≤x≤2}和集合N={x∈R|x2-x=0}关系的Venn图是()B[解x2-x=0得x=1或x=0,故N={0,1},易得N M,其对应的Venn 图如选项B所示.]类型3 由集合间的关系求参数【例3】 已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B A ,求实数m 的取值范围.判断B 是否是空集,由此借助数轴分类求解实数m 的取值范围.[解] (1)当B =∅时, 由m +1>2m -1,得m <2. (2)当B ≠∅时,如图所示.∴⎩⎨⎧m +1≥-2,2m -1<5,2m -1≥m +1或⎩⎨⎧m +1>-2,2m -1≤5,2m -1≥m +1,解这两个不等式组,得2≤m ≤3. 综上可得,m 的取值范围是{m |m ≤3}.若本例条件“A ={x |-2≤x ≤5}”改为“A ={x |-2<x <5}”,其他条件不变,求m 的取值范围.[解] (1)当B =∅时,由m +1>2m -1,得m <2. (2)当B ≠∅时,如图所示,∴⎩⎨⎧m +1>-2,2m -1<5,m +1≤2m -1,解得⎩⎨⎧m >-3,m <3,m ≥2,即2≤m <3,综上可得,m 的取值范围是{m |m <3}.利用集合的关系求参数问题(1)利用集合的关系求参数的范围问题,常涉及两个集合,其中一个为动集合(含参数),另一个为静集合(具体的),解答时常借助数轴来建立变量间的关系,需特别注意端点问题.(2)空集是任何集合的子集,因此在解A⊆B(B≠∅)的含参数的问题时,要注意讨论A=∅和A≠∅两种情况,前者常被忽视,造成思考问题不全面.[跟进训练]3.已知集合A={x|x2+x-6=0},B={x|mx+1=0},B A,求m的值.[解]A={x|x2+x-6=0}={-3,2}.因为B A,所以B={-3}或B={2}或B=∅.当B={-3}时,由m·(-3)+1=0,得m=1 3.当B={2}时,由m·2+1=0,得m=-1 2.当B=∅时,m=0.综上所述,m=13或m=-12或m=0.1.下列六个关系式:①{a,b}={b,a};②{a,b}⊆{b,a};③∅={∅};④{0}=∅;⑤∅{0};⑥0∈{0}.其中正确的个数是()A.1B.3C.4D.6C[①②⑤⑥正确,③④错误,故选C.]2.集合{1,2}的子集有()A.4个B.3个C.2个D.1个A[集合{1,2}的子集有∅,{1},{2},{1,2},共4个.]3.已知集合A={x|1≤x<6},B={x|x+3≥4},则A与B的关系是() A.A B B.A=BC.B A D.B⊆AA[∵A={x|1≤x<6},B={x|x≥1},∴A B.故选A.]4.已知集合A={3,m},B={3,4},若A=B,则实数m=________.4[由A=B可知,m=4.]5.已知集合A={x|1≤x≤2},B={x|1≤x≤a,a≥1}.(1)若A B,则a的取值范围为________;(2)若B⊆A,则a的取值范围为________.(1){a|a>2}(2){a|1≤a<2}[(1)若A B,则集合A中的元素都在集合B中,且B中有不在A中的元素,则a>2.(2)若B⊆A,则集合B中的元素都在集合A中,则a≤2.因为a≥1,所以1≤a≤2.]回顾本节知识,自我完成以下问题:1.两个集合间的基本关系有哪些,如何判断两个集合间的关系?[提示]两个集合间的基本关系有子集、真子集和相等.常借助元素分析法及数轴法分析两个集合间的关系.2.空集同任意集合A之间存在怎样的关系?[提示](1)∅⊆A,(2)∅A(A≠∅).3.包含关系与属于关系的使用条件分别是什么?[提示]包含关系是集合与集合间的关系,而属于关系是元素与集合的关系,两者不可混用.。
2022高考数学(文)总复习学案-集合及其运算-含答案
第1讲集合及其运算1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号N N*(或N+)Z Q R[注意]N为自然数集(即非负整数集),包含0,而N*和N+的含义是一样的,表示正整数集,不包含0.2.集合间的基本关系表示关系自然语言符号语言Venn图子集集合A中所有元素都在集合B中(即若x∈A,则x∈B)A⊆B(或B⊇A)真子集集合A是集合B的子集,且集合B中至少有一个元素不在集合A中A B(或B A)集合相等集合A,B中元素相同A=B3.集合的基本运算集合的并集集合的交集集合的补集图形语言符号语言A∪B={x|x∈A或x∈B}A∩B={x|x∈A且x∈B}∁U A={x|x∈U且x∉A}4.集合的运算性质(1)A∩A=A,A∩∅=∅,A∩B=B∩A.(2)A∪A=A,A∪∅=A,A∪B=B∪A.(3)A∩(∁U A)=∅,A∪(∁U A)=U,∁U(∁U A)=A.常用结论(1)对于有限集合A,其元素个数为n,则集合A的子集个数为2n,真子集个数为2n-1,非空真子集个数为2n-2.(2)A⊆B⇔A∩B=A⇔A∪B=B⇔∁U A⊇∁U B.(3)∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B).一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.()(2)若{x2,1}={0,1},则x=0,1.()(3){x|x≤1}={t|t≤1}.()(4)对于任意两个集合A,B,(A∩B)⊆(A∪B)恒成立.()(5)若A∩B=A∩C,则B=C.()答案:(1)×(2)×(3)√(4)√(5)×二、易错纠偏常见误区|(1)忽视集合中元素的互异性致误;(2)忽视空集的情况致误;(3)忽视区间端点值致误.1.已知集合A={1,3,m},B={1,m},若B⊆A,则m=________.解析:因为B⊆A,所以m=3或m=m,即m=3或m=0或m=1,根据集合元素的互异性可知,m≠1,所以m=0或3.答案:0或32.已知集合M={x|x-2=0},N={x|ax-1=0},若M∩N=N,则实数a 的值是________.解析:易得M={2}.因为M∩N=N,所以N⊆M,所以N=∅或N=M,所以a=0或a=12.答案:0或1 23.已知集合A={x|x2-4x+3<0},B={x|2<x<4},则A∩B=________,A∪B=________,(∁R A)∪B=________.解析:由已知得A={x|1<x<3},B={x|2<x<4},所以A∩B={x|2<x<3},A∪B={x|1<x<4},(∁R A)∪B={x|x≤1或x>2}.答案:(2,3)(1,4)(-∞,1]∪(2,+∞)集合的概念(自主练透)1.