九年级数学 相似三角形应用举例(教案、导学案)

合集下载

相似三角形应用举例导学案

相似三角形应用举例导学案

相似三角形应用举例(2)学习目的:1.进一步巩固相似三角形的知识.2.能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题、盲区问题)等的一些实际问题.3、通过把实际问题转化成有关相似三角形的数学模型,进一步了解数学建模的思想,培养分析问题、解决问题的能力.重点、难点:1.重点:运用三角形相似的知识计算不能直接测量物体的长度和高度.2.难点:灵活运用三角形相似的知识解决实际问题(如何把实际问题抽象为数学问题).一、知识链接1、判断两三角形相似有种方法。

2、相似三角形的对应角,对应边。

二.探索新知1 、例5 :已知左、右并排的两棵大树的高分别是AB = 8 m和CD = 12 m,两树根部的距离BD = 5 m.一个身高1.6 m的人沿着正对这两棵树的一条水平直路l从左向右前进,当他与左边较低的树的距离小于多少时,就不能看到右边较高的树的顶端点C?注意:认真体会这一生活实际中常见的场景,借助图形把这一实际中常见的场景,抽象成数学图形,利用相似的性质解决这一实际问题,图形可以滞后给出,先经历这一抽象的过程.如果你们对于如何用数学语言表述有一定的困难,应与老师一起认真板书解答过程.分析:(见教材P49页)解:2、例6(补充).如图所示,小明想利用树影测量树高,他在某一时刻测得长为1m的竹竿影长0.9m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,如图,他先测得留在墙上的影高1.2m,又测得地面部分的影长2.7m,他求得的树高是多少?三. 练习巩固1.如图:小明想测量一颗大树AB 的高度,发现树的影子恰好落在土坡的坡面CD 和地面CB 上,测得CD=4m,BC=10m ,CD 与地面成30度角,且测得1米竹杆的影子长为2米,那么树的高度是多少?2 、如图,要在底边BC=160cm,高AD=120cm 的△ABC 铁皮余料上截取一个矩形EFGH,使点H 在AB 上,点G 在AC 上,点E,F 在BC 上,AD 交HG 于点M,此时有AM/AD=HG/BC(1)设矩形EFGH 的长HG=y,宽HE=X,确定y 与X 的函数关系式(2)当X 为何值时,矩形EFGH 的面积S 最大?3、教材习题27.2第10题;4、教材习题27.2第11题;5、教材习题27.2第16题;ABDD FE CA H BG M。

人教九年级下册数学-相似三角形的应用举例导学案

人教九年级下册数学-相似三角形的应用举例导学案

27.2.3 相似三角形的应用举例〔学习设计〕
CD=12m
,两树的根部的距离BD=5m,一个身高1.6m的人沿
着正对这两棵树的一条水平直路L从左向右前进,当他与
左边较低的树的距离小于多少时,就不能看到右边较高的
树的顶端点C?
分析:,
AB l CD l
⊥⊥⇒AB∥CD,∆AFH∽∆CFK。


错误!未指定书签。

,即
8 1.6 6.4
512 1.610.4
FH
FH
-
==
+-
,解得FH=8。

数学建模的关键
是把生活中的实
际问转化为数学
问题,转化的方法
之一是画数学示
意图,在画图的过
程中可以逐渐明
问题中的数量关
系与位置关系,进
而形成解题思路。

【素材积累】
1、只要心中有希望存摘,旧有幸福存摘。

预测未来的醉好方法,旧是创造未来。

坚志而勇为,谓之刚。

刚,生人之德也。

美好的生命应该充满期待、惊喜和感激。

人生的胜者决不会摘挫折面前失去勇气。

2、我一直知道,漫长人生中总有一段泥泞不得不走,总有一个寒冬不得不过。

感谢摘这样的时候,我遇见的世界上最美的心灵,我接受的最温暖的帮助。

经历过这些,我将带着一颗感恩和勇敢的心继续走上梦想的道路,无论是风雨还是荆棘。

九年级数学《相似三角形应用举例1 》教案

九年级数学《相似三角形应用举例1 》教案

“三部五环”教学模式设计《27.2.2相似三角形的应用举例1》教学设计教材义务教育课程标准实验教科书(人教版)《数学》九年级下册第二十七章《相似》第二小节相似三角形的判定第五课时相似三角形的应用举例。

设计理念从学生已有的生活经验和认知基础出发,让学生主动地进行学习。

学生在感知实际问题后,将实际问题转化为数学问题,进一步尝试解决、交流展示,从而培养学生分析、归纳、总结的能力和学生应用相似三角形的判定和性质解决实际问题的能力。

使学生感受数学源于生活又服务于生活,更好地理解数学知识的意义,体现“人人学有价值数学”的新课程理念。

整个教学设计流程突出以学定教,体现“设计问题化,过程活动化,活动练习化,练习要点化,要点目标化,目标课标化”的要求,将教学过程设计为有一定梯次的递进式活动序列。

学情分析教学对象是九年级学生,在学习本节前,学生已经掌握了相似三角形的概念、判定方法及性质;在思维已具备了初步的应用数学的意识;经历了在操作活动中探索性质的过程,获得了初步的数学活动经验和体验,也培养了学生良好的情感态度,具备了一定的主动参与、合作意识和初步的观察、分析、抽象概括的能力,在此基础上通过本节课的学习将进一步综合运用相似三角形的判定方法和性质解决问题的能力,提高学生的数学应用意识,加深对相似三角形的理解与认识。

培养学生在实际问题中建立数学模型的能力,从而提高学生理论联系实际的能力。

在推理论证方面须坚持遵循“特殊——一般——特殊”规律,注重对学生建立数学模型的能力和推理论证的严谨性的培养。

知识分析本节教材选自于人教版九年级下册第二十七章《相似》第二节《相似三角形》,隶属《全日制义务教育数学课程标准(实验稿)中的“空间与图形”领域。

图形的相似及相似三角形的判定和性质的应用是初中几何中重要的知识,是证明角相等,线段相等和线段成比例常用的解决问题方法。

它是建立在图形的全等和全等三角形、四边形的判定方法和性质及圆的有关知识的基础上学的,是继圆之后的又一章综合性比较强且应用比较广泛的重要章节。

人教版数学九年级下册27.2.3《相似三角形应用举例》教学设计1

人教版数学九年级下册27.2.3《相似三角形应用举例》教学设计1

人教版数学九年级下册27.2.3《相似三角形应用举例》教学设计1一. 教材分析人教版数学九年级下册27.2.3《相似三角形应用举例》一节,是在学生学习了相似三角形的性质和判定之后,进一步探讨相似三角形在实际问题中的应用。

通过本节课的学习,使学生了解相似三角形在实际生活中的重要性,提高他们运用数学知识解决实际问题的能力。

二. 学情分析九年级的学生已经掌握了相似三角形的性质和判定,具备了一定的逻辑思维能力和空间想象能力。

但学生在解决实际问题时,往往缺乏将数学知识与实际问题相结合的能力。

因此,在教学过程中,教师需要注重引导学生将所学知识应用于实际问题,提高他们的数学应用能力。

三. 教学目标1.理解相似三角形在实际问题中的应用,提高学生运用数学知识解决实际问题的能力。

2.培养学生的逻辑思维能力和空间想象能力。

3.增强学生对数学学科的兴趣和自信心。

四. 教学重难点1.重点:相似三角形在实际问题中的应用。

2.难点:将实际问题转化为数学问题,运用相似三角形的性质和判定解决实际问题。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究相似三角形在实际问题中的应用。

2.利用多媒体课件辅助教学,直观展示实际问题,提高学生的空间想象能力。

3.采用小组合作学习的方式,培养学生的团队协作能力和沟通能力。

4.注重个体差异,因材施教,使每个学生都能在课堂上得到有效的训练和提高。

六. 教学准备1.准备相关实际问题,用于引导学生运用相似三角形知识解决。

2.准备多媒体课件,展示实际问题及解题过程。

3.准备练习题,巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实际问题,如建筑物的设计、尺子测量等,引导学生思考这些实际问题与数学知识的联系。

从而引出本节课的主题——相似三角形在实际问题中的应用。

2.呈现(10分钟)教师展示一个实际问题:在同一平面内,有两座建筑物,一座高度为30米,另一座高度为18米。

请问,在离这两座建筑物等距离的地点,如何测量出两座建筑物的高度比?教师引导学生分析问题,并提出解决方法:利用相似三角形。

人教版九年级数学下册:27.2.3《相似三角形应用举例》教学设计1

人教版九年级数学下册:27.2.3《相似三角形应用举例》教学设计1

人教版九年级数学下册:27.2.3《相似三角形应用举例》教学设计1一. 教材分析人教版九年级数学下册第27.2.3节《相似三角形应用举例》是学生在学习了相似三角形的性质和判定之后的内容,是相似三角形知识在实际问题中的应用。

本节内容通过具体的实例,让学生了解相似三角形在实际问题中的应用,培养学生的数学应用意识,提高学生的解决问题的能力。

二. 学情分析九年级的学生已经掌握了相似三角形的性质和判定,具备了一定的逻辑思维能力和解决问题的能力。

但是,对于如何将相似三角形应用到实际问题中,可能还存在一定的困难。

因此,在教学过程中,教师需要引导学生将理论知识与实际问题相结合,提高学生的应用能力。

三. 教学目标1.理解相似三角形在实际问题中的应用。

2.能够运用相似三角形解决实际问题。

3.培养学生的数学应用意识和解决问题的能力。

四. 教学重难点1.重点:相似三角形在实际问题中的应用。

2.难点:如何将相似三角形应用到实际问题中,解决实际问题。

五. 教学方法采用问题驱动法,通过具体的实例,引导学生自主探究相似三角形在实际问题中的应用,培养学生的数学应用意识和解决问题的能力。

六. 教学准备1.教学课件。

2.相关实例。

七. 教学过程1.导入(5分钟)通过提问方式,复习相似三角形的性质和判定,为新课的学习做好铺垫。

2.呈现(10分钟)呈现一些实际问题,如测量身高、测量两地距离等,让学生尝试用相似三角形解决这些问题。

引导学生发现这些实际问题中存在相似三角形,从而引出本节课的主题。

3.操练(10分钟)让学生分组讨论,每组选取一个实例,尝试用相似三角形解决问题。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)选取几组学生的解题过程,进行讲解和分析,总结解决类似问题的方法和步骤。

