【北师大版初三数学】第1讲:三角形的证明-教案
最新北师大版初中数学九年级上册4.5相似三角形判定定理的证明1公开课教学设计
*4.5 相似三角形判定定理的证明1.会证明相似三角形判定定理;(重点)2.运用相似三角形的判定定理解决相关问题.(难点)一、情景导入相似三角形的判定方法有哪些?答:(1)两角对应相等,两三角形相似;(2)两边对应成比例且夹角相等,两三角形相似;(3)三边对应成比例,两三角形相似.怎样证明这些结论呢?二、合作探究探究点:相似三角形的判定定理【类型一】根据条件判定三角形相似如图所示,给出以下条件:①∠B=∠ACD;②∠ADC=∠ACB;③ACCD =ABBC;④AC2=AD·AB.其中能单独判定△ABC∽△ACD的个数为()A.1B.2C.3D.4解析:在图中已知两个三角形有一对公共角,只要再找一对角相等,或夹公共角的两组对应边成比例即可判定两个三角形相似.题中有三个条件可以单独判定△ABC∽△ACD,分别是①②④.①②是根据有两组角分别对应相等的两个三角形相似来判定的;④是根据两组对应边成比例且夹角相等的两个三角形相似来判定;③虽然两边对应成比例,但不能得到其夹角相等,所以不能判定两个三角形相似.故选C.方法总结:利用两边分别对应成比例且夹角相等的方法判定两个三角形相似时,一定要注意必须是对应成比例的两边的夹角相等,若不是夹角相等,则不能判定这两个三角形相似.【类型二】 探索三角形相似的条件如图,已知AB ⊥BD ,CD ⊥BD . (1)若AB =9,CD =4,BD =10,请问在BD 上是否存在点P ,使以P 、A 、B 三点为顶点的三角形与以P 、C 、D 三点为顶点的三角形相似?若存在,求BP 的长;若不存在,请说明理由;(2)若AB =9,CD =4,BD =12,请问在BD 上存在多少个点P ,使以P 、A 、B 三点为顶点的三角形与以P 、C 、D 三点为顶点的三角形相似?并求BP 的长;(3)若AB =9,CD =4,BD =15,请问在BD 上存在多少个点P ,使以P 、A 、B 三点为顶点的三角形与以P 、C 、D 三点为顶点的三角形相似?并求BP 的长;(4)若AB =m ,CD =n ,BD =l ,请问在m 、n 、l 满足什么关系时,存在以P 、A 、B 三点为顶点的三角形与以P 、C 、D 三点为顶点的三角形相似的一个点P ?两个点P ?三个点P ?解:(1)设BP =x ,则DP =10-x .若△ABP ∽△CDP ,则AB CD =BP DP ,即94=x 10-x,解得x =9013;若△ABP ∽△PDC ,则AB PD =BP CD ,即910-x=x 4,此时方程无解.综上,存在这样的点P ,此时BP=9013; (2)设BP =x ,则DP =12-x .若△ABP ∽△CDP ,则AB CD =BP DP ,即94=x 12-x,解得x =10813;若△ABP ∽△PDC ,则AB PD =BP CD ,即912-x =x 4,解得x =6.综上所述,存在两个这样的点P ,此时BP =6或10813; (3)设BP =x ,则DP =15-x . 若△ABP ∽△CDP ,则AB CD =BP DP ,即94=x 15-x,解得x =13513;若△ABP∽△PDC,则ABPD=BPCD,即915-x=x4,解得x=3或12.综上所述,存在三个这样的点,此时BP=13513,3或12;(4)设BP=x,则DP=l-x.若△ABP∽△CDP,则ABCD=BPDP,即mn=xl-x,解得x=mlm+n;若△ABP∽△PDC,则ABPD=BPCD,即ml-x=xn,得方程x2-lx+mn=0,Δ=l2-4mn.当Δ=l2-4mn<0时,存在以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似的一个点P;当Δ=l2-4mn=0时,存在以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似的两个点P;当Δ=l2-4mn>0时,存在以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似的三个点P.方法总结:由于相似情况不明确,因此要分两种情况讨论,注意要找准对应边.三、板书设计相似三角形判定定理的证明⎩⎨⎧判定定理1判定定理2判定定理3本课主要是证明相似三角形判定定理,以学生的自主探究为主,鼓励学生独立思考,多角度分析解决问题,总结常见的辅助线添加方法,使学生的推理能力和几何思维都获得提高,培养学生的探索精神和合作意识.。
北师大版初中九年级数学上册-《直角三角形》第1课时教案
式会觉得自己的命题和。同学的构成一组,
3.提取学生回答中的合理性成分,总结归 但和真正的“反面”命题一比,又觉得自己
纳,然后提问拿 A 类卡片的学生:你是如 的命题不太像,原因可能不清楚。
何判断 b 是否和你在同一组?
5.总结概括互逆命题、互逆定理的含义,
4.肯定学生的认识,提问拿 B 类卡片的但 除个别之外,对含义的理解基本正确。
直角三角形的性质和判定定理
教学难点 勾股定理逆定理的证明方法。
教学内容及过程
教师活动
学生活动
一、勾股定理
1.让学生到黑板上画出他们观察到的生活 1.踊跃地到黑板上画出自己收集到的直角
中的直角三角形,并分别说出它们的作用 三角形,并说出它们的用处。
在哪里。
2.高度评价学生的参与热情和学习成果, 2.受到老师的表扬和鼓励,很有成就感,
的同学 b。b 要自己主动站起来,并说出自 出现两位学生与同一位学生组对的情况,这
己卡片上的命题是什么,由学生 a 来判断 时候不光是。同学,其他同学也会积极地判
他(她)和自己是否在一组。(注意:A、B 类 断到底谁是谁非。
卡片上的内容要出现适量的不能构成互逆
命题、互逆定理的例子,但不能太多。这
样既有利于学生分析、辨别互逆命题、互 2.回答老师的问题,也许不会说的很清楚,
逆定理,又有利于他们从正例中归纳、总 但有感性的认识,如:会觉得那个命题的反
结出互逆命题、互逆定理的内涵)。
面就是自己手里命题的意思。
2.对学生的表现予以表扬、肯定和鼓励。 3.在老师的总结之后,会说得比较理性一
然后提问拿 B 卡片的找到组的学生:你是 些,但还是不能给出严谨的说明。4.刚开
如何判断和谁在一组的?