设集合A={0,1,2,3},B={x|-x∈A,1-x∉A},则集合B中元素的个数为()A.1B.2C.3 D.4解析:选A.若x∈B,则-x∈A,故x只可能是0,-1,-2,-3,当0∈B时,1-0=1∈A ;当-1∈B 时,1-(-1)=2∈A ; 当-2∈B 时,1-(-2)=3∈A ; 当-3∈B 时,1-(-3)=4∉A ,所以B ={-3},故集合B 中元素的个数为1.2.已知集合A ={x |x ∈Z ,且32-x ∈Z },则集合A 中的元素个数为( )A .2B .3C .4D .5解析:选C .因为32-x∈Z ,所以2-x 的取值有-3,-1,1,3,又因为x ∈Z ,所以x 的值分别为5,3,1,-1,故集合A 中的元素个数为4.3.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________. 解析:由题意得m +2=3或2m 2+m =3,则m =1或m =-32.当m =1时,m +2=3且2m 2+m =3,根据集合中元素的互异性可知不满足题意;当m =-32时,m +2=12,而2m 2+m =3,符合题意,故m =-32. 答案:-32 4.设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =________.解析:因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,ba ,b ,a ≠0,所以a +b =0,则ba =-1,所以a =-1,b =1.所以b -a =2.答案:2解决集合概念问题的3个关键点(1)确定构成集合的元素; (2)确定元素的限制条件;(3)根据元素特征(满足的条件)构造关系式解决相应问题.[提醒] 含字母的集合问题,在求出字母的值后,需要验证集合的元素是否满足互异性.集合的基本关系(典例迁移)(1)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则( ) A .B ⊆A B .A =B C .ABD .BA(2)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4(3)已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,则实数m 的取值范围为________.【解析】 (1)由x 2-3x +2=0得x =1或x =2,所以A ={1,2}.由题意知B ={1,2,3,4},比较A ,B 中的元素可知AB ,故选C .(2)因为A ={1,2},B ={1,2,3,4},A ⊆C ⊆B ,则集合C 可以为{1,2},{1,2,3},{1,2,4},{1,2,3,4},共4个.(3)因为B ⊆A ,所以①若B =∅,则2m -1<m +1,此时m <2. ②若B ≠∅,则⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5.解得2≤m ≤3.由①②可得,符合题意的实数m 的取值范围为m ≤3. 【答案】 (1)C (2)D (3)(-∞,3] 【迁移探究1】 (变条件)本例(3)中,若B A ,求m 的取值范围?解:因为BA ,①若B =∅,成立,此时m <2.②若B ≠∅,则⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5,且边界点不能同时取得,解得2≤m ≤3.综合①②,m 的取值范围为(-∞,3].【迁移探究2】 (变条件)本例(3)中,若A ⊆B ,求m 的取值范围. 解:若A ⊆B ,则⎩⎪⎨⎪⎧m +1≤-2,2m -1≥5,即⎩⎪⎨⎪⎧m ≤-3,m ≥3.所以m 的取值范围为∅.【迁移探究3】 (变条件)若将本例(3)中的集合A 改为A ={x |x <-2或x >5},试求m 的取值范围.解:因为B ⊆A ,所以①当B =∅时,2m -1<m +1,即m <2,符合题意. ②当B ≠∅时,⎩⎪⎨⎪⎧m +1≤2m -1,m +1>5或⎩⎪⎨⎪⎧m +1≤2m -1,2m -1<-2,解得⎩⎨⎧m ≥2,m >4或⎩⎪⎨⎪⎧m ≥2,m <-12.即m >4.综上可知,实数m 的取值范围为(-∞,2)∪(4,+∞).[提醒] 题目中若有条件B ⊆A ,则应分B =∅和B ≠∅两种情况进行分类讨论.1.设集合M ={x |x 2-x >0},N =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫1x <1,则()A .MNB .N MC .M =ND .M ∪N =R解析:选C .集合M ={x |x 2-x >0}={x |x >1或x <0},N =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫1x <1={x |x >1或x <0},所以M =N .故答案为C .2.设M 为非空的数集,M ⊆{1,2,3},且M 中至少含有一个奇数元素,则这样的集合M 共有( )A .6个B .5个C .4个D .3个解析:选A .由题意知,M ={1},{3},{1,2},{1,3},{2,3},{1,2,3},共6个.3.若集合A ={1,2},B ={x |x 2+mx +1=0,x ∈R },且B ⊆A ,则实数m 的取值范围为________.解析:①若B =∅,则Δ=m 2-4<0, 解得-2<m <2,符合题意; ②若1∈B ,则12+m +1=0,解得m =-2,此时B ={1},符合题意; ③若2∈B ,则22+2m +1=0,解得m =-52,此时B =⎩⎨⎧⎭⎬⎫2,12,不合题意. 综上所述,实数m 的取值范围为[-2,2). 答案:[-2,2)集合的基本运算(多维探究) 角度一 集合的运算(1)(2020·高考全国卷Ⅰ)已知集合A ={x |x 2-3x -4<0},B ={-4,1,3,5},则A ∩B =( )A .{-4,1}B .{1,5}C .{3,5}D .{1,3}(2)(2021·东北三校第一次联考)已知全集U =R ,集合A ={x |x 2-2x -3<0},B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1x >1,则∁U (A ∪B )= ( ) A .(-∞,-1)∪(3,+∞) B .(-∞,-1]∪[3,+∞) C .[3,+∞)D .