重庆市柏梓中学2014-2015学年高二理科数学选修2-2综合试题(三)(含答案)
2014-2015学年高中数学 综合检测 新人教A版选修2-2
【成才之路】2014-2015学年高中数学 综合检测 新人教A 版选修2-2时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2014·某某鱼台一中高二期中)复平面内,复数(2-i)2对应点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限[答案] D[解析] ∵(2-i)2=4-4i +i 2=3-4i ,∴此复数在复平面内的对应点为(3,-4),故选D. 2.曲线y =4x -x 3在点(-1,-3)处的切线方程是( ) A .y =7x +4 B .y =x -4 C .y =7x +2 D .y =x -2[答案] D[解析] y ′|x =-1=(4-3x 2)|x =-1=1, ∴切线方程为y +3=x +1,即y =x -2.3.若函数f (x )=x 2+bx +c 的图象的顶点在第四象限,则函数f ′(x )的图象是( )[答案] A[解析] ∵f ′(x )=2x +b 为增函数,∴排除B 、D ; 又f (x )的顶点在第四象限, ∴-b2>0,∴b <0,排除C ,故选A.4.(2013·某某嘉祥一中高二期中)曲线y =x 3-3x 和y =x 围成图形的面积为( ) A .4 B .8 C .10 D .9[答案] B[解析] 由⎩⎪⎨⎪⎧y =x 3-3x ,y =x ,解得⎩⎪⎨⎪⎧x =0,y =0,或⎩⎪⎨⎪⎧x =2,y =2,或⎩⎪⎨⎪⎧x =-2,y =2.∵y =x 3-3x 与y =x 都是奇函数, ∴围成图形的面积为S =2⎠⎛02[x -(x 3-3x )]dx =2⎠⎛02(4x -x 3)dx =2·2x 2-14x4|20=8,故选B. 5.(2013·某某余姚中学高二期中)已知函数f (x )=sin x +e x+x2013,令f 1(x )=f ′(x ),f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1=f n ′(x ),则f 2014(x )=( )A .sin x +e xB .cos x +e xC .-sin x +e xD .-cos x +e x[答案] C[解析] f 1(x )=f ′(x )=cos x +e x +2013x 2012,f 2(x )=f 1′(x )=-sin x +e x+2013×2012x2011,f 3(x )=f 2′(x )=-cos x +e x+2013×2012×2011x2010,……,∴f 2014(x )=-sin x +e x.6.(2014·某某湄潭中学高二期中)函数f (x )=3x -4x 3(x ∈[0,1])的最大值是( ) A.12 B .-1 C .0 D .1[答案] D[解析] 由f ′(x )=3-12x 2=0得,x =±12,∵x ∈[0,1],∴x =12,∵当x ∈[0,12],f ′(x )>0,当x ∈[12,1]时,f ′(x )<0,∴f (x )在[0,12]上单调递增,在[12,1]上单调递减,故x =12时,f (x )取到极大值也是最大值,f (12)=3×12-4×(12)3=1,故选D.7.设x =3+4i ,则复数z =x -|x |-(1-i)在复平面上的对应点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限[答案] B[解析] ∵x =3+4i ,∴|x |=32+42=5, ∴z =3+4i -5-(1-i)=(3-5-1)+(4+1)i =-3+5i.∴复数z 在复平面上的对应点在第二象限,故应选B.8.k 棱柱有f (k )个对角面,则k +1棱柱的对角面个数f (k +1)为( ) A .f (k )+k -1 B .f (k )+k +1 C .f (k )+k D .f (k )+k -2[答案] A[解析] 增加的一条侧棱与其不相邻的k -2条侧棱形成k -2个对角面,而过与其相邻的两条侧棱的截面原来为侧面,现在也成了一个对角面,故共增加了k -1个对角面,∴f (k+1)=f (k )+k -1.故选A.9.(2014·揭阳一中高二期中)函数y =a sin x +13sin3x 在x =π3处有极值,则a 的值为( )A .-6B .6C .-2D .2[答案] D[解析] y ′=a cos x +cos3x ,由条件知,a cos π3+cosπ=0,∴a =2,故选D.10.(2014·某某市临淄区检测)下列求导运算正确的是( ) A .(2x)′=x ·2x -1B .(3e x )′=3e xC .(x 2-1x )′=2x -1x2D .(x cos x )′=cos x -x sin x cos x2[答案] B[解析] 对于A ,(2x )′=2x ln2;对于B ,(3e x )′=3e x ;对于C ,(x 2-1x )′=2x +1x2;对于D ,(x cos x )′=cos x +x sin xcos x2;综上可知选B.11.利用数学归纳法证明不等式1+12+13+…12n -1<f (n ) (n ≥2,n ∈N *)的过程中,由n =k 变到n =k +1时,左边增加了( )A .1项B .k 项C .2k -1项D .2k项[答案] D[解析] n =k +1时,左边为: 1+12+13+…+12k +1-1=⎝ ⎛⎭⎪⎫1+12+13+…+12k -1+⎝ ⎛⎭⎪⎫12k +12k +1+…+12k +2k-1, 故共增加了2k项,故选D.12.函数f (x )=x 2-2ln x 的单调减区间是( ) A .(0,1]B .[1,+∞)C .(-∞,-1]∪(0,1]D .[-1,0)∪(0,1][答案] A[解析] 函数的定义域为(0,+∞),f ′(x )=2x -2x=2x +1x -1x,由f ′(x )≤0及x >0得,0<x ≤1,故选A. [点评] 利用导数判断函数单调性的一般步骤 ①求导数f ′(x );②在函数f (x )的定义域内解不等式f ′(x )>0和f ′(x )<0; ③根据②的结果确定函数f (x )的单调区间.二、填空题(本大题共4个小题,每小题4分,共16分.将正确答案填在题中横线上) 13.(2013·某某嘉祥一中高二期中)在等比数列{a n }中,若前n 项之积为T n ,则有T 3n=(T 2n T n)3.那么在等差数列{b n }中,若前n 项之和为S n ,用类比的方法得到的结论是________. [答案] S 3n =3(S 2n -S n )[解析] 由等比数列前n 项积,前2n 项的积,前3n 项的积类比得到等差数列前n 项的和,前2n 项的和,前3n 项的和,由等比数列中(T 2n T n)3类比得等差数列中3(S 2n -S n ),故有S 3n =3(S 2n -S n ).14.已知函数f (x )=x 3+2x 2-ax +1在区间(-1,1)上恰有一个极值点,则实数a 的取值X 围是________.[答案] [-1,7)[解析] f ′(x )=3x 2+4x -a ,其图象开口向上,由条件知f ′(-1)·f ′(1)<0,∴(-1-a )(7-a )<0,∴-1<a <7,当a =-1时,f ′(x )=3x 2+4x +1=0,在(-1,1)上恰有一根x =-13,当a =7时,f ′(x )=0在(-1,1)上无实根,∴-1≤a <7.15.(2014·天门市调研)若复数z =21+3i ,其中i 是虚数单位,则|z -|=________.[答案] 1 [解析] 因为z =21+3i =21-3i 1+3i1-3i=21-3i 4=12-32i ,所以|z -|=122+-322=1.16.(2013·某某一中高三月考)已知不等式1-3x +a <0的解集为(-1,2),则⎠⎛02(1-3x +a)dx =________. [答案] 2-3ln3 [解析] 由条件知方程1-3x +a=0的根为-1或2,∴a =1.∴⎠⎛02(1-3x +a )dx =⎠⎛02(1-3x +1)dx = |[x -3ln x +1]20=2-3ln3.三、解答题(本大题共6个小题,共74分.解答应写出文字说明、证明过程或演算步骤) 17.(本题满分12分)(2014·某某市高二期中)已知z 1、z 2为复数,i 为虚数单位,z 1·z-1+3(z 1+z -1)+5=0,z 2+3z 2-3为纯虚数,z 1、z 2在复平面内对应的点分别为P 、Q .(1)求点P 的轨迹方程; (2)求点Q 的轨迹方程; (3)写出线段PQ 长的取值X 围.[解析] (1)设z 1=x +y i ,(x 、y ∈R ),由z 1·z -1+3(z 1+z -1)+5=0得x 2+y 2+6x +5=0,整理得(x +3)2+y 2=4,∴点P 的轨迹方程为(x +3)2+y 2=4. (2)设z 2=x +y i ,(x 、y ∈R ),z 2+3z 2-3=x +3+y i x -3+y i =x 2+y 2-9-6y ix -32+y 2, ∵z 2+3z 2-3为纯虚数,∴x 2+y 2=9且y ≠0, ∴点Q 的轨迹方程为x 2+y 2=9(y ≠0). (3)PQ 长的取值X 围是[0,8). ∵两圆相交,∴PQ 长的最小值为0,又两圆圆心距为3,两圆半径分别为2和3,∴PQ 长的最大值为8,但点Q 的轨迹方程中y ≠0,∴|PQ |<8,∴线段PQ 长的取值X 围是[0,8).[点评] 第(3)问要求“写出线段PQ 长的取值X 围”可以不写解答过程.18.(本题满分12分)(2014·某某文,21)已知函数f (x )=e x -ax 2-bx -1,其中a 、b ∈R ,e =2.71828…为自然对数的底数.(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值; (2)若f (1)=0,函数f (x )在区间(0,1)内有零点,证明:e -2<a <1. [解析] (1)由f (x )=e x-ax 2-bx -1,有g (x )=f ′(x )=e x-2ax -b . 所以g ′(x )=e x-2a .当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ].当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增.因此g (x )在[0,1]上的最小值是g (0)=1-b ;当a ≥e2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减,因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ; 当12<a <e2时,令g ′(x )=0,得x =ln(2a )∈(0,1). 所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增. 于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b ; 综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ;当12<a <e2时,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b 当a ≥e2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b .(2)设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知,f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减.则g (x )不可能恒为正,也不可能恒为负. 故g (x )在区间(0,x 0)内存在零点x 1.同理g (x )在区间(x 0,1)内存在零点x 2,所以g (x )在区间(0,1)内至少有两个零点. 由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点.当a ≥e2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点.所以12<a <e 2.此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增. 因此x 1∈(0,ln(2a )],x 2∈(ln(2a ),1),必有g (0)=1-b >0,g (1)=e -2a -b >0.由f (1)=0有a +b =e -1<2,有g (0)=a -e +2>0,g (1)=1-a >0.