高等代数习题
高等代数习题
高等代数习题第一章基本概念§集合1、设Z是一切整数的集合,X是一切不等于零的有理数的集合.Z是不是X的子集2、设a是集A的一个元素。
记号{a}表示什么 {a} A是否正确3、设写出和 .4、写出含有四个元素的集合{ }的一切子集.5、设A是含有n个元素的集合.A中含有k个元素的子集共有多少个6、下列论断那些是对的,那些是错的错的举出反例,并且进行改正.(i)(ii)(iii)(iv)7.证明下列等式:(i)(ii)(iii)§映射1、设A是前100个正整数所成的集合.找一个A到自身的映射,但不是满射.2、找一个全体实数集到全体正实数集的双射.3、是不是全体实数集到自身的映射4.设f定义如下:f是不是R到R的映射是不是单射是不是满射5、令A={1,2,3}.写出A到自身的一切映射.在这些映射中那些是双射6、设a ,b是任意两个实数且a<b.试找出一个[0,1]到[a ,b]的双射.7、举例说明,对于一个集合A到自身的两个映射f和g来说,f g与g f一般不相等。
8、设A是全体正实数所成的集合。
令(i)g是不是A到A的双射(ii)g是不是f的逆映射(iii)如果g有逆映射,g的逆映射是什么9、设是映射,又令,证明(i)如果是单射,那么也是单射;(ii)如果是满射,那么也是满射;(iii)如果都是双射,那么也是双射,并且10.判断下列规则是不是所给的集合A的代数运算:集合 A 规则123全体整数全体整数全体有理数baba+→|),(4 全体实数§数学归纳法1、证明:2、设是一个正整数.证明 ,是任意自然数.3、证明二项式定理:是个元素中取个的组合数.这里,4、证明第二数学归纳法原理.5、证明,含有个元素的集合的一切子集的个数等于。
§整数的一些整除性质1、对于下列的整数 ,分别求出以除所得的商和余数:; ;; .2、设是整数且不全为0,而 , , .证明,的一个最大公因数必要且只要 .3、设是不等于零的整数.满足下列两个条件的正整数叫做与的最小公倍数:;如果且 ,则 .证明: 任意两个不等于零的整数都有唯一的最小公倍数;令是与的最小公倍数而 ,则 .4、设是一个大于1的整数且具有以下性质:对于任意整数 ,如果,则或 .证明,是一个素数(定理1.4.5的逆命题).5、设是两两不相同的素数,而 .证明 ;利用证明,素数有无限多个.§数环和数域1.证明,如果一个数环那么含有无限多个数.2.证明,是数域.3.证明,是一个数环,是不是数域4.证明,两个数环的交还是一个数环;两个数域的交还是一个数域.两个数环的并是不是数环5.设是一整数,令由例1,是一个数环.设 ,记.证明: 是一个数环..,这里是与的最大公因数..第二章多项式§一元多项式的定义和运算1.设和是实数域上的多项式.证明:若是(6) ,那么2.求一组满足(6)式的不全为零的复系数多项式和3.证明:§多项式的整除性1.求被除所得的商式和余式:( i )(ii)2.证明:必要且只要3.令都是数域F上的多项式,其中且证明:4.实数满足什么条件时,多项式能够整除多项式5.设F是一个数域,证明:整除6.考虑有理数域上多项式这里和都是非负整数.证明:7.证明:整除必要且只要整除§多项式的最大公因式1. 计算以下各组多项式的最大公因式:( i )(ii)2. 设证明:若且和不全为零,则反之,若则是与的一个最大公因式.3. 令与是的多项式,而是中的数,并且证明:4.证明:(i)是和的最大公因式;(ii)此处等都是的多项式。
高等代数习题
多项式习题1.在[]F x 里能整除任意多项式的多项式是( B )。
A .零多项式B .零次多项式C .本原多项式D .不可约多项式2.整系数多项式()f x 在Z 上不可约是()f x 在Q 上不可约的( C ) 条件。
A . 充分 B . 充分必要 C .必要 D .既不充分也不必要3.下列对于多项式的结论不正确的是( A )。
A .如果)()(,)()(x f x g x g x f ,那么)()(x g x f =B .如果)()(,)()(x h x f x g x f ,那么))()(()(x h x g x f ±C .如果)()(x g x f ,那么][)(x F x h ∈∀,有)()()(x h x g x fD .如果)()(,)()(x h x g x g x f ,那么)()(x h x f4.最小的数域是 有理数域 。
5.设(),()[]f x g x F x ∈,若,))((,0))((m x g x f =∂=∂,则=⋅∂))()((x g x f m 。
6.求用2x -除43()25f x x x x =+-+的商式为 x 3+4x 2+8x +15 ,余式为 35 。
7.用()34g x x =+除()f x 所得的余式是函数值)34(-f 。
8. 设()()g x f x ,则()f x 与()g x 的最大公因式为()g x 。
9.设)(x f 为3次实系数多项式,则 ( B )A. )(x f 至少有一个有理根B. )(x f 至少有一个实根C. )(x f 存在一对非实共轭复根D. )(x f 有三个实根.10. 多项式()f x 、()g x 互素的充要条件是存在多项式()u x 、()v x 使得 。
11.多项式32()22f x x x x =+--的有理根是 -1 。
12. 设()p x 是多项式()f x 的一个(1)k k ≥重因式,那么()p x 是()f x 的导数的一个k -1重因式。
高等代数学习题集
高等代数学习题集一、线性方程组1. 解下列线性方程组:(1)$3x+2y=7$$2x-3y=4$(2)$2x-y+z=4$$x+3y-2z=5$$2x-y+z=1$(3)$3x+y=5$$4x-y=8$2. 通过矩阵表示以下线性方程组,并求出其解:(1)$4x+2y=6$$-2x+y=3$(2)$x-2y+3z=1$$2x+y+3z=9$$3x+2y+4z=12$(3)$x+y+z=0$$x+2y+3z=1$$x-3y+2z=2$二、矩阵运算与性质1. 计算以下矩阵的乘积:$\begin{bmatrix} 2 & 3 \\ 1 & -1 \end{bmatrix}$$\begin{bmatrix} 4 & 2 \\ -1 & 3 \end{bmatrix}$2. 求下列矩阵的逆矩阵:(1)$\begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}$(2)$\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ -1 & 0 & 3 \end{bmatrix}$3. 判断下列矩阵是否可逆,并求其逆矩阵:(1)$\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$(2)$\begin{bmatrix} 3 & -2 & 1 \\ 1 & -3 & 2 \\ 2 & -4 & 3 \end{bmatrix}$4. 求矩阵的转置:(1)$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$(2)$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$三、特征值与特征向量1. 求矩阵的特征值与特征向量:$\begin{bmatrix} 3 & 1 \\ 2 & 2 \end{bmatrix}$2. 