(-∞,-1]∪[1,+∞)(3)(2020·高考全国卷Ⅲ)已知集合A ={(x ,y )|x ,y ∈N *,y ≥x },B ={(x ,y )|x +y =8},则A ∩B 中元素的个数为( )A .2B .3C .4D .6【解析】 (1)方法一:由x 2-3x -4<0,得-1<x <4,即集合A ={x |-1<x <4},又集合B ={-4,1,3,5},所以A ∩B ={1,3},故选D .方法二:因为(-4)2-3×(-4)-4>0,所以-4∉A ,故排除A ;又12-3×1-4<0,所以1∈A ,则1∈(A ∩B ),故排除C ;又32-3×3-4<0,所以3∈A ,则3∈(A ∩B ),故排除B .故选D .方法三:观察集合A与集合B,发现3∈A,故3∈(A∩B),所以排除选项A 和B,又52-3×5-4>0,所以5∉A,5∉(A∩B),排除C.故选D.(2)由已知,得A={x|-1<x<3},B={x|0<x<1},所以A∪B={x|-1<x <3},所以∁U(A∪B)={x|x≤-1或x≥3},故选B.(3)由题意得,A∩B={(1,7),(2,6),(3,5),(4,4)},所以A∩B中元素的个数为4,选C.【答案】(1)D(2)B(3)C集合运算的常用方法(1)若集合中的元素是离散的,常用Venn图求解.(2)若集合中的元素是连续的实数,则用数轴表示,此时要注意端点的情况.角度二利用集合的运算求参数(1)(2020·高考全国卷Ⅰ)设集合A={x|x2-4≤0},B={x|2x+a≤0},且A∩B={x|-2≤x≤1},则a=()A.-4 B.-2C.2 D.4(2)(2021·福州市适应性考试)已知集合A={(x,y)|2x+y=0},B={(x,y)|x +my+1=0}.若A∩B=∅,则实数m=()A.-2 B.-1 2C.12D.2【解析】(1)方法一:易知A={x|-2≤x≤2},B={x|x≤-a2},因为A∩B={x|-2≤x≤1},所以-a2=1,解得a=-2.故选B.方法二:由题意得A={x|-2≤x≤2}.若a=-4,则B={x|x≤2},又A={x|-2≤x≤2},所以A∩B={x|-2≤x≤2},不满足题意,排除A;若a=-2,则B ={x |x ≤1},又A ={x |-2≤x ≤2},所以A ∩B ={x |-2≤x ≤1},满足题意;若a =2,则B ={x |x ≤-1},又A ={x |-2≤x ≤2},所以A ∩B ={x |-2≤x ≤-1},不满足题意,排除C ;若a =4,则B ={x |x ≤-2},又A ={x |-2≤x ≤2},所以A ∩B ={x |x =-2},不满足题意.故选B .(2)因为A ∩B =∅,所以直线2x +y =0与直线x +my +1=0平行,所以m =12,故选C .【答案】 (1)B (2)C利用集合的运算求参数的值或取值范围的方法(1)对于与不等式有关的集合,一般利用数轴解决,要注意端点值能否取到; (2)若集合能一一列举,则一般先用观察法得到不同集合中元素之间的关系,再列方程(组)求解.[提醒] 在求出参数后,注意对结果的验证(满足互异性).1.(2021·河北九校第二次联考)已知集合A ={x |x 2-x -2<0,x ∈Z },B ={y |y =2x ,x ∈A },则A ∪B =( )A .{1}B .{0,1,2}C .⎩⎨⎧⎭⎬⎫12,1,2,4D .{0,1,2,4}解析:选B .A ={x |-1<x <2,x ∈Z }={0,1},B ={y |y =2x ,x ∈A }={1,2},所以A ∪B ={0,1,2},故选B .2.(2021·四省八校第二次质量检测)若全集U =R ,集合A =(-∞,-1)∪(4,+∞),B ={x ||x |≤2},则如图阴影部分所表示的集合为( )A .{x |-2≤x <4}B .{x |x ≤2或x ≥4}C.{x|-2≤x≤-1} D.{x|-1≤x≤2}解析:选D.∁U A={x|-1≤x≤4},B={x|-2≤x≤2},则所求阴影部分所表示的集合为C,则C=(∁U A)∩B={x|-1≤x≤2}.3.(2021·广东省七校联考)设集合A={1,2,4},B={x|x2-4x+m=0},若A∩B={1},则B=()A.{1,-3} B.{1,0}C.{1,3} D.{1,5}解析:选C.由题意可得1-4+m=0,解得m=3,所以B={x|x2-4x+3=0}={1,3},故选C.核心素养系列1数学抽象——集合的新定义问题以集合为背景的新定义问题常以“问题”为核心,以“探究”为途径,以“发现”为目的,这类试题只是以集合为依托,考查考生对新概念的理解,充分体现了核心素养中的数学抽象.若集合A具有以下性质:(1)0∈A,1∈A;(2)若x∈A,y∈A,则x-y∈A,且x≠0时,1x∈A.则称集合A是“好集”.给出下列说法:①集合B={-1,0,1}是“好集”;②有理数集Q是“好集”③设集合A 是“好集”,若x∈A,y∈A,则x+y∈A.其中,正确说法的个数是() A.0B.1C.2 D.3【解析】①集合B不是“好集”,假设集合B是“好集”,因为-1∈B,1∈B,所以-1-1=-2∈B,这与-2∉B矛盾.②有理数集Q是“好集”,因为0∈Q,1∈Q,对任意的x∈Q,y∈Q,有x-y∈Q,且x≠0时,1x∈Q,所以有理数集Q是“好集”.③因为集合A是“好集”,则0∈A,由性质(2)知,若y∈A,则0-y∈A,知-y∈A,因此x-(-y)=x+y∈A,所以③正确.故正确的说法是②③.故选C.【答案】 C解决集合的新定义问题的两个切入点(1)正确理解新定义.这类问题不是简单的考查集合的概念或性质问题,而是以集合为载体的有关新定义问题.常见的命题形式有新概念、新法则、新运算等;(2)合理利用集合性质.运用集合的性质(如元素的性质、集合的运算性质等)是破解新定义型集合问题的关键.在解题时要善于从题设条件给出的数式中发现可以使用集合性质的一些因素,但关键之处还是合理利用集合的运算与性质.1.如果集合A满足若x∈A,则-x∈A,那么就称集合A为“对称集合”.已知集合A={2x,0,x2+x},且A是对称集合,集合B是自然数集,则A∩B=________.解析:由题意可知-2x=x2+x,所以x=0或x=-3.而当x=0时不符合元素的互异性,所以舍去.当x=-3时,A={-6,0,6},所以A∩B={0,6}.答案:{0,6}2.设A,B是非空集合,定义A⊗B={x|x∈A∪B且x∉A∩B}.已知集合A ={x|0<x<2},B={y|y≥0},则A⊗B=________.解析:由已知A={x|0<x<2},B={y|y≥0},又因为新定义A⊗B={x|x∈A∪B且x∉A∩B},结合数轴得A⊗B={0}∪[2,+∞).答案:{0}∪[2,+∞)。
金榜新学案高一数学必修1精品课件:2 集合间的基本关系
{0};⑤{0,1}={(0,1)};⑥0={0}.
