32导数的基本公式及四则运算法则
3.2.3 导数的四则运算法则+【KS5U+高考】
3.2.3 导数的四则运算法则
8
规律方法
本题是基本函数和 (差) 的求导问题,求导过程要紧
扣求导法则,联系基本函数求导法则,对于不具备求导法则结
构形式的可先进行适当的恒等变形转化为较易求导的结构形式
再求导数.
3.2.3 导数的四则运算法则
9
跟踪演练1
求下列函数的导数:
(1)y=5-4x3;(2)y=3x2+xcos x; 1 x (3)y=e · ln x;(4)y=lg x-x2. 解 (1)y′=-12x2; (2)y′=(3x2+xcos x)′=6x+cos x-xsin x;
) xsin x-sin x-cos x B. 1-x2 D. cos x-sin x+xsin x 1-x
cos x-sin x+xsin x C. 1-x2
3.2.3 导数的四则运算法则
17
1 2 3 4
解 析
-sin x1-x-cos x· -1 cos x ′ = y′ = = 2 1 - x 1-x 1-x
15
1 2 3 4
解析
利用求导公式和导数的加、减运算法则求解.D项,
∵y=sin x+cos x, ∴y′=(sin x)′+(cos x)′=cos x-sin x.
答案
D
3.2.3 导数的四则运算法则
16
1 2 3 4
cos x 2.函数 y= 的导数是( 1-x A. -sin x+xsin x 1-x2
7
(2)y=3x-lg x. 解 函数y=3x-lg x是函数 f(x)=3x与函数 g(x)=lg x的差.由导 数公式表分别得出
1 f′(x)=3 ln 3,g′(x)=xln 10,
3.2 导数的基本公式及四则运算法则
所以
∆y 1 ∆x ∆x = lim[ log a (1 + ) ] lim ∆x →0 ∆x ∆x − 0 x x
x
1 ∆x ∆x = log a lim (1 + ) ∆x →0 x x 1 1 , = log a e = x x ln a
x
即
1 . (log a x)′ = x ln a
y′ = 5( x 2 )′ + 3( x −3 )′ − (2 x )′ + 4(cos x)′
= 5 × 2 x + 3 × (−3) x −4 − 2 x ln 2 + 4(− sin x) 9 = 10 x − 4 − 2 x ln 2 − 4 sin x . x
2.乘积函数的导数 2.乘积函数的导数
= 30 x 2 − 2 x − 1 .
例3
设 y = x sin x ln x ,求 y′
解 y′ = ( x)′ sin x ln x + x(sin x)′ ln x + x sin x(ln x)′ 1 = 1 ⋅ sin x ln x + x cos x ln x + x sin x ⋅ x = sin x ln x + x cos x ln x + sin x .
(uvw)′ = u′vw + uv′w + uvw′ .
例2 解
2 设 y = (1 + 2 x)(5 x − 3 x + 1) , 求 y′. y′ = (1 + 2 x)′(5 x 2 − 3 x + 1) + (1 + 2 x)(5 x 2 − 3 x + 1)′ = 2(5 x 2 − 3 x + 1) + (1 + 2 x)(10 x − 3)
导数的四则运算法则
法二:∵y=(2x2-1)(3x+1)=6x3+2x2-3x-1,
∴y′=(6x3+2x2-3x-1)′=(6x3)′+(2x2)′-(3x)′-(1)′=18x2+4x-3.
题型二 由导数值求参数 [学透用活]
[典例 2] 设 f(x)=a·ex+bln x,且 f′(1)=e,f′(-1)=1e,求 a,b 的值. [解] f′(x)=(a·ex)′+(bln x)′=a·ex+bx,
法二:设直线 l 的方程为 y=kx,切点为(x0,y0),则 k=xy00--00=x30+xx00-16. 又∵k=f′(x0)=3x20+1,∴x30+xx00-16=3x20+1,解得 x0=-2. ∴y0=(-2)3+(-2)-16=-26,k=3×(-2)2+1=13. ∴直线 l 的方程为 y=13x,切点坐标为(-2,-26).
应 求在某点处的切线方程,已知切线的方程或斜率求切点,以 用 及涉及切线问题的综合应用
先求出函数的导数,若已知切点,则求出切线斜率、切线方 方 程;若切点未知,则先设出切点,用切点表示切线斜率,再 法 根据条件求切点坐标.总之,切点在解决此类问题时起着至
关重要的作用
[对点练清]
1.若过函数f(x)=ln x+ax上的点P的切线与直线2x-y=0平行,则实数a的取值
[对点练清] 求下列函数的导数: (1)y=x2+xln x;(2)y=lnx2x; (3)y=exx;(4)y=(2x2-1)(3x+1).
解:(1)y′=(x2+xln x)′=(x2)′+(xln x)′
=2x+(x)′ln x+x(ln x)′=2x+ln x+x·1x=2x+ln x+1.