第一章 证明(二)教案集体备课_北师大版_初三_九年级 §1、2直角三角形(2)
九年级数学教案主备人:雷志学§1、2直角三角形(2)教学目标:1、进一步掌握推理证明的方法,发展演绎推理能力。
2、能够证明直角三角形全等的“HL ”判定定理既解决实际问题。
重点:能够证明直角三角形全等的“HL ”判定定理。
并且用纸解决问题。
难点:证明“HL ”定理的思路的探究和分析。
-教学过程:一、 复习提问1判断两个三角形全等的方法有哪几种?2、有两边及其中一边的对角对应相等的两个三角形全等吗?如果其中一个角是直角呢?请证明你的结论。
(思考交流引导学生分析证明思路,写出证明过程)二、 阅读课本23页学习目标:能够证明直角三角形全等的“HL ”判定定理。
问题1,此定理适用于什么样的三角形?(适用于直角三角形)2、判定直角三角形的方法有哪些,分别说出?(HL,SAS,ASA,AAS,SSS.先考虑HL,在考虑另外四种方法。
) 三、 做一做如图利用刻度尺和三角板,能否做出这个角的角平分线?并证明。
(设计做一做的目的为了让学生体会数学结论在实际中的应用,教学中就要求学生能用数学的语言清楚地表达自己的想法,并能按要求将推理证明过程写出来。
)AO B四、练习 随堂练习P24--11、 锐角对应相等的两个直角三角形全等。
2、 斜边及一锐角对应相等的两个直角三角形全等。
3、 两条直角边对应相等的两个直角三角形全等。
4、 一条直角边和另一条直角边上的中线队以相等的两个直角三角形全等。
五、议一议如图:已知∠ACB=∠BDA=90。
要使 ⊿ACB ≌⊿BDA ,还需要什么条件?把他们写出来,并说明理由。
(教学中给予学生时间和空间,鼓励学生积极思考,并在独立思考的基础上, 通过交流,获得不同的答案,并将一种方法写出证明过程。
)六、 小结:1、本节课学习了哪些知识?2、还有那一些方面的收获?七、作业:1、基础作业:P23页习题1.5 1、2。
2、拓展作业:《目标检测》3、预习作业: 预习:线段的垂直平分线。
北师大版八年级数学下册第一章三角形的证明1.1.4等边三角形判定优秀教学案例
(二)过程与方法
在教学过程中,我期望学生能够通过自主学习、合作交流和探究实践等方法,提高他们的数学思维能力和问题解决能力。具体来说,学生需要能够:
1.通过自主学习,理解等边三角形的定义和性质,掌握等边三角形的判定方法;
2.通过合作交流,与同伴分享自己的学习心得和方法,互相学习和借鉴;
3.通过探究实践,运用等边三角形的性质和判定方法解决相关的数学问题,提高问题解决能力。
(三)情感态度与价值观
在教学过程中,我期望学生能够培Байду номын сангаас对数学学科的兴趣和自信心,形成积极的情感态度和价值观。具体来说,学生需要能够:
1.积极参与课堂活动,主动提出问题和解答问题,展现自己的学习热情;
2.克服学习中的困难和挫折,保持自信心,相信自己能够掌握等边三角形的知识;
3.小组合作:教师鼓励学生进行小组合作,共同解决问题和完成任务。在小组合作的过程中,学生能够相互交流和借鉴,共同提高解决问题的能力。同时,小组合作也能够培养学生的团队合作意识和沟通能力。
四、教学内容与过程
(一)导入新课
在导入新课时,我会利用多媒体展示一些生活中常见的等边三角形的图片,如金字塔、钻石等,让学生观察并思考这些实物中是否存在等边三角形。通过这样的导入方式,学生能够直观地感受到等边三角形的存在,激发他们对等边三角形的学习兴趣。接着,我会提出问题:“等边三角形有哪些特殊的性质?”让学生思考和讨论,引发他们对等边三角形的好奇心。
北师大版八年级数学下册第一章三角形的证明1.1.4等边三角形判定优秀教学案例
一、案例背景
在八年级数学下册的北师大版教材中,第一章是关于三角形的内容,其中1.1.4节介绍了等边三角形的判定。这一节内容是学生在学习了三角形的基本概念和性质之后,进一步深化对三角形认识的重要环节。对于八年级的学生来说,他们已经掌握了三角形的基本知识,但对于等边三角形的判定,他们可能还存在着一些模糊的认识。因此,在这一节课上,我作为教师,需要以学生已有的知识为基础,通过有效的教学方法,帮助他们理解和掌握等边三角形的判定方法,提高他们的数学思维能力。同时,我还需要关注学生的个体差异,充分调动他们的学习积极性,使他们在课堂上能够主动参与,提高教学效果。
2019秋北师大版九年级上册教案:4.5相似三角形判定定理的证明
今天的学习,我们了解了相似三角形的基本概念、相似判定定理的重要性和应用。同时,我们也通过实践活动和小组讨论加深了对相似三角形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
今天我们在课堂上一起探讨了相似三角形判定定理的证明,回顾整个教学过程,我觉得有几个方面值得反思。
1.讨论主题:学生将围绕“相似三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
最后,我觉得在课堂总结环节,可以让学生来参与总结,这样既能检验他们对知识点的掌握程度,也能培养他们的归纳总结能力。同时,针对学生的疑问,可以鼓励他们在课后继续探讨,培养他们自主学习的能力。
在接下来的课程中,我会根据今天的反思对教学方法进行调整,以期提高教学效果。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解相似三角形的基本概念。相似三角形是指形状相同但大小不同的两个三角形。它们在几何学中具有重要地位,可以帮助我们解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了相似三角形在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调AAA相似定理、AA相似定理及SAS相似定理这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
4.培养学生的合作交流意识,鼓励学生在学习过程中相互讨论、分享解题思路,提高团队协作能力。
北师大版八年级数学下册第一章三角形的证明全章教案
- AAS(角-角-边)全等定理
3.节:三角形的角平分线、中线、高线
-三角形角平分线的性质与判定
-三角形中线的性质与判定
-三角形高线的性质与判定
4.节:等腰三角形的性质与判定
-等腰三角形的底角相等
-等腰三角形的底边中线等于底边
-等腰三角形的顶角平分线、底边中线、底边高线互相重合
3.重点难点解析:在讲授过程中,我会特别强调全等三角形的SSS、SAS、ASA、AAS判定定理和等腰三角形的性质这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三角形证明相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示全等三角形判定定理的基本原理。
北师大版八年级数学下容
北师大版八年级数学下册第一章三角形的证明全章教案:
1.节:三角形的性质与判定
-三角形的内角和定理
-三角形的两边之和大于第三边
-三角形的两边之差小于第三边
2.节:全等三角形的判定
- SSS(边-边-边)全等定理
- SAS(边-角-边)全等定理
实践活动环节,学生们分组讨论和实验操作的过程较为顺利。但在成果展示环节,我发现部分学生表达不够清晰,逻辑推理能力有待提高。因此,在接下来的教学过程中,我将注重培养学生的表达能力和逻辑推理能力。
学生小组讨论环节,大家积极参与,气氛活跃。但在讨论过程中,我也发现了一些问题。例如,有些学生在讨论时容易偏离主题,讨论内容与三角形证明的实际应用关联性不强。针对这个问题,我将在今后的教学中加强对学生的引导,确保讨论内容紧扣主题。
初三数学教案-九年级数学第一章证明北师大版 精品
第一章证明(二)复习(一)一、复习目标回顾本章的主要内容,特殊三角形的判定和性质,命题的逆命题及其真假,线段的垂直平分线、角平分线的尺规作图及性质,理顺这些重要知识点。
二、知识回顾提问:(1)与等腰三角形、等边三角形的有关结论。
答:①定理:等腰三角形的两个底角相等;②推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合;③定理:有两个角相等的三角形是等腰三角形(等角对等边);④定理:有一个角等于60的等腰三角形是等边三等边;⑤推论:三个角都相等的三角形是等边三角形。
(2)与直角三角形有关的结论答:定理:直角三角形两条直角边的平方和等于斜边的平方;定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形;定理:斜边和一条直角边对应相等的两个直角三角形全等;定理:在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半;推论:在直角三角形中,如果一个直角边等于斜边的一半,那么这条直角边所对的锐角等于30。
(3)判定两个三角形全等的方法答:ASA AAS SAS SSS HL(在直角三角形中)(4)与线段的垂直平分线有关的结论答:定理:线段的垂直平分线上的点到这条线段两个端点的距离相等;定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;定理:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等;(5)与角平分线有关的结论答:定理:角平分线上的点到这个角的两边的距离相等;定理:在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上;定理:三角形的三条角平分线相交于一点,并且边一点到三条边的距离相等。
三、例题讲解例1 已知点D、E、F分别是中AB、AC、BC上的点,且DE∥BC,EF∥AB,求证:∠B=∠DEF例2,已知△ABC中,AB=AC,BE与CD相交于点O,OB=OC.求证: (1)OD=OE;(2)AD=AE例3如图,D、E是△ABC中BC边上两点,(1)若已知AD=AE,要得到△ABE≌△ACD还补充一个条件(写出各种补充的情况);(2)若已知AB=AC,AD=AE,可证得哪几对三角形全等例4已知△ABC中,AB=AC,AB垂直平分线交AC于点E,已知△BCE的周长是16,AC -BC=4,求△ABC的周长。