A.1
B.2
C.3
D.4
数学 必修1
第一章 集合与函数概念
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
(2)指出下列各组集合之间的关系: ① A = { - 1,1} , B = {( - 1 , - 1) , ( - 1,1) , (1 , - 1) , (1,1)}; ②A={x|x是等边三角形},B={x|x是等腰三角形}; ③M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.
数学 必修1
第一章 集合与函数概念
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
[提示] (1)有关系.集合A中的每一个元素都属于集合C, 集合B中的1,2属于集合C,7不属于集合C.
(2)有关系.集合D中的每一个元素都属于集合EБайду номын сангаас (3)有关系.集合Q中的每一个元素都属于集合P.
数学 必修1
真子集
文字语言
符号语言
对于两个集合A,B,如果集
合A是集合B的__子__集____,且 在集合B中_存__在____一个元素 不是集合A的元素,我们称集
若集合_A_⊆__B_,但x_∈__B_, 且__x_∉_A___,则A B(或B
A)(读作“A真包含于
B”或“B真包含A”)
合A是集合B的真子集
图形语言
2.符号语言:若A⊆B,又B⊆A,则A=B.
数学 必修1
第一章 集合与函数概念
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
集合相等的实质 如果集合A与集合B中的元素完全相同,则称集合A与集合 B相等.如果两集合相等,则所含元素完全相同,与元素顺序 无关.
《集合间的基本关系》学案
《集合间的关系》同步学案一、课前预习新知(一)预习目标:初步理解集合之间的包含与相等关系,能识别给定集合的子集.(二)预习内容:阅读教材填空:(1)一般的,对于两个集合A 、B,如果集合A中的每一个元素都是集合B中的元素那么集合A叫做集合B的,记作或.当集合A不包含于集合B时,记作A B,用Venn图表示两个集合间的“包含”关系.A (2)集合与集合之间的“相等”关系, 若,则B (3)真子集的概念:.(4)任何一集合都是它自身的.(5)空集的概念:.记作空集是任何集合的,是任何非空集合的.二、课内探究新知(一)学习目标1.运用类比的方法,对照实数的相等与不等的关系,探究集合之间的包含与相等关系2.能识别给定集合的子集.3.能利用Venn图表达集合间的关系;探索Venn图对理解抽象概念的作用.(二)学习过程1.核对预习学案中的答案2.完成下列问题用适当的符号填空:(1)a {a,b,c} (2)0 {x︱x2=0}(3)φ{x∈R︱x2+1=0}, (4){0,1} N(5){0} {x︱x2=x} (6){2,1} {x︱x2-3x+2=0}(7)已知集合A={x︱2x-3< 3x},B={x︱x ≥2},则有:-4 B -3 A {2} B B A(8)已知集合A={ x︱x2-1=0},则有:1 A,{-1} A ,¢ A ,{-1,1} A(9){x︱x是菱形} {x︱x 是平行四边形} ;{x︱x是等腰三角形} {x︱x是等边三角形}思考:包含关系{a}⊆A与属于关系a A∈有什么区别?试结合实例作出解释.3.例题例1.观察实例,写出下列集合间的关系.(1)A={1,3},B={1,3,5,7}(2)A={高一全体女生},B={高一全体学生}(3)A={x︱x是矩形},B={x︱x是平行四边形}(4)A=N,B=Q(5)A={x︱x>3},B={x︱x>5},C={x︱x>7}(6)A={x︱(x+2)(x+1)=0},B={-1,-2}变式训练1.判断:集合 A 是否为集合 B 的子集,若是则在()打√,若不是则在()打×.(1){}A=1,35,,{}B=1,2,3,4,5,6;( )(2){}A=1,2,3,{}B=1,3,6,9;( )(3){}A=0, {}2B=x x +2=0}; ( ) (4){}A=a,b,c,d , {}B=d,b,c,a . ( )例2. 写出集合{a ,b }的所有子集,并指出哪些是它的真子集?变式训练2. 写出集合{a ,b ,c }的所有子集,并指出哪些是它的真子集?例3. 已知集合A={x ︱x > b }, B={x ︱x > 3},若B A ⊇,,则求实数b 的范围 ?变式训练3.已知集合A={x ︱2-x<0}, B={x ︱ax =1},若A B ⊆,,则求实数a 的范围 ?(三)当堂检测1.下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-= C .}0|{2≤x x D .},01|{2R x x x x ∈=+- 2. 写出满足{3,4} P ⊆{0,1,2,3,4}的所有集合P .3.已知集合A={-1,21x -,3},B={3, 2x }若B A ⊇,则求实数x .三、课后练习巩固新知1.集合A={x|0≤x<3且x∈Z}的真子集的个数是()A.5 B.6 C.7 D.82.已知集合A={x|-1<x<2},B={x|0<x<1},则()A.A>B B.A<B C.B⊆A D.A⊆B3.下列说法:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若ØA,则A≠Ø.其中正确的有()A.0个B.1个C.2个D.3个4.已知集合A={-1,3,2m-1},集合B={3,m2},若B⊆A,则实数m =________.5.设集合A={x,y},B={0,x2},若A=B,求实数x,y.6.若集合M={x|x2+x-6=0},N={x|(x-2)(x-a)=0},且N⊆M,求实数a的值.【答案】1.C 2.C 3.B 4.15.【解析】从集合相等的概念入手,寻找元素的关系,必须注意集合中元素的互异性.因为A=B,则x=0或y=0.(1)当x=0时,x2=0,则B={0,0},不满足集合中元素的互异性,故舍去.(2)当y=0时,x=x2,解得x=0或x=1.由(1)知x=0应舍去.综上知:x=1,y=0.6.【解析】由x2+x-6=0,得x=2或x=-3.因此,M={2,-3}.若a=2,则N={2},此时N M;若a=-3,则N={2,-3},此时N=M;若a≠2且a≠-3,则N={2,a},此时N不是M的子集,故所求实数a的值为2或-3.。