()
3.已知函数 f(x)=ax2+c,且 f′(1)=2,则 a 的值为
导数公式导数运算法则
导数公式导数运算法则导数是微积分中的一个重要概念,用于描述函数在其中一点的变化速率。
导数的计算涉及到一系列的运算法则,这些法则可以帮助我们更快、更方便地求取函数的导数。
在以下讨论中,假设函数f(x)和g(x)是可导函数,c是常数。
一、四则运算法则1.加法法则:(f+g)'(x)=f'(x)+g'(x)这个法则表示如果一个函数是两个可导函数的和,那么它的导数等于这两个函数的导数之和。
2.减法法则:(f-g)'(x)=f'(x)-g'(x)同样地,如果一个函数是两个可导函数的差,那么它的导数等于这两个函数的导数之差。
3.乘法法则:(fg)'(x) = f'(x)g(x) + f(x)g'(x)这个法则说明了如果一个函数是两个可导函数的乘积,那么它的导数等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数。
4.除法法则:(f/g)'(x)=(f'(x)g(x)-f(x)g'(x))/(g(x))^2这个法则表示,如果一个函数是一个可导函数除以另一个可导函数,那么它的导数等于分子函数的导数乘以分母函数,减去分子函数乘以分母函数的导数,再除以分母函数的平方。
二、连锁法则1.复合函数的导数:如果y=f(u)和u=g(x)是可导函数,那么复合函数y=f(g(x))的导数可以通过以下公式计算:dy/dx = dy/du * du/dx这个公式称为连锁法则,它表示了复合函数的导数与内部函数和外部函数的导数之间的关系。
三、常用函数的导数1.幂函数:d(x^n)/dx = nx^(n-1)这个法则表示了幂函数的导数,其中n是任意实数。
2.指数函数:d(e^x)/dx = e^x这个法则说明指数函数e^x的导数是它本身。
3.对数函数:d(ln(x))/dx = 1/x这个法则说明自然对数函数ln(x)的导数是1除以x。
高中数学第三章导数及其应用32导数的计算课件新人教A版选修1
sin x
x
,f′(x)为函数f(x)的导函数,则f′
(π)=________.
解析:因为f′(x)=(sin
x)′x-sin x2
x·(x)′
=x·cosxx2-sin x
所以f′(π)=π·cos
π-sin π2
π=-ππ-2 0=-π1 .
答案:-π1
5.曲线 y=ln x 在 x=a 处的切线倾斜角为π4,则 a =____.
(2)准确记忆公式. (3)根式、分式求导时,应将根式、分式转化为幂的 形式. 2.解决函数求导的问题,应先分析所给函数的结构 特点,选择正确的公式和法则.对较为复杂的求导运算, 在求导之前应先将函数化简,然后求导,以减少运算量.
结束
语 同学们,你们要相信梦想是价值的源泉,相信成
功的信念比成功本身更重要,相信人生有挫折没 有失败,相信生命的质量来自决不妥协的信念,
x x
+
1- 1+
x x
=
(1+ x)2 1-x
+
(11--xx)2=2(11-+xx)=1-4 x-2,
所以
y′
=
1-4 x-2
′
=
4′(1-x)-4(1-x)′ (1-x)2
=
4 (1-x)2.
类型 3 导数的应用(巧思妙解) [典例 3] 求抛物线 y=x2 上的点到直线 x-y-2=0 的最短距离. [常规解法]设与抛物线 y=x2 相切且与直线 x-y-2 =0 平行的直线 l 的方程 x-y+m=0(m≠-2),
1.基本初等函数的导数公式
原函数
导函数
f(x)=c f(x)=xa(a∈Q*)
f(x)=sin x f(x)=cos x
课件11:1.2.3 导数的四则运算法则
本节内容结束 更多精彩内容请登录:
1.2.3 导数的四则运算法则
学习目标 (1)能利用导数的运算法则和基本初等函数的导数公式 求简单函数的导数; (2)理解并掌握复合函数的求导法则.
知识导学 一、导数的四则运算法则 1.函数和(或差)的求导法则 若f(x),g(x)是可导的,则(f(x)+g(x))′=f′(x)+g′(x),(f(x) -g(x))′=f′(x)-g′(x). 注意:(1)设f(x),g(x)是可导的,则(f(x)±g(x))′= f′(x)±g′(x),即两个函数的和(或差)的导数,等于这两 个函数的导数的和(或差).
解:(1)y′=4x3-9x2+4x-4. (2)y′=x′cosx+x(cosx)′=cosx-xsinx. (3)y′=(sin2x)′=(2sinxcosx)′=(2sinx)′cosx+2sinx(cosx)′ =2cos2x-2sin2x=2cos2x. (4)y′=(tanx+cotx)′=csoinsxx′+csoinsxx′ =cos2cxo+s2sxin2x+-sins2ixn-2xcos2x=co1s2x-sin12x
归纳总结 (1)熟练掌握和运用函数的和、差、积、商的导数公式, 并进行简单、合理的运算,注意运算中公式运用的准确 性. (2)灵活运用公式,化繁为简,如小题(2)这种类型,展开 化为和、差的导数比用积的导数简单容易.