北师大版八年级数学下册第一章三角形的证明1.1等腰三角形优秀教学案例
一、案例背景
北师大版八年级数学下册第一章三角形的证明1.1等腰三角形优秀教学案例,是基于学生在学习三角形的基本概念和性质后,进一步探究等腰三角形的特殊性质和判定方法。本节课的主要内容是引导学生通过观察、操作、猜想、验证等过程,掌握等腰三角形的性质,并能运用性质判定等腰三角形。
2.问题情境:设计一系列有关等腰三角形的问题,引导学生思考和探究,例如“为什么金字塔的形状能够稳定?”“等腰三角形的两边是否相等?”等。
3.操作情境:提供实物或模型,让学生观察和操作,例如等腰三角形的模型、剪刀等,引导学生发现等腰三角形的性质。
(二)问题导向
1.设计一系列问题,引导学生思考和探究等腰三角形的性质,例如“等腰三角形的两边是否相等?为什么?”、“等腰三角形的底角是否相等?为什么?”等。
5.作业小结的设计:通过布置具有实践性和创新性的作业,让学生在巩固所学知识的同时,提高解决问题的能力和创新思维。
3.引导学生学会倾听、理解和尊重他人的观点,提高学生的人际沟通能力和协作能力。
(四)反思与评价
1.引导学生对自己的学习过程进行反思,例如“我在探究等腰三角形性质的过程中,遇到了哪些问题?是如何解决的?”等。
2.组织学生进行自我评价和小组评价,让学生认识到自己的优点和不足,提高学生的自我认知能力和自我调节能力。
2.学生在小组合作、讨论交流的过程中,培养尊重他人、倾听他人、理解他人的品质,提高人际沟通能力。
3.学生通过解决实际问题,感受到数学在生活中的重要性,增强学习的自信心和自尊心。
三、教学策略
(一)情景创设
1.生活情境:以实际生活中的等腰三角形为情境,例如金字塔、自行车座等,引发学生对等腰三角形的关注,激发学生的学习兴趣。
第1章证明(二)全章教案(北师大版初中九年级数学)
第一章证明(二)(课时安排)1.你能证明它们吗?3课时2.直角三角形2课时3.线段的垂直平分线2课时4.角平分线1课时1.你能证明它们吗?(一)教学目标:知识与技能目标:1.了解作为证明基础的几条公理的内容。
2.掌握证明的基本步骤和书写格式.过程与方法1.经历“探索——发现——猜想——证明”的过程。
2.能够用综合法证明等区三角形的有关性质定理。
情感态度与价值观1.启发、引导学生体会探索结论和证明结论,即合情推理与演绎推理的相互依赖和相互补充的辩证关系.2.培养学生合作交流、独立思考的良好学习习惯.重点、难点、关键1.重点:探索证明的思路与方法。
能运用综合法证明问题.2.难点:探究问题的证明思路及方法.3.关键:结合实际事例,采用综合分析的方法寻找证明的思路.教学过程:一、议一议:1.还记得我们探索过的等腰三角形的性质吗?2.你能利用已有的公理和定理证明这些结论吗?给出公理和定理:1.等腰三角形两腰相等,两个底角相等。
60延伸.2.等边三角形三边相等,三个角都相等,并且每个角都等于二、回忆上学期学过的公理1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;2.两条平行线被第三条直线所截,同位角相等;3.两边夹角对应相等的两个三角形全等;(SAS)4.两角及其夹边对应相等的两个三角形全等;(ASA)5.三边对应相等的两个三角形全等;(SSS)6.全等三角形的对应边相等,对应角相等.三、推论 两角及其中一角的对边对应相等的两个三角形全等。
(AAS )证明过程:已知:∠A=∠D,∠B=∠E,BC=EF 求证:△ABC ≌△DEF证明:∵∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形内角和等于180°)∴∠C=180°-(∠A+∠B) ∠F=180°-(∠D+∠E)又∵∠A=∠D,∠B=∠E (已知) ∴∠C=∠F又∵BC=EF (已知)∴△ABC ≌△DEF (ASA )推论 等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合。
北师大版初中数学:《直角三角形(第一课时)》教案
直角三角形(第一课时)教学目标:1、进一步掌握推理证明的方法,发展演绎推理能力。
2、了解勾股定理及其逆定理的证明方未能,能够证明直角三角形全等的“HL”判定定理。
3、结合具体例子了解逆命题的概念,会识别两个互逆命题,知道原命题成立其逆命题不一定成立。
教学过程:引入:我们曾经利用数方格和割补图形的方未能得到了勾股定理。
实际上,利用公理及其推导出的定理,我们能够证明勾股定理。
定理:直角三角形两条直角边的平方和等于斜边的平方。
如图,在△ABC中,∠C=90°,BC=a,AC=b,AB=c,延长CB 至点D ,使BD=b ,作∠EBD=∠A ,并取BE=c ,连接ED 、AE ,则△ABC ≌△BED 。
∴∠BDE=90°,ED=a (全等三角形的对应角相等,对应边相等)。
∴四边形ACDE 是直角梯形。
∴S 梯形ACDE =12 (a+b)(a-b)= 12(a+b)2 ∴∠ABE=180°-∠ABC-∠EBD=180°- 90°=90°AB=BE∴S △ABC = 12c 2 ∵S 梯形ACDE = S △ABE +S △ABC + S △BED ,∴12 (a+b)2=12 c 2+12 ab+12ab 即12 a 2+ab+12 b 2=12 c 2+12 ab+12 ab ∴a 2+b 2=c 2反过来,在一个三角形中,当两边的平方和等于第三边的平方时,我们曾用度量的方法得出“这个三角形是直角三角形”的结论,你能证明这个结论吗?已知:如图,在△ABC ,AB 2+AC 2=BC 2,求证:△ABC 是直角三角形。
证明:作出Rt △A ’B ’C ’,使∠A=90°,A ’B ’=AB ,A ’C ’=AC ,则A ’B ’2+A ’C ’2=B ’C ’2 (勾股定理)∵AB 2+AC 2=BC 2 ,A ’B ’=AB ,A ’C ’=AC ,∴BC 2= B ’C ’2∴BC=B ’C ’∴△ABC ≌△A ’B ’C ’ (SSS)∴∠A=∠A ’=90°(全等三角形的对应角相等)因此,△ABC 是直角三角形。
新北师大版八下数学第一章三角形的证明教案
新北师大版八下数学第一章三角形的证明教案教学目标:1.理解三角形的定义,掌握三角形分类的方法。
2.掌握使用三角形的基本性质进行三角形的证明。
3.培养学生的逻辑思维和推理能力。
教学重点:1.理解三角形的定义,掌握三角形分类的方法。
2.使用三角形的基本性质进行三角形的证明。
教学难点:使用三角形的基本性质进行三角形的证明。
教学过程:一、导入(10分钟)1.师生互动:提问学生对三角形的定义和分类的了解。
2.引入新知:向学生介绍本课的学习内容,即三角形的证明。
二、讲解与示范(20分钟)1.讲解三角形的定义和分类的方法,并通过图示进行解释。
2.讲解三角形的基本性质(如角的度数和等于180度等)。
3.示范使用三角形的基本性质进行三角形的证明。
三、练习与训练(30分钟)1.学生个别或分组完成教材上的练习题,巩固理论知识。
2.学生在小组内互相出题,进行三角形证明的练习。
四、展示与评价(15分钟)1.学生展示自己的练习成果,分享自己的解题思路。
2.教师评价学生的表现,指出不足之处并给予指导。
五、拓展与应用(15分钟)1.针对一些高阶问题进行拓展,引导学生思考和推理。
2.学生在小组内或以个体形式,解答拓展问题。
六、总结与归纳(10分钟)1.学生和教师一起总结本节课所学的内容,梳理知识点。
2.教师对本节课的教学进行总结,并提醒学生下节课的学习安排。
教学资源:1.新北师大版八年级数学教材。
2.黑板、彩色粉笔、投影仪等教学工具。
教学延伸:本节课主要讲解了三角形的定义和分类,并引导学生使用三角形的基本性质进行三角形的证明。
在教学过程中,教师可以使用多媒体教学、思维导图等方式,增加学生的参与度和理解能力。
同时,教师还可以设计一些趣味性的活动,激发学生的学习兴趣和求知欲。
第一章 证明(二)教案集体备课_北师大版_初三_九年级 §1.2 直角三角形
九年级数学教案主备人:雷志学§1.2 直角三角形教学目标:1、了解勾股定理逆定理的证明方法教学重点、难点:进一步掌握演绎推理的方法。
教学过程:一、温故知新二、新你记得勾股定理的内容吗?你曾经用什么方法得到了勾股定理?(由学生回顾得出勾股定理的内容。
)定理:直角三角形两条直角边的平方和等于斜边的平方。
二问题情境:在一个三角形中,当两边的平方和等于第三边的平方时,我们曾用度量的方法得出“这个三角形是直角三角形”的结论,你能证明这个结论吗?阅读课本16,17,18学习目标1了解勾股定理逆定理的证明方法已知:在ΔABC中,AB2+AC2=BC2求证:ΔABC是直角三角形a)(!)(2)A B C A1B2 C1(讲解证明思路及证明过程,引导学生领会证明思路及证明过程,得出结论。
)结论:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
2、议一议:如果两个角是对顶角,那么它们相等。
如果两个角相等,那么它们是对顶角。
如果小明患了肺炎,那么他一定会发烧。
如果小明发烧,那么他一定患了肺炎。
三角形中相等的边所对的角相等。
三角形中相等的角所对的边相等。
4、练习:(1)试着举出一些其它的例子。
(2)随堂练习 15、读一读“勾股定理的证明”的阅读材料。
6、课堂小结:本节课你都掌握了哪些内容?(引导学生归纳总结,互逆定理的定义及相互间的关系。
)1、作业1、基础作业:P20页习题1.4 1、2、3。
2、拓展作业:《目标检测》3、预习作业:P21-22页做一做板书设计:教后记:。
北师大版九年级数学上册《直角三角形》证明PPT课件
驶向胜利 的彼岸
第七页,共十九页。
我能行 4
命题的证明
定理:在直角三角形中, 如果有一个锐角等于300, A 那么它所对的直角边等于斜边的一半.