高一数学人教A版必修1学案1.1.2集合间的基本关系
第一章集合与函数概念1.1 集合1.1.2 集合间的基本关系学习目标①理解集合之间包含与相等的含义,能识别给定集合的子集,能判断给定集合间的关系,提高利用类比发现新结论的能力;②在具体情境中,了解空集的含义,掌握并能使用Venn图表达集合的关系,加强学生从具体到抽象的思维能力,树立数形结合的思想.合作学习一、设计问题,创设情境问题1:实数有相等、大小的关系,如5=5,5<7,5>3等,类比实数之间的关系,你能想到集合之间有什么关系吗?二、自主探索,尝试解决问题2:观察下面几个例子,你能发现两个集合间有什么关系吗?(1)A={1,2,3},B={1,2,3,4,5};(2)设A为国兴中学高一(3)班男生的全体组成的集合,B为这个班学生的全体组成的集合;(3)设A={x|x是两条边相等的三角形},B={x|x是等腰三角形};(4)A={2,4,6},B={6,4,2}.三、信息交流,揭示规律集合间的基本关系:①一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为B的子集.记作:读作:如果A?B,但存在x∈B,且x?A,我们就说这两个集合有真包含关系,称集合A是集合B的真子集,记作A?B(或B?A).②如果两个集合所含的元素完全相同,那么我们称这两个集合相等.问题3:与实数中的结论“若a≥b,且b≥a,则a=b”相类比,在集合中,你能得出什么结论?问题4:与实数中的结论“若a≥b,且b≥c,则a≥c”相类比,在集合中,你又能得出什么结论?为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为Venn(1)和(4)的Venn图.问题5:(1)任何方程的解都能组成集合,那么x2+1=0的实数根也能组成集合,你能用Venn图表示这个集合吗?(2)一座房子内没有任何东西,我们称这座房子是空房子,那么一个集合没有任何元素,应该如何命名呢?四、运用规律,解决问题【例1】图中反映的是四边形、梯形、平行四边形、菱形、正方形这五种几何图形之间的关系,则A、B、C、D、E分别代表的图形的集合为.?【例2】写出集合{a,b}的所有子集,并指出哪些是它的真子集.【例3】已知集合A={-1,3,2m-1},集合B={3,m2}.若B?A,则实数m=.?五、变式演练,深化提高1.已知集合M={x|2-x<0},集合N={x|ax=1},若N?M,求实数a的取值范围.2.(1)分别写出下列集合的子集及其个数:?,{a},{a,b},{a,b,c}.(2)由(1)你发现集合M中含有n个元素,则集合M有多少个子集?3.已知集合A?{2,3,7},且A中至多有一个奇数,则这样的集合A有()A.3个B.4个C.5个D.6个六、反思小结,观点提炼请同学们互相交流一下你在本节课学习中的收获.七、作业精选,巩固提高课本P11习题1.1 A组第5题.参考答案三、信息交流,揭示规律①A?B(或B?A)A含于B(或B包含A)问题3:结论:若A?B,且B?A,则A=B.问题4:类比子集,得出子集有传递性,若A?B,B?C,则A?C;若A?B,B?C,则A?C.问题5:(1)2+1=0没有实数解.(2)一个集合没有任何元素,?,并规定:空集是任何集合的子集,即??A;空集是任何非空集合的真子集,即??A(A≠?).四、运用规律,解决问题【例1】解析:由四边形的概念可得下列关系:由集合的子集概念可知,集合A={四边形},集合B={梯形},集合C={平行四边形},集合D={菱形},集合E={正方形}.答案:A={四边形},B={梯形},C={平行四边形},D={菱形};E={正方形}【例2】解:集合{a,b}的所有子集为?,{a},{b},{a,b}.真子集为?,{a},{b}.【例3】解析:∵B?A,∴3∈A,m2∈A.∴m2=-1(舍去)或m2=2m-1.解得m=1.∴m=1.答案:1点评:本题主要考查集合和子集的概念,2=3,,再代入验证.讨论两集合之间的关系时,通常依据相关的定义,观察这两个集合元素的关系,转化为解方程或解不等式.五、变式演练,深化提高1.分析:集合N是关于x的方程ax=1的解集,集合M={x|x>2}≠?,由于N?M,则N=?或N≠?,要对集合N是否为空集分类讨论.解:由题意得M={x|x>2}≠?,则N=?或N≠?.当N=?时,关于x的方程ax=1中无解,则有a=0;当N≠?时,关于x的方程ax=1中有解,则a≠0,此时x=,又∵N?M,∴∈M.∴>2.∴0<a<.综上所得,实数a的取值范围是a=0或0<a<,即实数a的取值范围是{a|0≤a<}2.解:(1)?的子集有:?,即?有1个子集;{a}的子集有:?,{a},即{a}有2个子集;{a,b}的子集有:?,{a},{b},{a,b},即{a,b}有4个子集;{a,b,c}的子集有:?,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c},即{a,b,c}有8个子集.(2)由(1)可得:当n=0时,有1=20个子集;当n=1时,集合M有2=21个子集;当n=2时,集合M有4=22个子集;当n=3时,集合M有8=23个子集;因此含有n个元素的集合M有2n个子集.3.分析:对集合A所含元素的个数分类讨论解析:A=?或{2}或{3}或{7}或{2,3}或{2,7},共有6个.答案:D点评:,按子集中元素的个数来写不易发生重复和遗漏现象.。
1.2集合间的基本关系教学案(含答案)新教材人教A版(2020)高中数学必修第一册