让学生进一步巩固相似三角形在实际问题中的应用。

5.拓展(10分钟)让学生尝试解决一些更有挑战性的实际问题,如复杂的图形测量、建筑设计等。

引导学生将相似三角形应用到更广泛的领域。

相似三角形的性质 导学案(含答案)

相似三角形的性质 导学案(含答案)

4.7相似三角形的性质 导学案 第1课时 相似三角形的性质定理(一)1、预习目标 1.三角形中除三条边外的主要线段有角平分线、高、中线.2.相似三角形对应高的比,对应角平分线的比,对应中线的比都等于相似比. 2、课堂精讲精练【例1】如图,某同学拿着一把12 cm 长的尺子,站在距电线杆30 m 的位置,把手臂向前伸直,将尺子竖直,看到尺子恰好遮住电线杆,已知臂长60 cm ,则电线杆的高度是(D)A .2.4 mB .24 mC .0.6 mD .6 m【跟踪训练1】若△ABC ∽△A ′B ′C ′,BD 和B ′D ′是它们的对应中线,已知BD ∶B ′D ′=5∶2,AC =10 cm ,则A ′C ′=4_cm .【跟踪训练2】已知△ABC ∽△DEF ,且相似比为4∶3,若△ABC 中∠A 的平分线AM =8,则△DEF 中∠D 的平分线DN =6.【例2】如图,△ABC 是一张锐角三角形的硬纸片,AD 是边BC 上的高,BC =40 cm ,AD =30 cm ,从这张硬纸片上剪下一个长HG 是宽HE 的2倍的矩形EFGH ,使它的一边EF 在BC 上,顶点G ,H 分别在AC ,AB 上,AD 与HG 的交点为M.(1)求证:AM AD =HGBC ;(2)求矩形EFGH 的周长.解:(1)证明:∵四边形EFGH 为矩形,∴EF ∥GH.∴∠AHG =∠ABC ,∠AGH =∠ACB.∴△AHG ∽△ABC. ∵AD ⊥BC ,∴AM ⊥HG. ∴AM AD =HG BC. (2)设HE =x cm ,则MD =x cm ,HG =2x cm.∵AD =30 cm ,∴AM =(30-x)cm. ∵AM AD =HG BC ,∴30-x 30=2x 40. 解得x =12.∴矩形EFGH 的周长为2(x +2x)=72 cm.【跟踪训练3】如图,已知正方形DEFG 的顶点D ,E 在△ABC 的边BC 上,顶点G ,F 分别在边AB ,AC 上.如果BC =4,△ABC 的面积是6,那么这个正方形的边长是127.3、课堂巩固训练1.已知△ABC ∽△A ′B ′C ′,相似比为3∶4,AD 与A ′D ′分别是△ABC 与△A ′B ′C ′的角平分线,则AD ∶A ′D ′等于(A)A .3∶4B .4∶3C .9∶16D .16∶92.如图,在边长为2的正方形ABCD 中,E 为AB 的中点,BM ⊥CE ,则Rt △BEM 与Rt △BCM 斜边上的高的比为(C)A .1∶3B .2∶3C .1∶2D .3∶53.如图,在梯形ABCD 中,AD ∥BC ,两腰BA 与CD 的延长线交于点P ,PF ⊥BC 于点F ,交AD 于点E.若AD =2,BC =5,EF =3,则PF =5.4.如图,在△ABC 中,BC =12,AD 是BC 边上的高,AD =8,P ,N 分别是AB ,AC 边上的点,Q ,M 是BC 上的点,连接PQ ,PN ,MN ,PN 交AD 于点E.若四边形PQMN 是矩形,且PQ ∶PN =1∶2,求PQ ,PN 的长.解:设PQ =y ,则PN =2y. ∵四边形PQMN 是矩形,∴PN ∥QM.∴∠APN =∠B ,∠ANP =∠C. ∴△APN ∽△ABC. ∴PN BC =AE AD ,即2y 12=8-y 8. 解得y =247.∴PQ =247,PN =487.第2课时 相似三角形的性质定理(二)1、预习目标1.相似三角形的周长比等于相似比,面积比等于相似比的平方.2.上述性质可推广到相似多边形,即相似多边形的周长比等于相似比,面积比等于相似比的平方. 2、课堂精讲精练【例1】如图,点D ,E 分别为△ABC 边AB ,AC 上的一点,且DE ∥BC ,S △ADE =4,S 四边形DBCE =5,则△ADE 与△ABC 的相似比为(D)A .5∶9B .4∶9C .16∶81D .2∶3【跟踪训练1】如图,把△ABC 沿着BC 的方向平移到△DEF 的位置,它们重叠部分的面积是△ABC 面积的一半.若BC =3,则△ABC 移动的距离是(D)A.32B.33C.62D.3-62【跟踪训练2】如图,在▱ABCD 中,E 为CD 的中点,AE 与BD 相交于点F.若△DEF 的面积为2,则▱ABCD 的面积为24.【例2】如图,在Rt △ABC 中,∠ACB =90°,点M 是斜边AB 的中点,MD ∥BC ,且MD =CM ,DE ⊥AB 于点E ,连接AD ,BD.(1)求证:△MED ∽△BCA ;(2)当S △BDM =13S △ABC 时,求S △BED ∶S △MED 的值.解:(1)证明:∵MD ∥BC , ∴∠DME =∠CBA. ∵∠DEM =∠ACB =90°, ∴△MED ∽△BCA.(2)∵∠ACB =90°,点M 是斜边AB 的中点,∴MB =12AB.∵MC =MD ,∴MD =12AB.∵△MED ∽△BCA ,∴S △MED S △ABC =(DM AB )2=14.∵S △BDM =13S △ABC ,∴S △MED S △BDM =34.又∵S △MED +S △BED =S △BDM , ∴S △BED ∶S △MED =1∶3.【跟踪训练3】如图所示,在▱ABCD 中,点E 是CD 的延长线上一点,且DE =12CD ,BE 与AD交于点F.(1)求证:△ABF ∽△CEB ;(2)若△DEF 的面积为2,求▱ABCD 的面积.解:(1)证明:∵四边形ABCD 为平行四边形, ∴∠A =∠C ,AB ∥CD ,AD ∥BC ,AB =CD. ∴∠ABF =∠E. ∴△ABF ∽△CEB. (2)∵AD ∥BC ,∴△DEF ∽△CEB.∴S △DEF S △CEB =(DE CE )2.∵DE =12CD ,AB =CD ,∴DE CE =13,DE AB =12.∴S △DEF S △ABF =14,S △DEF S △CEB =19. ∴S △ABF =8,S △CEB =18.∴S ▱ABCD =S △ABF +S △CEB -S △DEF =8+18-2=24.3、课堂巩固训练1.如图,△ABC 中,DE ∥BC ,若AD ∶DB =1∶2,△ADE 的周长是6,则△ABC 的周长是(C)A .6B .12C .18D .242.已知△ABC 与△DEF 相似且周长的比为2∶3,则△ABC 与△DEF 的面积比为(D)A .2∶3B .16∶81C .9∶4D .4∶93.如图,E为▱ABCD的边AB延长线上的一点,且BE∶AB=2∶3,△BEF的面积为4,则▱ABCD 的面积为(A)A.30 B.27 C.14 D.324.如果两个相似三角形的周长比为1∶2,那么它们某一组对应边上的高之比为1∶2.5.如图,在梯形ABCD中,AD∥BC,两腰的延长线相交于点P.若S△PAD∶S梯形ABCD=1∶2,且BC=26,求AD的长.解:∵S△PAD∶S梯形ABCD=1∶2,∴S△PAD∶S△PBC=1∶3.∵AD∥BC,∴△PAD∽△PBC.∴ADBC=33.∴AD=2 2.。

九年级数学 相似三角形的判定(教案、导学案)

九年级数学 相似三角形的判定(教案、导学案)

