配位聚合

合集下载

高分子化学 第6章 配位聚合

高分子化学 第6章  配位聚合

(4)配位聚合引发剂与单体
①引发剂和单体类型
Ziegler-Natta引发剂
-烯烃 有规立构聚合
二烯烃 有规立构聚合
环烯烃 -烯丙基镍型引发剂:专供丁二烯的顺、反1,4聚合 极性单体 烷基锂引发剂(均相) 有规立构聚合 二烯烃 茂金属引发剂(所有乙烯基单体)
②引发剂的相态和单体的极性
非均相引发剂,立构规整化能力强
δ +CH
Mt CH2 δ -
R
过渡金属阳离 子Mt +对烯烃 双键 碳原子的 亲电进攻
插入反应包括两个同时进行的化学过程。
单体的插入反应有两种可能的途径:

一级插入
δδ+
CH CH2 R
Mt
+
CH CH2 R
δδ+
CH CH2 CH CH2 R R
Mt
不带取代基的一端带负电荷,与过渡金属相连 接,称为一级插入。
全同1,2 、间同1,2、顺式1,4-聚丁二烯和反式 1,4-聚丁二烯。
n CH CH CH 2 CH 2 4 3 2 1
1,2加成 3,4加成
[ CH2 CH ]n CH CH2 (R)
丁二烯的1,2或3,4加成有全同和间同二种立构规整聚合物。
[ CH2 CH2 ]n C C H H
顺式1,4-聚丁二烯-1,3
最初的Ziegler-Natta引发剂由两组分构成。 主引发剂 是周期表中Ⅳ~Ⅷ过渡金属化合物。
1955年意大利的Natta改进了Ziegler引发剂。用TiCl3和烷 基金属化合物组成的配位引发剂使丙烯聚合,结果得到高相 对分子质量、高结晶度、耐热150℃的聚丙烯,并于1957年 实现了工业化。 Natta还用这些引发剂使乙烯聚合,所得到的PE无支链、 结晶度也很高, 这种PE、PP具有高的立构规整度。 Ziegler-Natta引发剂的出现使高分子科学和高分子工 业的发展有了重大突破,从而在高分子科学中开创了一 个新的研究领域----配位聚合。 Ziegler和Natta两位学者也于1963年同时获得诺贝尔 化学奖。

高分子化学第6章配位聚合

高分子化学第6章配位聚合
2)反应—复杂(TiCl4-AlEt3 a.络合反应-产生引发活性种. b.烷基化反应-形成Ti-C键. c.还原反应-Ti还原成低价态.
四. 茂金属引发剂 由过度金属锆(Zr)或钛(Ti)与两个环戊二烯基或环戊
二烯基取代基及两个氯原子(或甲基)形成的有机金属络合 物和助催化剂甲基铝氧烷组成的 ,称作茂金属催化剂。是环 戊二烯基过渡金属化合物类的简称。
链增长反应可表示如下
δ-
CH CH2
δ+ 过渡金属
Mt
δ-
δ+
CH CH2 Mt
空位
CH CH2 R
¦Ä¦环Ħ状Ä过 CH CH2 渡状态 R
δ-
δ+
CH CH2 CH CH2 Mt
R
R
2. 配位聚合的特点
单体首先在过渡金属上配位形成络合物 证据:乙烯和Pt、Pd生成络合物后仍可分离
制得了4-甲基-1-戊烯-VCl3的络合物
第六章 配位聚合
6.1 引言(Introduction) 6.2 配位聚合
6.3 聚合物的立构规整性(stereoregularity) 6.4 α-烯烃的配位阴离子聚合
6.1 引言(Introduction)
1. 低密度聚乙烯
二十世纪30年代
ICI 公司
乙烯+苯甲醛
高温(180-200℃)
压力(180-200MPa)
2. 引发剂的作用 1) 提供引发聚合的活性种; 2) 提供独特的配位能力(反离子同单体和增长链的配位促使单
体分子按一定的构型进入增长链)起着连续定向模板作用。 控制方式: a. 引发中心控制:反离子与取代基之间的相斥作用-全同结构 b. 增长链端控制:相邻单体取代基间的相斥作用-间同结构

