八年级下数学一元二次方程练习题
一元二次方程100道计算题练习附答案
一元二次方程100道计算题练习1、)4(5)4(2+=+x x 2、x x 4)1(2=+ 3、22)21()3(x x -=+4、31022=-x x 5、(x+5)2=16 6、2(2x -1)-x (1-2x )=07、x 2 =64 8、5x 2 - 52=0 9、8(3 -x )2 –72=010、3x(x+2)=5(x+2) 11、(1-3y )2+2(3y -1)=0 12、x 2+ 2x + 3=013、x 2+ 6x -5=0 14、x 2-4x+ 3=0 15、x 2-2x -1 =016、2x 2+3x+1=0 17、3x 2+2x -1 =0 18、5x 2-3x+2 =019、7x 2-4x -3 =0 20、 -x 2-x+12 =0 21、x 2-6x+9 =022、22(32)(23)x x -=- 23、x 2-2x-4=0 24、x 2-3=4x25、3x 2+8 x -3=0(配方法) 26、(3x +2)(x +3)=x +14 27、(x+1)(x+8)=-1228、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x-1)2+3(2x-1)+2=031、2x 2-9x +8=0 32、3(x-5)2=x(5-x) 33、(x +2) 2=8x34、(x -2) 2=(2x +3)2 35、2720x x += 36、24410t t -+=37、()()24330x x x -+-= 38、2631350x x -+= 39、()2231210x --=40、2223650x x -+=补充练习:一、利用因式分解法解下列方程(x -2) 2=(2x-3)2 042=-x x 3(1)33x x x +=+x 2x+3=0 ()()0165852=+---x x二、利用开平方法解下列方程51)12(212=-y 4(x-3)2=25 24)23(2=+x三、利用配方法解下列方程25220x x -+= 012632=--x x01072=+-x x四、利用公式法解下列方程-3x 2+22x -24=0 2x (x -3)=x -3. 3x 2+5(2x+1)=0五、选用适当的方法解下列方程(x +1) 2-3 (x +1)+2=0 22(21)9(3)x x +=- 2230x x --=21302x x ++= 4)2)(1(13)1(+-=-+x x x x2)2)(113(=--x x x (x +1)-5x =0. 3x (x -3) =2(x -1) (x +1).应用题:1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售2件,若商场平均每天盈利1250元,每件衬衫应降价多少元?2、两个正方形,小正方形的边长比大正方形的边长的一半多4 cm,大正方形的面积比小正方形的面积的2倍少32平方厘米,求大小两个正方形的边长.3、如图,有一块梯形铁板ABCD,AB∥CD,∠A=90°,AB=6 m,CD=4 m,AD=2 m,现在梯形中裁出一内接矩形铁板AEFG,使E在AB上,F在BC上,G在AD上,若矩形铁板的面积为5 m2,则矩形的一边EF长为多少?4、如右图,某小在长32米,区规划宽20米的矩形场地ABCD上修建三条同样宽的3条小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为566米2,问小路应为多宽?5、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月销售成本不超过1万元的情况下,使得月销售利润达到8000元,销售单价应定为多少?6.某工厂1998年初投资100万元生产某种新产品,1998年底将获得的利润与年初的投资的和作为1999年初的投资,到1999年底,两年共获利润56万元,已知1999年的年获利率比1998年的年获利率多10个百分点,求1998年和1999年的年获利率各是多少?思考:1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
2024年浙教版数学八年级下学期第二章 一元二次方程 单元练习提高(含简单答案)
2024年浙教版数学八年级下学期第二章一元二次方程单元练习提高一、选择题(每题3分,共30分)1.下列方程属于一元二次方程的是( )A.2x+1=0B.x²−3x+1=0C.x²+y=1D.1=1x22.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为( )A.(x+2)2=9 B.(x﹣2)2=9 C.(x+2)2=1 D.(x﹣2)2=13.方程x2+5x=0的解为( )A.x=5B.x=-5C.x₁=0,x₂=5D.x₁=0,x₂=−54.我们知道方程x2+2x-3=0的解是x1=1,x2=-3,现给出另一个方程(2x+3)2+2(2x+3)-3=0,它的解是( )A.x1=1,x2=3B.x1=1,x2=-3C.x1=-1,x2=-3D.x1=-1,x2=35.关于x的一元二次方程x2−4x−k=0没有实数根,则k的取值范围是( )A.k>4B.k<4C.k>−4D.k<−46.三角形两边长分别为2和4,第三边是方程x2−11x+30=0的解,则这个三角形的周长是( )A.11B.11或12C.12D.107.已知x₁,x₂是方程:x2−x−2024=0的两个实数根,则代数式x31−2024x1+x22的值是( )A.4 049B.4 047C.2 024D.18.假期老同学聚会,每两个人都握一次手,所有人共握手28次,则参加聚会的人数是( )A.7B.8C.9D.109.方程x2-2013|x|+2014=0的所有实数解的和是( )A.-2013B.0C.2 013D.2 01410.