27.2相似三角形27.2.1 相似三角形的判定第1课时相似三角形的判定(1)【知识与技能】1.了解相似三角形的概念及其表示方法;2.掌握平行线分线段成比例定理及平行于三角形一边的直线的性质定理;3.掌握相似三角形判定的预备定理.【过程与方法】经历从探究到归纳证明的过程,发展学生的合情推理能力和逻辑思维能力.【情感态度】体验从一般到特殊及由特殊到一般的认知规律,发展辩证思维能力. 【教学重点】平行线分线段成比例定理及判定三角形相似的预备定理.【教学难点】探索平行线分线段成比例定理的过程.一、情境导入,初步认识问题1相似多边形的性质是否也适用于相似三角形呢?问题2如果△ABC与△A1B1C1相似,能类似于两个三角形全等,给出一种相似表示方法吗?△ABC 与△A 1B 1C 1的相似比为k ,那么△A 1B 1C 1与△ABC 的相似比也是k 吗?问题3 如何判定两个三角形相似呢?【教学说明】通过上述三个问题的设置,既帮助学生认识了相似三角形的一些基本知识,又为引出平行线分线段成比例定理作些铺塾,教师可釆用自问自答形式讲述这部分内容. 二、思考探究,获取新知问题1 如图,任意画两条直线l 1,l 2,再画三条与l 1,l 2相交的平行线l 3,l 4,l 5分别度量AB ,BC ,DE ,EF 长度,则EFDEBC AB 与相等吗?呢?与DF DE AC AB 呢?与DFEFCA BC【教学说明】教师可让学生在自己准备的 白纸上画出类似图形,测出所截各条线段的长度(尽可能准确些),然后求出相应比值的近似值,便于作出说明.教师巡视,发现问题及时引导.对出现比值相差较大情形,帮助他们分析,找出原因,尽量让学生们获得对应线段的比值近似相等这一结果,形成感性认知.最后,教师可综合大多数同学的认知,给予总结,得出结论.平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段的比相等.【教学说明】这一结论不要求学生证明,只需形成感性认识.为了便于记忆,上述定理的结论可使用下面形象化的语言,如:.等全下全下,全上全上,上下上下,下上下上==== 问题 2 如图,当l 1//l 2//l 3时,在(1)中是否仍有呢?,,AF EFAC BCAF AE AC AB EF AE BC AB ===在(2)中是否仍有呢?,,DFBFACBCDF DB AC AB BF DB BC AB ===【教学说明】针对问题2,教师应引导学生利用“平行线分线段成比例定理”来进行说明,不可继续用测量方法得到,这样就由感性认识 上升到理性思考.这里建议将学生进行分组,小组讨论,相互交流,形成认识,最后教师再与全 班同学一道分析,得出结论.平行于三角形一边的直线截其他两边(或两边的延长线),所得到的对应线段的比相等.问题3 如图,在△ABC 中,DE// BC ,DE 分别交AB 、AC 于D 、E ,则△ABC 与△ADE 能相似吗?为什么?问题4如图,已知DE//BC,DE分别交AB.AC的反向延长线于D、E,则△ADE与△ABC能相似吗?为什么?【教学说明】将全班学生分成两组,分别完成问题3、4的探究,教师应先给予点拨,突破难点(即添加辅助线,达到两个三角形的三边的比能相等的目的),然后学生自主完成,锻炼逻辑思维能力和推理能力.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 (相似三角形判定的预备定理).三、运用新知,深化理解1.如图,DE//BC,EF//AB,请尽可能多地找出图中的相似三角形,并用符号表示出来.2.如图D 为△ABC 中BC 边的中点,E 为AD 中点,连接并延长BE 交 AC 于F.过E 作EG//AC 交BC 于G. (1) 求AC EG 的值;(2)求CF EG 的值;(3)求FCAF的值.3.如图,已知在△ABC 中,DE//BC ,AD=EC ,BD=1cm ,AE=4cm ,BC=5cm , 求 DE 的长.【教学说明】 让学生自主完成,也可合作完成,在练习中加深理解.教师巡视指导,及时点拨.在完成上述题目后,教师引导学生完成创 优作业中本课时的“名师导学”部分.【答案】1.解:△ADE ~△ABC ,△CEF ~△CAB, △ADE ~△EFC. 2.解:(1)∵EG//AC ,∴△DGE ~△DCA ,∴21==DA DE AC EG . (2)∵EG//AC ,E 是AD 的中点,∴G 是CD 的中点,即CG=DG.又D 是BC 的中点,∴BD=CD ,∴BG=3CG ,BC=4CG ,∴34BG BC = . ∵EG//FC, ∴△BEG ~△BFC,∴43==BC BG FC FG . (3)过D 点作DH//CF ,交BF 于H.易得DH=AF ,∴21==FC DH FC AF . 3.解:∵DE//BC ,∴ECAEDB AD =,又AD=CE ,∴AD 2=4,∴AD=2,∴AB=3.由DE//BC 可知△ADE ~△ABC ,∴)(cm 310352=⨯==BC DE AB AD . 四、师生互动,课堂小结 1.这节课你学到了哪些知识? 2.你还有哪些疑惑?【教学说明】师生以交谈方式回顾本节知识,重点应关注哪些内容,还有什么地方不太明白,及时解疑.完成创优作业中本课时的“课时作业”部分.本课时教学思路应从探究、猜想、验证归纳出发,遵循学生的理解认知能力,由浅入深、逐步推进,激发学生自主探究的学习热情,培养学生的自主学习能力.27.2 相似三角形 27.2.1 相似三角形的判定 第1课时 相似三角形的判定(1)一、新课导入 1.课题导入问题1:我们学过哪些判定两个三角形全等的方法?问题2:类比上面这些方法,猜一猜判定两个三角形相似的方法有哪些? 由此导入课题(板书课题). 2.学习目标(1)能用符号表示两个三角形相似,能确定它们的相似比、对应边和对应角.(2)能叙述平行线分线段成比例定理及其推论,并能结合图形写出正确的比例式.(3)能用平行线分线段成比例定理的推论证明三角形相似的判定引理. 3.学习重、难点重点:平行线分线段成比例定理及其推论. 难点:正确理解定理中的“对应线段”. 二、分层学习1.自学指导(1)自学内容:教材P29~P30思考上面的内容. (2)自学时间:8分钟.(3)自学方法:学生分小组采用度量的方法和已学知识探究平行线分线段成比例定理,并完成自学参考提纲.(4)自学参考提纲:①三个角相等,三条边成比例的两个三角形相似.在△ABC 和△A′B′C′中, 如果∠A=∠A′, ∠B=∠B′, ∠C=C′,AB BC CAk A B B C C A ==='''''', 那么△ABC 和△A′B′C′相似,记作△ABC ∽△A′B′C′,△ABC与△A′B′C′的相似比为k,△A′B′C′与△ABC的相似比为1 k .全等三角形也是相似三角形, 它们的相似比为1.②相似三角形的对应角相等,对应边成比例.③完成教材P29探究:a.如图1,量一量,算一算,ABBC与DEEF相等吗?BCAB与EFDE呢?ABAC与DEDF呢?BCAC与EFDF呢?b.由上一步可得:∵l3∥l4∥l5,∴ABBC=DEEF,BCAB=EFDE,ABAC=DEDF,BC AC =EFDF.c.平行线分线段成比例定理:两条直线被一组平行线所截,所得的对应线段成比例.d.指出图1中的所有对应线段(如AB与DE):BC与EF,AC与DF.④把平行线分线段成比例定理应用到三角形中,会出现图2和图3两个基本图形:在这两个图形中,把DE看成平行于△ABC的边BC的直线,截其他两边(如图1)或其他两边的延长线(如图2),于是可得推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.即:∵DE∥BC,∴ADDB=AEEC,ADAB=AEAC,BDAB=CEAC.2.自学:结合自学指导进行自学.3.助学(1)师助生:①明了学情:能否正确理解“对应线段”,尤其是在推论的两个图形中.②差异指导:根据学情,指导学生结合图形理解“对应线段”.(2)生助生:小组交流、研讨.4.强化(1)分清平行线分线段成比例定理的条件与结论,弄清哪些是“对应线段”.(2)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段的比相等(强调“对应”).1.自学指导(1)自学内容:教材P30思考~P31.(2)自学时间:6分钟.(3)自学方法:学生分小组对不同类型的相似三角形进行证明,并完成自学参考提纲.(4)自学参考提纲:①已知DE∥BC,运用定义证明△ADE∽△ABC(如图1,作EF∥AB).证三个角相等:∠A公共,由DE∥BC可得∠ADE=∠B,∠AED=∠C.证三条边成比例:由DE∥BC可得ADAB=AEAC,由EF∥AB可得BFBC=AEAC.由DE∥BC,EF∥AB可得四边形BFED是平行四边形,所以BF=DE.故DE BCADAB=AEAC=BFBC.所以△ADE∽△ABC.②如图2, DE∥BC分别交BA、CA的延长线于点D、E,那么△ADE与△ABC 相似吗?能否给予证明?相似.∵DE ∥BC,∴∠E=∠C,∠D=∠B.过E 作EF ∥BD 交CB 的延长线于点F. ∵DE ∥BC ,EF ∥BD ,∴,AE AD BF AEAC AB BC AC==. 又∵四边形BDEF 是平行四边形,∴DE=BF,∴AE AD DEAC AB BC==. ∴△ADE ∽△ABC.③如图3,△ABC 中,DE ∥BC ,EF ∥AB ,求证:△ADE ∽△EFC. ∵DE ∥BC ,EF ∥AB ,∴∠CEF=∠A,∠ADE=∠B=∠EFC,AD AE DB EC =,BF AEFC EC=. 又∵四边形BDEF 是平行四边形, ∴BD=EF,DE=BF. ∴AD AE DEEF EC FC==, ∴△ADE ∽△EFC.④如图4,DE ∥FG ∥BC ,找出图中所有的相似三角形. 由DE ∥FG ∥BC ,易知△ADE ∽△AFG ∽△ABC. 2.自学:结合自学指导进行自学. 3.助学 (1)师助生:①明了学情:看学生能否添加辅助线构造比例线段进行转化. ②差异指导:根据学情指导学生弄清引理的证明思路和方法. (2)生助生:小组交流、研讨. 4.强化(1)判定三角形相似的预备定理及其两个基本图形. (2)点两名学生板演自学参考提纲中第③、④题,并点评. 三、评价1.学生学习的自我评价:这节课你有什么收获?还有哪些不足?2.教师对学生的评价:(1)表现性评价:从学生的课堂参与程度、思维状况、小组协作等方面的课堂表现去评价.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时先给出相似三角形的定义,说明有关概念,明确相似三角形的符号表示和相似比的意义.由于三角形的相似与比例线段密不可分,因此在形成相似三角形的概念之后,主要安排学习比例线段,进而讨论平行于三角形一边的平行线的性质与判定以及平行线分线段成比例定理,为研究相似三角形提供了必要的知识准备.教学过程中应遵循学生的理解认知能力,由浅入深,逐步推进.一、基础巩固(70分)1.(10分)如图,在△ABC中,DE∥BC, 且AD=3,DB=2.图中的相似三角形是△ADE∽△ABC,其相似比是35.第1题图第2题图2.(10分)如图,DE∥BC,DF∥AC,则图中相似三角形一共有(C)A.1对B.2对C.3对D.4对3.(10分)如图,DE∥BC,12ADDB,则AEAC=(B)A.12B.13C.23D.32第3题图第4题图4.(10分)如图,已知AB ∥CD ∥EF ,那么下列结论正确的是(A )5.(10分)如图,AB ∥CD ∥EF,AF 与BE 相交于点G ,且AG=2,GD=1,DF=5,求BC CE .解:∵AB ∥CD ∥EF,∴35BC AD AG GD CE DF DF +===. 6.(20分)如图,DE ∥BC.(1)如果AD=5,DB=3,求DE ∶BC 的值;(2)如果AD=15,DB=10,AC=15,DE=7,求AE 和BC 的长.解:(1)∵DE ∥BC ,∴△ADE ∽△ABC,∴58DE AD BC AB ==. (2)AE AD AC AB =,即151525AE =,求得 AE=9. DE AD BC AB =,即71525BC =,求得 BC=353. 二、综合应用(20分)7.(20分)如图,△ABC ∽△DCA ,AD ∥BC ,∠B=∠DCA.(1)写出对应边的比例式;(2)写出所有相等的角;(3)若AB=10,BC=12,CA=6,求AD 、DC 的长.解:(1)BC AB AC CA DC DA==; (2)∠BAC=∠CDA,∠B=∠ACD,∠ACB=∠DAC; (3)由(1)中的结论和已知条件可知121066DC AD==,求得AD=3,DC=5. 三、拓展延伸(10分)8.(10分)如图,在△ABC 中,DE ∥BC 分别交AB 、AC 于点D 、E ,试证明:ADAB=DOCO.证明:∵DE ∥BC ,∴△ADE ∽△ABC,△DOE ∽△COB,∴,AD DE DO DE AB BC CO CB==. ∴AD DO AB CO =.。