第六章配位聚合

第六章配位聚合

第六章 配位聚合6.1引言乙烯 丙烯和其他a-烯烃为石油裂解懂得主要产物30年代 仅作为燃料后 引发剂高温高压 PE (高压) 1953 Zieglev (德) 70~5034常压、AlEt Ti -θ HDPE 1954 Natta (意) Ti 3θ35)(GH Al - PP接着 Goodrich-Fire 公司 Ti 3524)(H C Al -θ 高顺式1、4-聚异戊二烯(天然橡胶) 同时 Fire-stene 轮胎和橡胶公司 锂或烷基锂(Z-N 引发剂)以后 以金属有机化合物-过渡金属化合物的洛合体系作引发剂单体配位而后聚合,聚合产物呈定向聚合—洛合聚合,配位聚合,定向聚合 (区别)常用术语的区别① 配位聚合和洛合为同义词—采用具有配位(或洛合)能力的引发剂,链增长(有时包括引发)都是单体先在活性种的空位上配位(洛合)并活化,然后插入烷基—金属键(R —M )中。

(配位比洛合表达的意义更明确)② 定向聚合和有规立构聚合是词义词—按IUPAC 规定,均指以形成有规立构聚合物为主的聚合过程。

③ Ziegler —Natto 聚合—指采用Ziegler —Natto 引发剂的任何单体的聚合或共聚合。

所得聚合物可以是立构规整的,也可以是无规聚合物。

6.2 结合物的立构规整性配位聚合,除R P 、n X 外,首先要考虑立构规整性问题。

异构现象—在有机化学中将分子式相同而结构不同因而性质不同的化合物叫异构体,这种现象称~分两类① 结构异构—由于分子中原子或基团相互连接次序不同引起的:如:头—尾和头—头或尾—尾相连的聚合物结构异构体② 立体异构 —由于分子中原子或基团相互连接次序不同引起的,称构型聚合物中同样存在复杂的立体异构现象⎭⎬⎫⎩⎨⎧几何异构光学异构 即:聚合物分子组成和结构相同,只是构型不同。

一、 立体异构⒈光学异构。

(存在手性中心)⎩⎨⎧*(左)右S R C )( —取代基(原子)在手性中心的排布顺序不而产生的立体异构α—烯烃聚合 NCH 2 =CH-R → —CH 2-CH-CH 2-CH-全同立构(等规)各个手性中心*C 构型相同,如~RRRR ~或~SSSS ~(St-pp)无规(at-pp ):手性中心的构型呈无规排列。

配位聚合

配位聚合

3、立构规整性(重要概念) 立构规整聚合物:是指那些由一种或两种构 型的结构单元(即手性中心)以单一顺序重 复排列的聚合物。 立构规整度:又称为定向度或定向指数,指 立构规整性聚合物在整个聚合物中所占的重 量百分含量。
问题:在合成过程中,如何控制 聚合物的立构规整性?
配位聚合及其引发剂体系等
7.2 配位聚合和定向聚合
7.1 聚合物的立体异构
结构异构:元 素组成相同而 原子或基团键 接位置不同。
配位聚合所涉及的异构现象
1、几何异构(顺反异构)
(1)形成:取代基在双键或环形结构平面 两侧的空间排列方式不同而造成的。 (2)结构特点:主链上有“=”或“环” 顺式
CH CH2 CH CH2 CH2 CH CH CH2
不足 只解释了引发和增长,没有解释立 构的形成原因
(2)单金属机理 Ti上引发,Ti上增长
特点 解释了立体构型的形成原因 对共引发剂的考虑少 不足
单体在Ti-C键间插入与空位回跳交 替进行的可能性
乙丙橡胶的介绍
因为大量甲基的存在破坏了聚乙烯的高度结构对称性,
不结晶而成为橡胶。 分子链上不含双键,所以耐臭氧、耐化学品、耐老化、 耐候性最佳。 密度小,有优异的电性能和耐油性,广泛用于电线电 缆、汽车部件、耐热密封件、传送带和日用生活品。 也因为分子链上不含双键,所以只能采用过氧化物进 行自由基型链转移硫化,硫化速度慢,粘接性能差。 采用加入少量共轭双烯作为第三单体进行三元共聚来
碳-碳双键过渡金属引 自由基聚合、离子聚 发剂的活性中心的空位 合、配位聚合 上配位 有规或无规 络合聚合、插入聚合 有规 有规立构聚合
产物 别称 举例
Ziegler-Natta引发剂引 BuLi引发丁二烯聚合 发苯乙烯聚合