计算以下矩阵的迹:(1)$\begin{bmatrix} 2 & 5 \\ -1 & 3 \end{bmatrix}$(2)$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{bmatrix}$四、向量空间1. 判断向量组是否线性相关:(1)$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$(2)$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$2. 求以下向量组的一个极大线性无关组:(1)$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$(2)$\begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 0 \\ 1\end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$五、线性变换1. 判断以下线性变换是否为一一映射:(1)$T\left(\begin{bmatrix} x \\ y\end{bmatrix}\right)=\begin{bmatrix} 2x+y \\ 3y \end{bmatrix}$(2)$T\left(\begin{bmatrix} x \\ y \\ z\end{bmatrix}\right)=\begin{bmatrix} x+y \\ y+z \\ x+z \end{bmatrix}$2. 求下列线性变换的矩阵表示:(1)$T\left(\begin{bmatrix} x \\ y\end{bmatrix}\right)=\begin{bmatrix} 2x-y \\ 3x+2y \end{bmatrix}$(2)$T\left(\begin{bmatrix} x \\ y \\ z\end{bmatrix}\right)=\begin{bmatrix} x+y+z \\ 2x+3y-z \\ 3x-2y+2z\end{bmatrix}$六、二次型1. 对以下二次型进行分类:(1)$f(x,y)=2x^2+3y^2-4xy$(2)$f(x,y,z)=x^2+y^2+z^2-2xy+4xz$2. 将以下二次型化为标准形:(1)$f(x,y,z)=3x^2+4y^2+2z^2+4xy+4xz-8yz$(2)$f(x,y,z)=x^2+2y^2+3z^2-2xy+6xz$以上为《高等代数学习题集》的内容,希望对你的学习有所帮助。
高等代数 习题及参考答案
高等代数习题及参考答案第一章多项式1.用g(x)除f(x),求商q(x)与余式r(x):322f(x)?x?3x?x?1,g(x)?3x?2x?1; 1)2)f(x)?x4?2x?5,g(x)?x2?x?2。
q(x)?17262x?,r(x)??x?3999;解 1)由带余除法,可得2q(x)?x?x?1,r(x)??5x?7。
2)同理可得2.m,p,q适合什么条件时,有23x?mx?1|x?px?q, 1)242x?mx?1|x?px?q。
2)2(p?1?m)x?(q?m)?0,解 1)由假设,所得余式为0,即?p?1?m2?0?23q?m?0x?mx?1|x?px?q。
?所以当时有?m(2?p?m2)?0?2q?1?p?m?02)类似可得?,于是当m?0时,代入(2)可得p?q?1;而当2?p?m2?0时,代入(2)可得q?1。
?m?0?q?1??2242p?q?1p?m?2x?mx?1|x?px?q。
??综上所诉,当或时,皆有3.求g(x)除f(x)的商q(x)与余式:53f(x)?2x?5x?8x,g(x)?x?3; 1)2)f(x)?x?x?x,g(x)?x?1?2i。
32q(x)?2x4?6x3?13x2?39x?109解 1)r(x)??327;q(x)?x2?2ix?(5?2i)2)r(x)??9?8i。
x?x0的方幂和,即表成4.把f(x)表示成c0?c1(x?x0)?c2(x?x0)2?...?cn(x?x0)n??的形式:5f(x)?x,x0?1; 1)42f(x)?x?2x?3,x0??2; 2)432f(x)?x?2ix?(1?i)x?3x?7?i,x0??i。
3)2345f(x)?1?5(x?1)?10(x?1)?10(x?1)?5(x?1)?(x?1)解 1)由综合除法,可得; 2)由综合除法,可得x?2x?3?11?24(x?2)?22(x?2)?8(x?2)?(x?2);432x?2ix?(1?i)x?3x?(7?i) 3)由综合除法,可得42234?(7?5i)?5(x?i)?(?1?i)(x?i)2?2i(x?i)3?(x?i)4。
高等代数练习题
高等代数练习题一、选择题1、每个次数≥1的复系数多项式在复数域上都可以唯一的分解成( )A 、一次因式的乘积B 、一次与二次因式的乘积C 、只能是二次因式的乘积D 、以上结论均不对 2、多项式2128234++-x x x 在有理数域上( )A 、可约B 、不可约C 、不一定可约D 、不能确定 3、齐次线性方程组有非零解的充要条件是( )A 、系数行列式不为0B 、系数行列式为0C 、系数矩阵可逆D 、系数矩阵不可逆 4、若存在u (x ),v (x )使u (x )f (x )+v (x )g (x )=1,则( ) A 、f (x )|g (x ) B 、g (x )|f (x ) C 、f (x )g (x )=1 D 、以上均错 5、下列说法正确的是( )A 、设A 、B 是两个n 级矩阵,则秩(A+B )≤秩A+秩BB 、设21V V 、是两向量空间,则dim (21V V +)=dimV 1+dimV 2C 、以上均对D 、以上均错 6、模m 的完全剩余系有( )A 、唯一一个B 、无穷多个C 、有有限个D 、不一定有 7、设p 是素数,a 是整数,且(p,a)=1,则( )A 、)(mod p a a p ≡B 、)(mod 0p a p ≡C 、)(mod 01p a p ≡-D 、以上均错 8、多项式f(x)除以x-a 所得的余数为( )A 、f(0)B 、f(x-a)C 、f(a)D 、以上均错9、在xy 平面上,顶点的坐标(x,y)满足41,41≤≤≤≤y x ,且x,y 是整数的三角形个数有( ) A 、560 B 、32 C 、516 D 、44 10、零多项式的次数是( )A 、0次B 、1次C 、2次D 、不定义次数二、填空题1、方程032234=-+-x x x 的有理根为___________________。
2、排列657893的逆序数是_____________________。
高等代数练习题
⾼等代数练习题1.最⼩的数环是,最⼩的数域是。
2.设(),()[]f x g x F x ∈,若(())0,(())f x g x m ?=?=,则(()())f x g x ??=3.求⽤22x x -+除4()25f x x x =-+的商式为,余式为。
4.把5)(4-=x x f 表成1-x 的多项式是。
5、如果()(()())f x g x h x +,且)()(x h x f ,则____________ 6. ()()()d x f x d x 若是g(x)的最⼤公因式,则满⾜⽽(f(x),g(x))是指__________________.7、设1)(,143)(23234--+=---+=x x x x g x x x x x f ,则=))(),((x g x f ____________。
8、设[](),()P x f x g x 中两个多项式互素的充要条件是。