27.2.3相似三角形应用举例(教案)

27.2.3相似三角形应用举例(教案)
4.实践与探究:引导学生通过实际操作,探究相似三角形在生活中的应用,培养实践能力,增强对数学学科的兴趣和认识。
5.空间观念与数据分析:培养学生运用相似三角形知识分析问题,发展空间观念和数据分析能力,提高数学素养。
三、教学难点与重点
1.教学重点
-理解相似三角形的性质:重点强调相似三角形的对应角相等、对应边成比例的基本性质,以及如何利用这些性质解决实际问题。
3.解决实际问题:结合生活实例,让学生运用相似三角形的性质解决一些实际问题,提高学生的应用能力和解决问题的能力。
4.总结相似三角形在实际生活中的应用,强调数学知识与现实生活的紧密联系。
本节课将引导学生通过实际案例,掌握相似三角形在实际问题中的应用,培养学生的动手操作能力和解决问题的能力。
二、核心素养目标
五、教学反思
在今天的教学中,我发现同学们对相似三角形的应用举例产生了浓厚的兴趣。通过引入日常生活中的实际问题,他们能够更好地理解数学知识在实际中的应用。让我感到高兴的是,大多数同学能够积极参与讨论,提出自己的观点,这充分说明了他们对这一知识点的投入。
然而,我也注意到在讲解相似三角形性质时,部分同学对识别相似三角形和确定对应关系存在一定的困难。这说明在这个环节,我需要更加耐心地引导和解释,或许可以通过更多的例子和直观的图示来帮助他们理解。
-应用相似三角形测量:掌握如何利用相似三角形进行高度和距离的测量,包括在实际问题中如何确定相似三角形和对应关系。
-生活实例的解析:通过具体实例,如测量建筑物高度、桥梁长度等,让学生掌握相似三角形在实际生活中的应用。
-数据处理与分析:学会在测量过程中处理数据,分析误差,提高测量的准确性。
举例:在测量建筑物高度时,重点讲解如何利用地面上的影子长度和已知的太阳高度角来确定建筑物的高度,强调相似三角形的实际应用。

相似三角形的性质及其应用-导学案

相似三角形的性质及其应用-导学案

3月16日-相似三角形的性质及其应用-导学案一:知识梳理相似三角形定义:对应角相等,对应边成比例的两个三角形叫做相似三角形知识点1:性质定理1:相似三角形对应角相等,对应边成比例。

知识点2:性质定理2:相似三角形对应线段(高线、中线、角平分线)的比等于相似比。

实战训练一:1. 两个相似三角形的对应边之比是1:2,那么它们的对应中线之比是1:2 。

2. 两个相似三角形的对应高之比是1:4,那么它们的对应中线之比是1:4 。

3. 两个相似三角形的对应角的平分线的长分别是3cm和5cm,那么它们的相似比是3:5 ,对应高的比是3:5 。

知识点3:性质定理3:相似三角形的周长比等于相似比。

实战训练二:1. 两个相似三角形的相似比是1:2,其中较小三角形的周长为6cm,则较大三角形的周长为12cm 。

2. 如果△ABC ∽△DEF,且△ABC的三边长分别为3、4、5,△DEF的最短边长为6,那么△DEF的周长为24 。

3. 如果两个相似三角形的周长比是2:3,其中小三角形一角的角平分线长是6cm,那么大三角形对应角平分线长是9cm 。

知识点4:性质定理4:相似相似三角形面积的比等于相似比的平方。

实战训练三:1. 若△ABC ∽△A’B’C’且相似比为1:2,则△ABC 与△A’B’C’面积之比为1:4 。

2. 两个相似三角形的面积之比是4: 9,则这两个三角形相似比是2:3 。

3. 判断:两个三角形的面积之比是4: 9,则这两个三角形的周长之比是2:3。

(×)二:典例分析例1:如图,已知△ACE△△BDE,AC=6,BD=3,AB=12,CD=18,求AE和DE的长。

解:∵△ACE∽△BDE∴ACBD =AEBE即63=AE12−AE解得AE=8△ ACBD =CEDE即63=18−DEDE解得DE=6相似三角形的应用——测量不能到达顶端的物体高度例2: 《周髀算经》中记载了“偃矩以望高”的方法,“矩”在古代指两条边呈直角的曲尺(即图中的ABC).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度.如图,点A、B、Q在同一水平线上,∠ABC和∠AQP均为直角,AP与BC相交于点D.测得AB=40cm,BD=20cm,AQ=12m,则树高为6m 。

相似三角形应用举例导学案

相似三角形应用举例导学案

年级:九年级班级:学生姓名:制作人:不知名编号:2023-1227.2.3 相似三角形应用举例学习目标:利用三角形相似的概念解决一些简单的实际问题。

预学案1.测量不能到达顶部物体的高度,通常借助太阳光照射物体形成影子,根据同一时刻物体高与影长,或利用相似三角形来解决问题.2.求不能直接到达的两点间的距离,关键是构造,然后根据相似三角形的性质求出两点间的距离.探究案【探究1】据传说,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度. 如图,木杆EF长2m,它的影长FD为3m,测得OA为201 m,求金字塔的高度BO.【探究2】如图,为了估算河的宽度,我们可以在河对岸选定一个目标点P,在近岸取点Q和S,使点P,Q,S共线且直线PS与河垂直,接着在过点S且与PS垂直的直线a上选择适当的点T确定PT与过点Q且垂直PS的直线b的交点R已测得QS=45m,ST=90m,QR=60m,请根据这些数据,计算河宽PQ.【探究3】如图,左右并排的两棵大树的高分别为AB=8m和CD=12m两树底部的距离BD=5m,一个人估计自己眼睛距地面16m她沿着正对这两棵树的一条水平直路1从左向右前进,当她与左边较低的树的距离小于多少时,就看不到右边较高的树的顶端C了?(1) (2)检测案1.如图,放映幻灯片时,通过光源把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为()A. 6cmB. 12cmC. 18cmD. 24cm第1题图第2题图第3题图2.如图,为了测量山坡的护坡石坝高,把一根长为4.5m的竹竿AC斜靠在石坝旁,量出竿上AD长为1m时,它离地面的高度DE为0.6m则坝高CF为m.3.如图,已知有两堵墙AB,CD,AB 墙高2 m,两墙之间的距离BC 为8 m,小明将一架木梯放在距B点3 m的E处靠向墙AB时,木梯有很多露出墙外.将木梯绕点E 旋转90°靠向墙CD 时木梯刚好达到墙的顶端,则墙CD的高为m. 4.如图,A、B两点被池塘隔开,在AB 外任选一点C,分别在AC,BC上取点D,E,如果测得CD =20 m,CE =40 m,AD=100 m,BE=20 m目DE=45 m,求AB的长.。

数学人教版九年级下册相似三角形应用举例教学设计

数学人教版九年级下册相似三角形应用举例教学设计

课题:27.2.3相似三角形应用举例(一)一、教学目标:知识技能:1、加深对相似三角形的理解与认识。

2、会运用相似三角形的知识解决实际问题。

数学思考:发展学生综合运用相似三角形的判定方法和性质解决问题的能力,提高学生的数学应用意识。

问题解决:经历动手作图的过程,提高学生将实际问题转化为数学问题的方法。

情感态度:1、在活动过程中使学生积累经验与成功体验,激发学生学习数学的热情与兴趣,并培养学生积极思考的好习惯。

2、使每一名学生都能树立自信心,在积极探索的过程中体验成功的快乐。

二、教学重点:在实际问题中,构造相似三角形的模型以及运用相似形的知识解决问题。

三、教学难点:利用工具构造相似三角形的模型。

四、教具:多媒体课件五、教学过程:活动一:故事激趣,引出课题提问:世界现存规模最大的金字塔位于哪个国家,叫什么金字塔?(出示课件金字塔介绍)提问:你知道泰勒斯是怎样测量大金字塔的高度的吗?(出示课件)师生活动:教师提出问题,学生观看课件图片回答问题,学生念课件内容。

设计意图:通过历史故事,提高学生的学习兴趣,激发学生的求知欲望,从而引出本节课题.活动二:探究“测量金字塔的高度问题”例1:在金字塔影子的顶部立一根本杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度。

如果木杆EF长2m,它的影长FD 为3 m,测得OA为201 m,求金字塔的高度BO.提问: (1)太阳光线BA、ED之间有什么关系?(2)△ABO和△DEF有什么特殊关系?(3)由EF=2m,FD=3m,OA=201m,怎样求BO?提问:你还有其他方法吗?(一题多解):利用平面镜反射原理师生活动:1、教师提出问题,学生读题,并理解测量方案。