第七章配位聚合

第七章配位聚合

第七章配位聚合一、名称解释配位聚合:指单体分子首先在活性种的空位处配位,形成某些形式(σ-π)的配位络合物。

随后单体分子插入过渡金属(Mt)-碳(C)中增长形成大分子的过程,所以也可称作插入聚合。

络合聚合:与配位聚合的含义相同,可以互用。

络合聚合着眼于引发剂有络合配位能力,一般认为配位聚合比络合聚合意义更明确。

定向聚合:也称有规立构聚合,指形成有规立构聚合物的聚合反应,配位络合引发剂是重要的条件。

异构体:分子式相同,但原子相互联结的方式或顺序不同,或原子在空间的排布方式不同的化合物叫做异构体。

构象异构:由单键内旋转造成的立体异构现象。

立体构型异构:原子在大分子中不同空间排列所产生的异构现象。

对映异构:又称手性异构,由手性中心产生的光学异构体R型和S型。

顺反异构:由双键引起的顺式和反式的几何异构,两种构型不能互变。

全同立构:将碳-碳主链拉直成锯齿形,使处在同一平面上,取代基处于平面的同侧,或相邻手性中心的构型相同。

间同立构:若取代基交替地处在平面的两侧,或相邻手性中心的构型相反并交替排列,则称为间同立构聚合物。

全同聚合指数:一致立构规整度的表示方法,指全同立构聚合物占总聚合物的分数。

立构规整度:立构规整聚合物占聚合物总量的百分数。

二、选择题1. 氯化钛是α-烯烃的阴离子配位聚合的主引发剂,其价态将影响其定向能力,试从下列3种排列选出正确的次序( A )A TiCl3(α,γ,δ) > α- TiCl3-AlEtCl2>TiCl4B TiCl2>TiCl4>TiCl3(α,γ,δ)C TiCl4>TiCl3(α,γ,δ) > TiCl22. 下列聚合物中哪些属于热塑性弹性体(d和e)(a) ISI (b)BS (c) BSB (d)SBS (e) SIS3. 下列哪一种引发剂可使乙烯、丙烯、丁二烯聚合成立构规整聚合物?(1)n-C4H9Li/正己烷(2)萘钠/四氢呋喃(3) TiCl4-Al(C2H5)3(4) α- TiCl3-Al(C2H5) 2Cl(5)π-C3H5NiCl (6) (π-C4H7)2Ni4. 下列哪一种引发剂可使丙烯聚合成立构规整聚合物?(D)(A)n-C4H9Li/正己烷(B)萘钠/四氢呋喃(C) TiCl4-Al(C2H5)3(D) α- TiCl3-Al(C2H5) 2Cl三、简答题1. 聚乙烯有几类?如何合成?结构与性能有什么不同?与生产方法有何关系?答:聚乙烯主要有三类:低密度聚乙烯(LDPE),高密度聚乙烯(HDPE),线形低密度聚乙烯(LLDPE)。

高分子化学-配位聚合

高分子化学-配位聚合


乙烯、丙烯在热力学上均具聚合倾向,但在很长一段时间内,却未年用TiCl Al(C组成的体系引发
乙烯聚合,首次在低温低压的温和条件下
K. Ziegler
非均相体系
G. Natta
1954年意大利科学家
引发剂引发丙烯聚合,首次获得
的聚合物
配位聚合
分子中原子或原子团互相连接次序相同、但空
顺式-1,4-聚丁二烯反式-1,4-聚丁二烯
对映体异构、手性异构)
顺式-1,4-聚异戊二烯反式-1,4-聚异戊二烯
实际上很难合成完全规整的高分子链,所以产生分子链
高分辨核磁共振谱是测定立构规整度的最有力手段,目前不仅可以测定三单元组,还可以测定四单元组、五单元组甚至更高单元组的分布情况。

聚氯乙烯的
13C NMR谱图
聚丙烯的等规度:工业上和实验室中测定最常用的方法是
X X X X X
M M M M
M
氢键、静电键合、电子X X X X X
转移相互作用、疏水键。