1.2集合间的基本关系教学案(含答案)新教材人教A版(2020)高中数学必修第一册主主题题集合间的基本关系教学内容教学内容课堂笔记课堂笔记教学目标教学目标1.理解子集.真子集.集合相等.空集的概念.2.能用符号和Venn图表达集合间的关系.3.掌握列举有限集的所有子集的方法重点并集与交集的含义.难点用集合语言表达数学对象或数学内容.阅读教材0709页,完成下来问题1子集.真子集.集合相等定义符号表示图形表示子集如果集合A中的元素都是集合B中的元素,就称集合A是集合B 的子集真子集如果集合AB,但存在元素,就称集合A是集合B的真子集集合相等如果集合A的元素都是集合B的元素,同时集合B 的元素都是集合A的元素,那么集合A与集合B相等2.子集的性质1任何一个集合是它本身的,即AA.2对于集合A,B,C,如果AB,且BC,那么.3.空集1定义不含元素的集合叫做空集,记为.2规定空集是的子集4.完成教材第08-09页练习题.问题驱动一请您举出几个具有包含关系.相等关系的集合实例.问题驱动二你能举出几个空集的例子吗例例1写出集合,ab的所有子集,并指出哪些是它的真子集.例例2判断下列各题中集合A是否为集合B的子集,并说明理由.11,2,3,8ABxx是的约数2AxxBxx是长方形,是两条对角线相等的平行四边形1.下列各式中,正确的个数是00,1,2;0,1,22,1,0;0,1,2;0,10,100A1B2C3D42.能正确表示集合02MxRx和集合20NxRxx关系的Venn图是3.已知集合M满足1,21,2,3,4,5M,写出集合M所有的可能情况4.已知集合Ax|2x5,Bx|m1x2m1,若BA,求实数m的取值范围.5.已知集合Px|x21,集合Qx|ax1,若QP,那么实数a的值是________本节课有什么收获,自己写下来吧做作业之前,先回顾一下课堂上所学的知识吧1(多选)已知集合A0,1,则下列式子错误的是A0AB1ACAD0,1A2已知集合Ax|x23x20,xR,Bx|0x22a|1a24.(1)1(2)20-1-3或或。
集合间的基本关系(导)学案 (19)
1.1.2集合间的基本关系课标要点课标要点学考要求高考要求1.子集、真子集的概念b b2.空集的概念b b3.Venn图a a知识导图,学法指导,1.注意辨析两大关系:(1)元素与集合的关系;(2)集合与集合的关系.2.本节的学习重点是子集、真子集、空集的概念;难点是集合之间关系的应用.3.学习中要注意集合之间的关系的几种表述方法:自然语言、符号语言、图形语言.知识点一子集文字语言符号语言图形语言对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集对任意元素x∈A,必有x∈B,则A⊆B(或B⊇A),读作A包含于B或B包含A“A是B的子集”的含义是:集合A中的任何一个元素都是集合B的元素,即任意x∈A都能推出x∈B.知识点二集合相等1.自然语言:如果集合A是集合B的子集(A⊆B),且集合B是集合A的子集(B⊆A),此时,集合A与集合B中的元素是一样的,因此,集合A与集合B相等.2.符号语言:若A⊆B,又B⊆A,则A=B.(1)若A⊆B,又B⊆A,则A=B;反之,如果A=B,则A⊆B,且B⊆A.(2)若两集合相等,则两集合所含元素完全相同,与元素排列顺序无关.知识点三空集不含任何元素的集合叫做空集,记为∅.规定:空集是任何集合的子集.知识点四真子集文字语言符号语言图形语言对于两个集合A,B,如果集合A是集合B的子集,且在集合B中存在一个元素不是集合A的元素,我们称集合A是集合B的真子集若集合A⊆B,但x∈B,且x∉A,则A B(或B A)(读作“A真包含于B”或“B真包含A”)在真子集的定义中,A B首先要满足A⊆B,其次至少有一个x∈B,但x∉A.知识点五子集的性质1.任何一个集合都是它本身的子集,即A⊆A.2.对于集合A,B,C,(1)若A⊆B,B⊆C,则A⊆C;(2)若A B,B C,则A C.[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)空集中只有元素0,而无其余元素.()(2)任何一个集合都有子集.()(3)若A=B,则A⊆B.()(4)空集是任何集合的真子集.()答案:(1)×(2)√(3)√(4)×2.集合{0,1}的子集有()A.1个B.2个C.3个D.4个解析:集合{0,1}的子集为∅,{0},{1},{0,1}.答案:D3.已知集合A={x|-1-x<0},则下列各式正确的是()A.0⊆A B.{0}∈A C.∅∈A D.{0}⊆A解析:集合A={x|-1-x<0}={x|x>-1},所以0∈A,{0}⊆A,D正确.答案:D4.能正确表示集合M={x|x∈R且0≤x≤1}和集合N={x∈R|x2=x}关系的Venn图是()解析:N={x∈R|x2=x}={0,1},M={x|x∈R且0≤x≤1},∴N M.答案:B类型一集合间关系的判断例1(1)下列各式中,正确的个数是()①{0}∈{0,1,2};②{0,1,2}⊆{2,1,0};③∅⊆{0,1,2};④∅={0};⑤{0,1}={(0,1)};⑥0={0}.A.1B.2C.3D.4(2)指出下列各组集合之间的关系:①A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)};②A={x|x是等边三角形},B={x|x是等腰三角形};③M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.【解析】(1)对于①,是集合与集合的关系,应为{0}{0,1,2};对于②,实际为同一集合,任何一个集合是它本身的子集;对于③,空集是任何集合的子集;对于④,{0}是含有单元素0的集合,空集不含任何元素,并且空集是任何非空集合的真子集,所以∅{0};对于⑤,{0,1}是含有两个元素0与1的集合,而{(0,1)}是以有序数组(0,1)为元素的单元素集合,所以{0,1}与{(0,1)}不相等;对于⑥,0与{0}是“属于与否”的关系,所以0∈{0}.故②③是正确的,应选B.(2)①集合A的代表元素是数,集合B的代表元素是有序实数对,故A与B之间无包含关系.②等边三角形是三边相等的三角形,等腰三角形是两边相等的三角形,故A B.