解得e -2<a <1.所以,函数f (x )在区间(0,1)内有零点时,e -2<a <1.19.(本题满分12分)先观察不等式(a 21+a 22)(b 21+b 22)≥(a 1b 1+a 2b 2)2(a 1、a 2、b 1、b 2∈R )的证明过程:设平面向量α=(a 1,b 1),β=(a 2,b 2),则|α|=a 21+b 21,|β|=a 22+b 22,α·β=a 1a 2+b 1b 2.∵|α·β|≤|α|·|β|, ∴|a 1a 2+b 1b 2|≤a 21+b 21·a 22+b 22, ∴(a 1a 2+b 1b 2)2≤(a 21+b 21)(a 22+b 22), 再类比证明:(a 21+b 21+c 21)(a 22+b 22+c 22)≥(a 1a 2+b 1b 2+c 1c 2)2. [分析] 把平面向量类比推广到空间向量可以证明.[解析] 设空间向量α=(a 1,b 1,c 1),β=(a 2,b 2,c 2),则|α|=a 21+b 21+c 21,|β|=a 22+b 22+c 22,α·β=a 1a 2+b 1b 2+c 1c 2,∵|α·β|≤|α|·|β|, ∴|a 1a 2+b 1b 2+c 1c 2|≤a 21+b 21+c 21·a 22+b 22+c 22,∴(a 1a 2+b 1b 2+c 1c 2)2≤(a 21+b 21+c 21)(a 22+b 22+c 22).20.(本题满分12分)设函数f (x )=sin x -cos x +x +1,0<x <2π,求函数f (x )的单调区间与极值.[解析] f ′(x )=cos x +sin x +1=2sin(x +π4)+1 (0<x <2π),令f ′(x )=0,即sin(x +π4)=-22, 解之得x =π或x =32π.x ,f ′(x )以及f (x )变化情况如下表:∴f (x )的单调增区间为(0,π)和(2π,2π),单调减区间为(π,2π).f 极大(x )=f (π)=π+2,f 极小(x )=f (32π)=3π2. 21.(本题满分12分)(2013·海淀区高二期中)已知点列A n (x n,0),n ∈N *,其中x 1=0,x 2=a (a >0),A 3是线段A 1A 2的中点,A 4是线段A 2A 3的中点,…A n 是线段A n -2A n -1的中点,….(1)写出x n 与x n -1、x n -2之间的关系式(n ≥3);(2)设a n =x n +1-x n ,计算a 1、a 2、a 3,由此推测数列{a n }的通项公式,并加以证明.[解析] (1)由题意,当n ≥3时,x n =12(x n -1+x n -2)(2)x 1=0,x 2=a ,x 3=12(x 2+x 1)=a 2,x 4=12(x 3+x 2)=3a4,∴a 1=x 2-x 1=a ,a 2=x 3-x 2=-a 2,a 3=x 4-x 3=a4,推测a n =a-2n -1.方法一证明:对于任意n ∈N *,a n =x n +1-x n ,a n +1=x n +2-x n +1=12(x n +1+x n )-x n +1=-12(x n +1-x n )=-12a n ,又∵a 1=a >0,∴{a n }是以a 为首项,以-12为公比的等比数列.故a n =a ·(-12)n -1=a-2n -1.方法二下面用数学归纳法证明:①当n =1时,a 1=a =a ·(-12)1-1,结论a n =a-2n -1成立.②假设当n =k (k ≥1,k ∈N )时,a n =a-2n -1成立,即a k =a ·(-12)k -1,则当n =k +1时,a k +1=x k +2-x k +1=x k +x k +12-x k +1=x k -x k +12=-12a k =(-12)·a ·(-12)k -1=a ·(-12)(k +1)-1,所以n =k +1时,a n =a-2n -1成立.由①②可知,数列{a n }的通项公式为a n =a ·(-12)n -1,n ∈N *.22.(本题满分14分)(2014·某某湄潭中学高二期中)设函数f (x )=x ln x . (1)求f (x )的单调区间;(2)求f (x )在区间[18,12]上的最大值和最小值.[解析] (1)由题意知,函数的定义域为(0,+∞). ∵f (x )=x ln x ,∴f ′(x )=ln x +1,令f ′(x )=0,得x =1e,令f ′(x )>0,得x >1e,令f ′(x )<0,得0<x <1e,∴f (x )的单调递增区间为(1e ,+∞),单调递减区间为(0,1e).(2)∵f (18)=18ln 18=38ln 12,f (12)=12ln 12, f (1e )=1e ln 1e =-1e, 又12ln 12<38ln 12, ∴求f (x )在区间[18,12]的最大值为38ln 12,最小值为-1e .一、选择题1.i 是虚数单位,复数z =2+3i-3+2i的虚部是( )A .0B .-1C .1D .2[答案] B[解析] z =2+3i-3+2i =2+3i -3-2i-3+2i-3-2i=-6-9i -4i +613=-i ,∴z 的虚部是-1. 2.设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +3=0垂直,则a =( ) A .-2 B .-12C .12D .2[答案] A[解析] y ′=-2x -12,y ′|x =3=-12, ∵(-12)·(-a )=-1,∴a =-2.3.用数学归纳法证明等式1+2+3+…+(n +3)=n +3n +42(n ∈N *)时,验证n =1,左边应取的项是( )A .1B .1+2C .1+2+3D .1+2+3+4[答案] D[解析] 当n =1时,左=1+2+…+(1+3)=1+2+…+4,故应选D.4.(2013·某某实验中学高二期中)三次函数当x =1时有极大值4,当x =3时有极小值0,且函数过原点,则此函数是( )A .y =x 3+6x 2+9x B .y =x 3-6x 2+9x C .y =x 3-6x 2-9x D .y =x 3+6x 2-9x[答案] B[解析] 由条件设f (x )=ax 3+bx 2+cx ,则f ′(x )=3ax 2+2bx +c =3a (x -1)(x -3),∴b =-6a ,c =9a ,∴f (x )=ax 3-6ax 2+9ax ,∵f (1)=4,∴a =1. ∴f (x )=x 3-6x 2+9x ,故选B.5.在复平面内,点A 对应的复数为1+2i ,AB →=(-2,1),则点B 对应的复数的共轭复数为( )A .1+3iB .1-3iC .-1+3iD .-1-3i[答案] D[解析] 由条件知A (1,2),又AB →=(-2,1), ∴B (-1,3),∴点B 对应复数z =-1+3i , 故z -=-1-3i.6.已知函数f (x )=x 2+bx 的图象在点A (1,f (1))处的切线l 与直线3x -y +2=0平行,若数列{1f n}的前n 项和为S n ,则S 2013的值为( )A.20122013B .20112012 C .20092010D .20102011[解析] f ′(x )=2x +b ,由f ′(1)=2+b =3,得b =1. 则f (x )=x 2+x . 于是1f n=1n 2+n =1n n +1=1n -1n +1, S 2013=1f 1+1f 2+…+1f 2013=(1-12)+(12-13)+…+(12012-12013)=1-12013=20122013.7.(2014·某某市临淄区检测)已知函数f (x )=x 3-12x ,若f (x )在区间(2m ,m +1)上单调递减,则实数m 的取值X 围是( )A .-1≤m ≤1B .-1<m ≤1C .-1<m <1D .-1≤m <1[答案] D[解析] 因为f ′(x )=3x 2-12=3(x +2)(x -2),令f ′(x )<0⇒-2<x <2,所以函数f (x )=x 3-12x 的单调递减区间为(-2,2),要使f (x )在区间(2m ,m +1)上单调递减,则区间(2m ,m +1)是区间(-2,2)的子区间,所以⎩⎪⎨⎪⎧2m ≥-2,m +1≤2,m +1>2m .从中解得-1≤m <1,选D.8.根据给出的数塔猜测123456×9+7等于( ) 1×9+2=11 12×9+3=111 123×9+4=1111 1234×9+5=11111 12345×9+6=111111 …… A .1111110 B .1111111 C .1111112 D .1111113[答案] B[解析] 可利用归纳推理,由已知可猜测123456×9+7=1111111.9.(2012·某某文,5)观察下列事实:|x |+|y |=1的不同整数解(x ,y )的个数为4 , |x |+|y |=2的不同整数解(x ,y )的个数为8, |x |+|y |=3的不同整数解(x ,y )的个数为12,…,则|x |+|y |=20的不同整数解(x ,y )的个数为( )A .76B .80C .86D .92[解析] 本题考查了不完全归纳.由已知条件知|x |+|y |=n 的不同整数解(x ,y )个数为4n ,所以|x |+|y |=20不同整数解(x ,y )的个数为4×20=80.10.(2012·大纲全国理,1)复数-1+3i1+i =( )A .2+iB .2-iC .1+2iD .1-2i[答案] C[解析] 本小题主要考查了复数四则运算法则,可利用除法运算求解.因为-1+3i1+i =-1+3i 1-i 1+i1-i =2+4i2=1+2i ,所以选C.11.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…这样的数为正方形数.下列数中既是三角形数又是正方形数的是( )A .289B .1024C .1225D .1378[答案] C[解析] 图1中满足a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n , 以上累加得a n -a 1=2+3+…+n ,a n =1+2+3+…+n =n ·n +12,图2中满足b n=n 2,一个数若满足三角形数,其必能分解成两个相邻自然数乘积的一半; 一个数若满足正方形数,其必为某个自然数的平方. ∵1225=352=49×502,∴选C.12.(2014·某某理,11)当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值X 围是( )A .[-5,-3]B .[-6,-98]C .[-6,-2]D .[-4,-3][答案] C[解析] ax 3≥x 2-4x -3恒成立.当x =0时式子恒成立.∴a ∈R , 当x >0时,a ≥1x -4x 2-3x3恒成立.令1x=t ,x ∈(0,1],∴t ≥1.∴a ≥t -4t 2-3t 3恒成立.令g (t )=t -4t 2-3t 3,g ′(t )=1-8t -9t 2=(t +1)(-9t +1), ∴函数g ′(t )在[1,+∞)上为减函数 而且g ′(1)=-16<0,∴g ′(t )<0在[1,+∞)上恒成立. ∴g (t )在[1,+∞)上是减函数, ∴g (t )max =g (1)=-6,∴a ≥-6; 当x <0时,a ≤1x -4x 2-3x3恒成立,∵x ∈[-2,0),∴t ≤-12,令g ′(t )=0得,t =-1,∴g (t )在(-∞,-1]上为减函数,在(-1,-12]上为增函数,∴g (t )min =g (-1)=-2,∴a ≤-2. 综上知-6≤a ≤-2. 二、填空题13.请阅读下列材料:若两个正实数a 1、a 2满足a 21+a 22=1,那么a 1+a 2≤ 2.证明:构造函数f (x )=(x -a 1)2+(x -a 2)2=2x 2-2(a 1+a 2)x +1.因为对一切实数x ,恒有f (x )≥0,所以Δ≤0,从而得4(a 1+a 2)2-8≤0,所以a 1+a 2≤ 2.类比上述结论,若n 个正实数满足a 21+a 22+…+a 2n =1,你能得到的结论为________.[答案] a 1+a 2+…+a n ≤n (n ∈N *)[解析] 构造函数f (x )=(x -a 1)2+(x -a 2)2+…+(x -a n )2=nx 2-2(a 1+a 2+…+a n )x +1,∵f (x )≥0对任意实数x 都成立, ∴Δ=4(a 1+a 2+…+a n )2-4n ≤0,∵a 1,a 2,…,a n 都是正数,∴a 1+a 2+…+a n ≤n .14.对大于或等于2的自然数m 的n 次方幂有如下分解方式: 22=1+3,32=1+3+5,42=1+3+5+7; 23=3+5,33=7+9+11,43=13+15+17+19.