配位聚合

配位聚合
高 分 子 化 学
19
7.2 聚合物的立构规整性
立构规整性与性能的关系
有规立构与非立构规整性聚合物间的性质差别很大。 性能的差异主要起源于分子链的立构规整性对聚合物结晶 的影响。 有规聚合物的有序链结构容易结晶,无规聚合物的无 序链结构则不易形成结晶,而结晶导致聚合物具有高的物 理强度和良好的耐热性和抗溶剂性,因此有规立构聚合物 更具有实际应用意义。
高 分 子 化 学
23
7.3 引发剂
Zieglar-Natta引发剂
广义 Ziegler-Natta 引发剂指的是由 IV~VIII 族过渡金 属化合物与I~III族金属元素的金属烷基化合物所组成的一 类引发剂。其通式可写为:
MtIV-VIIIX + MtI-IIIR 主引发剂 助引发剂 常用过渡金属化合物 :Ti、V、Cr、Co、Ni 的卤化 物(MtXn),氧卤化合物(MtOXn),乙酰丙酮基化合 物[Mt(acac)n],环戊二烯基卤化物(Cp2MtX2)。
高 分 子 化 学
22
7.3 引发剂
引发剂的类型和作用
类型: Zieglar-Natta 型。用于α-烯烃、二烯烃、环烯 烃的定向聚合; 烷基锂。在均相溶液体系中引发二烯烃和极性 单体,形成立构规整聚合物 π-烯丙基镍(π-C3H5NiX)。专供引发丁二烯的 顺式-1,4和反式-1,4聚合 茂金属引发剂。 作用: 提供活性中心; 引发剂残余部分(金属反离子)紧邻引发剂中 心,使单体分子按照一定的构型进入增长链, 使单体定位,起连续定向的模板作用。
目前,聚乙烯和聚丙烯已经成为生产量最大、用途最广 的合成材料。
高 分 子 化 学
3
7.1 配位聚合概述
配位聚合:烯类单体的碳-碳双键首先在过渡金属

配位聚合coordinationpolymerization

配位聚合coordinationpolymerization

第六章配位聚合 (coordination polymerization)6.1 聚合物的异构现象6.1.1 分类结构异构(构造异构,同分异构)立体异构构象异构构型异构几何异构(顺反异构)光学异构(对映体异构)6.1.2结构异构一单体:n-BuLi,s-BuLi,t-BuLi二聚合物1结构单元不同:聚乙烯醇,聚环氧乙烷,聚乙醛2结构单元同,连接次序不同:SBR(无规),SBS(嵌段),HIPS(接枝)6.1.3几何异构:顺式-聚丁二烯,反式-聚丁二烯6.1.4光学异构一单体无手性碳,产物有1 CH2=CRR'(丙烯,α-烯烃)只有一种(假)手性碳全同(等规),间同(间规),无规(Flash动画演示)2 RCH=CHR' 有两种(假)手性碳叠同双等规,对映双等规,叠同双间规(对映双间规)(Flash动画演示)二单体有手性碳,产物有立构选择聚合6.1.5光学异构聚合物的性能6.1.6立构规整度1 定义:立构规整聚合物占总聚合物的分数等规度,间规度,杂规度2立构规整度与结晶度的区别3 测定6.2 配位聚合与定向聚合6.2.1 配位聚合一定义:单体分子的碳-碳双键先在过渡金属催化剂的活性中心的空位上配位,形成σ-Π络合物,随后单体分子相继插入过渡金属-碳键中进行增长的聚合反应过程。

二增长过程(Flash动画演示)三特点四常用引发剂6.2.2 定向聚合一定义:以形成立构规整聚合物为主的聚合反应二种类1自由基聚合2离子聚合3 配位聚合4 模板聚合6.2.3 配位聚合与定向聚合的区别与联系6.3 Ziegler-Natta催化剂发展历程1953年,Ziegler等从一次以Et3Al为催化剂从乙烯合成高级烯烃的失败实验出发,意外地发现以乙酰丙酮的锆盐和Et3Al催化时得到的是高分子量的乙烯聚合物,并在此基础上开发了的乙烯聚合催化剂TiCl4 - AlEt3。

1954年Natta等把Ziegler催化剂中的主要组分TiCl4还原成TiCl3后与烷基铝复合成功地进行了丙烯聚合。

配位聚合

配位聚合

5
TiCl4/Al(C2H5)3称为 称为Ziegler引发剂, 引发剂, 引发剂 TiCl3/Al(C2H5)3称为 称为Natta引发剂, 引发剂, 引发剂 合称为Ziegler—Natta引发剂。 引发剂。 合称为 引发剂
重要意义:可使乙烯、丙烯等低级烯烃聚合, 重要意义:可使乙烯、丙烯等低级烯烃聚合, 产物具有高度规整性。 产物具有高度规整性。
G. Natta
1963年,获Nobel化学奖 年 化学奖
10
7.2 聚合物的立体异构性
11
7.2.1 聚合物的立体异构体
12
几何异构 Geometrical 共轭双烯单体聚合时可形成结构不同的单体单元
H H H H H H H H H H H H
H H H H H H H
H
H H H H H
9
K. Ziegler
Natta发现: 发现: 发现
将TiCl4 改为 TiCl3,用 于丙烯的聚合, 于丙烯的聚合,得到高 分子量、高结晶度、 分子量、高结晶度、高 熔点的聚丙烯。 熔点的聚丙烯。
Natta (1903 ~ 1979)小传
意大利人, 岁获化学工程博士 意大利人,21岁获化学工程博士 学位 1938年任米兰工业大学教授,工 年任米兰工业大学教授, 年任米兰工业大学教授 业化学研究所所长 50年代以前,从事甲醇、甲醛、 年代以前,从事甲醇、甲醛、 年代以前 丁醛等应用化学研究, 丁醛等应用化学研究,取得许多 重大成果 1952年, 在德 Frankford 参加 年 Ziegler的报告会,被其研究工作 的报告会, 的报告会 深深打动 1954年,发现丙烯聚合催化剂 年
16
根据手性C*的构型不同,聚合物分为三种结构: 根据手性 的构型不同,聚合物分为三种结构: 的构型不同