对于一元二次方程a x2+bx+c=0(a≠0),下列说法:①若a+b+c=0,则b2−4ac≥0;②若方程a x2+c=0有两个不相等的实根,则方程a x2+bx+c=0必有两个不相等的实根;③若c是方程a x2+bx+c=0的一个根,则一定有ac+b+1=0成立;②若x0是一元二次方程a x2+bx+c=0的根,则b2−4ac=(2ax0+b)2其中正确的( )A.只有①②④B.只有①②③C.①②③④D.只有①②二、填空题(每题4分,共24分)11.x=2是关于x的方程x2+mx+4=0的解,则m的值是 .12.若(x2+y2)(x2+y2-2)=8,则x2+y2的值为 .13.一个两位数,十位上的数字比个位上的数字的平方少9.如果把十位上的数字与个位上的数字对调,得到的两位数比原来的两位数小27,则原来的两位数是 .14.若实数a,b满足(4a+4b)(4a+4b-2)-8=0,则a+b=_________.15.已知关于x的一元二次方程,x2+ax+(m+1)(m+2)=0对任意的实数a均有实数根,则实数m的取值范围是_____.16.《代数学》中记载,形如x2+8x=33的方程,求正数解的几何方法是:“如图1,先构造一个面积为x2的正方形,再以正方形的边长为一边向外构造四个面积为2x的矩形,得到大正方形的面积为33+16=49,则该方程的正数解为7−4=3.”小唐按此方法解关于x的方程x2+12x=m时,构造出如图2所示的图形,已知阴影部分的面积为64,则该方程的正数解为 .三、解答题(共8题,共66分)17.解下列方程.(1)x2-2=x;(2)2x2+x-1=018.已知关于x的方程x2−(m+2)x+(2m−1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,求另一个根及m的值.19.已知方程x2-3x-1=0的两根也是方程x4+ax2+bx+c=0的根,求a+b-2c的值.20.已知关于x的方程k x2+(k+1)x+k=0有实数根.4(1)当k=4时,求解上述方程.(2)求k的取值范围.(3)是否存在实数k,使方程有两个根且两根的倒数和为1? 若存在,请求出k的值;若不存在,请说明理由.21.定义:若一元二次方程ax2+bx+c=0(a≠0)满足b=ac.则称此方程为“和美”方程.(1)当b<0时,判断此时“和美”方程ax2+bx+c=0(a≠0)解的情况,并说明理由.(2)若“和美”方程2x2+mx+n=0有两个相等的实数根,请解出此方程.22.已知a>0,b>a+c,判断关于x的方程ax2+bx+c=0的根的情况.23.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。
2.1 一元二次方程 浙教版八年级数学下册同步练习(含解析)
第2章一元二次方程2.1一元二次方程基础过关全练知识点1一元二次方程的相关概念1.(2022浙江诸暨浣纱中学月考)下列方程是一元二次方程的是()A.x2-y=1B.x2+2x-3=0C.x2+1=3 D.x-5y=6x2.已知关于x的方程x2+kx-10=0的一个根是2,则k=.3.若方程(a-2)x2-3ax=5是关于x的一元二次方程,则a的取值范围是.知识点2一元二次方程的一般形式4.下列方程是一元二次方程的一般形式的是()A.2x2-3x=0B.x2=1C.2x2-3x=-1D.2x2=-3x5.【新独家原创】四位同学一起做游戏,分别出一个一元二次方程,甲:x2-2x+3=0,乙:x2-2x=3,丙:3(x2-2x+1)=3,丁:3x2-x=3,当这四个方程化为一般形式时,常数项为0的赢,则这次游戏谁赢了()A.甲B.乙C.丙D.丁6.关于x的一元二次方程(m-2)x2+5x+m2-4=0的常数项为0,则m等于() A.2 B.-2 C.2或-2 D.07.将方程5x2+1=4x化成ax2+bx+c=0的形式,则a,b,c的值分别为.知识点3列一元二次方程8.某班学生毕业时,都将自己的照片向本班其他同学送一张留念,全班一共送了1 260张,如果全班有x名同学,根据题意,列出方程为() A.x(x+1)=1 260 B.2x(x+1)=1 260C.x(x-1)=1 260D.x(x-1)=1 260×29.【教材变式·P26合作学习(1)变式】把面积为16 m2的大长方形铁皮割成如图所示的正方形和长方形两个部分,已知长方形的一边长为 6 m,求其邻边长(只需列出方程).10.根据下列问题列一元二次方程,并将方程化为一般形式.(1)三个连续奇数的平方和是251,求这三个数;(2)一个长方形花坛,长20 m,宽8 m,在它的四周有等宽的鹅卵石路,形成一个大长方形,其面积是花坛面积的1.8倍,求路的宽度;(3)用一根长30 cm的铁丝折成一个斜边长13 cm的直角三角形,求这个三角形的直角边长.能力提升全练11.(2022浙江温州外国语学校期中,6,)关于x的一元二次方程(m-3)x2+m2x=9x+5化为一般形式后不含一次项,则m的值为()A.0B.±3C.3D.-312.若关于x的一元二次方程ax2+bx+c=0(a≠0)的一个根为x=-1,则下列等式成立的是() A.a+b+c=0 B.a-b+c=0C.-a-b+c=0D.-a+b+c=013.若(1-m)x m2+1+3mx-2=0是关于x的一元二次方程,则该方程的一次项系数是() A.-1 B.±1 C.-3 D.±314.方程5x2-1=4x化成一般形式后,二次项系数为正,其中一次项系数,常数项分别是()A.4,-1B.4,1C.-4,-1D.-4,115.已知x1=1,x2=-3是一元二次方程ax2+bx-3=0(a≠0)的两个根,求a,b 的值.16.已知关于x的方程(k-2)x2-kx=x2-1.(1)当k为何值时,方程为一元二次方程?(2)当k为何值时,方程为一元一次方程?17.有一个三角形,面积为30 cm2,其中一边比这边上的高的4倍少1 cm,若设这边上的高为x cm,请你列出关于x的方程,并判断它是什么方程,若是一元二次方程,把它化为一般形式,并指出二次项系数、一次项系数和常数项.素养探究全练18.