根据上述分解规律,若n 2=1+3+5+…+19,m 3(m ∈N *)的分解中最小的数是21,则m +n 的值为________.[答案] 15[解析] 依题意得n 2=10×1+192=100,∴n =10.易知m 3=21m +m m -12×2,整理得(m -5)(m +4)=0, 又m ∈N *,所以m =5,即53=21+23+25+27+29,所以m +n =15.15.对任意非零实数a 、b ,若a ⊗b 的运算原理如图所示,则2⊗⎠⎛0πsin x d x =________.[答案]22[解析] ∵⎠⎛0πsin x d x =-cos x|π0=2>2,∴2⊗⎠⎛0πsin x d x =2⊗2=2-12=22.16.(2013·某某红桥区高二质检)已知结论“a 1、a 2∈R +,且1a 1+1a 2≥4:若a 1、a 2、a 3∈R +,且a 1+a 2+a 3=1,则1a 1+1a 2+1a 3≥9”,请猜想若a 1、a 2、…、a n ∈R +,且a 1+a 2+…+a n =1,则1a 1+1a 2+…+1a n≥________.[答案] n 2[解析] 结论左端各项分别是和为1的各数a i 的倒数(i =1,2,…,n ),右端n =2时为4=22,n =3时为9=32,故a i ∈R +,a 1+a 2+…+a n =1时,结论为1a 1+1a 2+…+1a n≥n 2(n ≥2).三、解答题17.已知非零实数a 、b 、c 构成公差不为0的等差数列,求证:1a ,1b ,1c不可能构成等差数列.[解析] 假设1a ,1b ,1c 能构成等差数列,则得2b =1a +1c,于是得bc +ab =2ac .①而由于a ,b ,c 构成等差数列,即2b =a +c .②所以由①②两式得,(a +c )2=4ac ,即(a -c )2=0,于是得a =b =c ,这与a ,b ,c 构成公差不为0的等差数列矛盾.故假设不成立,因此1a ,1b ,1c不能构成等差数列.18.已知函数f (x )=(2-a )x -2ln x ,(a ∈R ). (1)若函数f (x )在x =1处取得极值,某某数a 的值; (2)求函数f (x )的单调区间.[解析] (1)由题可知f ′(x )=2-a -2x(x >0),令f ′(x )=0得2-a -2x =0,∴x =22-a ,又因为函数f (x )在x =1处取得极值,所以a =0.(2)①若a =2,f ′(x )=-2x<0(x >0),f (x )=-2ln x 的单调递减区间为(0,+∞);②若2-a <0,即a >2时,f ′(x )=2-a -2x在(0,+∞)上小于0,所以f (x )在(0,+∞)上单调递减;③若2-a >0,即a <2时,当x >22-a 时f ′(x )>0,f (x )单调递增,0<x <22-a时,f ′(x )<0,f (x )单调递减.综上:a ≥2时,f (x )的单调递减区间为(0,+∞);a <2时,f (x )的单调递增区间为(22-a ,+∞),单调递减区间为(0,22-a). 19.设函数f (x )=ax +xx -1(x >1),若a 是从1、2、3三个数中任取的一个数,b 是从2、3、4、5四个数中任取的一个数,求f (x )>b 恒成立的概率.[解析] 若使f (x )>b 恒成立,只需使ax +xx -1-b >0在(1,+∞)上恒成立.设g (x )=ax +xx -1-b ,则g ′(x )=a -1x -12=a x -12-1x -12,令g ′(x )=0,则a (x -1)2-1=0, 解得:x =±aa+1, ∴x ∈(1,aa+1)时,g ′(x )<0, x ∈(aa+1,+∞)时,g ′(x )>0. ∴x =aa+1时,函数g (x )取得最小值为 g (aa+1)=2a +a +1-b , ∴2a +a +1-b >0,∴当a =1时,b 的值可以是2或3, 当a =2时,b 的值可以是2或3或4或5, 当a =3时,b 的值可以是2或3或4或5.∴使f (x )>b 恒成立的取法共有10种,而数对(a ,b )的所有可能取法共有12种, ∴使f (x )>b 恒成立的概率为P =1012=56.20.若a 、b 、c 是不全相等的正数,求证:lg a +b2+lgb +c2+lgc +a2>lg a +lg b +lg c .[解析] 要证lg a +b2+lgb +c2+lgc +a2>lg a +lg b +lg c ,只需证lg ⎝ ⎛⎭⎪⎫a +b 2·b +c 2·c +a 2>lg(a ·b ·c ),只需证a +b 2·b +c 2·c +a2>abc .∵a ,b ,c 是不全相等的正数, ∴a +b2≥ab >0,b +c2≥bc >0,c +a2≥ac >0,且上述三式中的等号不同时成立. ∴a +b 2·b +c 2·c +a2>abc .∴lga +b2+lgb +c2+lgc +a2>lg a +lg b +lg c .21.已知函数f (x )=12x 2-ax +(a -1)ln x .(1)若a >2,讨论函数f (x )的单调性;(2)已知a =1,g (x )=2f (x )+x 3,若数列{a n }的前n 项和为S n =g (n ),证明:1a 2+1a 3+…+1a n <13(n ≥2,n ∈N +). [解析] (1)可知f (x )的定义域为(0,+∞).有f ′(x )=x -a +a -1x =x 2-ax +a -1x=x -1[x -a -1]x,因为a >2,所以a -1>1.故当1<x <a -1时f ′(x )<0;当0<x <1或x >a -1时f ′(x )>0.∴函数f (x )在区间(1,a -1)上单调递减,在区间(0,1)和(a -1,+∞)上单调增加. (2)由a =1知g (x )=x 3+x 2-2x ,所以S n =n 3+n 2-2n .可得a n =⎩⎪⎨⎪⎧3n 2-n -2,n ≥2,0,n =1.∴a n =3n 2-n -2(n ≥2). 所以1a n =13n +2n -1(n ≥2).因为13n +2n -1<13nn -1=13(1n -1-1n), 所以1a 2+1a 3+…+1a n <13[(1-12)+(12-13)+…+(1n -1-1n )]=13(1-1n )=13-13n <13, 综上,不等式得证.22.(2014·揭阳一中高二期中)已知函数f (x )=ln x -12ax 2-2x (a <0).(1)若函数f (x )在定义域内单调递增,求a 的取值X 围;(2)若a =-12且关于x 的方程f (x )=-12x +b 在[1,4]上恰有两个不相等的实数根,某某数b 的取值X 围;(3)设各项为正的数列{a n }满足:a 1=1,a n +1=ln a n +a n +2,n ∈N *,求证:a n ≤2n-1.[解析] (1)f ′(x )=-ax 2+2x -1x(x >0).依题意f ′(x )≥0在x >0时恒成立,即ax 2+2x -1≤0在x >0时恒成立, 则a ≤1-2x x 2=(1x-1)2-1在x >0时恒成立,即a ≤((1x-1)2-1)min (x >0),当x =1时,(1x-1)2-1取最小值-1,∴a 的取值X 围是(-∞,-1].(2)a =-12,f (x )=-12x +b ⇔14x 2-32x +ln x -b =0.设g (x )=14x 2-32x +ln x -b (x >0),则g ′(x )=x -2x -12x.g (x ),g ′(x )随x 的变化如下表:x (0,1) 1 (1,2) 2 (2,4) g ′(x ) +0 -0 +g (x )极大值极小值∴g (x )极小值=g (2)=ln2-b -2,g (x )极大值=g (1)=-b -54,又g (4)=2ln2-b -2,∵方程g (x )=0在[1,4]上恰有两个不相等的实数根.则⎩⎪⎨⎪⎧g 1≥0,g 2<0,g 4≥0.得ln2-2<b ≤-54.(3)设h (x )=ln x -x +1,x ∈[1,+∞),则h ′(x )=1x-1≤0,∴h (x )在[1,+∞)上为减函数.∴h (x )max =h (1)=0,故当x ≥1时有ln x ≤x -1. ①当n =1时,a 1=1≤1成立;②假设n =k 时,a k ≤2k-1,则当n =k +1时, ∵2k-1≥1,∴ln(2k-1)≤(2k-1)-1=2k-2, ∴a k +1=ln a k +a k +2≤ln(2k-1)+(2k-1)+2 ≤(2k-2)+(2k-1)+2=2k +1-1,所以当n =k +1时结论也成立,由①②得,对∀n∈N*有a n≤2n-1成立.。
高二理科数学选修2-2测试题及答案doc资料
高二理科数学选修2-2测试题及答案高二选修2-2理科数学试卷第I 卷 (选择题, 共60分)一、选择题(共12小题,每小题5分,共60分) 1、复数i-25的共轭复数是( ) A 、2+i B 、2-i C 、i --2 D 、i -2 2、 已知f(x)=3x ·sinx ,则'(1)f =( )A.31+cos1B. 31sin1+cos1C. 31sin1-cos1 D.sin1+cos13、设a R ∈,函数()x x f x e ae -=-的导函数为()'f x ,且()'f x 是奇函数,则a 为( ) A .0 B .1 C .2 D .-14、定积分dx e x x ⎰-1)2(的值为( )A .e -2B .e -C .eD .e +25、利用数学归纳法证明不等式1+12+13+ (1)2n -1<f(n) (n ≥2,n ∈N *)的过程中,由n =k 变到n=k +1时,左边增加了( )A .1项B .k 项C .2k -1项 D .2k 项6、由直线y= x - 4,曲线x y 2=以及x 轴所围成的图形面积为( ) A.340 B.13 C.225D.15 7、函数223)(a bx ax x x f +--=在1=x 处有极值10, 则点),(b a 为 ( ) (A ))3,3(- (B ))11,4(- (C ) )3,3(-或)11,4(- (D )不存在8、函数f(x)=x 2-2lnx 的单调减区间是( )A .(0,1]B .[1,+∞)C .(-∞,-1]∪(0,1]D .[-1,0)∪(0,1]9、 已知2()(1),(1)1()2f x f x f f x +==+ *x N ∈(),猜想(f x )的表达式( )A.4()22x f x =+; B.2()1f x x =+; C.1()1f x x =+; D.2()21f x x =+. 10、 若21()ln(2)2f x x b x =-++∞在(-1,+)上是减函数,则b 的取值范围是( )A. [1,)-+∞B. (1,)-+∞C. (,1]-∞-D. (,1)-∞-11、点P 是曲线x x y ln 2-=上任意一点, 则点P 到直线2y x =-的距离的最小值是( )(A) 1(C) 2 (D)12、对于R 上可导的任意函数f (x ),且'(1)0f =若满足(x -1)f x '()>0,则必有( )A .f (0)+f (2)< 2 f (1)B .f (0)+f (2)≥ 2 f (1)C .f (0)+f (2)> 2 f (1)D .f (0)+f (2)≤ 2 f (1)第Ⅱ卷 (非选择题, 共90分)二.填空题(每小题5分,共20分)13、设2,[0,1]()2,(1,2]x x f x x x ⎧∈=⎨-∈⎩,则20()f x dx ⎰=14、若三角形内切圆半径为r ,三边长为a,b,c 则三角形的面积12S r a b c =++(); 利用类比思想:若四面体内切球半径为R ,四个面的面积为124S S S 3,,S ,; 则四面体的体积V=15、若复数z =21+3i,其中i 是虚数单位,则|z |=______. 16、已知函数f(x)=x 3+2x 2-ax +1在区间(-1,1)上恰有一个极值点,则实数a 的取值范围 _____.三、解答题(本大题共70分)17、(10分)实数m 取怎样的值时,复数i m m m z )152(32--+-=是:(1)实数?(2)虚数?(3)纯虚数?18、(12分)已知函数3()3f x x x =-.(1)求函数()f x 在3[3,]2-上的最大值和最小值.(2)过点(2,6)P -作曲线()y f x =的切线,求此切线的方程.19、(12分)在各项为正的数列{}n a 中,数列的前n 项和n S 满足⎪⎪⎭⎫ ⎝⎛+=n n n a a S 121, ⑴求321,,a a a ;⑵由⑴猜想数列{}n a 的通项公式,并用数学归纳法证明你的猜想20、(12分)已知函数32()f x x ax bx c =+++在23x =-与1x =时都取得极值(1)求,a b 的值与函数()f x 的单调区间(2)若对[1,2]x ∈-,不等式2()f x c <恒成立,求c 的取值范围21、(12分)已知函数32()23 3.f x x x =-+(1)求曲线()y f x =在点2x =处的切线方程; (2)若关于x 的方程()0f x m +=有三个不同的实根,求实数m 的取值范围. 