练一练 1.求下列函数的导数: (1)y=x4-3x3+2x2-4x-1; (2)y=xcosx; (3)y=sin2x; (4)y=tanx+cotx; (5)y=x2lnx+lo1gax(a>0 且 a≠1,x>0).
(2)对任意有限个可导函数,有(f1(x)±f2(x)±…±fn(x))′ =f1′(x)±f2′(x)±…±fn′(x).
3.2求导法则与导数公式
第二节求导法则与导数公式导数的四则运算 基本初等函数的导数 复合函数的导数 反函数求导法则导数的四则运算(1)设 u ( x) v( x) 在x可导,则[u ( x) ± v( x)]′ = u ′( x) ± v′( x) 设 y = g ( x) = u ( x) + v( x)Δy = g ( x + Δx) − g ( x) = [u ( x + Δx) + v( x + Δx)] − [u ( x) + v( x)]= [u ( x + Δx) − u ( x)] + [v( x + Δx) − v( x)]= Δu + Δv Δy Δu Δv lim Δy = lim [ Δu + Δv ] = u ′( x) + v′( x) + = Δx Δx Δx Δx →0 Δx Δx →0 Δx Δx推广[u1 ( x) ± u2 ( x) ±′ ( x) ± u2 ′ ( x) ± u n ( x)]′ = u1′ ( x). ± un[u ( x) ± v( x)]′ = u ′( x) ± v′( x)[u1 ( x) ± u2 ( x) ±例 解′ ( x) ± u2 ′ ( x) ± u n ( x)]′ = u1′ ( x). ± unf ( x) = x + sin x − cos x + 9 求其导数 f ′( x) = ( x + sin x − cos x + 9)′ = ( x )′ + (sin x)′ − (cos x)′ + (9)′= 1 / 2 x + cos x + sin x(2)设u ( x) , v( x)在x可导,则[u ( x)v( x)]′ = u ( x)v′( x) + u ′( x)v ( x ) 设 y = g ( x ) = u ( x )v ( x )Δy = g ( x + Δx ) − g ( x ) = u ( x + Δ x ) v ( x + Δx ) − u ( x ) v ( x ) = u ( x + Δ x ) v ( x + Δ x ) − u ( x ) v ( x + Δx ) + u ( x ) v ( x + Δ x ) − u ( x ) v ( x )= Δu ⋅ v( x + Δx) + u ( x)Δv. Δv Δy Δu = v ( x + Δx ) + u ( x ) . Δx Δx Δx Δy Δu Δv lim = lim ⋅ lim v( x + Δx) + u ( x) ⋅ lim Δx → 0 Δx Δx → 0 Δx Δx → 0 Δx → 0 Δx= u ( x)v′( x) + u ′( x)v( x).[u ( x)v( x)]′ = u ( x)v′( x) + u ′( x)v ( x )[cu ( x)]′ = cu ′( x) (常数因子可以提出来) 特别:例、求 f (x) = 7 x cosx 的导数 解 f ′( x) = (7 x cos x)′ = 7[( x ) cos x +′′ x (cos x ) ]cos x = 7[ − x sin x] 2 x推广 (u ( x)v( x) w( x))′轮流求导= u ′( x)v( x) w( x) + u ( x)v′( x) w( x) + u ( x)v( x) w′( x)[u1 ( x)u2 ( x)′ ( x)u2 ( x) un ( x)]′ = u1 ′ ( x) + u1 ( x)u 2 un ( x) +un ( x) + u1 ( x)u2 ( x) ′ ( x). un例、求 f ( x ) = 4 x 2 ⋅ ln x ⋅ cos x 的导数 解 f ′(x) = (4x2 ⋅ ln x ⋅ cosx)′ = 4(x2 ⋅ ln x ⋅ cosx)′1 = 4(2x ⋅ ln x ⋅ cosx + x2 ⋅ ⋅ cosx − x2 ⋅ ln x ⋅ sin x) x = 4(2x ⋅ ln x ⋅ cosx + x cosx − x2 ⋅ ln x ⋅ sin x)(3)设′ u ( x) ⎡ u ( x) ⎤ u ′( x)v( x) − u ( x)v′( x) 设 y = g ( x) = . ⎢ v( x) ⎥ = v( x) 2 [v( x)] ⎣ ⎦ Δy = g ( x + Δx ) − g ( x ) u ( x + Δx) u ( x) u ( x + Δx)v( x) − u ( x)v( x + Δx) = − = v( x + Δx) v( x) v( x + Δx)v( x) u ( x + Δx)v( x) − u ( x)v( x) + u ( x)v( x) − u ( x)v( x + Δx) = v( x + Δx)v( x) Δuv( x) − u ( x)Δv = v( x + Δx)v( x) Δu Δv ⋅ v( x) − u ( x) ⋅ Δy Δx Δx = 因为u,v可导,所以也连续 Δx v( x + Δx)v( x)u ( x) , v( x) 在x可导 v( x ) ≠ 0u ′( x) ⋅ v( x) − u ( x) ⋅ v′( x) Δy lim = Δx →0 Δx [v( x)]2例、求y=tanx的导数 sin x ∵ y = tan( x) = cos x ′ sin x ⎞ (sin x)′ cos x − sin x(cos x)′ cos 2 x + sin 2 x ⎛ ∴ y′ = ⎜ ⎟= = 2 2 x cos cos x cos x ⎠ ⎝(tan x)′ = sec 2 x(cot x)′ = − csc 2 x= sec 2 x′ 1 ⎞ − v′( x) 特别地 ⎛ ⎜ ⎜ v( x) ⎟ ⎟ = [v( x)]2 ⎝ ⎠ ′ sin x 1 ⎞ ⎛ = tan x ⋅ sec x (sec x)′ = ⎜ ⎟ = 2 ⎝ cos x ⎠ cos x (csc x)′ = − cot x ⋅ csc x例x2 y= x 2(u ± v )′ = u ′ ± v′ (uv )′ = u ′v + uv′′ u ⎛ ⎞ u ′v − uv′ ⎜ ⎟ = v2 ⎝v⎠解: y′ = ( x 2 ⋅ 2− x )′= 2 x 2− x + x 2 (−2− x ln 2) 2 x − x 2 ln 2 = . x 2基本的初等函数的求导公式c′ = 0(c为常数 ).( x a )' = ax a −1 (a为实数 ) .y′ y == 2x 例: ,求 y′ 1 x x x − 1 2 y′ = x 2 ⎛ ⎞′ 7 ′ − 1 ⎛ ⎞ 1 −2 ⎜ ⎟ 8 y′ = − x = − 解: x = ⎜ ⎟ 2⎟ ⎜ x ⎠ ⎝ x 3x x ⎠ ⎝ 1 −2 1 y′ = − x 15 =− 2 7 − 8 2 x3 =− x . 81y=x ,2y= x =x 1 y = = x −1 x 1 − 1 y= =x 2 x1 2基本的初等函数的求导公式c′ = 0(c为常数 ).(a x )' = a x ⋅ ln a (a > 0, a ≠ 1). 1 1 (log a x)' = ⋅ (a > 0, a ≠ 1). x ln a ( x )′ = 3 x3 2( x a )' = ax a −1 (a为实数 ) . (e x )' = e x . 1 (lnx)' = . x(3x )' = 3x ln 3 (π x )′ = π x ln π ((tan α ) x )′ = (tan α ) x ⋅ ln tan α( xπ )′ = π xπ −1 ( x tan α )′ = tan α ⋅ x tan α −1识别函数关键常数、变量所在位置幂函数 例如 指数函数ax=aa=xx=xa识别对数函数log a x= log x a =log x x基本的初等函数的求导公式c′ = 0(c为常数 ).( x a )' = ax a −1 (a为实数 ) .(e x )' = e x . 1 1 1 (log a x)' = ⋅ (a > 0, a ≠ 1). (lnx)' = . x ln a x (sin x)' = cos x. 比较两边 (cos x)' = − sin x. (tan x)' = sec 2 x. (sec x)' = sec x ⋅ tan x. 1 (arcsin x)' = . 2 1− x 1 (arctan x)' = . 2 1+ x (cot x)' = − csc 2 x. (csc x)' = − csc x ⋅ cot x. 1 (arccos x)' = − . 1 − x2 1 . (arc cot x)' = − 2 1+ x(a x )' = a x ⋅ ln a (a > 0, a ≠ 1).例.设,求f ′ (1) , f ′( ) 8 4 π 解: f ′( x ) = ( x sin x)′ + (tan )′ π π 8 f ′( )={ f ( )}′ ′ 4 4 ′ = x sin x + x (sin x ) f ′(1)={ f (1)}′ 1 sin x + x cos x = 2 x 1 f ′(1) = sin 1 + cos1 2 π 1 π π π 3π f ′( ) = sin + cos = 4 4 2 4 4 π π 注: tan 是常数,其导数等于零; 8f ( x ) = x sin x + tanππ( )x +2 x− π , 求y'. 例 设y = x解1 1 x − πx + 2 − y' = ( )' = ( x 2 − π + 2 x 2 )' x=1 ( x 2 )'− 1 2− ( π )' + 2( x1 + 2 ⋅ (− ) x 2 − 1 x x .−3 2−1 2 )'求导前先化简 可减少计算量1 = x 2 =1 2 x1 例. 