9、若不可约多项式()p x 是()f x 的k 重因式,则它是()f x ' 。
10、()f x 没有重因式的充要条件为。
11、()42243f x x x x =+--有⽆重因式。
12、()4323f x x x x =-+-可能的有理根是_________________,全部有理根为。
13、由艾森斯坦判别法,110()n n n n f x a x a x a --=+++ 是⼀个整系数多项式,当满⾜_______________________________________________________________________________()f x 在有理数域上是不可约的. 2n x +在有理数域上是否可约_________________.14、在n 阶⾏列式中,1122n n i j i j i j a a a 这⼀项前的符号为__________________. 15. =---381141102_________________。
高等代数习题及答案()
高等代数试卷一、判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分)1、)(x p 若是数域F 上的不可约多项式,那么)(x p 在F 中必定没有根。
( )2、若线性方程组的系数行列式为零,由克莱姆法则知,这个线性方程组一定是无解的。
( )3、实二次型),,,(21n x x x f 正定的充要条件是它的符号差为n 。
( )4、(){}321321;3,2,1,,,x x x i R x x x x W i ===∈=是线性空间3R 的一个子空间。
( ) 5、数域F 上的每一个线性空间都有基和维数。
( ) 6、两个n 元实二次型能够用满秩线性变换互相转化的充要条件是它们有相同的正惯性指数和负惯性指数。
( ) 7、零变换和单位变换都是数乘变换。
( ) 8、线性变换σ的属于特征根0λ的特征向量只有有限个。
( ) 9、欧氏空间V 上的线性变换σ是对称变换的充要条件为σ关于标准正交基的矩阵为实对称矩阵。
( )10、若{}n ααα,,,21 是欧氏空间V 的标准正交基,且∑==ni i i x 1αβ,那么∑==ni ix12β。
( )二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。
答案选错或未作选择者,该题无分。
每小题1分,共10分)1、关于多项式的最大公因式的下列命题中,错误的是( )①()()()()()()n n nx g x f x g x f,,=;②()()()n j i j i f f f f f j i n ,,2,1,,,1,1,,,21 =≠=⇔=; ③()()()()()()()x g x g x f x g x f ,,+=;④若()()()()()()()()1,1,=-+⇒=x g x f x g x f x g x f 。
2、设D 是一个n 阶行列式,那么( )①行列式与它的转置行列式相等; ②D 中两行互换,则行列式不变符号; ③若0=D ,则D 中必有一行全是零; ④若0=D ,则D 中必有两行成比例。
高等代数例题(全部)
高等代数例题第一章 多项式1.44P 2 (1)m 、p 、q 适合什么条件时,有231x mx x px q +-++2.45P 7 设32()(1)22f x x t x x u =++++,3()g x x tx u =++的最大公因式是一个二次多项式,求t 、u 的值。
3.45P 14 证明:如果((),())1f x g x =,那么(()(),()())1f x g x f x g x += 4.45P 18 求多项式3x px q ++有重根的条件。
5.46P 24 证明:如果(1)()n x f x -,那么(1)()n n x f x -6.46P 25 证明:如果23312(1)()()x x f x xf x +++,那么1(1)()x f x -,2(1)()x f x - 7.46P 26 求多项式1nx -在复数域内和实数域内的因式分解。
8.46P 28 (4)多项式1p x px ++ (p 为奇素数)在有理数域上是否可约?9.47P 1 设1()()()f x af x bg x =+,1()()()g x cf x dg x =+,且0ad bc -≠。
求证:11((),())((),())f x g x f x g x =。
10.48P 5 多项式()m x 称为多项式()f x ,()g x 的一个最小公倍式,如果(1)()()f x m x ,()()g x m x ; (2)()f x ,()g x 的任意一个公倍式都是()m x 的倍式。
我们以[(),()]f x g x 表示首项系数为1的那个最小公倍式。
证明:如果()f x ,()g x 的首项系数都为1,那么()()[(),()]((),())f xg x f x g x f x g x =。
11.设 m 、n 为整数,2()1g x x x =++除33()2mn f x xx =+-所得余式为 。
高等代数复习题精选
高等代数复习题精选第一章多项式自测题一、填空题1.设 $g(x)$ 为 $f(x)$ 的因式,则 $f(x)$ 与 $g(x)$ 的一个最大公因式为 $g(x)$。
2.$f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$,$x=1$ 是 $f(x)$ 的根,则 $a_0+a_1+\cdots+a_n=f(1)$,若$x|f(x)$,则 $a=0$,若 $x+1|f(x)$,则 $a_n=0$。
3.若 $(f(x),f'(x))=x+1$,则 $x+1$ 是 $f(x)$ 的重根。
4.$x^4-4$ 在有理数域、实数域、复数域上的标准分解式为 $(x^2+2x+2)(x^2-2x+2)$。
二、选择题(以下所涉及的多项式,都是数域 $P$ 上的多项式)1.设 $\phi(x)|f(x)$,$\phi(x)|g(x)$,且 $\phi(x)\neq 0$,$g(x)$ 与 $f(x)$ 不全为 $0$,则下列命题为假的是()。
A。
$\phi(x)|(u(x)f(x)+v(x)g(x))$B。
$\deg(\phi(x))\leq\min\{\deg f(x),\deg g(x)\}$C。
若存在 $u(x)$,$v(x)$,使 $u(x)f(x)+v(x)g(x)=\phi(x)$,则 $(f(x),g(x))=\phi(x)$D。
若 $x-a|\phi(x)$,则 $f(a)=g(a)$。
答案:D。
2.若 $(f(x),g(x))=1$,则以下命题为假的是()。
A。
$(f^2(x),g^3(x))=1$B。
$(f(x),f(x)+g(x))=1$___(x)|f(x)h(x)$ 必有 $g(x)|h(x)$D。
以上都不对。
答案:D。
3.下列命题为假的是()。
A。
在有理数域上存在任意次不可约多项式。
B。
在实数域上 $3$ 次多项式一定可约。
C。
在复数域上次数大于 $1$ 的多项式都可约。
《高等代数》课程习题 .doc