22、(12分)已知函数()2af x x x=+,()ln g x x x =+,其中0a >. (1)若1x =是函数()()()h x f x g x =+的极值点,求实数a 的值;(2)若对任意的[]12,1x x e ∈,(e 为自然对数的底数)都有()1f x ≥()2g x 成立,求实数a 的取值范围.参考答案1、D2、B3、D4、A5、D6、A7、B8、A9、B 10、C 11、B 12、C 13、56 14、 23413S S ++1R (S +S ) 15、1 16、[-1,7)17.解:(1)当01522=--m m ,即3-=m 或5=m 时,复数Z 为实数;(3分)(2)当01522≠--m m ,即3-≠m 且5≠m 时,复数Z 为虚数;(7分) (3)当03-m ,01522=≠--且m m ,即3=m 时,复数Z 为纯虚数;(10分)18.解:(I )'()3(1)(1)f x x x =+-,当[3,1)x ∈--或3(1,]2x ∈时,'()0f x >,3[3,1],[1,]2∴--为函数()f x 的单调增区间当(1,1)x ∈-时,'()0f x <, [1,1]∴-为函数()f x 的单调减区间又因为39(3)18,(1)2,(1)2,()28f f f f -=--==-=-,所以当3x =-时,min ()18f x =- 当1x =-时,max ()2f x = …………6分(II )设切点为3(,3)Q x x x -o o o ,则所求切线方程为32(3)3(1)()y x x x x x --=--o o o o 由于切线过点(2,6)P -,326(3)3(1)(2)x x x x ∴---=--oo o o , 解得0x =o 或3x =o 所以切线方程为3624(2)y x y x =-+=-或即30x y +=或24540x y --= …………12分19 .解:⑴易求得23,12,1321-=-==a a a …………2分 ⑵猜想)(1*N n n n a n ∈--= …………5分 证明:①当1=n 时,1011=-=a ,命题成立②假设k n =时, 1--=k k a k 成立, 则1+=k n 时, )1(21)1(211111kk k k k k k a a a a S S a +-+=-=++++ )111(21)1(2111--+---+=++k k k k a a k k k a a k k -+=++)1(2111, 所以,012121=-+++k k a k a , k k a k -+=∴+11.即1+=k n 时,命题成立. 由①②知,*N n ∈时,1--=n n a n . …………12分20. 解:(1)32'2(),()32f x x ax bx c f x x ax b =+++=++由'2124()0393f a b -=-+=,'(1)320f a b =++=得1,22a b =-=-'2()32(32)(1)f x x x x x =--=+-,函数()f x 的单调区间如下表:所以函数()f x 的递增区间是(,)3-∞-与(1,)+∞,递减区间是2(,1)3-;…………6分(2)321()2,[1,2]2f x x x x c x =--+∈-,当23x =-时,222()327f c -=+ 为极大值,而(2)2f c =+,则(2)2f c =+为最大值,要使2(),[1,2]f x c x <∈-恒成立,则只需要2(2)2c f c >=+,得1,2c c <->或 …………12分21 解:(1)2()66,(2)12,(2)7,f x x x f f ''=-== ………………………2分∴曲线()y f x =在2x =处的切线方程为712(2)y x -=-,即12170x y --=;……4分 (2)记322()233,()666(1)g x x x m g x x x x x '=-++=-=-令()0,0g x x '==或1. …………………………………………………………6分'2m +. ………………………10分由()g x 的简图知,当且仅当(0),(1)0g g >⎧⎨<⎩即30,3220m m m +>⎧-<<-⎨+<⎩时,函数()g x 有三个不同零点,过点A 可作三条不同切线.所以若过点A 可作曲线()y f x =的三条不同切线,m 的范围是(3,2)--.…………12分22. 解:(1)解法1:∵()22ln a h x x x x=++,其定义域为()0 +∞,,∴()2212a h x x x'=-+.∵1x =是函数()h x 的极值点,∴()10h '=,即230a -=.∵0a >,∴a =经检验当a =1x =是函数()h x 的极值点,∴a =解法2:∵()22ln a h x x x x=++,其定义域为()0+∞,,∴()2212a h x x x'=-+.令()0h x '=,即22120a x x-+=,整理,得2220x x a +-=.∵2180a ∆=+>,∴()0h x '=的两个实根114x -=(舍去),214x -=,当x 变化时,()h x ,()h x '的变化情况如下表:依题意,11-=,即23a =,∵0a >,∴a =(2)解:对任意的[]12,1x x e ∈,都有()1f x ≥()2g x 成立等价于对任意的[]12,1x x e ∈,都有()min f x ⎡⎤⎣⎦≥()max g x ⎡⎤⎣⎦.当x ∈[1,e ]时,()110g x x'=+>.∴函数()ln g x x x =+在[]1e ,上是增函数.∴()()max 1g x g e e ==+⎡⎤⎣⎦.∵()()()2221x a x a a f x x x+-'=-=,且[]1,x e ∈,0a >. ①当01a <<且x ∈[1,e ]时,()()()20x a x a f x x +-'=>,∴函数()2a f x x x=+在[1,e ]上是增函数,∴()()2min 11f x f a ==+⎡⎤⎣⎦.由21a +≥1e +,得a,又01a <<,∴a 不合题意.②当1≤a ≤e 时,若1≤x <a ,则()()()2x a x a f x x+-'=<, 若a <x ≤e ,则()()()20x a x a f x x +-'=>. ∴函数()2a f x x x=+在[)1,a 上是减函数,在(]a e ,上是增函数.∴()()min 2f x f a a ==⎡⎤⎣⎦.由2a ≥1e +,得a ≥12e +,又1≤a ≤e ,∴12e +≤a ≤e .③当a e >且x ∈[1,e ]时,()()()2x a x a f x x +-'=<,∴函数()2a f x x x=+在[]1e ,上是减函数.∴()()2min a f x f e e e ==+⎡⎤⎣⎦.由2a e e+≥1e +,得a又a e >,∴a e >.综上所述,a 的取值范围为1,2e +⎡⎫+∞⎪⎢⎣⎭.。
高二数学选修2-2综合检测题含答案
高二数学选修2-2综合检测题一、选择题 1.设复数711z i i=+-,则=||z ( ) A .21B .22 C .23 D .22.函数33y x x =-的单调递减区间是( ) A .(,0)-∞B .(0,)+∞C .(1,1)-D .(,1)(1,)-∞-+∞3.如图,函数221y x x =-++与1y =相交形成一个闭合图形(图中的阴影部分),则该闭合 图形的面积是( ) A .1B .43C . 3D .24.函数()ln f x a x x =+在1x =处取到极值,则a 的值为( ) A .1-B .12-C .0D .125.若函数123+++=mx x x y 是R 上的单调函数,则实数m 的取值范围是( )A .),31(+∞B .]31,(-∞C .),31[+∞D .)31,(-∞6.设,,,a b c n 均是实数,下面使用类比推理,得出正确结论的是( ) A .“若33a b ⋅=⋅,则a b =”类推出“若00a b ⋅=⋅,则a b =” B .“若()a b c ac bc +=+”类推出“()a b c ac bc ⋅=⋅” C . “()nn nab a b =” 类推出“()nnna b a b +=+” D .“若()a b c ac bc +=+” 类推出“a b a bc c c+=+(c ≠0)” 7.当0a >时,函数2()(2)x f x x ax e =-的图象大致是()8.在用数学归纳法证明*111()1(,3)12f n n N n n n n=++⋅⋅⋅+<∈≥+的过程中:假设当 n k =(*,3k N k ∈≥)时,不等式()1f k <成立,则需证当1n k =+时,(1)1f k +<也成立. 若(1)()()f k f k g k +=+,则g (k )=( )A .112122k k +++ B .1112122k k k +-++ C .1122k k -+ D .11222k k -+ 9.对任意x R ∈,函数()f x 的导数存在,若'()()f x f x >,则以下正确的是( )A .(2015)(0)f f >B .(2015)(0)f f <C .2015(2015)(0)f e f >⋅D .2015(2015)(0)f e f <⋅10.已知函数21(),()ln 2xf x eg x x ==+,对,(0,)a R b ∀∈∃∈+∞,使得()()f a g b =,则 b a -的最小值是( )A .11ln 22+B .11ln 22-C.1 D .212e -二、填空题11.计算定积分11)dx ⎰=______________.12.曲线21x y e -=+在点(0,2)处的切线方程为________. 13. 观察下列式子: ,23<2112+,35<3121122++⋯+++,47<4131211222 根据以上式子可以猜想:2222111112342015+++<_________ 14.已知函数()()f x x R ∈满足()21f =,且()f x 的导函数()23f x '>,则关于x 的不等式()2133x f x >-的解集为 .15.已知函数321()232x f x ax bx c =+++(,,)a b c R ∈,函数()f x 的两个极值点分别在区间(0,1)与(1,2)内,则1b a -+的取值范围是_________.三、解答题16.若函数)(x f y =在0x x =处取得极大值或极小值,则称0x 为函数)(x f y =的极值点。
高二数学选修2-2综合测试题(含答案)汇编
高二数学选修2-2综合测试题一、选择题:1、i 是虚数单位。
已知复数413(1)3iZ i i+=++-,则复数Z 对应点落在( ) A .第四象限 B .第三象限 C .第二象限 D .第一象限2、在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,…这些数叫做三角形数,因为这些数对应的点可以排成一个正三角形1 3 6 10 15则第n 个三角形数为( )A .nB .2)1(+n nC .12-nD .2)1(-n n3、求由曲线y =2y x =-+及y 轴所围成的图形的面积错误..的为( )A.40(2x dx -+⎰B.0⎰C.222(2)y y dy ---⎰ D.022(4)y dy --⎰4、设复数z 的共轭复数是z ,且1z =,又(1,0)A -与(0,1)B 为定点,则函数()f z =︱(1)z +()z i -︱取最大值时在复平面上以z ,A,B 三点为顶点的图形是A,等边三角形 B,直角三角形 C,等腰直角三角形 D,等腰三角形 5、函数f(x)的定义域为R ,f(-1)=2,对任意x R ∈,'()2f x >,则()24f x x >+的解集为(A)(-1,1) (B)(-1,+∞) (c)(-∞,-l) (D)(-∞,+∞)6、用数学归纳法证明412135()n n n +++∈N 能被8整除时,当1n k =+时,对于4(1)12(1)135k k +++++可变形为A.41412156325(35)k k k +++++·B.441223355k k ++··C.412135k k +++D.412125(35)k k +++7、设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且(3)0g -=,则不等式f (x )g (x )<0的解集是( ) A. (-3,0)∪(3,+∞) B. (-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D. (-∞,-3)∪(0,3)8、已知函数2()f x x bx =+的图象在点(1,(1))A f 处的切线的斜率为3,数列⎭⎬⎫⎩⎨⎧)(1n f的前n 项和为n S ,则2011S 的值为( )20122011.20112010.20102009.20092008.D C B A9、设函数f(x)=kx 3+3(k -1)x 22k -+1在区间(0,4)上是减函数,则k 的取值范围是 ( )A.13k <B.103k <≤C.103k ≤≤D.13k ≤10、函数()y f x =在定义域3(,3)2-内可导,其图象如图所示,记()y f x =的导函数为()y f x '=,则不等式()0f x '≤的解集为 ( )A .