已知:如图,在△ABC中,∠ACB=900,∠A=300.
300
求证:BC= 1AB.
证明:如图,2 延长BC至D,使CD=BC,连接AD.
在△ABC中,∵∠ACB=900,∠A=300(已知), B
求证:∠A=300.
300
BC
驶向胜利 的彼岸
第十三页,共十九页。
心动 不如行动
反过来怎么样—
—逆向思维
证明:如图, 延长BC至D,使CD=BC,连接AD.
在△ABD中,∵∠ACB=900(已知),
∴AB=AD(线段垂直平分线上的点到线段两端的
距离相等).
又∵BC=AB/2(已知),
解:∵∠B=∠ACB=150(已知),
∴∠DAC=∠B+∠ACB= 150+150=300(三角形的一个外角,等于
和不相邻的两内角的和).
∴CD= 1AC= 1×2a=a(在直角三角形中, 如果有一个锐角等
于300,2那么它2 所对的直角边等于斜边的一半).
这里有一个化归的数学思想——即把 问题转化为一个纯数学问题.
A 300
C
这又是一个判定两条线段成倍分关 系的根据之一.
第九页,共十九页。
驶向胜利 的彼岸
例题欣赏1
学无止境
例2.已知:如图,等腰三角形的底角为150,腰长为2a. 求:腰上的高.
分析:如图,在△ABC中
AB=AC=2a,∠B=∠ACB=150,C
A
D⊥AB于D.
求:CD=?
北师大下数学教案第一章三角形的证明
第一章三角形的证明 §1.1等腰三角形一、学习目标:1.经历探索等腰三角形性质的过程. 2.等腰三角形的“三线合一”3. 会利用等腰三角形的“三线合一”进行相关的线段相等和角相等。
二、学习重点:等腰三角形的“三线合一”。
三、学习难点“三线合一”的应用。
四、教具:多媒体课件、小黑板、彩粉笔、三角板等 五、预习作业(1)回忆前面研究过的全等三角形的判定.(SSS ASA AAS SAS ) (2)预习课本P.1-6。
六、学习新知识[例1]如图,1、如图,△ABC 中 AB=AC , D 为BC 中点求证:①△ABD ≌△ACD . ②∠BAD=∠CAD③AD ⊥BC证明:变式训练:如图,已知AC=FE 、BC=DE ,点A 、D 、B 、F 在一条直线上,AD=FB .要用“边边边”证明△ABC ≌△FDE ,除了已知中的AC=FE ,BC=DE 以外,还应该有什么条件?怎样才能得到这个条件?例2、如图,已知AB=CD ,AC=BD ,求证:∠A=∠D七、拓展延伸1、如图,AC 与BD 交于点O ,AD=CB ,E 、F 是BD 上两点,且AE=CF ,DE=BF.F DCBEA请推导下列结论:(1)∠D=∠B ;(2)AE ∥CF .2、已知如图,A 、E 、F 、C 四点共线,BF=DE ,AB=CD.⑴请你添加一个条件,使△DEC ≌△BFA ; ⑵在⑴的基础上,求证:DE ∥BF.3、 已知:AB =AC, D 为△ABC 内部一点, 且BD = CD, 连接AD 并延长,交BC 于点E. 试找出图中的一对全等的三角形,并证明你的结论。
八、小结:1、证明三角形全等的一般步骤:①把非直接条件(公共边、公共角、对顶角,平行线,平行四边形等图形中的隐含条件)转化为直接条件(三角形中的对应相等的边或角)②在△与△中 ∵⎩⎨⎧∴△≌△2、证明不在同一个三角形中的边与角相等时,不要忘记证它们所在的三角形全等 九、作业布置:1、预习定理:“有两个班角相等的三角形是等腰三角形”。
北师大版九年级数学上册《相似三角形判定定理的证明》说课稿
北师大版九年级数学上册《相似三角形判定定理的证明》说课稿一、教学目标本节课的主要教学目标如下:1.了解相似三角形的定义和性质;2.理解相似三角形判定定理的证明过程;3.熟练运用相似三角形判定定理进行问题求解。
二、教学重点•掌握相似三角形判定定理的证明过程;•提高运用相似三角形判定定理解决问题的能力。
三、教学内容1. 相似三角形的定义和性质复习在开始证明相似三角形判定定理之前,首先进行相似三角形的定义和性质的复习。
教师可以通过提问的方式,引导学生回顾相似三角形的性质,如边比例相等、对应角相等等。
2. 相似三角形判定定理的引入将学生回顾的相似三角形的性质与相似三角形判定定理进行对比,引导学生思考判定相似三角形的依据。
3. 相似三角形判定定理的证明过程步骤一:构造引导学生通过观察图形,找到两个相似的三角形,并用点线表示出来。
步骤二:假设假设两个三角形为△ABC和△DEF,且满足相似的条件。
步骤三:证明3.1 首先,通过观察,发现△ABC与△DEF的一个角相等,假设为∠A = ∠D。
3.2 其次,再观察,发现△ABC与△DEF的另外两个角也相等,假设为∠B = ∠E和∠C = ∠F。
3.3 接着,根据相似三角形的定义,我们知道相似三角形的对应边的比例应该相等。
所以我们需要比较△ABC与△DEF 的对应边的比例是否相等。
3.3.1 比较△ABC中的边与△DEF中的边的比例:•比较边AB与边DE的比例,假设为AB/DE = m;•比较边AC与边DF的比例,假设为AC/DF = n。
3.3.2 根据对应边比例相等的定义,我们可以得到以下等式:•AB/DE = AC/DF = m/n。
3.4 根据前面的步骤,我们已经得出了三个角相等和对应边比例相等的结论,根据相似三角形的定义,△ABC与△DEF 是相似的。
步骤四:证明结束通过以上的证明过程,我们可以得出相似三角形判定定理的结论。
4. 相似三角形判定定理的应用通过解决实际问题的例子,引导学生灵活运用相似三角形判定定理解决问题。
北师大版八年级数学下册第一章三角形的证明1.2.1直角三角形优秀教学案例
1.激发学生对数学学习的兴趣,培养他们勇于探索、克服困难的志品质。
2.使学生感受到数学与生活的紧密联系,体会数学学习的实用价值,增强学生的数学应用意识。
3.培养学生的空间观念,提高他们对几何图形的审美能力,丰富学生的数学情感。
4.引导学生树立正确的价值观,认识到数学学习对人的一生发展的重要意义,激发学生追求卓越的信念。
(四)反思与评价
1.鼓励学生在学习过程中进行自我反思,总结自己的学习方法和经验,提高学生的学习策略。
2.教师对学生的学习过程和结果进行评价,关注学生的知识掌握、技能提升和情感态度,给予针对性的指导和鼓励。
3.组织学生互评,让学生学会欣赏他人的优点,发现自身的不足,促进学生的共同成长。
4.定期进行教学反思,根据学生的反馈调整教学策略,提高教学效果,确保每一位学生都能在直角三角形的学习中获得成功体验。
二、教学目标
(一)知识与技能
1.让学生掌握直角三角形的定义及性质,理解直角三角形的判定方法,并能运用相关知识解决实际问题。
2.培养学生运用几何图形、符号、公式等进行逻辑推理的能力,提高学生解决直角三角形相关问题的技能。
3.使学生能够运用直角三角形的性质,解决生活中的实际问题,如测量距离、计算面积等,增强学生的数学应用意识。
3.结合课本例题,设计富有挑战性的问题,引导学生主动探究直角三角形的性质与证明方法,培养学生的空间想象能力和逻辑推理能力。
(二)问题导向
1.以问题驱动教学,设计具有启发性的问题,引导学生思考直角三角形的性质及判定方法,培养学生的问题解决能力。
2.将问题分解为若干小问题,逐步引导学生深入探讨,帮助学生建立完整的知识体系。
(二)过程与方法
1.通过小组合作、讨论交流等方式,培养学生主动探究、发现问题的能力,提高学生的团队协作能力。
北师大九年级数学上4.5相似三角形判定定理的证明导学案教案 相似三角形判定定理的证明1
3.5相似三角形判定定理的证明(1)制作人:陈欣班级姓名2015年10月日教学目标①了解相似三角形判定定理,②会证明相似三角形判定定理。
重点三角形判定定理的证明,难点证明过程中辅助线的添加,一.复习提问相似三角形的判定方法有哪些?(1),两三角形相似.(2),两三角形相似.(3),两三角形相似.二.探究学习,得出新知探究1已知:如图,在△ABC和△A’B’C’中,∠A=∠A’,∠B=∠B’。
求证: △ABC∽△A’B’C’。
探究2已知:如图,在△ABC和△A1B1C1中,∠A=∠A1,求证:△ABC∽△A1B1C1.1111CAAC BAAB探究3已知:如图,在△ABC和△A1B1C1中,求证:△ABC∽△A1B1C1三巩固提高例1.判断题:1.所有的等边三角形都相似。
()2.所有的直角三角形都相似。
()3.所有的等腰三角形都相似。
()4.所有的等腰直三角形都相似。
()例2如图,要使△ABC与△DBA相似,则只需添加一个适当的条件是.(填一个即可)例3.在△ABC中,AB=6,AC=8,在△DEF中,DE=4,DF=3,要使△ABC与△DEF相似,需添加的一个条件是.(写出一种情况即可)例4已知:如图,在四边形ABCD中,∠B=∠ACD,AB=6,BC=4,AC=5,CD= 7.5 ,求AD的长.四作业一本通红本P31五小结(教学反思).111111CAACCBBCBAAB==。