【代数推理】【运算能力】已知实数a是一元二次方程x2-2 022x+1=0的值.的解,求代数式a2-2 021a-a2+12 022答案全解全析基础过关全练1.B x2-y=1中含有2个未知数,不是一元二次方程,所以A不符合题意;x2+2x-3=0符合一元二次方程的定义,是一元二次方程,所以B符合题意;x2+1x =3中1x不是整式,不是一元二次方程,所以C不符合题意;x-5y=6中含有2个未知数,不是一元二次方程,所以D不符合题意.故选B.2.3解析因为关于x的方程x2+kx-10=0的一个根是2,所以22+2k-10=0,解得k=3.3.a≠2解析因为方程(a-2)x2-3ax=5是关于x的一元二次方程,所以a-2≠0,解得a≠2.4.A形如ax2+bx+c=0(a,b,c是常数,且a≠0)是一元二次方程的一般形式.只有A符合题意,故选A.5.C x2-2x+3=0的常数项为3,所以甲输了;x2-2x=3化为一般形式为x2-2x-3=0,常数项为-3,所以乙输了;3(x2-2x+1)=3化为一般形式为x2-2x=0,常数项为0,所以丙赢了;3x2-x=3化为一般形式为3x2-x-3=0,常数项为-3,所以丁输了.故选C.6.B因为常数项为0,所以m2-4=0,解得m=2或-2,当m=2时,方程(m-2)x2+5x+m2-4=0变为5x=0,不是一元二次方程,所以m=2要舍去,故m=-2.7.5,-4,1解析5x2+1=4x移项,得5x2-4x+1=0,所以将方程5x2+1=4x化成ax2+bx+c=0的形式,则a,b,c的值分别为5,-4,1.8.C全班有x名同学,根据“都将自己的照片向本班其他同学送一张留念”可知全班一共送了x(x-1)张照片,又全班一共送了1 260张照片,所以x(x-1)=1 260.9.解析设其邻边长为x m,则可列方程为x(x+6)=16.10.解析(1)设中间的奇数为x,则(x-2)2+x2+(x+2)2=251,化为一般形式:3x2-243=0.(2)设路的宽度为x m,则(20+2x)(8+2x)=1.8×20×8,化为一般形式:4x2+56x-128=0.(3)设一条直角边长为x cm,则另一条直角边长为(17-x)cm,则x2+(17-x)2=132,化为一般形式:2x2-34x+120=0.能力提升全练11.D将(m-3)x2+m2x=9x+5整理得(m-3)x2+(m2-9)x-5=0,由题意得m-3≠0,m2-9=0,解得m=-3,故选D.12.B把x=-1代入方程ax2+bx+c=0得a-b+c=0.13.C由题意得1-m≠0且m2+1=2,解得m=-1.∴该方程的一次项系数为3m=-3.14.C5x2-1=4x化成一般形式是5x2-4x-1=0,它的一次项系数是-4,常数项是-1.故选C.15.解析 把x 1=1,x 2=-3分别代入一元二次方程ax 2+bx -3=0(a ≠0),得{a +b −3=0,9a −3b −3=0,解得{a =1,b =2.16.解析 原方程可化为(k -3)x 2-kx +1=0.(1)当k -3≠0,即k ≠3时,方程(k -2)x 2-kx =x 2-1是一元二次方程.(2)当k -3=0,-k ≠0,即k =3时,方程(k -2)x 2-kx =x 2-1是一元一次方程.17.解析 根据题意可得关于x 的方程为12x (4x -1)=30,它是一元二次方程,整理为一般形式为2x 2-12x -30=0,二次项系数为2,一次项系数为-12,常数项为-30.素养探究全练18.解析 因为实数a 是一元二次方程x 2-2 022x +1=0的解,所以a 2- 2 022a +1=0,所以a 2-2 022a =-1,a 2+1=2 022a , 所以原式=a 2-2 021a -2 022a 2 022=a 2-2 022a =-1.。
人教五四学制版八年级下册数学第27章 一元二次方程含答案(考点梳理)
人教五四学制版八年级下册数学第27章一元二次方程含答案一、单选题(共15题,共计45分)1、华润万家超市某服装专柜在销售中发现:进货价为每件50元,销售价为每件90元的某品牌童装平均每天可售出20件.为了迎接“六一”,商场决定采取适当的降价措施,扩大销售量,增加盈利.经调查发现:如果每件童装降价1元,那么平均每天就可多售出2件,要想平均每天销售这种童装盈利1200元,同时又要使顾客得到较多的实惠,设降价x元,根据题意列方程得()A.(40﹣x)(20+2x)=1200B.(40﹣x)(20+x)=1200C.(50﹣x)(20+2x)=1200D.(90﹣x)(20+2x)=12002、若关于的一元二次方程有一个根为0,则的值()A.0B.1或2C.1D.23、用配方法将方程变形,得()A. B. C. D.4、已知x=1是方程的一个根,则方程的另一个根是()A.1B.2C.-1D.-25、关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根是0,则m的值为()A.m=2B.m=﹣2C.m=﹣2或2D.m≠06、用配方法解方程时,配方结果正确的是().A. B. C. D.7、若x支球队参加篮球比赛,共比赛了42场,每2队之间都比赛两场,则下列方程中符合题意的是( )A.x(x﹣l)=42B.x(x+1)=42C. x(x﹣l)=42D. x(x+1)=428、用配方法解下列方程时,配方有错误的是( )A. -2x-99=0化为=100B.2 -7x-4=0化为C. +8x+9=0化为=25D.3 -4x-2=0化为9、已知,是方程的两根,且,则的值是()A. B.5 C. D.910、关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根是0,则实数a的值为()A.﹣1B.0C.1D.