[)1,12,33⎡⎤-⎢⎥⎣⎦B .[]481,2,33⎡⎤-⎢⎥⎣⎦C .[]31,1,222⎡⎤-⎢⎥⎣⎦D .3148,1,,32233⎛⎤⎡⎤⎡⎫-- ⎪⎥⎢⎥⎢⎝⎦⎣⎦⎣⎭11、 已知函数)(131)(23R b a bx ax x x f ∈+-+=、在区间[-1,3]上是减函数,则b a +的最小值是 A.32B. 23C.2D. 312、函数32()393,f x x x x =--+若函数()()[2,5]g x f x m x =-∈-在上有3个零点,则m 的取值范围为( ) A .(-24,8)B .(-24,1]C .[1,8]D .[1,8)第Ⅱ卷二、填空题:13、 直线l 过点(1,3)-,且与曲线12y x =-在点(1,1)-处的切线相互垂直,,则直线l 的方程为 ;14、如图,在平面直角坐标系xoy 中,设三角形ABC 的顶点分别为)0,(),0,(),,0(c C b B a A ,点(0,)P p 在线段AO 上的一点(异于端点),这里p c b a ,,,均为非零实数,设直线CP BP ,分别与边ABAC ,交于点F E ,,某同学已正确求得直线OE 的方程为01111=⎪⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-y a p x c b ,请你完成直线OF 的方程: ( ▲ )。
重庆市潼南柏梓中学2014-2015高中数学 综合检测试题 新人教版必修4
重庆市潼南柏梓中学2014-2015高中数学 综合检测试题 新人教版必修4一、选择题(每题5分,共50分)1.已知角α的终边过点(,3)P x -且3cos 2α=-,则x 的值为( )A .33±B .33C .33-D .33-2.已知向量()()1,1,2,2a m b m =+=+,若()()a b a b +⊥-,则=m ( )A .4-B .3-C .2-D .-13.已知向量122a e e =-,122b e e =+,121322c e e =-,1e 与2e 不共线,则不能构成基底的一组向量是是( ) A .a 与bB .a 与cC .a b -与cD .a b +与c4.已知25cos 5β=-,则44sin cos ββ-的值为( )A .15-B .35-C .15D .355.若5sin()3πα+=且(,0)2πα∈-,则cos()πα-=( )A .23-B .53-C .23D .23±6.化简22sin(2)cos(2)63cos sin x x x xππ-+--的结果是 ( ) A .1- B .1 C .12 D .12-7.函数2sin cos 3cos 3y x x x =+-的一个对称中心是( )A .23(,)32π-B .23(,)32πC .53(,)62π D .53(,)62π-8.已知4cos(),(,0)352ππαα+=∈-,则2tan(2)3πα+= ( ) A.247-B .247C .247±D .24259.如图,在ABC ∆中,点E 为AB 边的点且EB AE 23=,点F 在AC 边上,且FA CF 3=,BF 交CE于点M 且AM AE AF λμ=+,则(,)λμ为( )A .52(,)63B .12(,)33C .25(,)33D .65(,)7710.两个向量22(2,cos )a λλα=+-和)sin 2,(α+=m m b ,其中αλ,,m 为实数,2a b =,则mλ的取值范围是( )A .[4,8]B .(,1]-∞C .[1,6]-D .[6,1]- 二、填空题(每题5分,共25分) 11.若1a =,2b =,()0a b a -=,则()a b b +⋅=12.已知坐标平面内的两个向量)3,32(),3,sin 4(==b a α,且b a //,则钝角α= 13.若cos 222sin()4απα=--,则cos sin αα+= 14.若函数x b x a x f cos sin )(-=在3π=x 处有最小值2-,则=-b a 215.已知(cos ,sin )a αα=,(cos ,sin )b ββ=,其中02αβπ≤<≤,设a 与b 的夹角为θ: ①2||3(,]3a b πθπ->⇔∈ ; ②若||3||,(0)ma b a mb m +=-<,则a b ⋅的最小值为12; ③若a c b +,且b c a +(0c ≠),则0a b c ++=; ④若6παβ+=,记()2f a b α=⋅,则将()f α的图象保持纵坐标不变,横坐标向左平移6π单位后得到的函数是偶函数;⑤已知OA a =,OB b =,23πθ=C 在以O 为圆心的圆弧AB 上运动,且满足OC xOA yOB =+,(,x y R ∈),则[1,2]x y +∈;上述命题正确的有 。
高二理科数学选修2-2综合试题(三)(含答案)
高二理科数学选修2—2综合检测题(三)一、选择题1.若c bx ax x f ++=24)(满足2)1(='f ,则=-')1(f ( ) A .4- B .2- C .2 D .42.已知曲线2212-=x y 上一点)23,1(-P ,则过点P 的切线的倾斜角为( )A .300B .450C .1350D .1650 3.函数23)(23+-=x x x f 在区间][1,1-上的最大值是( )A .2-B . 0C . 2D .44.复数z 满足i z i 34)43(+=-,则z 的虚部位( )A .i 4B .4C .i 54D .545.函数x x x y sin cos -=的导数为( )A .x x sinB .x x sin -C .x x cosD .x x cos -6.三角形的面积为S =12(a +b +c )r ,a 、b 、c 为三角形的边长,r 为三角形内切圆的半径,利用类比推理可以得出四面体的体积为( )A .V =13abcB .V =13ShC .V =13(S 1+S 2+S 3+S 4)r ,(S 1、S 2、S 3、S 4为四个面的面积,r 为内切球的半径)D .V =13(ab +bc +ac )h ,(h 为四面体的高)7.函数()x x x f ln 22-=的递增区间是( )A.)21,0( B. ),21(),21,0(+∞ C. ),21(+∞ D.)21,0(),21,(-∞8.下列推理中属于归纳推理且结论正确的是( )A .由()()()222123112,212,312,+>+>+>…,推断:对一切n ∈N *,()212n n +> B .由()cos f x x x =满足()()f x f x -=-对∀x ∈R 都成立,推断:()cos f x x x =为奇函数C .由圆222x y r +=的面积2S r π=,推断:椭圆22221(0)x y a b a b+=>>的面积S ab π=D .设数列{}n a 的前n 项和为n S .由21n a n =-,求出2221231,2,3,S S S ===,…,推断:2n S n =9.已知函数f (x )=1ln (x +1)-x,则y =f (x )的图象大致为( )10.已知复数ii a z 2)1(++=(,a R i ∈为虚数单位)为实数,则0)a x dx ⎰的值为( )A .π+2B .22π+C .π24+D .π44+11.若函数1)(23+-=ax x x f 在)2,0(上单调递减,则实数a 的取值范围为( )A .3≥aB .3=aC .3≤aD .30<<a 12.若函数c bx ax x x f +++=23)(有极值点21,x x ,且11)(x x f =,若关于x 的方程[]0)(2)(32=++b x af x f 的不同实数根的个数是( )A .3B .4C .5D .6 二、填空题(共5个小题,25分) 13.已知函数1)2(33)(23++++=x a ax x x f 既有极大值又有极小值,则实数a 的取值范围是14.已知函数()f x 的导函数为()f x ',且满足关系式()()332ln f x xf x '=-,则()2f '的值等 于 15.函数2x y =)0(x >的图像在点2,(kk a a )处的切线与x 轴的交点的横坐标为1+k a (*∈N k )若161=a ,则321a a a ++=16.设函数f (x ) = xx +2 (x >0)观察:f 1(x )= f (x ) =xx +2, f 2(x ) =f ( f 1(x )) = x3x +4 , f 3(x ) =f ( f 2(x )) = x7x +8, f 4(x ) =f ( f 3(x )) =x15x +16,……根据以上事实,由归纳推理可得:当n ∈N *且n ≥2时,f n (x ) = f ( f n -1(x )) =___________________________ 三、解答题:(共6个小题,75分)17.已知复数)()32()1(2R m i m m m m z ∈-++-= (1)若z 是实数,求m 的值;(2)若z 是纯虚数,求m 的值;(3)若在复平面C 内,z 所对应的点在第四象限,求m 的取值范围。
2014-2015学年高二下学期数学选修2-2综合 Word版含答案
2014-2015学年下期选修2-2综合试题一、选择题:(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 复数212ii+-的共轭复数是( ). A .35i - B .35i C .i - D .i2. 在用反证法证明命题“已知(),,0,2a b c ∈,求证()2a b -,()2b c -,()2c a -不可能都大于1”时,反证时假设正确的是( )A .假设()2a b -,()2b c -,()2c a -都小于1B .假设()2a b -,()2b c -,()2c a -都大于1C .假设()2a b -,()2b c -,()2c a -都不大于1D .以上都不对3.如图,由函数()xf x e e =-的图象,直线2x =及x 轴所围成的阴影部分面积等于( )A .22e e - B .221e e -+ C .22e e - D .221e e --4.函数()()3x f x x e =-的单调递增区间是( )A .(),2-∞B .()0,3C .()1,4D .()2,+∞5. 观察()2'2x x =,()43'4x x =,()cos 'sin x x =-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()g x 为()f x 的导函数,则()g x -等于( )A .()f xB .()f x -C .()g xD .()g x -6. 某外商计划在4个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有( )A .16种B .36种C .42种D .60种7. 定义域R 的奇函数()f x ,当(),0x ∈-∞时()()'0f x xf x +<恒成立,若()33a f =,()1b f =,()22c f =--,则( )A .a c b >>B .c b a >>C .c a b >>D .a b c >>8. 给出下面类比推理命题(其中Q 为有理数集,R 为实数集,C 为复数集):①“若a ,b R ∈,则0a b -=⇒a b =”类比推出“若a ,b C ∈,则0a b -=⇒a b =”;②“若a ,b ,c ,d R ∈,则复数a bi c di +=+⇒a c =,b d =”类比推出“若a ,b ,c ,d Q ∈,则a c +=+⇒a c =,b d =”;③“若a ,b R ∈,则0a b ->⇒a b >”类比推出“若a ,b C ∈,则0a b ->⇒a b >”.其中类比结论正确的个数是( ) A .0 B .1 C .2 D .39.如图,由若干圆点组成如三角形的图形,每条边(包括两个端点)有n (1n >,n N ∈)个点,每个图形总的点数记为n a344520142015999a a a a a a ++++= ( )“1234513x x x x x ≤++++≤”的元素个数为( )A .130B .120C .90D . 60 二、填空题:(本大题共5小题,每小题4分,共20分,把答案填在答题卡的相应位置)11. 如果复数()()21m i mi ++(其中i 是虚数单位)是实数,则实数m =________.12. ()120xe x dx +=⎰________.13. 用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有____________个.(用数字作答) 14. 观察下列等式11= 2349++= 3456725++++= 4567891049++++++=…照此规律,第n 个等式为_________________________________________________.15. 下列四个命题中正确的有_______(填上所有正确命题的序号)①若实数a ,b ,c 满足3a b c ++=,则a ,b ,c 中至少有一个不小于1; ②若z 为复数,且1z =,则z i -的最大值等于2。