求 y = 的导数 1+ x1 ′(1 + x ) − (1 + x )′ ( 1 ) 解: y′ = ( )′ = 1+ x (1 + x ) 21 2 x =− = 2 2 x (1 + x ) 2 (1 + x )1 − f ′( x) )′ = 2 一般 ( , 其中f (x)可导, f (x) ≠ 0 f ( x) f ( x)−1复合函数的导数若函数 u = g ( x ) 在x可导, 函数 y = f (u ) 在u可导 则复合函数 y= f [ g ( x )] 在x 可导 且{ f [ g ( x)]}′ = f ′(u ) g ′( x)Δy = f ( g ( x + Δx)) − f ( g ( x)) Δu = g ( x + Δx ) − g ( x ) ,= f (u + Δu ) − f (u )Δy Δy Δu = ⋅ Δx Δu Δxlim Δu = 0 所以 Δ x →0( Δu ≠ 0)Δy Δu Δy lim = lim ⋅ lim Δx →0 Δx Δx →0 Δu Δx →0 Δx因为u在 x 可导,所以必连续Δy Δu = lim ⋅ lim Δu → 0 Δu Δx → 0 Δx分析{ f [ g ( x)]}′ = f ′(u ) g ′( x){(6 x + 7) 2 }′ = 2(6 x + 7) ⋅ (6 x + 7)′y = u2 y′ = (u 2 )′ ⋅ (6 x + 7)′ = 12uu=6x+7= 12(6 x + 7)设 y = f (u ), u = ϕ ( x) , 则复合函数 y = f [ϕ ( x)] 的导数为dy dy du = dx du dx或{ f [ϕ ( x )]}′ = f ′(u )ϕ ′( x )例.求y = sin2x的导数 解:y = sin2x是由y = sinu,u = 2x复合而成dy du y′ = ⋅ = cos u ⋅ 2 = 2cos 2 x du dx例 设 y=sin3 x,求 y'. 解 令y = u 3,u = sin x,则dy dy du = ⋅ dx du dx = 3u 2 cos x = 3 sin 2 x ⋅ cos x.例. 求y = (3x2+1)100的导数 解: y = u100,而 u = 3x2+1 由公式dy du y′ = ⋅ du dx= 100 u ⋅ 6 x99= 600x(3x 2 + 1)99)2ctg ( )4(′=′xy )2ctg (2ctg21′⋅=x x)2()2csc (2ctg 212′⋅−⋅=x x x )21(2ctg22csc 2⋅−=x x 2csc 2412x x tg ⋅−=})]([{′x f ϕ)()]([u f x f ′=′ϕ表示复合函数对自变量x 求导;而对中间变量求导。
3.3导数的运算法则
[ u( x ) v( x )] u( x ) v( x )
(2) 函数C u( x) 在 x 可导(C为常数), 且
[ C u( x )] C u( x )
2016/11/26 2
(3) 函数[u( x ) v( x )]在 x 可导, 且
[ u( x ) v( x )] u( x ) v( x ) u( x ) v( x )
u( x x ) u( x ) v ( x x ) v ( x ) v ( x ) u( x ) x x lim x 0 v ( x x )v ( x ) u( x )v ( x ) u( x )v( x ) [v ( x )]2
2016/11/26
1 当x 0时, y (l n x ) x 1 1 ( x ) 当x 0时, y [ln( x )]
1 (ln x ) x
x
x
( x 0 ) ln x 与 ln x有相
同的导数公式.
f ( x ) [ln f ( x ) ] [ln f ( x )] f ( x) 2016/11/26
或
2016/11/26
dy dy du dx du dx
9
y lim f ( u) [证] y f (u) 可导 u 0 u y ( lim 0) f ( u ) u 0 u
y f (u) u u
(1) 式仍然成立! y u u f ( u ) x x x
( y)在点y连续
21
[例] 求函数 y f ( x ) arcsinx 的导数源自2016/11/26(1)
当u 0时, y f (u u) f (u) 0
导数的基本公式与运算法则
16 9
2
解:把椭圆方程的两边分别对x求导,得
x 2 y y 0 。 89 从而 y 9x .
16y
将 x2 ,y 3 3 ,代入上式得 所求切线的斜率 2
k 3 . 所求的切线方程为
4
yy33 33 33(x(x22) ),,即即 33xx44yy88 3300。。
22
44
六、对数求导法
v(x)
v2 ( x)
推论:
n
n
(1) [ fi ( x)] fi( x);
i 1
i 1
(2) [Cf ( x)] Cf ( x);
(3)
n
[
fi (x)] f1(x) f2 (x)
fn (x)
i 1
f1(x) f2 (x) fn(x).
二、例题分析
例1 求 y x3 2 x2 sin x 的导数 . 解: y 3x 2 4x cos x.