﹣1或111、下列方程中,是一元二次方程的是()A.x﹣y 2=1B. =0C. ﹣1=0D. + ﹣1=012、一元二次方程(x+1)2=4的解是()A.x1=x2=1 B.x1=x2=-3 C.x1=1,x2=-3 D.x1=2,x2=-213、一元二次方程x2﹣9=0的根是()A.x=3B.x=4C.x1=3,x2=﹣3 D.x1= , x2=﹣14、若方程(m﹣1)﹣2x﹣m=0是关于x的一元二次方程,则m的值为()A.-1B.1C.5D.﹣1或115、己知方程x2-7x+12=0的两根恰好是一个直角三角形的两条直角边的长,则这个直角三角形的外接圆的直径为()A.2.5B.6C.5D.二、填空题(共10题,共计30分)16、若x=2是关于x的一元二次方程ax2+bx﹣8=0(a≠0)的解,则代数式2020+2a+b的值是________.17、如果x=1是关于x的方程的一个根,则m=________.18、菱形ABCD的一条对角线长为6,边AB的长是方程的一个根,则菱形ABCD的周长为________.19、若关于的方程的一个根为1,则的值为________.20、已知关于x的一元二次方程x2﹣a=0有一个根为x=2,则a的值为________.21、某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是________.22、已知x=3是一元二次方程2ax2﹣ax=5的一个解,则a=________.23、一元二次方程4x2﹣9=0的根是________24、已知2是关于x的一元二次方程x2-x+k=0的一个根,那么k=________,另一根是________25、如果是关于x的一元二次方程,那么a=________.三、解答题(共5题,共计25分)26、解方程:(1)4x2-9=0 (2)x(x-2)+x-2=027、解方程:2x2+x﹣3=0.28、解方程:3x(x﹣2)=2(2﹣x);29、关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,求m的值.30、根据下列问题列方程并将其化成一元二次方程的一般形式:(1)一个长方形的长比宽多1cm,面积是132cm2,长方形的长和宽各是多少?(2)参加一次聚会的每两个人都握了一次手,所有人共握手10次,有多少人参加聚会?参考答案一、单选题(共15题,共计45分)1、A2、D3、D4、D5、B6、A7、A8、C9、A10、A11、D12、C13、C14、A15、C二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、30、。
一元二次方程训练题50道
一元二次方程训练题50道理解一元二次方程是解决数学问题的基础,因此训练题对于加深理解和掌握解题方法非常重要。
以下是50道一元二次方程的训练题:1. 解方程,x^2 4x + 4 = 0。
2. 解方程,2x^2 7x + 3 = 0。
3. 解方程,3x^2 + 5x 2 = 0。
4. 解方程,4x^2 12x + 9 = 0。
5. 解方程,x^2 + 6x + 9 = 0。
6. 解方程,2x^2 + 3x 2 = 0。
7. 解方程,x^2 5x + 6 = 0。
8. 解方程,3x^2 8x 3 = 0。
9. 解方程,4x^2 + 4x + 1 = 0。
10. 解方程,x^2 3x 10 = 0。
11. 解方程,2x^2 11x + 5 = 0。
12. 解方程,3x^2 + 7x 6 = 0。
13. 解方程,x^2 9 = 0。
14. 解方程,2x^2 18 = 0。
15. 解方程,3x^2 27 = 0。
16. 解方程,x^2 2x + 1 = 0。
17. 解方程,2x^2 8x + 8 = 0。
18. 解方程,3x^2 + 6x + 3 = 0。
19. 解方程,x^2 7x + 10 = 0。
20. 解方程,2x^2 5x 3 = 0。
21. 解方程,3x^2 + 4x 4 = 0。
22. 解方程,x^2 4 = 0。
23. 解方程,2x^2 8 = 0。
24. 解方程,3x^2 12 = 0。
25. 解方程,x^2 6x + 9 = 0。
26. 解方程,2x^2 + 2x 4 = 0。
27. 解方程,3x^2 3x 6 = 0。
28. 解方程,x^2 8x + 16 = 0。
29. 解方程,2x^2 12x + 18 = 0。
30. 解方程,3x^2 + 9x + 6 = 0。
31. 解方程,x^2 5 = 0。
32. 解方程,2x^2 20 = 0。
33. 解方程,3x^2 45 = 0。
34. 解方程,x^2 5x + 6 = 0。
初中数学一元二次方程综合练习题(附答案)
初中数学一元二次方程综合练习题(附答案)初中数学一元二次方程综合练题一、单选题1.一元二次方程x²-9=3-x的解是(。
)A.x=3B.x=-4C.x1=3,x2=-4D.x1=3,x2=42.直角三角形两条直角边长的和是7,面积是6,则斜边长是()A.√37B.5C.√38D.73.一元二次方程x²-2x=0的两根分别为x1和x2,则x1x2为()A.-2B.1C.2D.04.方程(m+2)x²=0的根为A.m=±2B.m=2C.m=-2D.m≠±25.若a,β为方程2x²-5x-1=0的两个实数根,则2a+3aβ+5β的值为()A.-13B.12C.14D.156.已知关于x的一元二次方程mx²-(m+2)x+2m+m²-8=0是关于x的一元二次方程,则m=有两个不相等的实数根x1,x2.若4x1+11x2=4m,则m的值是()A.2B.-1C.2或-1D.不存在7.已知关于x的一元二次方程(a+1)x+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是(。
)A.1一定不是关于x的方程x²+bx+a的根B.0一定不是关于x的方程x²+bx+a的根C.1和-1都是关于x的方程x²+bx+a的根D.1和-1不都是关于x的方程x²+bx+a的根8.关于x的一元二次方程(a-1)x+3x-2=0有实数根,则a的取值范围是(。