2、由学生思考并回答,对于两三角形的关系,学生要会证明。

3、在教师的分析下,把实际问题转化为数学模型,解决问题。

4、教师要及时肯定并表扬学生的成果。

设计意图:1、渗透数学知识来源于生产、生活实践,适时进行德育渗透。

人教版九年级数学下册:27.2.3《相似三角形应用举例》教案1

人教版九年级数学下册:27.2.3《相似三角形应用举例》教案1

人教版九年级数学下册:27.2.3《相似三角形应用举例》教案1一. 教材分析《相似三角形应用举例》是人教版九年级数学下册第27章的一部分。

本节内容主要通过具体的例子来介绍相似三角形的应用,帮助学生理解和掌握相似三角形的性质和应用。

教材通过丰富的例题和练习题,使学生能够将相似三角形的知识应用到实际问题中,提高解决问题的能力。

二. 学情分析九年级的学生已经学习了一定程度的代数和几何知识,对相似三角形的性质有一定的了解。

但是,学生可能对相似三角形在实际问题中的应用还不够熟悉。

因此,在教学过程中,需要通过具体的例子和实际问题,引导学生理解和掌握相似三角形的应用。

三. 教学目标1.理解相似三角形的性质。

2.能够运用相似三角形解决实际问题。

3.提高学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.重点:相似三角形的性质和应用。

2.难点:如何将相似三角形的知识应用到实际问题中。

五. 教学方法采用问题驱动的教学方法,通过具体的例子和实际问题,引导学生理解和掌握相似三角形的应用。

同时,运用小组合作和讨论的方式,激发学生的学习兴趣,提高学生的参与度。

六. 教学准备1.准备相关的例题和练习题。

2.准备教学PPT或者黑板。

七. 教学过程1.导入(5分钟)通过一个实际问题引入本节内容。

例如,一个梯形的对角线长度分别为8cm和12cm,求梯形的面积。

让学生尝试解决这个问题,从而引出相似三角形的性质和应用。

2.呈现(15分钟)通过PPT或者黑板,呈现相似三角形的性质和应用的例题。

例如,两个相似三角形的边长比例为2:3,求这两个三角形的面积比例。

引导学生观察和分析例题,理解相似三角形的性质。

3.操练(15分钟)让学生分组合作,解决一些类似的实际问题。

例如,两个相似三角形的边长比例为3:4,求这两个三角形的面积比例。

通过小组合作和讨论,引导学生运用相似三角形的性质解决问题。

4.巩固(10分钟)提供一些练习题,让学生独立完成。

九年级数学上册《相似三角形的性质及应用》教案、教学设计

九年级数学上册《相似三角形的性质及应用》教案、教学设计
3.培养学生的空间想象力和创新意识,激发学生对几何学的热爱。
4.培养学生严谨、踏实的学术态度,使其养成良好的学习习惯。
5.通过相似三角形的学习,引导学生体会几何图形的和谐美,提高学生的审美情趣。
二、学情分析
九年级的学生已经具备了一定的几何基础,对三角形的性质、全等三角形的判定和应用有较为深入的了解。在此基础上,学习相似三角形的性质及应用,对学生来说是一个新的挑战。此时,学生正处于抽象逻辑思维逐渐成熟的阶段,对几何图形的观察、分析和解决问题的能力有待提高。因此,在教学过程中,要关注以下几点:
3.实践应用题:鼓励学生从生活中发现相似三角形的应用,拍摄照片或画图,并简要说明相似三角形在其中的作用。例如,建筑物的立面图、桥梁的支撑结构等。这样的作业既有助于学生将所学知识应用于实际,又能激发学生的学习兴趣。
4.小组合作题:布置一道小组合作题目,要求学生在课后分组讨论,共同完成。题目可以涉及相似三角形在实际问题中的应用,如测量距离、计算面积等。通过合作完成作业,培养学生的团队协作能力和沟通表达能力。
5.思考题:提出一些富有挑战性的问题,引导学生深入思考相似三角形的性质及应用。例如:“在相似三角形中,如何求解一个未知角的度数?”这类题目可以激发学生的探究欲望,提高学生的自主学习能力。
作业布置要求:
1.学生在完成作业时,要注意书写规范,保持解答过程的简洁和清晰。
2.鼓励学生在解题过程中尝试不同的方法,培养解题的灵活性和创新意识。
1.学生对相似三角形的概念和性质可能存在理解困难,需要教师耐心引导,通过具体实例和图形演示,帮助学生建立清晰的认识。
2.学生在解决相似三角形相关问题时的思路可能不够开阔,需要教师设计多样化的练习题,引导学生从不同角度思考问题,提高解题技巧。

九年级数学下册 相似三角形应用举例教案 新人教版

九年级数学下册 相似三角形应用举例教案 新人教版

教学流程安排中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。

一、教材分析:本节课讲的是中国书法艺术主要是为了提高学生对书法基础知识的掌握,让学生开始对书法的入门学习有一定了解。

书法作为中国特有的一门线条艺术,在书写中与笔、墨、纸、砚相得益彰,是中国人民勤劳智慧的结晶,是举世公认的艺术奇葩。

早在5000年以前的甲骨文就初露端倪,书法从文字产生到形成文字的书写体系,几经变革创造了多种体式的书写艺术。

1、教学目标:使学生了解书法的发展史概况和特点及书法的总体情况,通过分析代表作品,获得如何欣赏书法作品的知识,并能作简单的书法练习。

2、教学重点与难点:(一)教学重点了解中国书法的基础知识,掌握其基本特点,进行大量的书法练习。

(二)教学难点:如何感受、认识书法作品中的线条美、结构美、气韵美。

3、教具准备:粉笔,钢笔,书写纸等。

4、课时:一课时二、教学方法:要让学生在教学过程中有所收获,并达到一定的教学目标,在本节课的教学中,我将采用欣赏法、讲授法、练习法来设计本节课。

(1)欣赏法:通过幻灯片让学生欣赏大量优秀的书法作品,使学生对书法产生浓厚的兴趣。

(2)讲授法:讲解书法文字的发展简史,和形式特征,让学生对书法作进一步的了解和认识,通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!(3)练习法:为了使学生充分了解、认识书法名家名作的书法功底和技巧,请学生进行局部临摹练习。

三、教学过程:(一)组织教学让学生准备好上课用的工具,如钢笔,书与纸等;做好上课准备,以便在以下的教学过程中有一个良好的学习气氛。

(二)引入新课,通过对上节课所学知识的总结,让学生认识到学习书法的意义和重要性!(三)讲授新课1、在讲授新课之前,通过大量幻灯片让学生欣赏一些优秀的书法作品,使学生对书法产生浓厚的兴趣。

2、讲解书法文字的发展简史和形式特征,让学生对书法作品进一步的了解和认识通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!A书法文字发展简史:①古文字系统甲古文——钟鼎文——篆书早在5000年以前我们中华民族的祖先就在龟甲、兽骨上刻出了许多用于记载占卜、天文历法、医术的原始文字“甲骨文”;到了夏商周时期,由于生产力的发展,人们掌握了金属的治炼技术,便在金属器皿上铸上当时的一些天文,历法等情况,这就是“钟鼎文”(又名金文);秦统一全国以后为了方便政治、经济、文化的交流,便将各国纷杂的文字统一为“秦篆”,为了有别于以前的大篆又称小篆。

九年级数学 相似三角形的判定(教案、导学案)

九年级数学 相似三角形的判定(教案、导学案)