《高等代数》课程习题第1章行列式习 题 1.11. 计算下列二阶行列式:(1)2345 (2)2163- (3)x x x x cos sin sin cos - (4)11123++-x x x x (5)2232ab b a a (6)ββααcos sin cos sin (7)3log log 1a b b a2. 计算下列三阶行列式:(1)341123312-- (2)00000d c b a (3)d c e ba 0000 (4)zy y x x 00002121(5)369528741 (6)01110111-- 3. 用定义计算行列式:(1)4106705330200100 (2)114300211321221---(3)500000000400030020001000 (4) dc b a 100110011001---. 4.用方程组求解公式解下列方程组:(1) ⎪⎩⎪⎨⎧=-+=--=--0520322321321321x x x x x x x x x (2)⎪⎩⎪⎨⎧=+-=-+=++232120321321321x x x x x x x x x习 题 1.21. 计算下列行列式:(1)123112101 (2)15810644372---- (3)3610285140 (4)655565556 2.计算行列式(1)2341341241231234(2)12114351212734201----- (3)524222425-----a a a(4)322131399298203123- (5)0532004140013202527102135---- 3.用行列式的性质证明:(1)322)(11122b a b b a ab aba -=+(2)3332221113333332222221111112c b a c b a c b a a c c b b a a c c b b a a c c b b a =+++++++++ 4.试求下列方程的根:(1)022223356=-+--λλλ(2)0913251323221321122=--x x5.计算下列行列式(1)8364213131524273------ (2)efcfbfde cd bdae ac ab---(3)2123548677595133634424355---------- (4)111110000000002211n n a a a a a a ---谢谢观赏(5)xaaa x a a a x(6)abb a b a b a 000000000000习 题 1.31. 解下列方程组(1)⎪⎩⎪⎨⎧-=++=+--=++1024305222325321321321x x x x x x x x x (2)⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x2. k 取何值时,下列齐次线性方程组可能有非零:(1) ⎪⎩⎪⎨⎧=+-=++-=++0200321321321x x x x kx x kx x x (2)⎪⎩⎪⎨⎧=+-=++=++0300321321321x x x x kx x x x kx 习 题 五1.41.计算下列行列式(1)3010002113005004, (2)113352063410201-- (3)222111c b a c b a(4)3351110243152113------, (5)nn n n n b a a a a a b a a a a D ++=+212112111112.用克莱姆法则解线性方程(1)⎪⎩⎪⎨⎧=+-=-+=--114231124342321321321x x x x x x x x x (2)⎪⎪⎩⎪⎪⎨⎧=++=+-+=+-+=++3322212543143214321321x x x x x x x x x x x x x x3.当λ为何值时,方程组⎪⎩⎪⎨⎧=+-=+-=++0020321321321x x x x x x x x x λλ可能存在非零解?4.证明下列各等式(1) 222)(11122b a b b a a b ab a -=+(2) ))()((4)2()1()2()1()2()1(222222222c b a c a b c c c b b ba a a ---=++++++ (3) ))()()()()()((111144442222d c b a d c d b c b d a c a b a d c b a d c b a d c b a+++------=5.试求一个2次多项式)(x f ,满足1)2(,1)1(,0)1(-==-=f f f .第2章矩阵 习 题 2.21.设 ⎥⎦⎤⎢⎣⎡=530142A , ⎥⎦⎤⎢⎣⎡-=502131B , ⎥⎦⎤⎢⎣⎡--=313210C , 求3A -2B +C 。
高等代数习题
第四章 矩阵 作业1 (矩阵的运算)一.判断说明题(如果正确,证明它,如果不正确,举出反例)。
1.设C B A ,,为n 阶方阵,若,AC AB = 则.C B = ( ) 2.设A 是n m ⨯矩阵,C B ,是s n ⨯矩阵,如果AC AB =,则有C B =。
( ) 3.设B A ,是n 阶方阵,则有.2)(222B AB A B A ++=+ ( ) 二.计算下列矩阵。
1.设,150421321,121211012⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛-=B A 求 BA AB B A AB -,,''。
2.(1)。
()⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛z y x a a a a a a a a a z yx 333231232221131211(2)。
n⎪⎪⎭⎫⎝⎛-θθθθc o s s i ns i n c o s(3)。
n⎪⎪⎪⎭⎫ ⎝⎛λλλ001001三.证明:如果,,CA AC BA AB ==证明:A BC BC A A C B C B A )()(,)()(=+=+。
四.如果),(21E B A +=证明:A A =2当且仅当.2E B =五.如果,'A A =则称矩阵A 为对称矩阵,如果B A ,为对称矩阵,证明:AB 也为对称矩阵当且仅当B A ,可交换。
六.如果矩阵满足A A =',则A 是反对称矩阵,证明:任一n n ⨯矩阵都可以表示为一对称矩阵和反对称矩阵的和。
七.设A 是n n ⨯矩阵,证明:存在一个n n ⨯的非零矩阵使得0=AB 的充分必要条件是0=A (或者是矩阵A 的列向量组是线性无关的)。
第四章 矩阵 作业2(矩阵的逆)一.填空题。
1.n 阶矩阵可逆的充分必要条件是_________________________.2.设A 是34⨯矩阵,且A 的秩为,2并且矩阵⎪⎪⎪⎭⎫ ⎝⎛-=301020201B ,则秩=)(AB________________.3.设矩阵B tA ,11334221⎪⎪⎪⎭⎫⎝⎛--=为三阶非零矩阵,且0=AB ,则=t ________. 4.设A 为n 阶矩阵,且,2=A 则=--*13)21(A A __________________.5.设矩阵,,333222111333222111⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛=c y b c y b c y b B c x b c x b c x b A 并且,3,2=-=B A 则行列式=+B A ____________.6.设,300320321⎪⎪⎪⎭⎫⎝⎛=A 则=-1*)(A __________.7.设B A ,为4阶矩阵,且,3=A 则=--1)3(A _______,=-12B BA _______.二.判断矩阵⎪⎪⎪⎭⎫ ⎝⎛--=201013121A 是否可逆,如果可逆,求出其逆矩阵。
高等代数习题(北大第四版)答案一到四章.