)A.a>-1B.a≥-1C.a>-1且a≠1D.a≥-1且a≠19.一个正方体的表面展开图如图所示,已知正方体相对两个面上的数值相同,且不相对两个面上的数值不相同,则“★”面上的数为(。
)A.1B.1或2C.2D.2或310.定义一种新运算:a♣b=a(a-b).例如,4♣3=4×(4-3)=4.若x♣2=3,则x的值是(。
)A.x=3B.x=-1C.x1=3,x2=1D.x1=3,x2=-1二、解答题11.已知关于x的一元二次方程(m-1)x-2mx+m+1=0.(1)求方程的根;把形如 $ax^2+bx+c(a,b,c$ 为常数$)$ 的二次三项式(或其一部分)配成完全平方式的方法叫做配方法。
八年级数学下册《一元二次方程》单元检测卷(附答案)
八年级数学下册《一元二次方程》单元检测卷(附答案)一、选择题:(本题包括12小题,每小题3分,共36分) 是一元二次方程,则m 的值为( ) 1.已知关于x 的方程A .1B .﹣1C .±1D .不能确定 2.有下列关于x 的方程:①ax 2+bx+c=0,②3x (x ﹣4)=0,③x 2+y ﹣3=0,④ +x=2,⑤x 3﹣3x+8=0,⑥ x 2﹣5x+7=0,⑦(x ﹣2)(x+5)=x 2﹣1.其中是一元二次方程的有( )个.A .2B .3C .4D .5 3.一元二次方程2660x x --=配方后化为( )A .2(3)15x -= B .2(3)3x -= C. 2(3)15x += D .2(3)3x +=4.一元二次方程(x+1)2﹣2(x ﹣1)2=7的根的情况是( ) A .无实数根 B .有一正根一负根C .有两个正根D .有两个负根5.设1x ,2x 是一元二次方程0322=--x x 的两根,则2221x x +=( )A .6B .8C .10D .126.若关于x 的方程0632=+-m x x 有两个不相等的实数根,则m 的取值范围在数轴上表示正确的是().7.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( ) A .9人 B .10人 C .11人 D .12人8.若x 1,x 2是一元二次方程x 2﹣2x ﹣1=0的两个根,则x 12﹣x 1+x 2的值为( ) A .﹣1 B .0 C .2 D .3 9.等腰三角形三边长分别为2a b 、、,且a b 、是关于x 的一元二次方程2610x x n -+-=的两根,则n 的值为( )A .9B .10C .9或10D .8或1010.若关于x 的一元二次方程0122=++-kb x x 有两个不相等的实数根,则一次函数b kx y +=的大致图象可能是 ( )A B C D 11.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x 株,则可以列出的方程是( ) A .(3+x )(4﹣0.5x )=15 B .(x+3)(4+0.5x )=15 C .(x+4)(3﹣0.5x )=15 D .(x+1)(4﹣0.5x )=1512.某种植基地2022年蔬菜产量为80吨,预计2023年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x ,则可列方程为( )()032112=++-+x x m mA .80(1+x )2=100B .100(1﹣x )2=80C .80(1+2x )=100 D .80(1+x 2)=100二.填空题(本大题共6个小题,每小题3分,共18分)13.关于x 的一元二次方程22(21)(1)0x k x k +-+-=无实数根,则k 的取值范围为 .14.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m= .15.一个三角形的两边长分别为3和6,第三边长是方程x 2﹣10x+21=0的根,则三角形的周长为 . 16.若m ,n 是方程210x x +-=的两个实数根,则22m m n ++的值为 .17.关于x 的一元二次方程01222=+-+m x x 的两实数根之积为负,则实数m 的取值范围是 .18.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 个图形有94个小圆.(用含n 的代数式表示)三、解答题:(共66分)19.解下列方程(每小题4分,满分16分):(1)3x 2-7x =0 ; (2)0432=-+x x(3))5(2)5(2-=-x x (4)22(3)5x x -+=20.(6分)关于x 的方程0832=-+mx x 有一个根是32,求另一个根及m 的值.21.(8分)已知一元二次方程0222=-+-m mx mx . (1)若方程有两实数根,求m 的范围。
初中数学一元二次方程解法练习题(附答案)
初中数学一元二次方程解法练习题(附答案)初中数学一元二次方程解法练题一、单选题1.方程x2-3=0的根是()A.3B.-3C.±3D.无解2.一元二次方程y2-y-3/4=0配方后可化为()A。
(y+1/2)2=5/4B。
(y-1/2)2=5/4C。
(y+1/2)2=3/4D。
(y-1/2)2=3/43.用配方法解下列方程,其中应在方程的左右两边同时加上4的是( )A。
x2-2x=5B。
x2+4x=5C。
x2+2x=5D。
2x2-4x=54.若一元二次方程x2=m有解则m的取值为( )A.正数B.非负数C.一切实数D.零或正数5.用直接降次的方法解方程(2x-1)2=x2,做法正确的是()A。
2x-1=xB。
2x-1=-xC。
2x-1=±xD。
2x-1=±x26.用配方法解下列方程时,配方正确的是( )A。
方程x2-6x-5=0,可化为(x-3)2=4B。
方程y2-2y-2020=0,可化为(y-1)2=2020C。
方程a2+8a+9=0,可化为(a+4)2=25D。
方程2x2-6x-7=0,无法配方7.若x2+6x+m2是一个完全平方式,则m的值是( )A。
3B。
-3C。
±3D。