27.2相似三角形27.2.1 相似三角形的判定第3课时相似三角形的判定(3)【知识与技能】1.掌握“两角对应相等的两个三角形相似”的判定方法以及直角三角形中特有的判定相似的方法.2.能运用相似三角形的判定方法解决具体问题.【过程与方法】在观察、动手探究等活动中,掌握判定三角形相似的方法,体会转化思想.【情感态度】经历从实验探究到归纳证明的过程,发展学生的探究、交流能力和推理能力.【教学重点】掌握相似三角形的判定定理3及直角三角形中特有的相似判定方法. 【教学难点】探究两个判定定理的过程及其证明方法.一、情境导入,初步认识观察展示教师用的大三角板(45°和45°) 及学生用小三角尺(45°和45°),请学生们观察这样的两个三角形相似吗?对应相等,这样的两个三角形相似吗?【教学说明】教师简要回顾学过的相似三角形的判定方法1,2后,提出“还有没有其它的 方法来判定两个三角形相似呢?”,进而展示所准备好的三角尺,让学生获得感性认识,顺理成章地提出思考,激发学生求知欲望.二、思考探究,获取新知问题1 作△ABC 和△A ′B ′C ′,使∠A=∠A ′,∠B=∠B ′,分别度量这两个三角形的边长,计算C A AC C B BC B A AB '''''',,的值,你有什么发现? 由此你能作出一个怎样的猜想?【教学说明】让全班同学动手画图,并按要求独立完成探索过程,获得结论后,与同伴交流;只要画图和测量尽可能准确,则会得到它们 的比值相等,从而初步了解“有两个角对应相等的两个三角形相似”的结论.教师巡视,对出现偏差的结论应予以帮助,查找问题,尽量让他们也能获得正确结论.问题2 如图,在△ABC 和△A ′B ′C ′中,∠A=∠A ′,∠B=∠B ′,则△ABC ~△A ′B ′C ′吗?说说你的理由.【教学说明】教师应引导学生论证上述结论,在学生动笔前给予适当点拨,让学生能独立完成说理.在巡视时,对有困难的学生给予指导,并给出足够的时间,锻炼学生的合情推理能力.对应相等,那么这两个三角形相似.试一试如图,点D是AB边上一点,且∠ACD=∠B,试问:图中是否存在能够相似的二角形?如果存在,请指出来,并说明理由. 【教学说明】现学现用,巩固所学新知识.问题3对于直角三角形,我们知道“有一条直角边和斜边对应相等的两个直角三角形是全等的”,那么如果两个直角三角形中,有一条直角边与斜边的比对应相等,这样的两个直角三角形相似吗?【教学说明】教师应先与学生一道交流,找出两个直角三角形的已知条件有哪些(用图形和符号语言来表述),从这些条件到所探讨的结论之间还缺少什么条件,能否通过推理计算获得相应条件,从而引出利用勾股定理来探讨第三条对应边之间关系而获得结论.然后让学生独立完成,或相互交流获得论证过程.直角三角形相似的特殊判定方法:斜边和直角边对应成比例的两个直角三角形相似.三、典例精析,掌握新知例1教材P35例2.例2如图,Rt△ABC中,CD是斜边AB边上的高线.求证:(1)△ABC~△CBD;(2)CD2=AD•DB.【教学说明】例1可让学生自主探究,独立完成,再相互交流.例2则需师生共同探讨,利用直角三角形及高线定义找出图中能够相等 的角,从而获得相似的三角形有哪些,进而可解决问题.但它的证明过程仍可由学生自己完成,教师再挑选两至三份作业予以展示,共同评析,达到掌握本节知识的目的.四、运用新知,深化理解1.底角相等的两个等腰三角形是否相似?顶角相等的两个等腰三角形呢?证明你的结论.2.如图,AD 、BE 是AABC 的高线,它们相交于点 F.求证:AF • DF=BF • EF.3. 如图,△ABC 中,CD 是边AB 上的高,且BD CD CD AD ,试求∠ACB 的大小.【教学说明】1,3两题分别应用本节的两种三角形相似的判定方法来获得结论,是对本节知识较好的理解与掌握的体现,而第2题则是用一般三角形相似的判定方法来解决直角三角形中的相似问题,具有代表性.这些练习可根据实际情况选做,要求学生自主完成或相互交 流来得到结论.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.五、师生互动,课堂小结1.本节学习两种判定三角形相似的方法,它们分别是什么?2.总结一下判定两个直角三角形相似的方法.【教学说明】釆用师生互动方式进行,教师设问,学生抢答,进行必要的知识梳理.1.布置作业:从P42〜44习题27.2中选取.2.完成创优作业中本课时的“课时作业”部分.本课时应强调学生自主探究的原则,让学生通过观察、实验、动手探究等方式掌握判定三角形相似的方法.整堂课应注重转化思想的运用,本课时难点在于探究两个判定定理的过程及其证明方法,教师教学时讲解要尽可能详尽.教学过程中,应鼓励学生相互交流探讨,以提高学生的学习热情.27.2.1相似三角形的判定第3课时相似三角形的判定(3)——相似三角形的判定3和直角三角形相似的判定一、新课导入1.课题导入情景:拿一个含30°角的三角尺,让学生判断其内、外轮廓构成的两个含30°角的直角三角形是否相似.问题1:你是怎么判定的?能用前面学习的判定定理判定它们相似吗?问题2:我们由三角形全等的SSS和SAS的判定方法类似地得到了三角形相似的判定定理,那么能否同样地由三角形全等的ASA或AAS类比得到相应的三角形相似的判定方法呢?(板书课题)2.学习目标(1)知道两角分别相等的两个三角形相似;知道斜边、直角边成比例的两个直角三角形相似.(2)能证明结论“斜边、直角边成比例的两个直角三角形相似”.(3)能灵活选择适当的方法证明两个三角形相似.3.学习重、难点重点:相似三角形的判定方法3以及直角三角形相似的判定方法.难点:定理的证明.二、分层学习1.自学指导(1)自学内容:教材P35.(2)自学时间:8分钟.(3)自学方法:仿照上课时探究1,2完成探究提纲.(4)探究提纲:①探究:与同伴合作,一人先画△ABC,另一人再画△A′B′C′,使得∠A=∠A′,∠B=∠B′.a.操作判断:分别测量这两个三角形的边长,计算,,AB AC BC A B A C B C ''''''的值,你有什么发现?∠C=∠C′ 吗?由此你得到一个什么样的猜想?b.交流比较:把你的结果跟你周围的同学比较,你们的结论相同吗?c.归纳猜想:两角分别相等的两个三角形相似.d.推理证明:已知△ABC 和△A′B′C′中,∠A=∠A′,∠B=∠B′.求证:△ABC ∽△A′B′C′.证明:在A′B′上截取A′D=AB,过D 作DE ∥B′C′交A′C′于点E.∵DE ∥B′C′,∴△A′DE ∽△A′B′C′.又∵∠A=∠A′,∠B=∠B′,DE ∥B′C′,AB=A′D,∴∠A′DE=∠B′=∠B.∴△ABC ≌△A′DE.∴△ABC ∽△A′B′C′.e.推理格式:∵∠A=∠A′,∠B=∠B′,∴△ABC ∽△A′B′C′.②教材P35例2:如图,Rt △ABC 中,∠C=90°,AB=10,AC=8,E 是AC 上一点,AE=5,ED ⊥AB,垂足为D,求AD 的长.a.AB,AC,AE,AD 分别是哪两个三角形的边?这两个三角形相似吗?b.怎样证明这两个三角形相似?由此可以得到关于AB,AC,AE,AD 的一个怎样的比例式?c.写出你的解答过程.AB,AC 是△ABC 的边,AE,AD 是△AED 的边,这两个三角形相似.∵ED ⊥AB,∴∠EDA=90°,又∵∠C=90°,∠A=∠A,∴△AED ∽△ABC.∴AD AE AC AB =.∴AD=·AC AE AB=4. ③如图,若∠B=∠AED ,则△ADE ∽△ACB 吗?为什么?△ADE ∽△ACB.理由:∵∠B=∠AED,∠A=∠A,∴△ADE∽△ACB.④底角相等的两个等腰三角形相似吗?顶角相等的两个等腰三角形相似吗?证明你的结论.(相似,证明略)2.自学:学生参照自学指导进行自学.3.助学(1)师助生:①明了学情:了解学生对三角形相似的判定定理3的掌握情况.②差异指导:根据学情进行指导.(2)生助生:小组内相互交流、研讨.4.强化:∠A=∠A′,∠B=∠B′△ABC∽△A′B′C′.1.自学指导(1)自学内容:教材P36.(2)自学时间: 6分钟.(3)自学方法:注意怎样根据已知条件选择合适的定理.(4)自学参考提纲:①由已知∠C=∠C′=90°,AB ACA B A C='''',能根据定理“两边成比例且夹角相等的两个三角形相似”证明两个三角形相似吗?为什么?(不能,∠C和∠C′并非对应两边的夹角)②选择定理“三边成比例的两个三角形相似”证明两个三角形相似,还差什么条件?AB BC A B B C=''''③能否像前面三个判定定理的证明一样,构造一个与已知的一个三角形全等而与已知的另一个三角形相似的中间三角形的方法来证明呢?④如图,在Rt△ABC中,∠C=90°,CD是斜边AB上的高.求证:a.△ACD∽△ABC;b.△CBD∽△ABC.证明:∵CD⊥AB,∴∠ADC=∠CDB=90°.∴∠ADC=∠ACB=∠CDB.a.在△ACD和△ABC中,∵∠A=∠A,∠ADC=∠ACB,∴△ACD∽△ABC.b.在△CBD和△ABC中,∵∠B=∠B,∠CDB=∠ACB,∴△CBD∽△ABC.⑤如果Rt△ABC的两条直角边分别为3和4,那么以3k和4k(k>0)为直角边的直角三角形一定与Rt△ABC相似吗?为什么?(相似,理由:两边成比例且夹角相等的两个三角形相似)2.自学:学生参照自学指导进行自学.3.助学(1)师助生:①明了学情:直角三角形相似判定定理的归纳与证明.②差异指导:根据学情进行指导.(2)生助生:生生互动交流、研讨.4.强化(1)直角三角形相似的判定方法.(2)点学生口答后,点3位学生板演,并点评.三、评价1.学生学习的自我评价:这节课你学到了些什么?有哪些收获和不足?2.教师对学生的评价:(1)表现性评价:从学习态度、参与程度、思维状况等方面进行评价.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时应以学生自主探究为原则,让学生通过观察、实验、动手操作等方式探究并掌握判定三角形相似的方法.在这节课中,通过设计问题和启发、引导,让学生悟出学习方法和途径,培养学生独立学习的能力.整堂课应注重转化思想的运用,难点在于探究两个判定定理的过程及其证明方法,教师教学时讲解要尽可能详尽.教学过程中,应鼓励学生相互交流探讨,以提高学生的学习热情.一、基础巩固(70分)1.(10分)如图,当∠ADE=∠C(答案不唯一)时,△ABC∽△AED(填写一个条件).第1题图第2题图2.(10分)如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC ∽△EPD,则点P所在的格点为(C)A.P1B.P2C.P3D.P43.(10分)如图,△ABC中,AB=AC,∠A=36°,∠ABC的平分线交AC于点D,求证:△ABC∽△BDC.证明:∵AB=AC,∠A=36°,BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠A=∠DBC.在△ABC和△BDC中,∠A=∠DBC,∠C=∠C.∴△ABC∽△BDC.4. (10分)如图,AD是Rt△ABC的斜边上的高.若AB=4 cm,BC=10 cm,求BD 的长.解:∵AD⊥BC,∠BAC=90°,∴∠ADB=∠CAB.∴△ABD∽△CBA,∴BD BA AB CB=,即4410BD=,BD=1.6(cm).5.(30分)从下面这些三角形中,选出相似的三角形.①、⑤、⑥相似,③、④、⑧相似,②和⑦相似.二、综合应用(20分)6.(20分)如图,△ABC中,D在线段BC上,∠BAC=∠ADC,AC=8,BC=16.(1)求证:△ABC∽△DAC;(2)求CD的长.(1)证明:∵∠BAC=∠ADC,∠C=∠C,∴△ABC∽△DAC.(2)解:∵△ABC∽△DAC,∴CD ACCA BC=,即8816CD=,∴CD=4.三、拓展延伸(10分)7.(10分)如图,M是Rt△ABC的斜边BC上异于B、C的一个定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有(C)A.1条B.2条C.3条D.4条。

人教版九年级数学下册:27.2.3《相似三角形应用举例》教学设计3

人教版九年级数学下册:27.2.3《相似三角形应用举例》教学设计3

人教版九年级数学下册:27.2.3《相似三角形应用举例》教学设计3一. 教材分析《人教版九年级数学下册》第27.2.3节《相似三角形应用举例》是学生在学习了相似三角形的性质和判定方法后,进一步探讨相似三角形的应用。

本节课通过具体的例子,让学生了解相似三角形在实际问题中的应用,培养学生的数学应用能力。

教材中给出了几个典型的应用例子,如相似三角形的面积比、相似三角形的边长比等,教师在教学过程中可以结合实际问题,让学生更好地理解相似三角形的应用。

二. 学情分析九年级的学生已经掌握了相似三角形的性质和判定方法,具备一定的逻辑思维能力和数学应用能力。

但在实际应用中,学生可能对如何将实际问题转化为数学问题还不够熟练,需要教师在教学过程中进行引导和培养。

三. 教学目标1.理解相似三角形的面积比和边长比的应用。

2.能够将实际问题转化为数学问题,利用相似三角形解决问题。

3.培养学生的数学应用能力和解决问题的能力。

四. 教学重难点1.难点:如何将实际问题转化为数学问题,灵活运用相似三角形的性质。

2.重点:掌握相似三角形的面积比和边长比的应用。

五. 教学方法1.讲授法:教师讲解相似三角形的应用例子,引导学生理解相似三角形的实际应用。

2.案例分析法:教师给出实际问题,引导学生进行分析,转化为数学问题。

3.小组讨论法:学生分组讨论实际问题,共同解决问题,培养学生的合作能力。

六. 教学准备1.准备相关的实际问题,如测量物体的高度、计算物体的体积等。

2.准备课件,展示相似三角形的应用例子。

七. 教学过程1.导入(5分钟)教师通过一个简单的实际问题引入本节课的主题,如“如何测量一棵大树的高度?”引导学生思考相似三角形在实际问题中的应用。

2.呈现(10分钟)教师呈现课件,展示相似三角形的面积比和边长比的应用例子,如测量物体的高度、计算物体的体积等。

引导学生理解相似三角形的应用。

3.操练(10分钟)教师给出一个实际问题,如“一个长方形和一个三角形,它们的面积相等,求长方形的长和宽。

相似三角形的应用举例教案人教版九年级数学下册

相似三角形的应用举例教案人教版九年级数学下册

27.2.3 相似三角形的应用举例教案人教版九年级数学下册从历史上看,相似三角形很早就已经为人们所认识。

大约公元前20 世纪,在古巴比伦泥版文献中就已经出现了相似三角形的应用问题;那相似三角形到底要如何进行应用呢?就让我们一起来研究一下吧。

如图,某一时刻一根2m 长的竹竿 EF 的影长GE 为1.2m ,此时,小红测得一棵被风吹斜的柏树与地面成30°角,树顶端B 在地面上的影子点D 与B 到垂直地面的落点C 的距离是3.6m ,求树AB的长。