四、复合函数的求导法则
前面我们已经会求简单函数——基本初等函数经 有限次四则运算的结果的导数,但是像
ln
tan
x,e
x2
, sin
2x x2
1
等函数(复合函数)是否可导,可导的话,如何求 它们的导数。
定理 如果函数u g(x)在点 x可导 , 而y f (u)
在点u g(x)可导 , 则复合函数 y f [g(x)]在点
一般地
f ( x) u( x)v( x) (u( x) 0)
两边取对数得
ln f (x) v(x) ln u(x)
f (x) v(x) ln u(x) v(x)u(x)
f (x)
u(x)
f ( x) u( x)v( x)[v( x) ln u( x) v( x)u( x)] u( x)
导数四则运算法则
详解导数四则运算法则导数就是“平均变化率“△y/△x”,当△x→0时的极限值”。
可导函数y=f(x)在点(a,b)处的导数值为f'(a)。
求导的四则运算法则是:1、(u+v)'=u'+v'2、(u-v)'=u'-v'3、(uv)'=u'v+uv'4、(u/v)'=(u'v-uv')/v^2求导是数学计算中的一个计算方法,它的定义就是,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。
在一个函数存在导数时,称这个函数可导或者可微分。
可导的函数一定连续。
不连续的函数一定不可导。
如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。
这时函数y=f(x)对于区间内的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y'、f'(x)、dy/dx或df(x)/dx,简称导数。
函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
导数求导法则:由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。
基本的求导法则如下:1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合。
2、两个函数的乘积的导函数:一导乘二+一乘二导。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方。
4、如果有复合函数,则用链式法则求导。
导数运算法则公式加减乘除
导数运算法则公式加减乘除
导数运算法则是微积分中的重要内容,它包括加法法则、减法法则、乘法法则和除法法则。
下面我将从多个角度全面地解释这些法则。
首先是加法法则,它表示如果一个函数是两个函数的和,那么它的导数等于这两个函数的导数之和。
具体公式表达为,(f+g)' = f' + g',其中f和g是两个可导函数。
接下来是减法法则,它表示如果一个函数是两个函数的差,那么它的导数等于这两个函数的导数之差。
具体公式表达为,(f-g)' = f' g',其中f和g是两个可导函数。
然后是乘法法则,它表示如果一个函数是两个函数的乘积,那么它的导数等于第一个函数的导数乘以第二个函数再加上第一个函数乘以第二个函数的导数。
具体公式表达为,(fg)' = f'g + fg',其中f和g是两个可导函数。
最后是除法法则,它表示如果一个函数是两个函数的商,那么它的导数等于分母函数乘以分子函数的导数减去分子函数乘以分母
函数的导数,再除以分母函数的平方。
具体公式表达为,(f/g)' = (f'g fg') / g^2,其中f和g是两个可导函数,且g不等于0。
总之,这些导数运算法则是微积分中非常重要的内容,它们帮助我们计算复杂函数的导数,从而更好地理解函数的变化规律和性质。
希望这些解释能够帮助你更好地理解导数运算法则。
导数的四则运算法则
y (3) 当x 0, 常数 x
3.巩固练习:Βιβλιοθήκη 用导数定义求 的导数.2yx x
2
( x x) 2 x 1
2
f ( x) x
结论: ( x
2
g ( x) x
2
f ( x) g ( x) x x
2
x 6x 3 2 2 ( x 3)
2
3 例4:求曲线y=x +3x-8在x=2处的切
线的方程.
解: f ( x) ( x 3x 8) 3 x 3,
3 2
k f (2) 3 2 3 15 ,
2
又切线过点 (2,6), 切 线 方 程 为 : y 6 15( x 2), 即: 15x y 24 0.
2
解:f ( x) ( x sin x)
2
( x ) (sin x) 2 x cos x
2
3 2 (2)求函数g ( x) x x 6 x 2的导数. 2
3
3 2 解:g ( x) ( x x 6 x) 2 3 2 3 2 ( x ) ( x ) (6 x ) 3 x 3 x 6 2
f ( x) f ( x) g ( x) f ( x) g ( x) [ ] 2 g ( x) g ( x)
其中g ( x) 0
t 1 例3 : (1)求函数s(t ) 的导数. t
2
2 t 1 (t 1) t (t 1)t 解 : (1) s(t ) ( ) t t2 2t 2 t 2 1 t 2 1 2 2 t t
导数的基本公式和四则运算法则
导数的基本公式和四则运算法则
导数是微积分中的一个重要概念,它描述了函数在某一点处的变化率。
在求解导数时,我们可以利用一些基本公式和四则运算法则来简化计算过程。
首先,导数的基本公式包括:
1. 对常数函数求导,常数函数的导数为0。
2. 幂函数求导,对于函数f(x) = x^n,其导数为f'(x) = nx^(n-1)。