无法确定8.一元二次方程式x2-8x=48可表示成(x-a)2=48+b的形式,其中a,b为整数,求a+b之值为何( )A.20B.12C.-12D.-209.将代数式a2+4a-5变形,结果正确的是( )A。
(a+2)-1B。
(a+2)-5C。
(a+2)+4D。
(a+2)-9二、解答题10.若a,b,c是△ABC的三边长,且满足a2+b2+c2-6a-8b-10c+50=0.1)求a,b,c的值;2)请判断△XXX的形状.解:(1)将方程移项并配方得到(a-3)2+(b-4)2+(c-5)2=0,因此a=3,b=4,c=5.2)由于三角形的三边长都是正数,所以方程的解只有(a,b,c)=(3,4,5)一组,因此△ABC是一条直角三角形。
八年级数学一元二次方程测试卷
第二章一元二次方程测试卷班级 姓名 得分一.仔细选一选(本题有5个小题,每题5分,共25分)1.下列方程中,关于x 的一元二次方程是( )A .11x x+=; B .222x y +=; C .220x -=; D .20.ax bx c ++= 2.把方程2(1)59x x -=+化为一元二次方程的一般形式结果是( )A .2580x x --=B .2780x x --=C .23100x x +-=D .27100xx --=. 3.方程23210x x --=经配方后的结果正确的是( )A .212(33x -=); B .214(33x -=); C .22(19x -=); D .214(39x -=). 4.某商品原价200元,连续两次降价a %后售价为148元,下列所列方程正确的是( )A. ()22001148a +%=B. ()22001148a -%=C. ()220012148a -%=D. ()222001148a -%= 5.关于x 的方程20x px q ++=的两根同为负数,则( )A . 0p >且q >0B . 0p >且q <0C . 0p <且q >0D . 0p <且q <0二.认真填一填:(本题有5个小题,每题5分,共25分)6.写出一个以3,-1为根且二次项的系数为1的一元二次方程是 .7.若关于x 的方程()220x m x m -++=的根判别式⊿=5,则m =____________. 8.若关于x 的一元二次方程220x x k +-=没有实数根,则k 的取值范围是 .9.在实数范围内定义一种运算“⊗”,其规则为22a b a b ⊗=-根据这个规则,方程()250x +⊗= 的解为___________.10.阅读材料:设一元二次方程20ax bx c ++=的两根为1x ,2x ,则两根与方程系数之间有如下关系:12b x x a +=-,12c x x a⋅=.根据该材料填空:已知1x ,2x 是方程2630x x ++=的两实数根,则2112x x x x +的值为______三.全面答一答(本题有5个小题,共70分)11.解下列一元二次方程(每小题5分,共20分)①229(1)(21)x x -=+ ②2520x x -+=③210100y y --= ④()22211x x -=-12.(10分) 设关于x 的方程22240x mx m ---=,试说明不论m 为何值时,这个方程总有两个不相等的实数根.13.(10分)已知一个直角三角形的两条直角边长恰好是方程22320x x --=的两个根,求:(1)这个直角三角形两条直角边长的和;(2)这个直角三角形的面积。
浙教版八年级下册数学第二章 一元二次方程含答案
浙教版八年级下册数学第二章一元二次方程含答案一、单选题(共15题,共计45分)1、有一人患了流感,经过两轮传染后共有100人患了流感,每轮传染中平均一个人传染的人数x满足的方程为()A.1+x+x(1+x)=100B.x(1+x)=100C.1+x+x 2=100D.x2=1002、若x1, x2是一元二次方程x2﹣2x﹣1=0的两个根,则x12﹣x1+x2的值为()A.﹣1B.0C.2D.33、若是方程x2﹣2mx+m2﹣m﹣1=0的两个根,且x1+x2=1﹣x1x2,则m的值为()A.-1或2B.1或-2C.-2D.14、用配方法解一元二次方程x2-4x+3=0时可配方得()A.(x-2)2=7B.(x-2)2=1C.(x+2)2=1D.(x+2)2=25、已知的三边长为a,b,c,且满足方程a2x2-(c2-a2-b2)x+b2=0,则方程根的情况是()。
A.有两相等实根B.有两相异实根C.无实根D.不能确定6、下列方程中,有两个不相等实数根的是()A.x 2-2x-1=0B.x 2-2x+3=0C.x 2=2 x-3D.x 2-4x+4=07、有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是()A. x(x﹣1)=45B. x(x+1)=45C.x(x﹣1)=45D.x (x+1)=458、关于x的一元二次方程有两个整数根且乘积为正,关于y 的一元二次方程同样也有两个整数根且乘积为正.给出四个结论:①这两个方程的根都是负根;② ;③.其中正确结论的个数是()A.0个B.1个C.2个D.3个9、若方程是一元二次方程,则m的值为()A.0B.±1C.1D.–110、方程x2+3x+1=0的根的情况是()A.没有实数根B.有一个实数根C.有两个相等的实数根D.有两个不相等的实数根11、某药品经过两次降价,每瓶零售价由168元降为128元。