③方法一两个集合都表示正奇数组成的集合,但由于n∈N*,因此集合M含有元素“1”,而集合N不含元素“1”,故N M.方法二由列举法知M={1,3,5,7,…},N={3,5,7,9,…},所以N M.【答案】(1)B(2)见解析根据元素与集合、集合与集合之间的关系直接判断①②③④⑥,对于⑤应先明确两个集合中的元素是点还是实数.方法归纳判断集合间关系的方法(1)用定义判断首先,判断一个集合A中的任意元素是否属于另一集合B,若是,则A⊆B,否则A不是B的子集;其次,判断另一个集合B中的任意元素是否属于第一个集合A,若是,则B⊆A,否则B不是A的子集;若既有A⊆B,又有B⊆A,则A=B.(2)数形结合判断对于不等式表示的数集,可在数轴上标出集合的元素,直观地进行判断,但要注意端点值的取舍.跟踪训练1(1)若集合M={x|x2-1=0},T={-1,0,1},则M 与T的关系是()A.M T B.M T C.M=T D.M⃘T(2)用Venn图表示下列集合之间的关系:A={x|x是平行四边形},B={x|x是菱形},C={x|x是矩形},D={x|x是正方形}.解析:(1)因为M={x|x2-1=0}={-1,1},又T={-1,0,1},所以M T.(2)根据几何图形的相关知识明确各元素所在集合之间的关系,再画Venn图.如图答案:(1)A(2)见解析学习完知识点后,我们可以得到B⊆A,C⊆A,D⊆A,D⊆B,D⊆C.类型二子集、真子集的个数问题例2(1)已知集合A={x∈R|x2-3x+2=0},B={x∈N|0<x<5},则满足条件A C B的集合C的个数为()A.1B.2C.3D.4(2)已知集合A={x∈R|x2=a},使集合A的子集个数为2个的a 的值为()A.-2 B.4 C.0 D.以上答案都不是【解析】(1)由x2-3x+2=0,得x=1或x=2,所以A={1,2}.由题意知B={1,2,3,4},所以满足条件的C可为{1,2,3},{1,2,4}.(2)由题意知,集合A中只有1个元素,必有x2=a只有一个解;若方程x2=a只有一个解,必有a=0.【答案】(1)B (2)C(1)先用列举法表示集合A,B,然后根据A C B确定集合C.(2)先确定关于x的方程x2=a解的个数,然后求a的值.方法归纳求集合子集、真子集个数的三个步骤跟踪训练2 (1)已知集合M ={x ∈Z |1≤x ≤m },若集合M 有4个子集,则实数m =( )A .1B .2C .3D .4 (2)若集合A {1,2,3},且A 中至少含有一个奇数,则这样的集合有________个.解析:(1)根据题意,集合M 有4个子集,则M 中有2个元素,又由M ={x ∈Z |1≤x ≤m },其元素为大于等于1而小于等于m 的全部整数,则m =2.(2)若A 中含有一个奇数,则A 可能为{1},{3},{1,2},{3,2};若A 中含有两个奇数,则A ={1,3}.答案:(1)B (2)5由A 中含有奇数的个数分类:A 中含1个奇数,2个奇数. 类型三 根据集合的包含关系求参数例3 已知集合A ={x |1<ax <2},B ={x |-1<x <1},求满足A ⊆B 的实数a 的取值范围.【解析】 (1)当a =0时,① A =∅,满足A ⊆B .(2)当a >0时,A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1a <x <2a . 又∵B ={x |-1<x <1},且A ⊆B ,∴⎩⎪⎨⎪⎧1a ≥-1,2a ≤1.②∴a ≥2.(3) 当a <0时,A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2a <x <1a .③∵A ⊆B ,∴⎩⎪⎨⎪⎧2a ≥-1,1a ≤1.∴a ≤-2.综上所述,a 的取值范围是{a |a =0,或a ≥2,或a ≤-2}.①欲解不等式1<ax<2,需不等号两边同除以a ,而a 的正负不同时,不等号的方向不同,因此需对a 分a =0,a>0,a<0进行讨论.②A ⊆B 用数轴表示如图所示:由图易知,1a 和2a 需在-1与1之间.当1a =-1,或2a =1时,说明A 与B 的某一端点重合,并不是说其中的元素能够取到端点,如2a =1时,A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12<x<1,x 取不到1. ③a<0时,不等式两端除以a ,不等号的方向改变.方法归纳(1)分析集合关系时,首先要分析、简化每个集合.(2)此类问题通常借助数轴,利用数轴分析法,将各个集合在数轴上表示出来,以形定数,还要注意验证端点值,做到准确无误,一般含“=”用实心点表示,不含“=”用空心点表示.(3)此类问题还应注意“空集”这一“陷阱”,尤其是集合中含有字母参数时,初学者会想当然认为非空集合而丢解,因此分类讨论思想是必需的.跟踪训练3 设集合A ={x |x 2-8x +15=0},B ={x |ax -1=0}.(1)若a =15,试判定集合A 与B 的关系; (2)若B ⊆A ,求实数a 的取值集合.解析:(1)由x 2-8x +15=0得x =3或x =5,故A ={3,5},当a=15时,由ax -1=0得x =5.所以B ={5},所以B A .(2)当B =∅时,满足B ⊆A ,此时a =0;当B ≠∅,a ≠0时,集合B =⎩⎨⎧⎭⎬⎫1a ,由B ⊆A 得1a =3或1a =5,所以a =13或a =15. 综上所述,实数a 的取值集合为⎩⎨⎧⎭⎬⎫0,13,15,(1)解方程x 2-8x +15=0,求出A ,当a =15时,求出B ,由此能判定集合A 与B 的关系. (2)分以下两种情况讨论,求实数a 的取值集合. ①B =∅,此时a =0; ②B ≠∅,此时a ≠0.[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.已知集合P ={x |x 2=1},Q ={x |ax =1},若Q ⊆P ,则a 的值是( )A .1B .-1C .1或-1D .0,1或-1解析:由题意,当Q 为空集时,a =0;当Q 不是空集时,由Q ⊆P ,a =1或a =-1.