解:∵BC ⊥CD,FE ⊥EG∴∠BDC = ∠FGE∵∠FEG = ∠BCD∴△BDC ~△FGE故有 CD EG = BC FE∵GE =∴ CD EG = 3 = BC FE∵FE = 2m∴BC = 6m∵在直角三角形ABC 中,∠BAC = 30°∴AB = 2BC = 12m通过分析我们发现 BC 垂直 CD , FE 垂直 EG ,而太阳光是平行光线,因此角 BDC 等于角 FGE ,又因为角 FEG 等于角 BCD等于90度,所以三角形 BCD 相似于三角形 FEG ,可以得到 CD比 EG 等于 BC 比 FE ,由题目可知,,,也等同于CD 等于3.6m ,我们可以推出 CD 比 EG 等于3,那么 BC 比 FE 也等于3,题目中说了,竹竿 FE 长为2m ,则 BC 就等于6m ,图中我们可以看见角 BAC 等于30度,那么在直角三角形ABC 中,角 BAC 对应的边是BC ,我们也学过,在含30度的直角三角形中,30度对应的直角边是斜边的一半,那么柏树 AB 就等于 二倍的 BC 等于12m 。

那么这里我们就总结用相似三角形测量高度的第一个方法。

当我们需要得到一个无法直接测量的物体的高度或长度时,可以用在太阳光下,同一时刻物体的高度于影子的长度成正比例的原理来解决。

这个时候就有同学会问了,老师,并不是每天都是晴天的,那如果今天是阴天,云把太阳遮住了怎么办?当然还有别的办法,不过我们还是要用到相似三角形。

人教版九年级数学下册《相似三角形应用举例》优秀教学设计

人教版九年级数学下册《相似三角形应用举例》优秀教学设计

人教版九年级数学下册《相似三角形应用举例》优秀教学设计一. 教材分析人教版九年级数学下册《相似三角形应用举例》这一章节是在学生已经掌握了相似三角形的性质和判定方法的基础上进行教学的。

通过这一章节的学习,使学生能够运用相似三角形的性质解决一些实际问题,提高他们的应用能力。

教材通过丰富的例题和练习题,引导学生运用所学知识解决实际问题,培养他们的数学思维能力和解决问题的能力。

二. 学情分析九年级的学生已经具备了一定的数学基础,对相似三角形的性质和判定方法有一定的了解。

但是,他们在解决实际问题时,往往不知道如何运用所学知识,对相似三角形的应用范围和条件掌握不牢固。

因此,在教学过程中,教师需要引导学生将理论知识与实际问题相结合,提高他们的应用能力。

三. 教学目标1.知识与技能目标:使学生掌握相似三角形的应用范围和条件,能够运用相似三角形的性质解决一些实际问题。

2.过程与方法目标:通过解决实际问题,培养学生运用数学知识解决问题的能力,提高他们的数学思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。

四. 教学重难点1.教学重点:使学生掌握相似三角形的应用范围和条件,能够运用相似三角形的性质解决实际问题。

2.教学难点:如何引导学生将理论知识与实际问题相结合,提高他们的应用能力。

五. 教学方法1.情境教学法:通过设置实际问题情境,引导学生运用相似三角形的性质解决问题。

2.案例教学法:通过分析典型案例,使学生掌握相似三角形的应用范围和条件。

3.引导发现法:教师引导学生发现相似三角形的性质在实际问题中的应用,培养他们的数学思维能力。

六. 教学准备1.教师准备:熟悉教材内容,了解学生的学习情况,设计好教学过程和教学活动。

2.学生准备:预习相似三角形的相关知识,了解本节课的学习内容。

七. 教学过程1.导入(5分钟)教师通过设置一个实际问题情境,引导学生回顾相似三角形的性质和判定方法。

相似三角形应用举例人教版数学九年级下册教案

相似三角形应用举例人教版数学九年级下册教案

类似三角形运用举例人教版数学九年级下册教案类似三角形是指三角分别相等,三边成比例的两个三角形。

类似三角形是几何中重要的证明模型之一,是全等三角形的推广。

全等三角形可以被知道为类似比为1的类似三角形。

以下是作者整理的类似三角形运用举例人教版数学九年级下册教案,欢迎大家鉴戒与参考!《27.2.3类似三角形运用举例》导学案1.通过本节类似三角形运用举例,发展学生综合运用类似三角形的判定方法和性质解决问题的能力,提高学生的数学运用意识,加深对类似三角形的知道与认识.2.在活动进程中使学生积存体会与成功体验,激发学生学习数学的热情与爱好.浏览教材P39-40,自学“例4”,学会运用类似三角性的判定与性质解决实际问题,学会从实际问题中建立数学模型.自学反馈学生独立完成后集体订正①太阳光下,同一时刻,物体的长度与其影长成 (正比或反比).②太阳光下,同一时刻,物体的高度、影子、光线构成的三角形类似吗?活动1 小组讨论例1 小刚用下面的方法来测量学校大楼AB的高度.如图,在水平地面上的一面平面镜,镜子与教学大楼的距离EA=21 m,当他与镜子的距离CE=2.5 m 时,他恰好能从镜子中看到教学大楼的顶端B,已知他的眼睛距地面高度DC=1.6 m,请你帮助小刚运算出教学大楼的高度AB是多少m.(注意:根据光的反射定律,反射角等于入射角)《27.2类似三角形的判定》测试四、解答题(本大题共2小题,共16.0分)如图所示,点P从点B动身,沿BC向点C以的速度移动,点Q从点C动身沿CA向点A以的速度移动,如果P、Q分别从B、C同时动身,过量少时,以C、P、Q为顶点的三角形恰与类似?27.2.2类似三角形的性质:课堂试题1.[202X·绥化]两个类似三角形的最短边分别为5 cm和3 cm,他们的周长之差为12 cm,那么大三角形的周长为( )A.14 cmB.16 cmC.18 cmD.30 cm类似三角形运用举例人教版数学九年级下册教案到此结束。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