已知两次降价的百分率相同,每次降价的百分率为x ,根据题意列方程得()A. B. C.D.12、一元二次方程x2﹣4x+2=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根13、把一元二次方程化成一般式之后,其二次项系数与一次项分别是()A.2,-3B.-2,-3C.1,D.-2,14、方程x(x﹣5)=x﹣5的根是()A.x=5B.x=0C.x1=5,x2=0 D.x1=5,x2=115、下列方程是一元二次方程的是()A.x 2﹣2x=7B.3x﹣y=1C.xy﹣4=0D.x+ =1二、填空题(共10题,共计30分)16、《生物多样性公约》第十五次缔约方大会(COP15)将于10月11日至24日在云南省昆明市举办.昆明某景观园林公司为迎接大会召开,计划在一个长35米、宽20米的矩形场地上要开辟一横两纵三条等宽的小道(如图),其余部分种植草坪,草坪面积为627平方米.设小道的宽为x米,则可列方程为________.17、如图,某小区规划在一个长34m、宽22m的矩形ABCD上,修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为100m2,那么通道的宽应设计成________m.18、已知a2﹣6a﹣5=0和b2﹣6b﹣5=0中,a≠b,则的值是________.19、已知x=m是方程x2-2x-3=0的根,则代数式2m2-4m-3的值为________.20、已知关于的方程的两个根分别是、,且,则的值为________.21、若x=2是一元二次方程x2+x﹣a=0的解,则a的值为________.22、如图,在长70m,宽40m的长方形花园中,欲修宽度相等的观赏路(如阴影部分所示),要使观赏路面积占总面积的,则路宽x应满足的方程是________.23、将方程x(x﹣2)=x+3化成一般形式后,二次项系数,一次项系数和常数项分别是________.24、一元二次方程x2+3﹣2 x=0的解是________.25、方程=3的根是________三、解答题(共5题,共计25分)26、解方程:27、小明想用一块面积为400cm2的正方形纸片,沿着边的方向,裁出一块面积为360cm2的长方形纸片。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
艾迪教育《一元二次方程》练习题一元二次方程的概念1、下列各方程中,不是一元二次方程的是( )A 、01232=++y yB 、 m m 31212-=C 、032611012=+-p pD 、0312=+-x x2、若01322=-+-p x px 是关于x 的一元二次方程则( ) A 、p=1 B 、p>0 C 、p ≠0 D 、p 为任意实数3、把一元二次方程)(5))((22x a a x a x a ax -=--+化成关于x 的一般形式是 。
4、一元二次方程6275)3(2-=+--mx m mx x m 中,二次项系数为 ;一次项为 ;常数项为 ;5、把方程)2(5)2(-=+x x x 化成一般式,则a 、b 、c 的值分别是( )A 10,3,1-B 10,7,1-C 12,5,1-D 2,3,16、若(b - 1)2+a 2= 0 下列方程中是一元二次方程的只有( )(A ) ax 2+5x – b=0(B ) (b 2– 1)x 2+(a+4)x+ab=0 (C )(a+1)x – b=0 (D )(a+1)x 2– bx+a=07、下列方程中,不含一次项的是( )(A )3x 2– 5=2x (B ) 16x=9x 2(C )x(x –7)=0 (D )(x+5)(x-5)=08、一元二次方程12)3)(31(2+=-+x x x 化为一般形式为: ,二次项系数为: ,一次项系数为: ,常数项为: 。
9、关于x 的方程023)1()1(2=++++-m x m x m ,当m 时为一元一次方程;当m 时为一元二次方程。
10、当m 时,方程()05122=+--mx x m 不是一元二次方程,当m 时,上述方程是一元二次方程。
11、若方程mx 2+3x -4=3x 2是关于x 的一元二次方程,则m 的取值范围是 .12、关于x 的一元二次方程4)7(3)3(2-+=-y y y 的一般形式是 ;二次项系数是 ,一次项系数是 ,常数项是 ;13、下列方程中,属于一元二次方程的是( )14、方程()()223210x x x --++=的一般形式是( )2222x -5x+5=0 x +5x-5=0 x +5x+5=0 x +5=0 A B C D 、、、、一元二次方程的解法22221320 B 2x +y-1=0 C x 00 D x xA x -+==、、、、1、已知x=2是一元二次方程02232=-a x 的一个解,则12-a 的值( ) A 、3 B 、4 C 、5 D 、62、一元二次方程)1(5)1(-=-x x x 的解是( )A 、1B 、5C 、1或5D 、无解 3、方程0)2)(1(=-+x x x 的解是( )A 、—1,2B 、1,—2C 、0,—1,2D 、0,1,—24、如果x 2+2(m -2)x +9是完全平方式,那么m 的值等于( )或-1 C.-1 D.-5或-15、若关于x 的方程m mx x -=-122有一个根为—1,则x= 。
6、若代数式(x -2)(x+1)的值为0,则x= 。
7、一元二次方程2x(x -3)=5(x -3)的根为 ( ) A .x =52 B .x =3 C .x 1=3,x 2=52 D .x =-528、已知方程3ax 2-bx-1=0和ax 2+2bx-5=0,有共同的根-1, 则a= , b= . 9、若一元二次方程ax 2+bx+c=0(a ≠0)有一个根为1,则a+b+c= ;若有一个根为-1,则b 与a 、c 之间的关系为 ;若有一个根为零,则c= .10、关于x 的一元二次方程12)1(2=-+mx x m 的一个根是3,则________=m ;11、当_______=x 时,代数式21212--x x 的值为0; 12、关于x 的一元二次方程032)1(22=-+++-m m x x m 有一个根为0,则m 的值为( )A 、1或-3B 、1C 、-3D 、其它值13、的值为则的解为方程10522++=-+a a ,x x aA 、12B 、6C 、9D 、1614、关于x 的方程012)13(22=-++mx x m 的一个根是1,则m 的值是------------------( )A 0B 、 32-C 、 32D 、 0或32- 15、已知一元二次方程()002≠=+m n mx ,若方程有解,则必须( )A 、0=nB 、同号mnC 、的整数倍是m nD 、异号mn16、若方程02=++n mx x 中有一个根为0,另一个根非0,则m 、n 的值是---------------( )A 0,0==n mB 0,0=≠n mC 0,0≠=n mD 0≠mn17、 方程0222=+-x x 的根是( )A 31±=xB 31±-=xC 无实根D 231±=x 18、将方程()n m x x x =-=--22032化为的形式,指出n m ,分别是( )A 、31和B 、31和-C 、41和D 、41和-19、方程()()24330x x x -+-=的根为( );(A )3x = (B )125x = (C )12123,5x x =-= (D )12123,5x x ==20、()22416-=++x bx x 如果,则的值为b ( )A 、4-B 、4C 、8-D 、821、方程5)3)(1(=-+x x 的解是 ( );A. 3,121-==x xB. 2,421-==x xC. 3,121=-=x xD. 2,421=-=x x 22、下面是某同学在一次数学测验中解答的填空题,其中答错的是( ) A 、若2,42==x x 则;B 、2,632==x x x 则若;C 、2102==-+k ,k x x 则的一个根是;D 、2322+--x x x 若分式的值为零,则2=x 。
23、选择适当的方法解一元二次方程1)0242=-+-x x 2)05422=--x x 3)()()x x x =+-23234)()()22132-=+y y 5)0562=+-x x24、①()()229121x x -=+(用因式分解法) ②2520x x -+=(用公式法)③210100y y --=(用配方法)④()22211x x -=-(用适当方法)25、用适当方法解一元二次方程(每小题8分)(1).095162=-+)(x (2) 2x(x +3)=6(x +3)(3)3x 2+2x+4=O (4)012222=--x x(5)8)32)(2(=++y y (6)(2y +1)2+2(2y +1)-3=0;26、选用合适的方法解下列方程(1))4(5)4(2+=+x x (2)x x 4)1(2=+(3)22)21()3(x x -=+ (4)31022=-x x一元二次方程的应用1、某厂今年一月份的总产量为500吨,三月份的总产量达到为720吨。
若平均每月增 率是x ,则可以列方程( );(A )720)21(500=+x (B )720)1(5002=+x(C )720)1(5002=+x (D )500)1(7202=+x2、一商店1月份的利润是2500元,3月份的利润达到3025元,这两个月的利润平均月增长的百分率是多少3、如图,折叠直角梯形纸片的上底AD ,点D 落在底边BC 上点F 处,已知DC=8㎝,FC = 4㎝,则EC 长 ㎝4、某商场在“五一节”的假日里实行让利销售,全部商品一律按九销售,这样每天所获得的利润恰是销售收入的20%,如果第一天的销售收入4万元,且每天的销售收入都有增长,第三天的利润是万元, 求第三天的销售收入是多少万元求第二天和第三天销售收入平均每天的增长率是多少5、阅读下面的例题:解方程022=--x x解:(1)当x ≥0时,原方程化为x 2– x –2=0,解得:x 1=2,x 2= - 1(不合题意,舍去) (2)当x <0时,原方程化为x 2+ x –2=0,解得:x 1=1,(不合题意,舍去)x 2= -2∴原方程的根是x 1=2, x 2= - 2(3)请参照例题解方程0112=---x x6、已知等腰三角形底边长为8,腰长是方程02092=+-x x 的一个根,求这个三角形的面积。
7、党的十六大提出全面建设小康社会,加快推进社会主义现代化,力争国民生产总值到2020年比2000年翻两番。
在本世纪的头二十年(2001年~2020年),要实现这一目标,以十年为单位计算,设每个十年的国民生产总值的增长率都是x ,那么x 满足的方程为( ) A.(1+x )2=2 B.(1+x )2=4 +2x =2 D.(1+x )+2(1+x )=48、从正方形的铁皮上,截去2cm 宽的一条长方形,余下的面积是48cm 2,则原来的正方形铁皮的面积是()9、若两数和为-7,积为12,则这两个数是 .10、合肥百货大搂服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“十·一”国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8件.要想平均每天销售这种童装上盈利1200元,那么每件童装因应降价多少元11、国家为了加强对香烟产销的宏观管理,对销售香烟实行征收附加税政策. 现在知道某种品牌的香烟每条的市场价格为70元,不加收附加税时, 每年产销100万条,若国家征收附加税,每销售100元征税x元(叫做税率x%), 则每年的产销量将减少10x万条.要使每年对此项经营所收取附加税金为168万元,并使香烟的产销量得到宏观控制,年产销量不超过50万条,问税率应确定为多少12、利用墙为一边,再用13米长的铁丝当三边,围成一个面积为20m2的长方形,求这个长方形的长和宽。
13、如图,在scm B AB A p ,B ,ABC 190以向点开始沿边从点点中︒=∠∆的速度移动,与此同时,点Q 从点B 开始沿边BC 向点C 以scm 2的速度移动。
如果P 、Q 分别从A 、B 同时出发,经过几秒,PBQ ∆的面积等于28cm14、如图,用同样规格黑白两色的正方形瓷砖铺设长方形地面,请观察下列图形,并解答有关问题:(1)设铺设地面所用瓷砖的总块数为y ,请写出y 与n (表示第n 个图形)的关系式; (2)上述铺设方案,铺一块这样的长方形地面共用了506块瓷砖,求此时n 的值; (3)黑瓷砖每块4元,白瓷砖每块3元,在问题(2)中,共需要花多少钱购买瓷砖 (4)否存在黑瓷砖与白瓷砖块数相等的情形请通过计算加以说明。