高等代数答案第一章多项式1.用)(x g 除)(x f ,求商)(x q 与余式)(x r :1)123)(,13)(223+−=−−−=x x x g x x x x f ;2)2)(,52)(24+−=+−=x x x g x x x f 。
解1)由带余除法,可得92926)(,9731)(−−=−=x x r x x q ;2)同理可得75)(,1)(2+−=−+=x x r x x x q 。
2.q p m ,,适合什么条件时,有1)q px x mx x ++−+32|1,2)q px x mx x ++++242|1。
解1)由假设,所得余式为0,即0)()1(2=−+++m q x m p ,所以当⎩⎨⎧=−=++012m q m p 时有q px x mx x ++−+32|1。
2)类似可得⎩⎨⎧=−−+=−−010)2(22m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=−−m p 时,代入(2)可得1=q 。
综上所诉,当⎩⎨⎧+==1q p m 或⎩⎨⎧=+=212m p q 时,皆有q px x mx x ++++242|1。
3.求()g x 除()f x 的商()q x 与余式:1)53()258,()3f x x x x g x x =−−=+;2)32(),()12f x x x x g x x i =−−=−+。
解1)432()261339109()327q x x x x x r x =−+−+=−;2)2()2(52)()98q x x ix i r x i=−−+=−+。
4.把()f x 表示成0x x −的方幂和,即表成2010200()()...()n n c c x x c x x c x x +−+−++−+⋯的形式:1)50(),1f x x x ==;2)420()23,2f x x x x =−+=−;3)4320()2(1)37,f x x ix i x x i x i =+−+−++=−。
大学高等代数试题及答案
大学高等代数试题及答案一、单项选择题(每题2分,共10分)1. 设矩阵A为3阶方阵,且|A|=1,则矩阵A的逆矩阵的行列式是()。
A. 0B. 1C. -1D. 32. 若线性方程组有唯一解,则该方程组的系数矩阵的秩与增广矩阵的秩()。
A. 不相等B. 相等C. 相差1D. 相差23. 以下哪个矩阵是正交矩阵?()A. \[\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}\]B. \[\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\]C. \[\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}\]D. \[\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\]4. 矩阵A的特征值是λ,那么矩阵A的转置的特征值是()。
A. λB. -λC. 0D. 不确定5. 设A是n阶方阵,且A^2=I(I是单位矩阵),则A的行列式是()。
A. 1B. -1C. 0D. 不确定二、填空题(每题3分,共15分)6. 若矩阵A的秩为2,则A的行最简形矩阵中非零行的个数为_________。
7. 设A是3×3矩阵,且A的迹等于3,则A的对角线元素之和为_________。
8. 若线性方程组的系数矩阵A和增广矩阵B的秩相等,则该方程组有_________解。
9. 设矩阵A的特征多项式为f(λ)=λ^2-5λ+6,则A的特征值为_________。
10. 若矩阵A与B相似,则A与B有相同的_________。
三、解答题(每题10分,共20分)11. 给定矩阵\[A=\begin{pmatrix} 2 & 1 \\ 1 & 2\end{pmatrix}\],求矩阵A的特征值和特征向量。
完整版高等代数习题解答(第一章)
完整版高等代数习题解答(第一章)高等代数题解答第一章多项式补充题1.当a,b,c取何值时,多项式f(x)=x-5与g(x)=a(x-2)^2+b(x+1)+c(x^2-x+2)相等?提示:比较系数得a=-1,b=-1,c=6.补充题2.设f(x),g(x),h(x)∈[x],f^2(x)=xg^2(x)+x^3h^2(x),证明:假设f(x)=g(x)=h(x)不成立。
若f(x)≠0,则∂(f^2(x))为偶数,又g^2(x),h^2(x)等于或次数为偶数,由于g^2(x),h^2(x)∈[x],首项系数(如果有的话)为正数,从而xg^2(x)+x^3h^2(x)等于或次数为奇数,矛盾。
若g(x)≠0或h(x)≠0,则∂(xg^2(x)+x^3h^2(x))为奇数,而f^2(x)为偶数,矛盾。
综上所证,f(x)≠g(x)或f(x)≠h(x)。
1.用g(x)除f(x),求商q(x)与余式r(x):1)f(x) =x^3-3x^2-x-1,g(x) =3x^2-2x+1;2)f(x) =x^4-2x+5,g(x) =x^2-x+2.1)解法一:待定系数法。
由于f(x)是首项系数为1的3次多项式,而g(x)是首项系数为3的2次多项式,所以商q(x)必是首项系数为1的1次多项式,而余式的次数小于2.于是可设q(x)=x+a,r(x)=bx+c。
根据f(x)=q(x)g(x)+r(x),即x^3-3x^2-x-1=(x+a)(3x^2-2x+1)+bx+c,右边展开,合并同类项,再比较两边同次幂的系数,得a=-1/3,b=-2/3,c=-1,故得q(x)=x-1/3,r(x)=-x-1/3.2)解法二:带余除法。
用长除法得商q(x)=x^2+x-1,余式r(x)=-5x+7.2.m,p,q适合什么条件时,有1)x^2+mx-1/x^3+px+q;2)x^2+mx+1/x^4+px^2+q.解:1)将x^3+px+q除以x^2+mx-1得商为x+m+1/(x+m-1),所以当m≠1时有解。
高等代数 练习题