九年级数学上册相似三角形判定定理的证明教案北师大
相似三角形判定定理的证明教学目标1.理解相似三角形三个判定定理的证明过程,加深对相似三角形的理解与认识2.应用相似三角形判定定理的证明解决有关问题重点理解相似三角形三个判定定理的证明过程,加深对相似三角形的理解与认识.难点应用相似三角形判定定理的证明解决有关问题.教学用具教学环节说明二次备课复习新课导入阅读教材P99~102,自学三个例题,完成下列内容:1.两角分别相等的两个三角形相似.2.两边成比例且夹角相等的两个三角形相似.3.三边成比例的两个三角形相似.课程讲授(一)知识探究(二)自学反馈下列图形中不一定相似的是( )A.各有一个角是45°的两个等腰三角形B.各有一个角是60°的两个等腰三角形C.各有一个角是110°的两个等腰三角形D.两个等腰直角三角形活动1 小组讨论例已知:如图,在△ABC和△A′B′C′中,∠A=∠A′,∠B=∠B′.求证:△ABC∽△A′B′C′.证明:在△ABC的边AB(或它的延长线)上截取AD=A′B′,过点D作BC的平行线,交AC于点E,则∠ADE=∠B,∠AED=∠C,ADAB=AEAC(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例).过点D作AC的平行线,交BC于点F,则ADAB=CFCB(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例).∴AE AC =CFCB .∵DE ∥BC ,DF ∥AC ,∴四边形DFCE 是平行四边形.∴DE =CF.∴AE AC =DECB .∴AD AB =AE AC =DEBC .而∠ADE =∠B ,∠DAE =∠BAC ,∠AED =∠C ,∴△ADE ∽△ABC.∵∠A =∠A ′,∠ADE =∠B =∠B ′,AD =A ′B ′,∴△A DE ≌△A ′B ′C ′.∴△ABC ∽△A ′B ′C ′.根据例题中的证明思路,思考:“两边成比例且夹角相等的两个三角形相似”和“三边成比例的两个三角形相似”该如何证明,三条定理的证明思路有相似之处,定理3的证明过程中,证明两三角形相似时要运用比例变换和等量代换,恒等变形的难度有所增加.活动2 跟踪训练1.在矩形ABCD 中,E 、F 分别是CD 、BC 上的点,若∠AEF =90°,则一定有( )A .△ADE ∽△AEFB .△ECF ∽△AEFC .△ADE ∽△ECFD .△AEF ∽△ABF2.如图,已知△ABC 中,P 为AB 上一点,在下列四个条件中:①∠ACP=∠B ;②∠APC =∠ACB ;③AC 2=AP ·AB ;④AB ·CP =AP ·CB.能满足△APC ∽△ACB 的条件是( )A .①②④B .①③④C .②③④D .①②③小结 1.相似三角形判定定理的证明(1)两角对应相等,两三角形相似.(2)三边对应成比例,两三角形相似.(3)两边对应成比例且夹角相等,两三角形相似. 2.相似三角形判定定理的应用中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.在如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A.B.C.D.【答案】D【解析】先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数图象的性质解答即可.【详解】由题意知,函数关系为一次函数y=-1x+4,由k=-1<0可知,y随x的增大而减小,且当x=0时,y=4,当y=0时,x=1.故选D.【点睛】本题考查学生对计算程序及函数性质的理解.根据计算程序可知此计算程序所反映的函数关系为一次函数y=-1x+4,然后根据一次函数的图象的性质求解.2.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“我”字的一面相对面上的字是()A.国B.厉C.害D.了【答案】A【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】∴有“我”字一面的相对面上的字是国.故答案选A.【点睛】本题考查的知识点是专题:正方体相对两个面上的文字,解题的关键是熟练的掌握正方体相对两个面上的文字.3.将一副三角板按如图方式摆放,∠1与∠2不一定互补的是()A.B.C.D.【答案】D【解析】A选项:∠1+∠2=360°-90°×2=180°;B选项:∵∠2+∠3=90°,∠3+∠4=90°,∴∠2=∠4,∵∠1+∠4=180°,∴∠1+∠2=180°;C选项:∵∠ABC=∠DEC=90°,∴AB∥DE,∴∠2=∠EFC,∵∠1+∠EFC=180°,∴∠1+∠2=180°;D选项:∠1和∠2不一定互补.故选D.点睛:本题主要掌握平行线的性质与判定定理,关键在于通过角度之间的转化得出∠1和∠2的互补关系.4.如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),⊙D过A、B、O三点,点C为AB 上一点(不与O、A两点重合),则cosC的值为()A.34B.35C.43D.45【答案】D【解析】如图,连接AB,由圆周角定理,得∠C=∠ABO,在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,∴4 cos cos5OBC ABOAB=∠==.故选D.5.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )A.CB=CD B.∠BCA=∠DCAC.∠BAC=∠DAC D.∠B=∠D=90°【答案】B【解析】由图形可知AC=AC,结合全等三角形的判定方法逐项判断即可.【详解】解:在△ABC和△ADC中∵AB=AD,AC=AC,∴当CB=CD时,满足SSS,可证明△ABC≌△ACD,故A可以;当∠BCA=∠DCA时,满足SSA,不能证明△ABC≌△ACD,故B不可以;当∠BAC=∠DAC时,满足SAS,可证明△ABC≌△ACD,故C可以;当∠B=∠D=90°时,满足HL,可证明△ABC≌△ACD,故D可以;故选:B.【点睛】本题考查了全等三角形的判定方法,熟练掌握判定定理是解题关键.6.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店()A.赚了10元B.赔了10元C.赚了50元D.不赔不赚【答案】A【解析】试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元.考点:一元一次方程的应用7.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF 的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1【答案】B【解析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【详解】∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:1.故选B.8.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为()A.10°B.20°C.25°D.30°【答案】C【解析】分析:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°.∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°.∵GH∥EF,∴∠2=∠AEC=25°.故选C.9.若x=-2 是关于x的一元二次方程x2-52ax+a2=0的一个根,则a的值为()A.1或4 B.-1或-4 C.-1或4 D.1或-4 【答案】B【解析】试题分析:把x=﹣2代入关于x的一元二次方程x2﹣52ax+a2=0即:4+5a+a2=0解得:a=-1或-4,故答案选B.考点:一元二次方程的解;一元二次方程的解法.10.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB,BD于M,N两点.若AM=2,则线段ON的长为( )A.22B.32C.1 D.62【答案】C【解析】作MH⊥AC于H,如图,根据正方形的性质得∠MAH=45°,则△AMH为等腰直角三角形,所以AH=MH=22AM=2,再根据角平分线性质得BM=MH=2,则AB=2+2,于是利用正方形的性质得到AC=2AB=22+2,OC=12AC=2+1,所以CH=AC-AH=2+2,然后证明△CON∽△CHM,再利用相似比可计算出ON的长.