3. 指数函数求导,指数函数e^x的导数仍为e^x。
4. 三角函数求导,常见的三角函数sin(x)和cos(x)的导数分别为cos(x)和-sin(x)。
其次,利用四则运算法则,我们可以对复合函数进行求导。
四则运算法则包括:
1. 和差法则,对于函数f(x) = g(x) ± h(x),其导数为f'(x) = g'(x) ± h'(x)。
2. 积法则,对于函数f(x) = g(x) h(x),其导数为f'(x) =
g'(x) h(x) + g(x) h'(x)。
3. 商法则,对于函数f(x) = g(x) / h(x),其导数为f'(x) = (g'(x) h(x) g(x) h'(x)) / h(x)^2。
通过这些基本公式和四则运算法则,我们可以更轻松地求解各
种函数的导数,从而更好地理解函数的变化规律和性质。
在实际应
用中,导数的概念和计算方法也被广泛地运用于物理、工程、经济
学等领域,为我们解决实际问题提供了重要的数学工具。
因此,熟
练掌握导数的基本公式和四则运算法则对于学习和应用微积分知识
都是至关重要的。
所有导数公式及运算法则
所有导数公式及运算法则基本初等函数的导数公式1 .C'=0(C为常数);2 .(Xn)'=nX(n-1) (n∈Q);3 .(sinX)'=cosX;4 .(cosX)'=-sinX;5 .(aX)'=aXIna (ln为自然对数)特别地,(ex)'=ex6 .(logaX)'=(1/X)logae=1/(Xlna) (a>0,且a≠1)特别地,(ln x)'=1/x7 .(tanX)'=1/(cosX)2=(secX)28 .(cotX)'=-1/(sinX)2=-(cscX)29 .(secX)'=tanX secX10.(cscX)'=-cotX cscX导数的四则运算法则:①(u±v)'=u'±v'②(uv)'=u'v+uv'③(u/v)'=(u'v-uv')/ v2④复合函数的导数[u(v)]'=[u'(v)]*v' (u(v)为复合函数f[g(x)])复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数--称为链式法则。
导数是微积分的基础,同时也是微积分计算的一个重要的支柱。
2导数的求导法则由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。
基本的求导法则如下:1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。
2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。
4、如果有复合函数,则用链式法则求导。
高阶导数的求法1.直接法:由高阶导数的定义逐步求高阶导数。
一般用来寻找解题方法。
2.高阶导数的运算法则:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2.1 常值函数的导数 3.2.2 幂函数的导数 3.2.3 正弦函数的导数 3.2.4 对数函数的导数 3.2.5 函数的和、积、商的导数 3.2.6 反函数的导数 3.2.7 复合函数的导数 3.2.8 隐函数的导数 3.2.9 取对数求导法 3.2.10 基本初等函数的导数公式志求导法则
特别地,当其中有一个函数为常数 c时, 则有
(cu )cu.
上面的公式对于有限多个可导函数成立, 例如:
( u) v u v w u w v w u w . v
例2 设 y (1 2 x )5 ( x 2 3 x 1 ), 求 y . 解 y ( 1 2 x )(5 x 2 3 x 1 )
定理2.2的结论可以推广到多层次复合的
情况. 例如设yf(u) ,u(v) v,(x) ,
则复合函 yf{[(x)]数}的导数为
dydydudv dx du dv dx
(2.2.9)
例8 求下列函数的导数:
(1)
y
tan 1
2x
;
(2) ysi2n (23x);
(3) ylo3cgoxs21.
解 (1)设 y 2u ,utav,nv 1 由定理
2.2得
x
yxyu uv vx 1 2uln2co12vs(x12)2xt2acxnol2n1sx2;
(2) y 2 s2 i 3 x n ) c2 ( o 3 x ) ( s 3 )( 3 s2 i(2 n 3 x );
推论
(u)uvuv .
v
v2
(2.2.5)
c v
cv v2
1 v
v v2
例4 已知 f(x)x2 x2, 求 f (1). x3
解 f(x ) (x 2 x 2 )(x 3 ) (x 2 x 2 )x ( 3 ) (x 3 )2
3.2.6 反函数的导数
反三角函数的导数公式.
(arcxs)in
1 1x2
;(arcxc)o s
1 1x2
;
(arctxa)n 1 ; 1x2
(arccox)t 1 . 1x2
3.2.7 复合函数的导数
ysi3 n x(1 )是一个复合函数,它可以 看作是由 ysinu及 u3x1复合而成的. 我们用定义求出它的导数.
(2x1)x(3)(x2x2)1 x2 6x 5,
(x3)2
(x 3)2
f(1)126151. (13)2 8
例5 设 y5x3 2x7 ,求 y x
解
先化简,得
5
1
1
y5x22x27x2
,
于是 y 5 5x2 3 2 1x 1 2 7( 1 )x 2 3
(1) ysin3x ; (3) y sin x ;
5 (5) y 1 ;
1 2x
(2) ycosx2 ; (4) y(25x)4 ; (6) y 43x2 ;
(7) ylncoxs.