练习题一一、单项选择题1.设A为3阶方阵, 数λ =-2, |A| =3, 则|λA| =()A.24; B.-24; C.6; D.-6.2.设A为n阶方阵, n1+n2+n3=n, 且|A|≠0, 即123AA AA⎛⎫⎪= ⎪⎪⎝⎭, 则A-1=( )A111213AA AA---⎛⎫⎪= ⎪⎪⎝⎭; B111213AA AA---⎛⎫⎪= ⎪⎪⎝⎭;C131211AA AA---⎛⎫⎪= ⎪⎪⎝⎭; D131211AA AA---⎛⎫⎪= ⎪⎪⎝⎭.3.设A为n阶方阵, A的秩R(A)=r<n, 那么在A的n个列向量中()A.必有r个列向量线性无关;B.任意r个列向量线性无关;C.任意r个列向量都构成最大线性无关组;D.任何一个列向量都可以由其它r个列向量线性表出.4.若方程组AX=0有非零解, 则AX=β(≠0)()A.必有无穷多组解;B.必有唯一解;C.必定没有解;D.A、B、C都不对.5. 设A、B均为3阶方阵, 且A与B相似, A的特征值为1, 2, 3, 则(2B)-1特征值为( )A.2, 1, 32; B.12,14,16; C.1, 2, 3; D.2, 1,23.6. 设A,B为n 阶矩阵,且R(A)=R(B),则()A.AB=BA;B.存在可逆矩阵P, 使P-1AP=B;C.存在可逆矩阵C, 使CTAC=B;D.存在可逆矩阵P、Q,使PAQ=B.7.实二次型()2123222132122,,xxxxxxxxf-++=是()A.正定二次型; B.半正定二次型; C.半负定二次型;D .不定二次型.8.设A, B 为满足AB=0的任意两个非零矩阵,则必有( ) A .A 的列向量线性相关,B 的行向量线性相关; B .A 的列向量线性相关,B 的列向量线性相关; C .A 的行向量线性相关,B 的行向量线性相关; D .A 的行向量线性相关,B 的列向量线性相关. 二、填空题⒈若行列式的每一行(或每一列)元素之和全为零,则行列式的值等于_______________; 2.设n 阶矩阵A 满足A2-2A+3E=O ,则A-1=_______________;3设1230,3,1,2,1,1,2,4,3,0,7,13TT Tααα⎛⎫⎛⎫⎛⎫==-= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,则321,,ααα的一个最大线性无关组为___________________________; 4. 设0γ是非齐次方程组AX=b 的一个解向量,r n -ααα,,,21 是对应的齐次方程组AX=0的一个基础解系,则0γ,,1α,,2 αr n -α线性__________;5. 设λ1 , λ2 为n 阶方阵A 的两个互不相等的特征值,与之对应的特征向量分别为X1,X2,则X1+X2_________________________矩阵A 的特征向量。
高等代数课程习题
《高等代数》课程习题第1章行列式习 题 1.11. 计算下列二阶行列式: (1)2345 (2)2163- (3)x x x x cos sin sin cos - (4)11123++-x x x x (5)2232ab ba a (6)ββααcos sin cos sin (7)3log log 1a bb a2. 计算下列三阶行列式:(1)341123312-- (2)00000d c b a (3)d c e ba 0000 (4)zy y x x 00002121(5)369528741 (6)01110111-- 3. 用定义计算行列式:(1)4106705330200100 (2)1014300211321221---(3)5000000004000300020001000 (4)dcb a 100110011001---.4.用方程组求解公式解下列方程组:(1) ⎪⎩⎪⎨⎧=-+=--=--0520322321321321x x x x x x x x x (2)⎪⎩⎪⎨⎧=+-=-+=++232120321321321x x x x x x x x x习 题 1.21. 计算下列行列式:(1)123112101 (2)15810644372---- (3)3610285140 (4)655565556 2.计算行列式(1)2341341241231234(2)12114351212734201----- (3)524222425-----a a a(4)322131399298203123- (5)0532004140013202527102135---- 3.用行列式的性质证明:(1)322)(11122b a b b a a b ab a -=+(2)3332221113333332222221111112c b a c b a c b a a c c b b a a c c b b a a c c b b a =+++++++++ 4.试求下列方程的根:(1)022223356=-+--λλλ(2)0913251323221321122=--x x5.计算下列行列式(1)8364213131524273------ (2)efcfbfde cd bdae ac ab---(3)2123548677595133634424355---------- (4)111110000000002211ΛΛΛΛΛΛΛΛΛΛn n a a a a a a ---(5)xaaa x a a a xΛΛΛΛΛΛΛ (6)abb a b a b a 000000000000ΛΛΛΛΛΛΛΛΛΛ 习 题 1.31. 解下列方程组(1)⎪⎩⎪⎨⎧-=++=+--=++1024305222325321321321x x x x x x x x x (2)⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x2. k 取何值时,下列齐次线性方程组可能有非零:(1) ⎪⎩⎪⎨⎧=+-=++-=++0200321321321x x x x kx x kx x x (2)⎪⎩⎪⎨⎧=+-=++=++0300321321321x x x x kx x x x kx 习 题 五1.41.计算下列行列式(1)3010002113005004, (2)113352063410201-- (3)222111c b a c b a(4)335111243152113------, (5)nn n n n b a a a a a b a a a a D ++=+ΛΛΛΛΛΛΛΛ212112111112.用克莱姆法则解线性方程(1)⎪⎩⎪⎨⎧=+-=-+=--114231124342321321321x x x x x x x x x (2)⎪⎪⎩⎪⎪⎨⎧=++=+-+=+-+=++3322212543143214321321x x x x x x x x x x x x x x3.