【详解】试题分析:作MH⊥AC于H,如图,∵四边形ABCD为正方形,∴∠MAH=45°,∴△AMH为等腰直角三角形,∴222∵CM平分∠ACB,∴2∴2∴2222,∴OC=122,CH=AC﹣222∵BD⊥AC,∴ON ∥MH ,∴△CON ∽△CHM , ∴ON OC MH CH =,即21222ON +=+, ∴ON=1.故选C .【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和正方形的性质.二、填空题(本题包括8个小题)11.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 度.【答案】360°.【解析】根据多边形的外角和等于360°解答即可.【详解】由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为360°.【点睛】本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.12.某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是 .【答案】10%.【解析】设平均每次降价的百分率为x ,那么第一次降价后的售价是原来的()1x -,那么第二次降价后的售价是原来的()21x -,根据题意列方程解答即可.【详解】设平均每次降价的百分率为x ,根据题意列方程得, ()2100181x ⨯-=,解得10.110%x ==,2 1.9x =(不符合题意,舍去),答:这个百分率是10%.故答案为10%.【点睛】本题考查一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为()21a x b ±=.13.我国明代数学家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚一人分3个,小和尚3人分1个,正好分完,试问大、小和尚各几人?设大、小和尚各有,人,则可以列方程组__________. 【答案】 【解析】根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程组即可.【详解】设大和尚x 人,小和尚y 人,由题意可得. 故答案为.【点睛】本题考查了由实际问题抽象出二元一次方程组,关键以和尚数和馒头数作为等量关系列出方程组. 14.如图,在四边形ABCD 中,∠B =∠D =90°,AB =3, BC =2,tanA =43,则CD =_____.【答案】65【解析】延长AD 和BC 交于点E ,在直角△ABE 中利用三角函数求得BE 的长,则EC 的长即可求得,然后在直角△CDE 中利用三角函数的定义求解.【详解】如图,延长AD 、BC 相交于点E ,∵∠B=90°, ∴4tan 3BE A AB ==, ∴BE=443AB ⋅=, ∴CE=BE-BC=2,225AB BE +=, ∴3sin 5AB E AE ==, 又∵∠CDE=∠CDA=90°,∴在Rt △CDE 中,sin CD E CE=, ∴CD=36sin 255CE E ⋅=⨯=. 15.如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是__________.【答案】k >-14且k≠1 【解析】由题意知,k≠1,方程有两个不相等的实数根,所以△>1,△=b 2-4ac=(2k+1)2-4k 2=4k+1>1.又∵方程是一元二次方程,∴k≠1,∴k >-1/4 且k≠1.16.观察以下一列数:3,54,79,916,1125,…则第20个数是_____.【答案】41400【解析】观察已知数列得到一般性规律,写出第20个数即可. 【详解】解:观察数列得:第n 个数为221n n +,则第20个数是41400. 故答案为41400. 【点睛】本题考查了规律型:数字的变化类,弄清题中的规律是解答本题的关键.17.一个不透明的盒子里有n 个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数是_______.【答案】1【解析】根据利用频率估计概率得到摸到黄球的概率为1%,然后根据概率公式计算n 的值. 【详解】解:根据题意得9n=1%, 解得n =1,所以这个不透明的盒子里大约有1个除颜色外其他完全相同的小球.故答案为1.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率. 18.不等式组34012412x x +≥⎧⎪⎨-≤⎪⎩的所有整数解的积为__________. 【答案】1 【解析】解:34012412x x +≥⎧⎪⎨-≤⎪⎩①②, 解不等式①得:43x ≥-, 解不等式②得:50x ≤,∴不等式组的整数解为﹣1,1,1…51,所以所有整数解的积为1,故答案为1.【点睛】本题考查一元一次不等式组的整数解,准确计算是关键,难度不大.三、解答题(本题包括8个小题)19.某校计划购买篮球、排球共20个.购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.篮球和排球的单价各是多少元?若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.【答案】(1)篮球每个50元,排球每个30元. (2)满足题意的方案有三种:①购买篮球8个,排球12个;②购买篮球9,排球11个;③购买篮球2个,排球2个;方案①最省钱【解析】试题分析:(1)设篮球每个x 元,排球每个y 元,根据费用可得等量关系为:购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同,列方程求解即可;(2)不等关系为:购买足球和篮球的总费用不超过1元,列式求得解集后得到相应整数解,从而求解. 试题解析:解:(1)设篮球每个x 元,排球每个y 元,依题意,得:2319035x y x y +=⎧⎨=⎩解得5030x y =⎧⎨=⎩:. 答:篮球每个50元,排球每个30元.(2)设购买篮球m 个,则购买排球(20-m )个,依题意,得:50m+30(20-m )≤1.解得:m≤2.又∵m≥8,∴8≤m≤2.∵篮球的个数必须为整数,∴m 只能取8、9、2.∴满足题意的方案有三种:①购买篮球8个,排球12个,费用为760元;②购买篮球9,排球11个,费用为780元;③购买篮球2个,排球2个,费用为1元.以上三个方案中,方案①最省钱.点睛:本题主要考查了二元一次方程组及一元一次不等式的应用;得到相应总费用的关系式是解答本题的关键.20.如图:求作一点P ,使PM PN =,并且使点P 到AOB ∠的两边的距离相等.【答案】见解析【解析】利用角平分线的作法以及线段垂直平分线的作法分别得出进而求出其交点即可.【详解】如图所示:P点即为所求.【点睛】本题主要考查了复杂作图,熟练掌握角平分线以及线段垂直平分线的作法是解题的关键.21.在“传箴言”活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行了统计,并制成了如图所示的两幅不完整的统计图:求该班团员在这一个月内所发箴言的平均条数是多少?并将该条形统计图补充完整;如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学.现要从发了3条箴言和4条箴言的同学中分别选出一位参加该校团委组织的“箴言”活动总结会,请你用列表法或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.【答案】(1)3,补图详见解析;(2)7 12【解析】(1)总人数=3÷它所占全体团员的百分比;发4条的人数=总人数-其余人数(2)列举出所有情况,看恰好是一位男同学和一位女同学占总情况的多少即可【详解】由扇形图可以看到发箴言三条的有3名学生且占25%,故该班团员人数为:325%12÷=(人),则发4条箴言的人数为:1222314----=(人),所以本月该班团员所发的箴言共212233441536⨯+⨯+⨯+⨯+⨯=(条),则平均所发箴言的条数是:36123÷=(条).(2)画树形图如下:由树形图可得,所选两位同学恰好是一位男同学和一位女同学的概率为712 P=.【点睛】此题考查扇形统计图,条形统计图,列表法与树状图法和扇形统计图,看懂图中数据是解题关键22.已知:二次函数C1:y1=ax2+2ax+a﹣1(a≠0)把二次函数C1的表达式化成y=a(x﹣h)2+b(a≠0)的形式,并写出顶点坐标;已知二次函数C1的图象经过点A(﹣3,1).