高中数学选修2-2综合测试题(全册含答案)
高中数学选修2-2综合测试题(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分) 1.设z =10i3+i,则z 的共轭复数为( ) A .-1+3i B .-1-3i C .1+3iD .1-3i2.若函数f (x )=e x cos x ,则此函数的图象在点(1,f (1))处的切线的倾斜角为( ) A .0 B .锐角 C.π2D .钝角3.用反证法证明命题“若函数f (x )=x 2+px +q ,那么|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12”时,反设正确的是( )A .假设|f (1)|,|f (2)|,|f (3)|都不小于12B .假设|f (1)|,|f (2)|,|f (3)|都小于12C .假设|f (1)|,|f (2)|,|f (3)|至多有两个小于12D .假设|f (1)|,|f (2)|,|f (3)|至多有一个小于124.设a =⎠⎛01x -13d x ,b =1-⎠⎛01x 12d x ,c =⎠⎛01x 3d x ,则a ,b ,c 的大小关系( )A .a >b >cB .b >a >cC .a >c >bD .b >c >a5.由①y =2x +5是一次函数;②y =2x +5的图象是一条直线;③一次函数的图象是一条直线.写一个“三段论”形式的正确推理,则作为大前提、小前提和结论的分别是( )A .②①③B .③①②C .①②③D .②③①6.如图,我们知道,圆环也可以看作线段AB 绕圆心O 旋转一周所形成的平面图形,又圆环的面积S =π(R 2-r 2)=(R -r)×2π×R +r2,所以,圆环的面积等于以线段AB =R -r为宽,以AB 中点绕圆心O 旋转一周所形成的圆的周长2π×R +r2为长的矩形面积.请你将上述想法拓展到空间,并解决下列问题:若将平面区域M ={}(x ,y )|(x -d )2+y 2≤r 2(其中0<r<d)绕y 轴旋转一周,则所形成的旋转体的体积是( )A .2πr 2dB .2π2r 2dC .2πrd 2D .2π2rd 27.观察下列各式:55=3 125,56=15 625,57=78 125,…,则52 015的末四位数字为( ) A .3 125 B .5 625 C .0 625D .8 1258.下面给出了关于复数的四种类比推理:①复数的加减法运算,可以类比多项式的加减法运算法则;②由向量a 的性质|a |2=a 2,可以类比得到复数z 的性质:|z |2=z 2;③方程ax 2+bx +c =0,(a ,b ,c ∈R ,且a ≠0)有两个不同的实数根的条件是b 2-4ac >0,类比可得方程ax 2+bx +c =0,(a ,b ,c ∈C 且a ≠0)有两个不同的复数根的条件是b 2-4ac >0;④由向量加法的几何意义,可以类比得到复数加法的几何意义.其中类比得到的结论正确的是( ) A .①③ B .②④ C .②③D .①④9.设x >0,y >0,A =x +y 1+x +y ,B =x 1+x +y1+y,则A 与B 的大小关系为( )A .A >B B .A ≥BC .A <BD .A ≤B10.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图象可能是( )二、填空题(本大题共4小题,每小题5分,共20分) 11.若复数z 满足z +i =3+ii,则|z |=________.12.直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b 的值为________. 13.我们把1,4,9,16,25,…这些数称作正方形数,这是因为这些数目的点可以排成一个正方形,如下图所示:第n 个正方形数是________.14.若O 为△ABC 内部任意一点,连接AO 并延长交对边于A ′,则AO AA ′=S 四边形ABOCS △ABC,同理连接BO ,CO 并延长,分别交对边于B ′,C ′,这样可以推出AO AA ′+BO BB ′+COCC ′=________;类似地,若O 为四面体ABCD 内部任意一点,连接AO ,BO ,CO ,DO 并延长,分别交相对的面于A ′,B ′,C ′,D ′,则AO AA ′+BO BB ′+CO CC ′+DODD ′=________.三、解答题(本大题共4小题,共50分.解答时应写出文字说明、证明过程或运算步骤) 15.(本小题满分12分)已知F (x )=1x-t (t -4)d t ,x ∈(-1,+∞).(1)求F (x )的单调区间; (2)求函数F (x )在[1,5]上的最值.16.(本小题满分12分)在△ABC 中,AB ⊥AC ,AD ⊥BC 于D ,求证:1AD 2=1AB 2+1AC 2.在四面体A -BCD 中,类比上述结论,你能得到怎样的猜想,并说明理由.17.(本小题满分12分)已知函数f (x )=x 3+ax 2-3x (a ∈R ). (1)若函数f (x )在区间[1,+∞)上是增函数,求实数a 的取值范围;(2)若x =13是函数f (x )的极值点,是否存在实数b ,使得函数g (x )=bx 的图象与函数f (x )的图象恰有3个交点?若存在,请求出b 的取值范围;若不存在,试说明理由.18.(本小题满分14分)已知数列{a n }满足a 1=a ,a n +1=12-a n. (1)求a 2,a 3,a 4;(2)猜想数列{a n }的通项公式,并用数学归纳法证明.高中数学选修2-2综合测试题参考答案1.选D ∵z =10i3+i =10i (3-i )(3+i )(3-i )=1+3i ,∴z =1-3i.2.选D f ′(x )=e x ·cos x +e x ·(-sin x )=e x (cos x -sin x ).当x =1时,cos x -sin x <0,故f ′(1)<0,所以倾斜角为钝角.3.选B “|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12”的反设为“|f (1)|,|f (2)|,|f (3)|都小于12”. 4.解析:选A 由题意可得a =⎠⎛01x -13d x =x 113-+-13+110=32x 2310=32;b =1-⎠⎛01x 12d x =1-x 323210=1-⎝⎛⎭⎫23-0=13;c =⎠⎛01x 3d x =x 4410=14.综上,a >b >c .5.选B 该三段论应为:一次函数的图象是一条直线(大前提),y =2x +5是一次函数(小前提),y =2x +5的图象是一条直线(结论).6.选B 平面区域M 的面积为πr 2,由类比知识可知:平面区域M 绕y 轴旋转一周得到的旋转体类似于为实心的车轮内胎,旋转体的体积等于以圆(面积为πr 2)为底,以O 为圆心、d 为半径的圆的周长2πd 为高的圆柱的体积,所以旋转体的体积V =πr 2×2πd =2π2r 2d .7.选D ∵55=3 125,56=15 625,57=8 125, 58=390 625,59=1 953 125,510=9 765 625,…∴5n (n ∈Z ,且n ≥5)的末四位数字呈周期性变化,且最小正周期为4,记5n (n ∈Z ,且n ≥5)的末四位数字为f (n ),则f (2 015)=f (502× 4+7)=f (7).∴52 015与57的末四位数字相同,均为8 125.8.选D ②中|z |2∈R ,但z 2不一定是实数.③中复数集不能比较大小,不能用b 2-4ac 来确定根的个数.9.选Cx 1+x +y 1+y >x 1+x +y +y1+x +y =x +y 1+x +y.10.选C 由函数f (x )在x =-2处取得极小值可知x <-2,f ′(x )<0,则xf ′(x )>0;x >-2,f ′(x )>0,则-2<x <0时,xf ′(x )<0,x >0时,xf ′(x )>0.11.解析:∵z =3+i i -i =(3+i )(-i )-i 2-i =-i 2-3i -i =1-4i ,∴z =1+4i.∴|z |=12+42=17.答案:1712.解析:∵直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),y =x 3+ax +b 的导数y ′=3x 2+a .∴⎩⎪⎨⎪⎧3=k ×1+13=13+a ×1+b , k =3×12+a ,解得a =-1,b =3,∴2a +b =1. 答案:113.解析:观察前5个正方形数,正好是序号的平方,所以第n 个正方形数应为n 2. 答案:n 214.解析:根据面积公式,在△ABC 中, AO AA ′=AA ′-OA ′AA ′=1-OA ′AA ′ =1-S △OBC S △ABC =S 四边形ABOC S △ABC ,所以AO AA ′+BO BB ′+CO CC ′=3-S △OBC +S △OAC +S △OABS △ABC=3-S △ABCS △ABC=2.根据体积分割方法,同理可得在四面体ABCD 中, AO AA ′+BO BB ′+CO CC ′+DODD ′=4-V O -ABD +V O -ACD +V O -ABC +V O -BCDV A -BCD=4-V A -BCDV A -BCD =3.答案:2 3 15.解:F(x )=1x⎰- (t 2-4t )d t =⎝⎛⎭⎫13t 3-2t 21x -=13x 3-2x 2-⎝⎛⎭⎫-13-2 =13x 3-2x 2+73(x >-1). (1)F ′(x )=x 2-4x ,由F ′(x )>0,即x 2-4x >0,得-1<x <0或x >4; 由F ′(x )<0,即x 2-4x <0,得0<x <4, ∴F (x )的单调递增区间为(-1,0)和(4,+∞), 单调递减区间为(0,4).(2)由(1)知F(x )在[1,4]上递减,在[4,5]上递增,∵F (1)=13-2+73=23,F (4)=13×43-2×42+73=-253,F (5)=13×53-2×52+73=-6,∴F (x )在[1,5]上的最大值为23,最小值为-253.16. 证明:如图所示,由射影定理AD 2=BD ·DC ,AB 2=BD ·BC ,AC 2=BC ·DC ,∴1AD 2=1BD ·DC=BC 2BD ·BC ·DC ·BC =BC 2AB 2·AC 2. 又BC 2=AB 2+AC 2, ∴1AD 2=AB 2+AC 2AB 2·AC 2=1AB 2+1AC2.所以1AD 2=1AB 2+1AC2.猜想:类比AB ⊥AC ,AD ⊥BC 猜想四面体A -BCD 中,AB ,AC ,AD 两两垂直,AE ⊥平面BCD ,则1AE 2=1AB 2+1AC 2+1AD2.如图,连接BE 并延长交CD 于F ,连接AF .∵AB ⊥AC ,AB ⊥AD ,∴AB ⊥平面ACD .而AF ⊂平面ACD ,∴AB ⊥AF . 在Rt △ABF 中,AE ⊥BF , ∴1AE 2=1AB 2+1AF2. 在Rt △ACD 中,AF ⊥CD ,∴1AF 2=1AC 2+1AD 2.∴1AE 2=1AB 2+1AC 2+1AD2,故猜想正确. 17.解:(1)f ′(x )=3x 2+2ax -3, ∵f (x )在[1,+∞)上是增函数, ∴在[1,+∞)上恒有f ′(x )≥0, ∴-a3≤1,且f ′(1)=2a ≥0.∴a ≥0.故实数a 的取值范围为[0,+∞). (2)由题意知f ′⎝⎛⎭⎫13=0,即13+2a3-3=0, ∴a =4.∴f (x )=x 3+4x 2-3x .若函数g (x )=bx 的图象与函数f (x )的图象恰有3个交点,即方程x 3+4x 2-3x =bx 恰有3个不等实根.∵x =0是其中一个根,∴方程x 2+4x -(3+b )=0有两个非零不等实根.∴⎩⎪⎨⎪⎧Δ=16+4(3+b )>0,-(3+b )≠0.∴b >-7,且b ≠-3.∴满足条件的b 存在,其取值范围是(-7,-3)∪(-3,+∞). 18.解:(1)由a n +1=12-a n 可得a 2=12-a 1=12-a ,a 3=12-a 2=12-12-a =2-a3-2a,a 4=12-a 3=12-2-a 3-2a=3-2a 4-3a . (2)推测a n =(n -1)-(n -2)an -(n -1)a.下面用数学归纳法证明:①当n =1时,左边=a 1=a , 右边=(1-1)-(1-2)a 1-(1-1)a=a ,结论成立.②假设n =k 时等式成立,有a k =(k -1)-(k -2)ak -(k -1)a ,则当n =k +1时, a k +1=12-a k=12-(k -1)-(k -2)a k -(k -1)a=k -(k -1)a2[k -(k -1)a ]-[(k -1)-(k -2)a ]=k -(k -1)a(k +1)-ka.故当n =k +1时,结论也成立. 由①②可知,对任何n ∈N *都有a n =(n -1)-(n -2)a n -(n -1)a.。