当λ为何值时,方程组⎪⎩⎪⎨⎧=+-=+-=++0020321321321x x x x x x x x x λλ可能存在非零解?4.证明下列各等式(1) 222)(11122b a b b a a b ab a -=+(2) ))()((4)2()1()2()1()2()1(222222222c b a c a b c c c b b ba a a ---=++++++ (3) ))()()()()()((111144442222d c b a d c d b c b d a c a b a d c b a d c b a d c b a+++------=5.试求一个2次多项式)(x f ,满足1)2(,1)1(,0)1(-==-=f f f .第2章矩阵 习 题 2.21.设 ⎥⎦⎤⎢⎣⎡=530142A , ⎥⎦⎤⎢⎣⎡-=502131B , ⎥⎦⎤⎢⎣⎡--=313210C , 求3A -2B +C 。
高等代数例题(全部)
⾼等代数例题(全部)⾼等代数例题第⼀章多项式1.44P 2 (1)m 、p 、q 适合什么条件时,有231x mx x px q +-++2.45P 7 设32()(1)22f x x t x x u =++++,3()g x x tx u =++的最⼤公因式是⼀个⼆次多项式,求t 、u 的值。
3.45P 14 证明:如果((),())1f x g x =,那么(()(),()())1f x g x f x g x += 4.45P 18 求多项式3x px q ++有重根的条件。
5.46P 24 证明:如果(1)()n x f x -,那么(1)()n n x f x -6.46P 25 证明:如果23312(1)()()x x f x xf x +++,那么1(1)()x f x -,2(1)()x f x - 7.46P 26 求多项式1nx -在复数域内和实数域内的因式分解。
8.46P 28 (4)多项式1p x px ++ (p 为奇素数)在有理数域上是否可约?9.47P 1 设1()()()f x af x bg x =+,1()()()g x cf x dg x =+,且0ad bc -≠。
求证:11((),())((),())f x g x f x g x =。
10.48P 5 多项式()m x 称为多项式()f x ,()g x 的⼀个最⼩公倍式,如果(1)()()f x m x ,()()g x m x ;(2)()f x ,()g x 的任意⼀个公倍式都是()m x 的倍式。
我们以[(),()]f x g x 表⽰⾸项系数为1的那个最⼩公倍式。
证明:如果()f x ,()g x 的⾸项系数都为1,那么()()[(),()]((),())f xg x f x g x f x g x =。
11.设 m 、n 为整数,2()1g x x x =++除33()2mn f x xx =+-所得余式为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等代数试卷一、判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分)1、)(x p 若是数域F 上的不可约多项式,那么)(x p 在F 中必定没有根。
( )2、若线性方程组的系数行列式为零,由克莱姆法则知,这个线性方程组一定是无解的。
( )3、实二次型),,,(21n x x x f 正定的充要条件是它的符号差为n 。
( )4、(){}321321;3,2,1,,,x x x i R x x x x W i ===∈=是线性空间3R 的一个子空间。
( ) 5、数域F 上的每一个线性空间都有基和维数。
( ) 6、两个n 元实二次型能够用满秩线性变换互相转化的充要条件是它们有相同的正惯性指数和负惯性指数。
( ) 7、零变换和单位变换都是数乘变换。
( ) 8、线性变换σ的属于特征根0λ的特征向量只有有限个。
( ) 9、欧氏空间V 上的线性变换σ是对称变换的充要条件为σ关于标准正交基的矩阵为实对称矩阵。
( ) 10、若{}n ααα,,,21 是欧氏空间V 的标准正交基,且∑==ni i i x 1αβ,那么∑==ni ix12β。
( )二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。
答案选错或未作选择者,该题无分。
每小题1分,共10分)1、关于多项式的最大公因式的下列命题中,错误的是( ) ①()()()()()()nn n x g x f x g x f ,,=;②()()()n j i j i f f f f f j i n ,,2,1,,,1,1,,,21 =≠=⇔=; ③()()()()()()()x g x g x f x g x f ,,+=;④若()()()()()()()()1,1,=-+⇒=x g x f x g x f x g x f 。
2、设D 是一个n 阶行列式,那么( )①行列式与它的转置行列式相等; ②D 中两行互换,则行列式不变符号; ③若0=D ,则D 中必有一行全是零; ④若0=D ,则D 中必有两行成比例。
3、设矩阵A 的秩为r r (>)1,那么( )①A 中每个s s (<)r 阶子式都为零; ②A 中每个r 阶子式都不为零;③A 中可能存在不为零的1+r 阶子式; ④A 中肯定有不为零的r 阶子式。
4、设()n x x x f ,,,21 为n 元实二次型,则()n x x x f ,,,21 负定的充要条件为( ) ①负惯性指数=f 的秩; ②正惯性指数=0; ③符号差=n -; ④f 的秩=n 。
5、设{}m ααα,,,21 是线性空间V 的一个向量组,它是线性无关的充要条件为( )①任一组不全为零的数m k k k ,,,21 ,都有∑=≠mi i i k 10α;②任一组数m k k k ,,,21 ,有∑==mi i i k 10α;③当021====m k k k 时,有∑==mi i i k 10α;④任一组不全为零的数m k k k ,,,21 ,都有∑==mi i i k 10α。