①求a的值;②点B在二次函数C1的图象上,点A,B关于对称轴对称,连接AB.二次函数C2:y2=kx2+kx(k≠0)的图象,与线段AB只有一个交点,求k的取值范围.【答案】(1)y1=a(x+1)2﹣1,顶点为(﹣1,﹣1);(2)①12;②k的取值范围是16≤k≤12或k=﹣1.【解析】(1)化成顶点式即可求得;(2)①把点A(﹣3,1)代入二次函数C1:y1=ax2+2ax+a﹣1即可求得a的值;②根据对称的性质得出B的坐标,然后分两种情况讨论即可求得;【详解】(1)y1=ax2+2ax+a﹣1=a(x+1)2﹣1,∴顶点为(﹣1,﹣1);(2)①∵二次函数C1的图象经过点A(﹣3,1),∴a(﹣3+1)2﹣1=1,∴a=12;②∵A(﹣3,1),对称轴为直线x=﹣1,∴B(1,1),当k>0时,二次函数C2:y2=kx2+kx(k≠0)的图象经过A(﹣3,1)时,1=9k﹣3k,解得k=16,二次函数C2:y2=kx2+kx(k≠0)的图象经过B(1,1)时,1=k+k,解得k=12,∴16≤k≤12,当k<0时,∵二次函数C2:y2=kx2+kx=k(x+12)2﹣14k,∴﹣14k=1,∴k=﹣1,综上,二次函数C2:y2=kx2+kx(k≠0)的图象,与线段AB只有一个交点,k的取值范围是16≤k≤12或k=﹣1.【点睛】本题考查了二次函数和系数的关系,二次函数的最值问题,轴对称的性质等,分类讨论是解题的关键. 23.如图,一次函数4y x =-+的图象与反比例函数k y x=(k 为常数,且0k ≠)的图象交于A (1,a )、B 两点. 求反比例函数的表达式及点B 的坐标;在x 轴上找一点P ,使PA+PB的值最小,求满足条件的点P 的坐标及△PAB 的面积.【答案】(1)3y x =,()3,1B ;(2)P 5,02⎛⎫ ⎪⎝⎭,32PAB S ∆=. 【解析】试题分析:(1)由点A 在一次函数图象上,结合一次函数解析式可求出点A 的坐标,再由点A 的坐标利用待定系数法即可求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B 坐标;(2)作点B 作关于x 轴的对称点D ,交x 轴于点C ,连接AD ,交x 轴于点P ,连接PB .由点B 、D 的对称性结合点B 的坐标找出点D 的坐标,设直线AD 的解析式为y=mx+n ,结合点A 、D 的坐标利用待定系数法求出直线AD 的解析式,令直线AD 的解析式中y=0求出点P 的坐标,再通过分割图形结合三角形的面积公式即可得出结论.试题解析:(1)把点A (1,a )代入一次函数y=-x+4,得:a=-1+4,解得:a=3,∴点A 的坐标为(1,3).把点A (1,3)代入反比例函数y=k x , 得:3=k ,∴反比例函数的表达式y=3x, 联立两个函数关系式成方程组得:4{3y x y x=-+=,解得:13xy,或31xy=⎧⎨=⎩,∴点B的坐标为(3,1).(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,连接PB,如图所示.∵点B、D关于x轴对称,点B的坐标为(3,1),∴点D的坐标为(3,- 1).设直线AD的解析式为y=mx+n,把A,D两点代入得:3{31 m nm n+=+=-,解得:2 {5mn=-=,∴直线AD的解析式为y=-2x+1.令y=-2x+1中y=0,则-2x+1=0,解得:x=52,∴点P的坐标为(52,0).S△PAB=S△ABD-S△PBD=12BD•(x B-x A)-12BD•(x B-x P)=12×[1-(-1)]×(3-1)-12×[1-(-1)]×(3-52)=32.考点:1.反比例函数与一次函数的交点问题;2.待定系数法求一次函数解析式;3.轴对称-最短路线问题.24.从一幢建筑大楼的两个观察点A,B观察地面的花坛(点C),测得俯角分别为15°和60°,如图,直线AB与地面垂直,AB=50米,试求出点B到点C的距离.(结果保留根号)【答案】(5005003)+ 【解析】试题分析:根据题意构建图形,结合图形,根据直角三角形的性质可求解.试题解析:作AD ⊥BC 于点D ,∵∠MBC=60°,∴∠ABC=30°,∵AB ⊥AN ,∴∠BAN=90°,∴∠BAC=105°,则∠ACB=45°,在Rt △ADB 中,AB=1000,则AD=500,BD=5003,在Rt △ADC 中,AD=500,CD=500, 则BC=5005003+.答:观察点B 到花坛C 的距离为(5005003)+米.考点:解直角三角形25.如图,在Rt △ABC 中,90ACB ∠=︒,过点C 的直线MN ∥AB ,D 为AB 边上一点,过点D 作DE ⊥BC ,交直线MN 于E ,垂足为F ,连接CD 、BE.求证:CE=AD ;当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明理由;若D 为AB 中点,则当A ∠=______时,四边形BECD 是正方形.【答案】(1)详见解析;(2)菱形;(3)当∠A=45°,四边形BECD 是正方形.【解析】(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;(3)求出∠CDB=90°,再根据正方形的判定推出即可.【详解】(1)∵DE⊥BC,∴∠DFP=90°,∵∠ACB=90°,∴∠DFB=∠ACB,∴DE//AC,∵MN//AB,∴四边形ADEC为平行四边形,∴CE=AD;(2)菱形,理由如下:在直角三角形ABC中,∵D为AB中点,∴BD=AD,∵CE=AD,∴BD=CE,∴MN//AB,∴BECD是平行四边形,∵∠ACB=90°,D是AB中点,∴BD=CD,(斜边中线等于斜边一半)∴四边形BECD是菱形;(3)若D为AB中点,则当∠A=45°时,四边形BECD是正方形,理由:∵∠A=45°,∠ACB=90°,∴∠ABC=45°,∵四边形BECD是菱形,∴DC=DB,∴∠DBC=∠DCB=45°,∴∠CDB=90°,∵四边形BECD是菱形,∴四边形BECD是正方形,故答案为45°.【点睛】本题考查了平行四边形的判定与性质,菱形的判定、正方形的判定,直角三角形斜边中线的性质等,综合性较强,熟练掌握和灵活运用相关知识是解题的关键.26.如图,已知▱ABCD.作∠B的平分线交AD于E点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识讲解:1.通过探索、猜测、计算、证明得到的定理:(1)与等腰三角形、等边三角形有关的结论:性质:等腰三角形的两个底角相等,即等边对等角;等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合;等腰三角形两底角的平分线相等,两条腰上的中线相等,两条腰上的高相等.等边三角形的三条边都相等,三个角都相等,并且每个角都等于60°;等边三角形的三条角平分线、三条中线、三条高互相相等.判定:有两个角相等的三角形是等腰三角形;有一个角是60°的等腰三角形是等边三角形;三个角都相等的三角形是等边三角形.(2)与直角三角形有关的结论:勾股定理的逆定理;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;斜边和一直角边对应相等的两个直角三角形全等.(HL)(3)与一般三角形有关的结论:在一个三角形中,两个角不相等,它们所对的边也不相等(用反证法证明).2.命题的逆命题及其真假:在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题.其中一个命题称为另一个命题的逆命题.一个命题是真命题,它的逆命题不一定是真命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理.其中一个定理称为另一个定理的逆定理.例如勾股定理及其逆定理.3.尺规作图线段垂直平分线的性质定理和判定定理;用尺规作线段的垂直平分线;已知底边和底边上的高,用尺规作等腰三角形角平分线的性质定理和判定定理;用尺规作已知角的平分线.课堂练习:考点一:等腰三角形【例题】 1、【14外国语期中】等腰三角形的一边为5另一边为9,这这个三角形的周长为()A.19 B.23 C .14 D.19或232、【14外国语月考】等腰三角形补充下列条件后,仍不一定成为等边三角形的是()A.有一个内角是600 B.有一个外角是1200C.有两个角相等 D.腰与底边相等3、【经开一中月考】将两个全等的有一个角为300的直角三角形拼成如图所示,其中两条直角边在同一直线上,则图中等腰三角形的个数是()A.4B.3C.2D.14、【14外国语月考】腰长为5,一条高为4的等腰三角形的底边长为。