27.2相似三角形27.2.3 相似三角形应用举例【知识与技能】进一步巩固相似三角形的知识,学会用相似三角形解决不能直接测量的物体的长度和高度等一些实际问题.【过程与方法】通过把实际问题转化为有关相似三角形的模型,进一步体会数学建模的思想方法.【情感态度】培养学生分析问题、解决问题能力,增强观察、归纳、建模、应用能力,在活动中也培养学生良好的情感态度,主动参与、合作交流意识.【教学重点】运用相似三角形的知识求不能直接测量的物体的长度和高度.【教学难点】在实际问题中建立数学模型,灵活运用三角形相似的知识解决实际问题.一、情境导入,初步认知问题一天上午10:00时,九年级的小明带着弟弟在操场上玩,弟弟看见高高的旗杆,好奇地问:哥哥,这旗杆好高啊,你知道它有多高吗?”望着高高的旗杆,小明一下子愣住了.但小明是个要强的孩子,他不愿意失去弟弟心目中“大英雄”的地位,绕着旗杆转了几圈,抬头望望,低头看看,这时他的目光停留在自己的影子和电线杆的影子上,他记得自己身高为1.60 米,联想到了刚刚学过相似三角形的知识,终于想到求出旗杆高度的方法了,并给弟弟一个满意的答案.同学们,如果是你,你有办法求出旗杆的高度吗?与同伴交流你的想法.【教学说明】通过学生能感受到的问题情境,提出问题,可激发学生的求知欲望,增强学习兴趣.在学生的相互交流过程中,慢慢感受到用相似三角形知识可以测量出不能直接测量的物体的高度的思路方法,引入新课.二、典例精析,掌握新知例1据史料记载,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度.如图,如果木杆EF长为2m,它的影长FD为3m.测得0A = 201m,求金字塔高度BO.【教学说明】利用学生刚刚获得的体验来解决金字塔的高度问题水到渠成,教学过程中教师应关注学生的说理过程,锻炼学生分析问题,解决问题及推理能力.例2 如图,为了估算河的宽度,我们可以在河对岸选定一个目标P,在近岸取点Q和点S,使P、Q、S共线且直线PS与河岸垂直,接着在过点S且与PS垂直的直线b上选取适当的点T,确定PT与过点Q且垂直PS的直线a的交点 R.如果测得 QS=45m,ST=90m,QR =60m,求河的宽度PQ.【教学说明】本题可让学生独立完成,选一名同学在黑板上写出解答过程,然后师生共同评析.然后教师可设置以下几个问题让学生思考:(1)PS与河垂直是必须的吗?如果不是,请用类似的方法再设计一种估算河岸的方法,试试看;(2)如果保持犘犙与河垂直,删去直线b,在PR延长线上去一点T,过T作TS⊥a,垂足为S,是否也能求出河的宽度PQ?如果可以,需测量出哪些线段长?通过学生对上述问题的思考,可增强学生的数学建模能力,锻炼一题多解的解题习惯,进一步领会用相似三角形知识可求出不能直接测量的物体的高度(或长度),达到融会贯通的目的.例3如图,左、右并排的两棵大树的高 AB=8m,CD=12m,两树根部的距离BD=5m. 一个身高1.6m的人沿着正对这两棵树的一条水平直路L从左向右前进,当他与左边较低的树的距离小于多少时,就不能看到右边较高的树的顶端点C?【教学说明】教师首先应引导学生弄清题意,即当观察者行至图(2)位置时,恰好看到较高树的顶端点C,再往右行,由于树的遮挡,就不能看到点C了,因而问题的关键转化为求图(2)中观察者所处位置M与B之间的距离.这时可设观察者的水平视线与AB、CD分别交于 P、Q,利用树的平行关系,可找出图中相似三角形进而可求线段BM的长.三、运用新知,深化理解1.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一栋高楼的影长为90m,这栋高楼的高度是多少?2.如图,身高1.5m的人站在离河边3m处时,恰好能看到对岸边电线杆的全部倒影,若河岸高出水面高度ED为0.75m,电线杆高MG为4.5m,求河宽.【教学说明】对于第2题,教师可提高向学生提示应通过证△DEF∽△KMF来解题.接着让学生自主完成,教师巡视,及时指导.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.【答案】1.解:设这栋高楼的高度是x米.由题意得:1.8390x.解得:x=54.即这栋高楼的高度为54米.四、师生互动,课堂小结用相似三角形的知识测量不能直接测量的物体的高度时,有哪几种构建三角形相似的方法,试举例说明.【教学说明】同学们相互交流后,师生共同回顾,积累构建相似三角形的经验.1.布置作业:从教材P42〜44习题27. 2中选取.2.完成创优作业中本课时的“课时作业”部分.前面的课时中探讨了如何判定两个三角形相似,本课时将实际问题转化为两个三角形相似的数学模型.在教学时教师应重点强调这个转化过程是如何实现的.总体来看,本课时首先呈现生活中常见问题,以便让学生体会其必要性,接着通过三个例题让学生掌握运用相关知识解应用题的思路.整个教学过程中都渗透了转化思想,教师应注意让学生把握这一点.27.2.3 相似三角形应用举例第1课时相似三角形应用举例(1)——测量塔高与测量河宽一、新课导入1.课题导入情景一:胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七大奇观之一”.塔的4个斜面正对东南西北四个方向,塔基呈正方形,每边长约230多米.据考证,为建成大金字塔,共动用了10万多人花了20年时间.原高146.59米,但由于经过几千年的风吹雨打,顶端被风化吹蚀,所以高度有所降低.据史料记载,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度.情景二:在无法过河的条件下,怎样估算河的宽度?那么,具体是怎样操作的呢?这节课我们一起来探讨这两个问题(板书课题).2.学习目标(1)利用相似三角形的知识,解决求实际问题中不能直接测量的物体高度或长度的问题.(2)体会数学转化的思想,建模的思想.3.学习重、难点重点:利用相似三角形的知识,解决求实际问题中不能直接测量的物体高度或长度的问题.难点:数学建模.二、分层学习1.自学指导(1)自学内容:教材P39例4.(2)自学时间:10分钟.(3)自学方法:完成自学参考提纲.(4)自学参考提纲:①怎样判定两个直角三角形相似?②你知道哪些利用相似三角形测物体高度的方法?③如图,如果木杆EF长2 m,它的影长FD为3 m,测得OA为201 m,求金字塔的高度BO.∵BA ∥DE,∴∠BAO= ∠EDF ,又∵∠BOA=∠EFD= 90° ,∴△BOA ∽△EFD .∴BO OA EF FD.∵EF=2 m,FD=3 m,OA=201 m,∴BO= 134 m .④总结本题的解题思路.⑤在某一时刻,测得一根长为1.8 m的竹竿的影长为3 m,同时测得一栋高楼的影长为90 m,这栋高楼的高度为多少?(54 m)2.自学:学生参照自学指导进行自学.3.助学(1)师助生:①明了学情:明了学生是否理解这种测量方法的原理.②差异指导:根据学情进行指导.(2)生助生:生生互动交流、研讨.4.强化(1)以师生对话的形式推进课堂交流活动.(2)点一名学生板演自学参考提纲第⑤题.1.自学指导(1)自学内容:教材P40例5.(2)自学时间:10分钟.(3)自学方法:完成自学参考提纲.(4)自学参考提纲:①你有哪些利用全等三角形的知识测量河宽的方法?②用相似三角形的知识估算河的宽度:如图,由QS=45 m,ST=90 m,QR=60 m, 求河宽PQ,需证哪两个三角形相似?∵∠PQR=∠PST=90°,∠P=∠P ,∴△PQR ∽△PST ,∴PQ QR PS ST=,设PQ=x,可列方程604590xx=+,解得x= 90 .因此河宽约为90 m.③如图,测得BD=120 m,DC=60 m,EC=50 m,求河宽AB. ∵∠ABD=∠ECD=90°,∠ADB=∠EDC,∴△ABD∽△ECD.∴CE CD BA BD=.即5060120BA=.解得AB=100(m).④为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如右图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据:①BC,AC;②EF,DE,BD;③DE,DC,BC;④DC,DB,AC.能根据所测数据求出A,B间距离的有(B)A.1组B.2组C.3组D.0组2.自学:学生参照自学提纲进行自学.3.助学(1)师助生:①明了学情:明了学生能否通过阅读例题的解题过程弄清实际问题是怎样转化为数学问题的.②差异指导:根据学情指导学生画图,把实际问题抽象成数学问题.(2)生助生:小组交流、研讨.4.强化(1)运用相似三角形解决实际问题的基本思路是:根据题目所给的条件和所求问题建立相似三角形模型.解题步骤为:先证三角形相似,再运用相似三角形性质得比例线段,然后列方程或直接计算求值.(2)点一名学生板演自学参考提纲第③题,点一名学生口答自学参考提纲第④题,并点评.三、评价1.学生自主学习的自我评价:这节课你学到了些什么?还有哪些疑惑?2.教师对学生的评价:(1)表现性评价:从学生对学习的专注程度,小组协作状态等方面进行评价.(2)纸笔评价(课堂检测题).3.教师的自我评价(教学反思).本课时主要是让学生经历了运用两个三角形相似解决实际问题中的测量问题的过程,体验从实际问题到建立数学模型的过程,发展学生的抽象概括能力和数学应用能力.因此,为了增强数学的趣味性,在教学设计中选择有趣的实际问题,让学生在富有故事性或现实性的数学情境问题中,谈及解决问题的方法,激发学生的学习兴趣.一、基础巩固(70分)1.(10分)如图,利用标杆BE测量建筑物的高度.如果标杆BE高1.2 m,测得AB=1.6 m,BC=8.4 m,则楼高CD是多少?解:∵EB∥DC,∴△AEB∽△ADC.∴EB AB DC AC=,即12161684....DC=+,求得DC=7.5(m).2.(10分)为了测量一池塘的宽AB,在岸边找到了一点C,使AC⊥AB,在AC上找到一点D,在BC上找到一点E,使DE ⊥AC,测出AD=35 m,DC=35 m,DE=30 m,求池塘的宽AB.解:∵AC⊥AB,DE⊥AC,∴AB∥DE,∴△CDE∽△CAB,∴DE CD AB CA=,即30353535AB=+,求得AB=60(m).3.(10分)如图是一个照相机成像的示意图,MN∥AB.(1)如果像高MN是35 mm,焦距DL是50 mm,拍摄的景物高度AB是4.9 m,拍摄点离景物有多远(即LC的长度)?(2)如果要完整的拍摄高度是2 m的景物,拍摄点离景物有4 m,像高不变,则相机的焦距应调整为多少?解:(1)设拍摄点离景物的距离为x mm.∵MN∥AB,∴△MNL∽△BAL,∴MN DL BA CL=,即35504900x=,解得x=7000.7000 mm=7 m.∴拍摄点离景物距离为7 m. (2)设相机的焦距为y mm.由相似三角形的性质可得:3520004000y=,解得y=70.∴相机的焦距应调整为70 mm.4.(40分)某班同学进行课外活动,为测量一池塘两端A、B的距离,设计了几种方案,下面介绍两种:(Ⅰ)如图1,先在平地取一个可以直接到达A、B的点C,并分别延长AC 到D,BC到E,使DC=AC,EC=BC,最后测出DE的长即为AB的距离;(Ⅱ)如图2,先过B点作AB的垂线BF,再在BF上取C、D两点,使BC=CD,接着过点D作BD的垂线DE,交AC的延长线于E,最后测出DE的长即为AB的距离.阅读后回答下列问题:(1)方案(Ⅰ)是否可行?可行,理由是∵DC=AC,∠ACB=∠DCE,BC=EC,∴△ACB≌△DCE(SAS).∴AB=DE ;(2)方案(Ⅱ)是否可行?可行,理由是∵BF⊥DE,BF⊥AB,∴∠ABC=∠EDC=90°,BC=DC,∠ACB=∠ECD,∴△ABC≌△EDC(ASA).∴AB=ED .(3)方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是使△ABC≌△EDC ;若仅满足∠ABD=∠BDE≠90°,方案(Ⅱ)是否可行?(可行.因为△ABC依然全等于△EDC.)(4)方案(Ⅱ)中,若使BC=n·CD,能否测得(或求出)AB的长?能.理由是依题意,∠ABC=∠EDC,∠ACB=∠ECD,∴△ABC∽△EDC,∴BC AB==,若ED=m,则AB= mn .nDC ED二、综合应用(20分)5.(20分)如图,为了测量一栋大楼的高度,王青同学在她脚下放了一面镜子,然后向后退,直至她刚好在镜子中看到大楼顶部,这时∠LMK等于∠SMT吗?如果王青身高1.55 m,她估计自己的眼睛离地面1.50 m,同时量得LM=30 cm,MS=2 m,这栋大楼有多高?解:∠LMK=∠SMT.又∵∠KLM=∠TSM=90°, ∴△KLM∽△TSM,∴KL LM TS SM=,即15032..TS=,解得TS=10(m).∴这栋大楼有10 m高.三、拓展延伸(10分)6.(10分)如图,点D、E分别在AC、BC上,如果测得CD=20 m,CE=40 m,AD=100 m,BE=20 m,DE=45 m,求A、B两地间的距离.解:由题意可知,CD=20 m,CE=40 m,AD=100 m,BE=20 m,DE=45 m.∴AC=AD+DC=120 m,BC=BE+CE=60 m.∴13CD CECB CA==,而∠C=∠C,∴△CDE∽△CBA.∴13DEBA=,∴AB=135(m).∴A、B两地间的距离为135 m.。

相关文档
最新文档