解 (1)设 usixn, y u3 由定理2.2得 y x y u u x 3 u 2 cx o 3 ss 2 x ic n x o ; s (2)设 ux2, ycou由s定理2.2得 y x y u u x su i 2 x n 2 x sx 2 i;n (3)设 u x , ysinu由定理2.2得 5 yxyu uxco us 1 51 5co 5 x;s (4)设 u25x, y u4 则 y x y u u x 4 u 3 5 2 ( 2 0 5 x ) 3 ;
5 2 x 3 ( 3 ) x 4 2 x l2 n 4 ( sx ) in 1x092xln 24sixn.
x4
2.乘积函数的导数
设函数 u(x)和 v(x)在点 x处可导,则 yu(x)v(x)在点 x处也可导,且
(u)v u v u v.
设 y x10,y 3 x
,y
1 x
,y 1 4 x3
解 由幂函数的求导公式得
(x10 )1x09;
(3x)(x1 3)1 3x3 2331 x2;
(1)(x 1)(1)x21;
x
x2
(1)(x 4 3)( 3 )x 7 43 .
4x3
1 sixln n x xcx o ln x s xsixn 1 x
s x l i x n x n c x lo x n s x s .in
3.函数商的导数
设函数 u(x) 和 v(x)在点 x处可导,且, v(x)0,则 y u ( x ) 在点 x处也可导,且
v(x)
1xloga(1xx)xx,
所以 lx i0m y xl x i0[m 1 xloa(1 g xx) xx]
1xloag lxi m 0(1xx)xx
1xloga e
1 xlna
,
即
(loga x)
1 xlna
.
特别地,当ae时,因为 lne1,所以有
(3) y 10 x 5 ln x
( 4 ) y (1 2 x 2 ) sin x sin 2
(5) y 点处的导数:
(1)设f(x)(1x3)(4x12),求f(1)和f(12) (2)设y1 x,求y(4)
1 x
y2sin2xcosx(2x)
x
x
cos(x
x) 2
sin x
2 x
,
2
所以
x lxi m 0 yxlxi m 0[coxs( 2x)sinx2]
co x1 sco x,s 2
即
(sx i)n cox.s
类似地可以得到
(cxo ) ssix.n
1.代数和函数的导数
设函数 u(x) 和 v(x)在点 x处可导,则 yu(x)v(x)在点 x处也可导,且
(u v)u v. 例1 设 y5x232x4cox,s 求 y .
x3 解 y 5 (x 2 ) 3 (x 3 ) ( 2 x ) 4 (c x ) os
(3) y' 1 ( six n 2 1 ) cox2s 1 l3 n
2x 2 x2 1 x tanx21.
ln 3x21
例9 求函数 y(x1)34x的导数
解
y ( x 1 ) 3 4 x ( x 1 )3 ( 4 x )
34x(x1) 4 234x
34x2x216x ; 34x 34x
例10 求函数 y ln 1 x2 的导数. 1 x2
解 由对数性质,有
y1[l1 nx (2)ln1 (x2)],
2
则
y1{[1 lx n 2)](ln 1 [x2 ()]}
2
1(2x2x)2x. 21x2 1x2 1x4
数
dy du
f (u)
,函数
yf(u)在点
u处有导
数
dy du
f (u)
,则复合函数
yf[(x)]在该
点 x也有导数,且
dyf(u)(x)
dx
(2.2.6)
或
yxyu ux
(2.2.7)
或
dy dy du . dx du dx
(2.2.8)
例7 求下列函数的导数:
4
4 4x7
练习一 求下列函数的导数:
(1 ) y x 7 (2)y 1
x (3 ) y 5 x 3 (4 ) y x5 4 x3 (5 ) y x 3 x
x
3.2.3 正弦函数的导数
设 ysinx,则 于 是y si x n x )( sx in 2si n2xcoxs( 2x),
2x 3x
,求 y1 , y 2 .
解
在
y 中,因为 1
a10,由公式得
y1 (1x)0 1x0 ln 1;0
而
y2
2x 3x
(2)x ,a 3
2 3
,由公式得
[2 ( )x] (2 )xln 2 (2 )x(l2 n l3 n ). 3 3 33
3.2.5 函数的和、积、商的导数
22
2
25x23
1
x2
7x23
2
2
1 (2x532x7). 2 x3
例6 求 ytaxn的导数. 解 因为 y sin x ,所以
cos x y(sxi)n cox ssixn (cx o)s
(cx o)2s co 2x ssi2x n 1 se 2xc ,
3.2.4 对数函数的导数
设 y la o x( x g 0 , a 0 , a 1 ) ,则 y lo a (x g x ) lo axg loax g x xloa(1 g xx),
于是 y xloa( g 1x xx)x xxloa(g 1 xx)
co 2xs co 2xs 即 (tax)n 1 se2xc.
co2xs
用同样方法可以得到 (cxo) t 1 cs2xc. si2n x
练习一
1.求下列函数的导数:
(1) y 1 0 x x 10
(2) y x2
1 x
5cos x
3 log 2
x
ln 4
3.2.1 常值函数导数
设 yc( c为常数),
ycc0,
于是
y x
0x
0,
所以
climy0 . x0x