答案:D2.已知集合M ={y |y =x 2-2x -1,x ∈R },集合N ={x |-2≤x ≤4},则集合M 与N 之间的关系是( )A .M >NB .M NC .N MD .M ⊆N解析:因为y =(x -1)2-2≥-2, 所以M ={y |y ≥-2},所以N M . 答案:C3.已知集合A ={1,2,3},B ={3,x 2,2},若A =B ,则x 的值是( ) A .1 B .-1 C .±1 D .0 解析:由A =B 得x 2=1,所以x =±1,故选C. 答案:C4.已知集合A ={-1,0,1},则含有元素0的A 的子集的个数为( )A .2B .4C .6D .8解析:根据题意,含有元素0的A 的子集为{0},{0,1},{0,-1},{-1,0,1},共4个.答案:B5.设A ={x |2<x <3},B ={x |x <m },若A ⊆B ,则m 的取值范围是( )A .m >3B .m ≥3C .m <3D .m ≤3解析:因为A ={x |2<x <3},B ={x |x <m },A ⊆B , 将集合A ,B 表示在数轴上,如图所示,所以m ≥3.答案:B二、填空题(每小题5分,共15分)6.已知集合A ={x |x -3>0},B ={x |2x -5≥0},则这两个集合的关系是________.解析:A ={x |x -3>0}={x |x >3},B ={x |2x -5≥0}=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≥52. 结合数轴知A B .答案:A B7.设集合A ={1,3,a },B ={1,a 2-a +1},且B ⊆A ,则a 的值为________.解析:∵A ={1,3,a },B ={1,a 2-a +1},且B ⊆A , ∴a 2-a +1∈A ,∴a 2-a +1=3或a 2-a +1=a . 由a 2-a +1=3,得a =2或a =-1; 由a 2-a +1=a ,得a =1.经检验,a =1时集合A ,B 不满足集合中元素的互异性,舍去.故a =-1或a =2. 答案:-1或28.已知A ={x |-3<x <5},B ={x |x >a },A ⊆B ,则实数a 的取值范围是________.解析:在数轴上画出集合A .又因为A ⊆B ,所以a <-3, 当a =-3时也满足题意,所以a ≤-3.答案:{a |a ≤-3}三、解答题(每小题10分,共20分)9.已知M ={2,a ,b },N ={2a,2,b 2},且M =N ,试求a 与b 的值.解析:方法一 根据集合中元素的互异性,有⎩⎨⎧a =2a ,b =b 2,或⎩⎨⎧a =b 2,b =2a ,解得⎩⎨⎧a =0b =1或⎩⎨⎧a =0,b =0,或⎩⎪⎨⎪⎧a =14,b =12.再根据集合中元素的互异性,得⎩⎨⎧a =0,b =1,或 ⎩⎪⎨⎪⎧a =14,b =12.方法二 ∵两个集合相同,则其中的对应元素相同.∴⎩⎨⎧a +b =2a +b 2,a ·b =2a ·b 2,即⎩⎨⎧a +b (b -1)=0, ①ab (2b -1)=0.②∵集合中的元素互异,∴a ,b 不能同时为零.当b ≠0时,由②得a =0或b =12.当a =0时,由①得b =1或b =0(舍去).当b =12时,由①得a =14.当b =0时,a =0(舍去).∴⎩⎨⎧ a =0,b =1,或⎩⎪⎨⎪⎧ a =14,b =12.10.已知A ={x |x 2-3x +2=0},B ={x |ax -2=0},且B ⊆A ,求由实数a 的值组成的集合C .解析:由x 2-3x +2=0,得x =1或x =2.所以A ={1,2}.因为B ⊆A ,所以对B 分类讨论如下:①若B =∅,即方程ax -2=0无解,此时a =0;②若B ≠∅,则B ={1}或B ={2}.当B ={1}时,有a -2=0,即a =2;当B ={2}时,有2a -2=0,即a =1.综上可知,符合题意的实数a 所组成的集合C ={0,1,2}.[能力提升](20分钟,40分)11.世界羽毛球锦标赛于2018年7月30日至8月5日在中国南京举行,若集合A ={参加羽毛球锦标赛的运动员},集合B ={参加羽毛球锦标赛的男运动员},集合C ={参加羽毛球锦标赛的女运动员},则下列关系正确的是( )A .A ⊆B B .B ⊆CC .C ⃘AD .B A解析:易知集合B ,C 是集合A 的子集,且是真子集,而B ,C之间没有关系,因此只有D 选项正确,答案:D12.已知集合A ={1,3,5},则集合A 的所有子集的元素之和为________.解析:集合A 的子集分别是:∅,{1},{3},{5},{1,3},{1,5},{3,5},{1,3,5}.注意到A 中的每个元素出现在A 的4个子集,即在其和中出现4次.故所求之和为(1+3+5)×4=36.答案:3613.已知集合A ={1,3,x 2},B ={x +2,1}.是否存在实数x ,使得B ⊆A ?若存在,求出集合A ,B ;若不存在,说明理由.解析:假设存在实数x ,使B ⊆A ,则x +2=3或x +2=x 2.(1)当x +2=3时,x =1,此时A ={1,3,1},不满足集合元素的互异性.故x ≠1.(2)当x +2=x 2时,即x 2-x -2=0,故x =-1或x =2.①当x =-1时,A ={1,3,1},与集合元素的互异性矛盾,故x ≠-1.②当x =2时,A ={1,3,4},B ={4,1},显然有B ⊆A .综上所述,存在x =2,使A ={1,3,4},B ={4,1}满足B ⊆A .14.已知集合A ={x |-3≤x ≤4},B ={x |2m -1<x <m +1},且B ⊆A .求实数m 的取值范围.解析:∵B ⊆A ,(1)当B =∅时,m +1≤2m -1,解得m ≥2.(2)当B ≠∅时,有⎩⎪⎨⎪⎧ -3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2.综上得m ≥-1.即实数m的取值范围为{m|m≥-1}.。