6、若21,W W 都是n 维线性空间V 的子空间,那么( )①维()1W +维()21W W =维()2W +维()21W W +; ②维()21W W +=维()1W +维()2W ; ③维()1W +维()21W W +=维()2W +维()21W W ; ④维()1W -维()21W W =维()21W W +-维()2W 。
7、设σ是n 维线性空间V 的线性变换,那么下列错误的说法是( ) ①σ是单射⇔σ的亏=0; ②σ是满射⇔σ的秩=n ; ③σ是可逆的⇔核()σ={}0; ④σ是双射⇔σ是单位变换。
8、同一个线性变换在不同基下的矩阵是( )①合同的; ②相似的; ③相等的; ④正交的。
9、设V 是n 维欧氏空间 ,那么V 中的元素具有如下性质( ) ①若()()γβγαβα=⇒=,,; ②若βαβα=⇒=; ③若()11,=⇒=ααα; ④若()βα,>βα=⇒0。
10、欧氏空间3R 中的标准正交基是( )①()0,1,0;21,0,21;21,0,21⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛; ②()1,0,0;21,21;0,21,21⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛;③()0,0,0;31,31,31;31,31,31⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛; ④()()()1,1,1;1,1,1;1,1,1---三、填空题(将正确的内容填在各题干预备的横线上,内容填错或未填者,该空无分。
每空2分,共20分)1、多项式2)(24-+=x x x f 在实数域R 上的标准分解为 。
2、利用行列式的性质可知四阶行列式gf e dcb a 000000000的值为 。
3、若一个非齐次线性方程组无解且它的系数矩阵的秩为3,那么该方程组的增广矩阵的秩等于 。
4、在线性空间V 中,定义()0αασ=(其中0α是V 中一个固定向量), 那么当=0α 时,σ是V 的一个线性变换。
5、实对称矩阵的属于不同特征根的特征向量是彼此 的。
6、n 阶实对称矩阵的集合按合同分类,可分为 类。
7、若基Ⅰ到Ⅱ的过渡矩阵为P ,而向量α关于基Ⅰ和Ⅱ的坐标分别为X 和Y ,那么着两个坐标的关系是 。
8、设W 是线性空间V 的非空子集,若W 对V 的加法和数乘 ,则称W 为V 的子空间。
9、若线性变换σ关于基{}21,αα的矩阵为⎥⎦⎤⎢⎣⎡d c b a ,那么σ关于基{}12,3αα的矩阵为 。
10、两个欧氏空间同构的充要条件是它们有 。
四、改错题(请在下列命题中你认为错误的地方划线,并将正确的内容写在预备的横线上面。
指出错误1分,更正错误2分。
每小题3分,共15分)1、如果)(x p 是)(x f 的导数)('x f 的1-k 重因式,那么)(x p 就是)(x f 的k 重因式。
2、若线性方程组B AX =相应的齐次线性方程组0=AX 有无穷多解,那么B AX =也有无穷多解。
3、设A 是一个n m ⨯矩阵,若用m 阶初等矩阵()()4,53E 右乘A ,则相当对A 施行了一次“A 的第三列乘5加到第四列”的初等变换。
4、若21,αα都是数域F 上的方阵A 的属于特征根0λ的特征向量,那么任取221121,,ααk k F k k +∈也是A 的属于0λ的特征向量。
5、设σ是欧氏空间V 的线性变换,那么σ是正交变换的充分必要条件是σ能保持任二个非零向量的夹角。
五、计算题(每小题10分,共40分) 1、计算n 阶行列式0,1111111111111111111121321≠++++=n nn a a a a a a a D2、用相应的齐次线性方程组的基础解系表示下列线性方程组的全部解⎪⎪⎩⎪⎪⎨⎧-=-+++-=+----=--++--=-+-+21931644321452342354321543215432154321x x x x x x x x x x x x x x x x x x x x 3、解矩阵方程 ⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--87107210031012423321X4、设⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=1000,0100,0010,00014321αααα是()F M 2的一个基,而⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛=2231,2121,1121,25324321ββββ是另一组基,求由{}4321,,,αααα到{}4321,,,ββββ的过渡矩阵,并求向量⎪⎪⎭⎫⎝⎛--=2945ξ在{}4321,,,ββββ下的坐标。
六、证明题设321,,ααα是三维欧氏空间V 的一个标准正交基,试证:()()()321332123211223122312231αααβαααβαααβ--=+-=-+=也是V 的一个标准正交基。
高等代数试卷参考解答一、判断题 1 2 3 4 5 6 7 8 9 10× × √ √ × √ √ × √ √二、单项选择题 1 2 3 4 5 6 7 8 9 10 ② ① ④ ③ ① ④ ④ ② ③ ① 三、填空题1、()()()2112++-x x x ; 2、acef ; 3、4; 4、0; 5、正交; 6、()()221++n n ; 7、X P Y 1-=; 8、封闭;9、⎥⎥⎦⎤⎢⎢⎣⎡b a d c 33; 10、相同的维数。
四、改错题1、如果)(x p 是)(x f 的导数)('x f 的1-k 重因式,那么)(x p 就是)(x f 的k 重因式。
)(x p 是)(x f 的因式且是)('x f 的1-k 重因式2、若线性方程组B AX =相应的齐次线性方程组0=AX 有无穷多解,那么B AX =也有无穷多解。
当AX=B 有解时,AX=B 也有无穷多解3、设A 是一个n m ⨯矩阵,若用m 阶初等矩阵()()4,53E 右乘A ,则相当对A 施行了一次“A 的第三列乘5加到第四列”的初等变换。
A 的第4列乘5加到第3列4、若21,αα都是数域F 上的方阵A 的属于特征根0λ的特征向量,那么任取,,21F k k ∈5、设σ是欧氏空间V 的线性变换,那么σ是正交变换的充分必要条件是σ能保持任二个非零向量的夹角。
必要条件。