重庆柏梓中学高二数学理联考试卷含解析
重庆柏梓中学高二数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 曲线y=x3在点(1,1)处的切线与x轴、直线x=2所围成的三角形的面积为()A. B. C. D.参考答案:A【考点】利用导数研究曲线上某点切线方程.【分析】欲求所围成的三角形的面积,先求出在点(1,1)处的切线方程,只须求出其斜率的值即可,故要利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:∵y=x3,∴y′=3x2,当x=1时,y′=3得切线的斜率为3,所以k=3;所以曲线在点(1,1)处的切线方程为:y﹣1=3(x﹣1),即3x﹣y﹣2=0.令y=0得:x=,∴切线与x轴、直线x=2所围成的三角形的面积为:S=×(2﹣)×4=.故选A.2. 直线mx+ny+3=0在y轴上的截距为-3,而且它的倾斜角是直线倾斜角的2倍,则( )A.m=-,n=1 B.m=-,n=-3C.m=,n=-3 D.m=,n=1参考答案:D略3. 记满足下列条件的函数的集合为,当时,,又令,则与的关系是()A.B.C.D.不能确定参考答案:B4. 若函数的值域是,则函数的值域是()A. B. C. D.参考答案:B【分析】先换元,转化为对勾函数的值域,利用基本不等式即可求解。
【详解】令,,则求函数值域等价于的值域,由于,当且仅当时取等号,所以最小值为2;由于为对勾函数,根据对勾函数的性质可知,当时,,所以函数的值域是,故答案选B【点睛】本题考查函数的值域的求法,基本不等式的应用,属于中档题。
5. 若等差数列{}的前三项和且,则等于()A.3 B.4 C.5 D.6参考答案:A略6. 直线平面,,则与的关系为()A.,且与相交 B.,且与不相交C. D.与不一定垂直参考答案:C略7. 平面上两定点、的距离为4,动点满足,则的最小值是()A.B.C.D.5参考答案:C略8. 已知函数上任一点处的切线斜率,则该函数的单调递减区间为()A. B. B. D.参考答案:B9. 在某市创建全国文明城市工作验收时,国家文明委有关部门对某校高二年级6名学生进行了问卷调查,6人得分情况如下:5,6,7,8,9,10.把这6名学生的得分看成一个总体.如果用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本,则该样本平均数与总体平均数之差的绝对值不超过0.5的概率为()参考答案:C略10. 若集合,,则= ( )A B C D参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11. 复数的共轭复数是.参考答案:【考点】A5:复数代数形式的乘除运算;A2:复数的基本概念.【分析】两个复数相除,分子和分母同时乘以分母的共轭复数,运算求得结果.【解答】解:复数==,故其共轭复数为,故答案为:.12. 过两平行平面α、β外的点P两条直线AB与CD,它们分别交α于A、C两点,交β于B、D两点,若PA=6,AC=9,PB=8,则BD的长为_______.参考答案:12略13. 二维空间中圆的一维测度(周长),二维测度(面积),观察发现;三维空间中球的二维测度(表面积),三维测度(体积),观察发现.已知四维空间中“超球”的三维测度,猜想其四维测度________.参考答案:14. 直线y=kx-2与抛物线交于A 、B 两点,且AB 的中点横坐标为2,则k的值是.参考答案:215. 如果执行下面的程序框图,那么输出的S 等于_____________.参考答案:3 略16. 若,已知,,则参考答案:略17. 已知函数,且现给出如下结论:①;②;③;④,其中正确的序号为________________.参考答案:②③略三、 解答题:本大题共5小题,共72分。
2014—2015学年高二下期数学(理)选修2-2、2-3综合试题Word版含答案
2014~2015学年度下学期期中考试高二数学试卷(理)一、选择题(共12题,每小题5分,计60分)1.设4)(+=ax x f ,若2)1('=f ,则a 为 ( ) A .2 B .2- C .3 D .3-2.已知复数12,3iz i i+=-是虚数单位,则复数z 的虚部是 ( ) A .110i B .110 C .710i D .7103.曲线x x y 43-=在点)3,1(-处的切线倾斜角为 ( )A .43πB .4πC .32π D .65π4.二项式)()12(4N n xx n ∈+的展开式中,前三项的系数依次成等差数列,则此展开式有理项的项数是( )A .1B .2C .3D .45.下列函数中,在),0(+∞上为增函数的是 ( )A .x y 2sin =B .x xe y =C .x x y -=3D .)1ln(++-=x x y6.某单位有15名成员,其中男性10人,女性5人,现需要从中选出6名成员组成考察团外出参观学习,如果按性别分层,并在各层按比例随机抽样,则此考察团的组成方法种数是( ) A .33105C CB .25410AAC .515CD . 42105C C7.设)(212111)(+∈+⋅⋅⋅++++=N n n n n n f ,那么)()1(n f n f -+等于 ( ) A .121+n B .221+n C .++121n 221+n D .221121+-+n n8.设函数⎪⎩⎪⎨⎧-=241)(x x f )23()3(≤<≤x x ,则⎰-21)(dx x f 的值为( )A.3π+ B.2π+ C.6π+ D .132π++9.甲乙丙3位志愿者被安排在周一至周五的5天中参加某项志愿活动,要求每人参加一天且每天至多安排一人,并要求甲安排另外2位的前面,则不同的安排方法共有 ( )A .30种B .40种C .20种D .50种10.设曲线21y x =+在点))(,(x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图像可以为( )11.定义在R 上的函数()y f x =,满足1212(4)(),(2)()0f x f x x f x x x x x '-=-<<+若且>4,则有 ( ) A .12()()f x f x < B .12()()f x f x > C .12()()f x f x = D .不确定12.若函数)(x f 的导数是)1()(+-='x x x f ,则函数)0)(1()(<-=a ax f x g 的单调减区间是 ( ) A .)0,1(a B .),0()1,(+∞⋃-∞a C .)1,2(a a D .),1()2,(+∞⋃-∞aa 二、填空题(共4小题,每题5分,计20分)13.将由直线2x y =与直线1=x 以及x 轴围成的封闭图形绕x 轴旋转一周形成的几何体的体积为 . 14.公共汽车上有4位乘客,其中任意两人都不在同一车站下车,汽车沿途停靠6个车站,那这4位乘客不同的下车方式共有 种. 15===,若=(,a b 均为实数),请推测a =____,b =____。
2014-1015学年高二数学选修2-2综合试题含答案
2014—2015学年高二数学选修2-2综合试题一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.⎰=+10)2(dx x e xA .1B .1-eC .eD .1+e2.复数i i4321-+的虚部为A .51-B .5i-C .52i D .52 3.下面是一段“三段论”推理过程:若函数()f x 在(,)a b 内可导且单调递增,则在(,)a b 内,()0f x '>恒成立.因为3()f x x =在(1,1)-内可导且单调递增,所以在(1,1)-内,2()30f x x '=>恒成立.以上推理中 A .大前提错误 B .小前提错误 C .结论正确 D .推理形式错误4.函数f (x )=x 3-3x -1,x ∈[-3,2]. 则f (x )的最大值与最小值的差为A .20B .18C .4D .05.用数学归纳法证明“1+a +a 2+…+an +1=aa n --+112 (a ≠1,n ∈N *)”,在验证n =1时,左端计算所得的结果是 A .1 B .1+a C .1+a +a 2 D .1+a +a 2+a 3 6.用反证法证明某命题时,对结论:“自然数a ,b ,c 中恰有一个偶数”正确的反设为A .a ,b ,c 中至少有两个偶数B .a ,b ,c 中至少有两个偶数或都是奇数C .a ,b ,c 都是奇数D .a ,b ,c 都是偶数7.已知f (x )=sin x +cos x ,且1()'()f x f x =,1()'()n n f x f x +=*()n N ∈,则f 2015(x )=A .-sin x -cos xB .cos x -sin xC . sin x -cos xD .sin x +cos x 8.已知复数ii a z 2)1(++=(,a R i ∈为虚数单位)为实数,则0)a x dx ⎰的值为 A .π+2B .22π+C .π24+D .π44+9.从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性10.在弹性限度内,弹簧所受的压缩力F 与缩短的距离l 按 胡克定律F kl =计算.今有一弹簧原长80cm ,每压缩1cm 需0.049N 的压缩力,若把这根弹簧从70cm 压缩至50cm (在弹性限度内),外力克服弹簧的弹力做了( )功(单位:J ) A .0.196 B .0.294 C .0.686D .0.9811.已知函数f (x )的定义域为[-1,5],部分对应值如下表,f (x )的导函数y =()f x '的图象如右图所示。
高二理科数学选修综合测试题题定稿版
高二理科数学选修综合测试题题HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】高二理科数学(选修2-2、2-3)综合测试题班级___________ 姓名__________________ 得分___________一、选择题(本大题共12小题,每小题5分,共60分.)1.复数ii4321-+的共轭复数为( )A. i 5251+- , B.i 5251--, C. i 5251+ D.i 5251- 2.在100件产品中,有3件是次品,现从中任意抽取5件,其中至少有2件次品的取法种数为( )A .23397C C B.2332397397C C +C C C.514100397C -C C D.5510097C -C 3.5个人排成一排,其中甲与乙不相邻,而丙与丁必须相邻,则不同的排法种数为( )A.72B.48C.24D.604.若0()2f x '=,则0lim→k 00()()2f x k f x k+-=( ) A .2 B.1 C. 12D. 无法确定5.101x x ⎛⎫+ ⎪⎝⎭展开式中的常数项为( )(A )第5项 (B )第6项 (C )第5项或第6项 (D )不存在 6.袋中有5个红球,3个白球,不放回地抽取2次,每次抽1个.已知第一次抽出的是红球,则第2次抽出的是白球的概率为( )(A )37 (B )38(C )47 (D )127.曲线3sin (0)2y x x π=≤≤与两坐标轴所围成图形的面积为( )A . 1B . 2C . 52D. 38. 4名学生被中大、华工、华师录取,若每所大学至少要录取1名,则不同的录取方法共有( ) A .72种 B .24种 C .36种 9.两个实习生每人加工一个零件.加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( )(A )12 (B)512 (C)14(D)1610.已知随机量X 服从正态分布N (3,1),且P (2≤X ≤4)=0.6826,则P(X >4)= ( )。
高中数学选修2-2综合测试题(附答案).