5、【经开一中月考】一个等腰三角形有一角是700,则其余两角分别为。
6、【经开一中月考】等腰直角三角形一条边长是1cm,那么它斜边上的高是 cm.7、【经开一中月考】已知:如图AB=AC,DE∥AC求证:△DBE是等腰三角形。
8、【14外国语月考】如图,等边△ABC中,AO是BC边上的中线,D为AO上一点,以CD为一边且在CD 下方作等边△CDE,连结BE。
(1)求证:AD=BE(2)延长BE至Q,P为BQ 上一点,连结CP 、CQ 使CP=CQ=10,若BC=16时,求PQ的长。
9、【外国语月考】如图8,在△ABC 中,∠A=36°,AB=AC ,∠ABC 的平分线BE 交AC 于E . (1)求证:AE=BC ;(2)如图8(2),过点E 作EF ∥BD 交AB 于F,将△AEF 绕点A 逆时针旋转角α(0°<α<144°)得到△AE'F',连结CE',BF',求证:CE'=BF';(3)在(2)的旋转过程中是否存在CE'∥AB ?若存在,求出相应的旋转角α;若不存在,请说明理由【答案】1、D2.C3.B4.7052或5.700,400或550,5506.2221或 7.证明:∵AB=AC ∴∠B=∠C ∵DE ∥AC ∴∠C=∠DEB ∴∠B=∠DEB∴△DBE是等腰三角形8、(1)∵△ABC与△DCE是等边三角形,∴AC=BC,DC=EC,∠ACB=∠DCE=60°,∴∠ACD+∠DCB=∠ECB+∠DCB=60°,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS)∴AD=BE(2)129.【练习】1.如图,△ABC中,AB=AC,∠A=36°,BD、CE分别为∠ABC与∠ACB的角平分线,且相交于点F,则图中的等腰三角形有()A. 6个B. 7个C. 8个D. 9个A 36° E DFBC2.等腰三角形底边长为5cm ,一腰上的中线把其周长分为两部分的差为3cm ,则腰长为( ) A. 2cmB. 8cmC. 2cm 或8cmD. 以上都不对3.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )A . .12B ..15 C ..12或15D . .184、(2013年武汉)如图,△ABC 中,AB =AC ,∠A =36°,BD 是AC 边上的高,则∠DBC 的度数是( )A .18°B .24°C .30°D .36° 5.在平面直角坐标系中,O 为坐标原点,点A 的坐标为(1,),M 为坐标轴上一点,且使得△MOA 为等腰三角形,则满足条件的点M 的个数为( )A .4 B.5 C.6 D.86.如图,AB ∥CD ,点E 在BC 上,且CD=CE ,∠D=74°,则∠B 的度数为( )A .68° B .32° C . 22°D .16°A . 80°B . 80°或20°C . 80°或50°D .20° 为边长的等腰三角形的周长为 .9.已知△ABC 为等边三角形,BD 为中线,延长BC 至E ,使CE=CD=1,连接DE ,则DE= .10.等腰三角形的周长为16,其一边长为6,则另两边为 .11. 如图,AB C ∆是等边三角形,BC BD 90CBD ==∠,,则1∠的度数是________。
CA1DB2312.如图,已知在等边三角形ABC中,D是AC的中点,E为BC延长线上一点,且CE=CD,DM⊥BC,垂足为M。
求证:M是BE的中点。
AD1B MC E13、(2013•牡丹江)已知∠ACD=90°,MN是过点A的直线,AC=DC,DB⊥MN于点B,如图(1).易证BD+AB=CB,过程如下:过点C作CE⊥CB于点C,与MN交于点E∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE.∵四边形ACDB内角和为360°,∴∠BDC+∠CAB=180°.∵∠EAC+∠CAB=180°,∴∠EAC=∠BDC.又∵AC=DC,∴△ACE≌△DCB,∴AE=DB,CE=CB,∴△ECB为等腰直角三角形,∴BE=CB.又∵BE=AE+AB,∴BE=BD+AB,∴BD+AB=CB.(1)当MN绕A旋转到如图(2)和图(3)两个位置时,BD、AB、CB满足什么样关系式,请写出你的猜想,并对图(2)给予证明.(2)MN在绕点A旋转过程中,当∠BCD=30°,BD=时,则CD= 2 ,CB= +1 .【答案】1.C。
2. B 3.B 4.A 5.C 6.B 7.B8.5 9.10. 6,4或5,5 11.75012.证明:因为三角形ABC是等边三角形,D是AC的中点所以∠1=21∠ABC又因为CE=CD,所以∠CDE=∠E所以∠ACB=2∠E即∠1=∠E所以BD=BE,又DM⊥BC,垂足为M所以M是BE的中点(等腰三角形三线合一定理)答:13.(1)如图(2):AB﹣BD=CB.证明:过点C作CE⊥CB于点C,与MN交于点E,∵∠ACD=90°,∴∠ACE=90°﹣∠DCE,∠BCD=90°﹣∠ECD,∴∠BCD=∠ACE.∵DB⊥MN,∴∠CAE=90°﹣∠AFC,∠D=90°﹣∠BFD,∵∠AFC=∠BFD,∴∠CAE=∠D,又∵AC=DC,∴△ACE≌△DCB,∴AE=DB,CE=CB,∴△ECB为等腰直角三角形,∴BE=CB.又∵BE=AB﹣AE,∴BE=AB﹣BD,∴AB﹣BD=CB.如图(3):BD﹣AB=CB.证明:过点C作CE⊥CB于点C,与MN交于点E,∵∠ACD=90°,∴∠ACE=90°+∠ACB,∠BCD=90°+∠ACB,∴∠BCD=∠ACE.∵DB⊥MN,∴∠CAE=90°﹣∠AFB,∠D=90°﹣∠CFD,∵∠AFB=∠CFD,∴∠CAE=∠D,又∵AC=DC,∴△ACE≌△DCB,∴AE=DB,CE=CB,∴△ECB为等腰直角三角形,∴BE=CB.又∵BE=AE﹣AB,∴BE=BD﹣AB,∴BD﹣AB=CB.(2)如图(1),过点B作BH⊥CD于点H,∵∠ABC=45°,DB⊥MN,∴∠CBD=135°,∵∠BCD=30°,∴∠CBH=60°,∴∠DBH=75°,∴∠D=15°,∴BH=B D•sin45°,∴△BDH是等腰直角三角形,∴DH=BH=BD=×=1,∵∠BCD=30°∴CD=2DH=2,∴CH==,∴CB=CH+BH=+1;考点二:直角三角形【例题】1.【2013-2014经开一中月考】如图所示,AB⊥BC,DC⊥BC,E是BC上一点,∠BAE=∠DEC=60°,AB=3,CE=4,则AD等于()2.【2013-2014郑东新区外国语月考】如图,将一副三角尺如图所示叠放在一起,若AB=14cm,则阴影部分的面积是______cm23.【2012-2013省实验月考】如图,已知AB=12;AB⊥BC于B,AB⊥AD于A,AD=5,BC=10.点E是CD的中点,求AE的长.4.【2011-2012省实验月考】如图,ABCD 是一张边长为4cm 的正方形纸片,E,F 分别为AB,CD 的中点,沿过点D 的折痕将A 角翻折,使得点A 落在EF 上的点'A 处,折痕交AE 于点G ,则∠ADG= ,EG=_______5.【2013-2014经开一中期中】如图,△ABC 中,∠ACB=90°,CD ⊥AB 于点D ,∠A=30°,BD=1.5cm ,则AD=________cm .6.【2013-2014经开一中期中】如图,在△ABC 中,∠ACB=90°,AC=BC .直线l 经过点C (点A 、B 都在直线l 的同侧),AD ⊥l ,BE ⊥l ,垂足分别为点D 、E ,你知道线段AD ,DE ,BE 的关系吗?证明你的结论7.【2013-2014郑东新区外国语期中】如图,在直角坐标系中,已知点A (-3,0),B (0,4),对△OAB 连续作旋转变换,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,则三角形(2013)的直角顶点的坐标是______8.【2012-2013省实验期中】如图,已知Rt ABC ∆中,090=∠ACB ,以斜边AB 为边向外作正方形ABDE,且正方形的对角线交于点O ,连接OC,已知AC=5,OC=26,则另一直角边BC 的长为______.【答案】1.AD=10.2. (cm2)3.解:如图,延长AE交BC于F.∵AB⊥BC,AB⊥AD,∴AD∥BC∴∠D=∠C,∠DAE=∠CFE,又点E是CD的中点,∵DE=CE.∵在△AED与△FEC中,,∴△AED≌△FEC(AAS),∴AE=FE,AD=FC.∵AD=5,BC=10.∴BF=5在Rt△ABF中,,∴AE=6.5.4.答案:15°,错误!未找到引用源。