高二数学选修2-2综合测试题一、选择题:1、i 是虚数单位。
已知复数413(1)3iZ i i+=++-,则复数Z 对应点落在( ) A .第四象限 B .第三象限 C .第二象限 D .第一象限 2、在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,…这些数叫做三角形数,因为这些数对应的点可以排成一个正三角形1 3 6 10 15则第n 个三角形数为( ) A .n B .2)1(+n n C .12-n D .2)1(-n n 3、求由曲线y =2y x =-+及y 轴所围成的图形的面积错误..的为( )A.4(2x dx -+⎰B.0⎰C.222(2)y y dy ---⎰ D.022(4)y dy --⎰4、设复数z 的共轭复数是z ,且1z =,又(1,0)A -与(0,1)B 为定点,则函数()f z =(1)z +()z i -︱取最大值时在复平面上以z ,A,B 三点为顶点的图形是A,等边三角形 B,直角三角形 C,等腰直角三角形 D,等腰三角形5、函数f(x)的定义域为R ,f(-1)=2,对任意x R ∈,'()2f x >,则()24f x x >+的解集为(A)(-1,1) (B)(-1,+∞) (c)(-∞,-l) (D)(-∞,+∞)6、用数学归纳法证明412135()n n n +++∈N 能被8整除时,当1n k =+时,对于4(1)12(1)135k k +++++可变形为A.41412156325(35)k k k +++++·B.441223355k k ++··C.412135k k +++D.412125(35)k k +++ 7、设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且(3)0g -=,则不等式f (x )g (x )<0的解集是( ) A. (-3,0)∪(3,+∞) B. (-3,0)∪(0,3) C.(-∞,-3)∪(3,+∞) D. (-∞,-3)∪(0,3)8、已知函数2()f x x bx =+的图象在点(1,(1))A f 处的切线的斜率为3,数列⎭⎬⎫⎩⎨⎧)(1n f的前n 项和为n S ,则2011S 的值为( )20122011.20112010.20102009.20092008.D C B A9、设函数f(x)=kx 3+3(k -1)x 22k -+1在区间(0,4)上是减函数,则k 的取值范围是( )A.13k <B.103k <≤C.103k ≤≤D.13k ≤ 10、函数()y f x =在定义域3(,3)2-内可导,其图象如图所示,记()y f x =的导函数为()y f x '=,则不等式()0f x '≤的解集为 ( )A .[)1,12,33⎡⎤-⎢⎥⎣⎦ B .[]481,2,33⎡⎤-⎢⎥⎣⎦C .[]31,1,222⎡⎤-⎢⎥⎣⎦D .3148,1,,32233⎛⎤⎡⎤⎡⎫-- ⎪⎥⎢⎥⎢⎝⎦⎣⎦⎣⎭11、 已知函数)(131)(23R b a bx ax x x f ∈+-+=、在区间[-1,3]上是减函数,则b a +的最小值是A.32B.23C.2D. 312、函数32()393,f x x x x =--+若函数()()[2,5]g x f x m x =-∈-在上有3个零点,则m的取值范围为( )A .(-24,8)B .(-24,1]C .[1,8]D .[1,8) 高二数学选修2-2综合测试题(答题卡)一、选择题(60分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二理科数学选修2—2综合检测题(三)一、选择题1.复平面内,复数2)2(i -对应点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.已知曲线2212-=x y 上一点)23,1(-P ,则过点P 的切线的倾斜角为( )A .300B .450C .135D .1653.函数23)(23+-=x x x f 在区间][1,1-上的最大值是( )A .2-B . 0C . 2D .44.复数z 满足i z i 34)43(+=-,则z 的虚部位( )A .i 4B .4C .i 54D .545.函数x x x y sin cos -=的导数为( )A .x x sinB .x x sin -C .x x cosD .x x cos -6.三角形的面积为S =12(a +b +c )r ,a 、b 、c 为三角形的边长,r 为三角形内切圆的半径,利用类比推理可以得出四面体的体积为( )A .V =13abcB .V =13ShC .V =13(S 1+S 2+S 3+S 4)r ,(S 1、S 2、S 3、S 4为四个面的面积,r 为内切球的半径)D .V =13(ab +bc +ac )h ,(h 为四面体的高)7.函数()x x x f ln 22-=的递增区间是( )A.)21,0( B. ),21(),21,0(+∞ C. ),21(+∞ D.)21,0(),21,(-∞8.下列推理中属于归纳推理且结论正确的是( )A .由()()()222123112,212,312,+>+>+>…,推断:对一切n ∈N *,()212n n +> B .由()cos f x x x =满足()()f x f x -=-对∀x ∈R 都成立,推断:()cos f x x x =为奇函数C .由圆222x y r +=的面积2S r π=,推断:椭圆22221(0)x y a b a b+=>>的面积S ab π=D .设数列{}n a 的前n 项和为n S .由21n a n =-,求出2221231,2,3,S S S ===,…,推断:2n S n =9.若函数1)(23+-=ax x x f 在)2,0(上单调递减,则实数a 的取值范围为( )A .3≥aB .3=aC .3≤aD .30<<a10.若函数c bx ax x x f +++=23)(有极值点21,x x ,且11)(x x f =,若关于x 的方程[]0)(2)(32=++b x af x f 的不同实数根的个数是( )A .3B .4C .5D .6 二、填空题(共5个小题,25分) 11.由直线2y x =-,13y x =-和曲线y =__________ 12.已知函数1)2(33)(23++++=x a ax x x f 既有极大值又有极小值,则实数a 的取值范围是 13.函数2x y =)0(x >的图像在点2,(kk a a )处的切线与x 轴的交点的横坐标为1+k a (*∈N k )若161=a ,则321a a a ++=14.设函数f (x ) =xx +2(x >0)观察: f 1(x )= f (x ) =xx +2, f 2(x ) =f ( f 1(x )) = x3x +4 , f 3(x ) =f ( f 2(x )) = x7x +8, f 4(x ) =f ( f 3(x )) =x15x +16,……根据以上事实,由归纳推理可得:当n ∈N *且n ≥2时,f n (x ) = f ( f n -1(x )) =___________________________ 15.设点P 在曲线x e y21=上,点Q 在曲线)2ln(x y =上,则PQ 的最小值为 三、解答题:(共6个小题,75分)16.已知复数)()32()1(2R m i m m m m z ∈-++-= (1)若z 是实数,求m 的值; (2)若z 是纯虚数,求m 的值;(3)若在复平面C 内,z 所对应的点在第四象限,求m 的取值范围。
17.已知函数f (x )=x 3+x -16.(1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程及切点坐标; (3)如果曲线y =f (x )的某一切线与直线y =-41x +3垂直,求切点坐标与切线的方程。
18.已知函数f (x )=ax 2+b ln x 在x =1处有极值21。
(1)求a ,b 的值;(2)判断函数y =f (x )的单调性并求出单调区间。
19.已知函数32()f x x bx cx d =+++的图象过点P (0,2),且在点))1(,1(--f M 处的切线方程670x y -+=。
(1)求函数()y f x =的解析式;(2)求函数2923)(2++-=a x x x g 与()y f x =的图像有三个交点,求a 的取值范围。
20.设函数2)(--=ax e x f x (R a ∈) (1)求函数()y f x =的单调区间。
(2)若1=a 且],2[+∞∈x ,求)(x f 的最小值。
(3)在(2)条件下,01)()(>++'-x x f k x 恒成立,求k 的取值范围。
21.已知函数[)+∞∈-+--=,0,4353131)(23x x x x x f 。
(1)求)(x f 的极值;(2)当[]1,0∈x 时,求)(x f 的值域;(3)设1≥a ,函数[]1,0,22)(23∈--=x a x a x x g ,若对于任意[]1,01∈x ,总存在[]1,00∈x ,使得)()(10x f x g =成立,求a 的取值范围。
数学答案(理科)一选择题1--5 DBCDB 6--10 CCDAA 二填空题 11.613 12.21>-<a a 或 13.21 14. n n x x2)12(+- 15.)2ln 1(2- 三.解答题16.解:⑴z 为实数⇔2230m m +-=,解得:3m =-或1m =;⑵z 为纯虚数⇔2(1)0230m m m m -=⎧⎨+-≠⎩,解得:0m =; ⑶z 所对应的点在第四象限⇔2(1)0230m m m m ->⎧⎨+-<⎩,解得:30m -<<. 17.解 (1)可判定点(2,-6)在曲线y =f (x )上. ∵f ′(x )=(x 3+x -16)′=3x 2+1.∴f ′(x )在点(2,-6)处的切线的斜率为k =f ′(2)=13. ∴切线的方程为y =13(x -2)+(-6),即y =13x -32.(2)法一 设切点为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 20+1,∴直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16, 又∵直线l 过点(0,0),∴0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得,x 30=-8,∴x 0=-2,∴y 0=(-2)3+(-2)-16=-26,k =3×(-2)2+1=13. ∴直线l 的方程为y =13x ,切点坐标为(-2,-26.)法二 设直线l 的方程为y =kx ,切点为(x 0,y 0),则k =y 0-0x 0-0=x 30+x 0-16x 0又∵k =f ′(x 0)=3x 20+1,∴x 30+x 0-16x 0=3x 20+1,解之得x 0=-2,∴y 0=(-2)3+(-2)-16=-26,k =3×(-2)2+1=13. ∴直线l 的方程为y =13x ,切点坐标为(-2,-26). (3)∵切线与直线y =-14x +3垂直,∴切线的斜率k =4.设切点的坐标为(x 0,y 0),则f ′(x 0)=3x 20+1=4,∴x 0=±1,∴⎩⎪⎨⎪⎧ x 0=1,y 0=-14或⎩⎪⎨⎪⎧x 0=-1,y 0=-18,切线方程为y =4(x -1)-14或y =4(x +1)-18. 即y =4x -18或y =4x -14.18.解析: (1)f ′(x )=2ax +b x .又f (x )在x =1处有极值12.∴⎩⎪⎨⎪⎧ f =12,f =0,即⎩⎪⎨⎪⎧a =12,2a +b =0.解之得a =12且b =-1.(2)由(1)可知f (x )=12x 2-ln x ,其定义域是(0,+∞),且f ′(x )=x -1x =x +x -x.由f ′(x )<0,得0<x <1;由f ′(x )>0,得x >1.所以函数y =f (x )的单调减区间是(0,1).单调增区间是(1,+∞).19. 解:(1)由()f x 的图象经过点P (0,2),知2d =。
1分所以32()2f x x bx cx '=+++,则2()32.f x x bx c '=++ 2分由在(1,(1))M f --处的切线方程是670,x y -+=知6(1)70f ---+=,即(1)1,(1)6f f '-=-=。
所以326,121,b c b c -+=⎧⎨-+-+=⎩即23,0,b c b c -=-⎧⎨-=⎩解得3b c ==-。
4分 故所求的解析式是32()332f x x x x =--+。
5分 (2)因为函数)(x g 与 )(x f 的图像有三个交点 所以2923233223++-=+--a x x x x x 有三个根 6分 即a x x x =+-62923有三个根 令x x x x h 629)(23+-=,则)(x h 的图像与a y =图像有三个交点。
7分接下来求)(x h 的极大值与极小值(表略)。
)(x h 的极大值为25)(x h 的极小值为2 10 分 因此252<<a 11分 20.(1)解答:)(x f 的定义域是),(+∞-∞,a e x f x-=')(若0≤a , 0)(>'x f ,)(x f 在R 上递增所以)(x f 的单调增区间是),(+∞-∞,无减区间。
2分 若0>a , 当0)(>'x f ,有a x ln >,故)(x f 递增 当0)(<'x f ,有a x ln <,故)(x f 递减所以 )(x f 的单调增区间是),(ln +∞a ,单调减区间是)ln ,(a -∞ 4分 (2)若1=a 则1)(-='x e x f 又],2[+∞∈x 故0)(>'x f ,所以)(x f 在],2[+∞上递增 4m i n )(2-=e x f 7分(3)若1=a ,],2[+∞∈x ,011)(1)()(>++--=++'-x e k x x x f k x x 等价于 ,11x e x k x +-+<2≥x 令,11)(x e x x g x+-+= 2≥x 则min )(x g k <恒成立 又112min )(22-+=e e x g ,所以11222-+<e e k 12分20,令'()0f x =,解得:(舍)或1x =当01x ≤≤时,'()0f x ≥;当1x >时,'()0f x <,∴()(1)3f x f ==-极大值,无极小值.⑵由⑴知()f x 在区间[0,1]单调递增,∴()f x 在区间[0,1]的值域为[(0),(1)]f f ,即[4,3]--.⑶∵'22()33g x x a =-且1a ≥,∴当[0,1]x ∈时'()0g x ≤,∴()g x 在区间[0,1]单调递减,∴()g x 在区间[0,1]的值域为[(1),(0)]g g ,即2[132,2]a a a ---. 又对于任意1[0,1]x ∈,总存在0[0,1]x ∈,使得01()()g x f x =成立⇔()f x 在区间[0,1]的值域⊆()g x 在区间[0,1]的值域,即[4,3]--⊆2[132,2]a a a ---,2132423a a a ⎧---⎨--⎩≤≥,解得:。