配位聚合

配位聚合

二烯烃聚合物
如丁二烯聚合物: 1, 2聚合物都具有较高的熔点 全同 Tm = 128℃
间同 Tm = 156℃
反式1, 4聚合物 Tg = -80℃, Tm = 148℃ 较硬的低弹性材料 1, 4聚合物 顺式1, 4聚合物 Tg = -108℃, Tm = 2 ℃ 是弹性优异的橡胶
对于合成橡胶,希望得到高顺式结构
Mt
带有取代基一端带负电荷并与反离子相连, 称为二级插入
两种插入所形成的聚合物的结构完全相同 但研究发现: 丙烯的全同聚合是一级插入, 丙烯的间同聚合却为二级插入
几种聚合名称含义的区别

配位聚合、络合聚合 在含意上是一样的,可互用 一般认为,配位比络合表达的意义更明确 配位聚合的结果: 可以形成有规立构聚合物 也可以是无规聚合物 定向聚合、有规立构聚合 这两者是同意语,是以产物的结构定义的 都是指以形成有规立构聚合物为主的聚合过程 乙丙橡胶的制备采用Z-N催化剂,属配位聚合, 但结构是无规的,不是定向聚合
聚丁二烯IR吸收谱带
间同1, 2: 990、664 cm-1 顺式1, 4: 741 cm-1 反式1, 4: 964 cm-1
6.3 Ziegler-Natta (Z-N)引发剂
1. Z-N引发剂的组分
主引发剂
是周期表中Ⅳ~Ⅷ过渡金属化合物

Ⅳ~Ⅵ副族:
Ti Zr V Mo W Cr的 TiCl3(、、 ) 的活性较高
立构规整度的测定
聚合物的立构规整性用立构规整度表征
立构规整度:是立构规整聚合物占总聚合物的分数
是评价聚合物性能、引发剂定向聚合能力的一个 重要指标 结晶 根据聚合物的物 理性质进行测定
比重 熔点 溶解行为 化学键的特征吸收

第七章配位聚合

第七章配位聚合

Outline
Ziegler (1898-1973)小传

未满22岁获得博士学位 曾在Frankfort, Heideberg大学任教 1936年任Halle大学化学系主任,后任 校长 1943年任Mak Planck研究院院长 1946年兼任联邦德国化学会会长 主要el化学奖 治学严谨,实验技巧娴熟,一生发表 论文200余篇
Outline 7.2 聚合物的立构规整性
构型异构
光学异构:手性中心产生的光学异 构体R(右)型和S(左)型, 也可称作对映体异构或者手性 异构 几何异构:由分子中双键而产生的几 何异构,即Z(顺式)和E(反 式)构型。
构象异构
Outline 7.2 聚合物的立构规整性
光学异构体
光学异构体(也称对映异构体),由于聚合物分子不对称性造成 的,是由手征性碳原子产生 构型分为R(右)型和S(左)型两种 对于 -烯烃聚合物,分子链中与R基连接的碳原子具有下述结构:
H CH2 C* CH3 CH2 H C* CH3 CH2 H C* CH3
由于连接C*两端的分子链不等长,或端基不同,C*应当是手征性 碳原子 但这种手征性碳原子并不显示旋光性,原因是紧邻C*的原子差 别极小,故称为“假手性中心”
Outline 6.2 聚合物的立构规整性
根据手性C*的构型不同,聚合物分为三种结构:
Outline
这是因为自由基与烯丙基单体反应时,存在加成和转移两个 竞争反应:
加成 Mn + H2C=CH CH3 转移 Mn CH2 CH CH3
二级碳自由基
MnH + H2C=CH
CH2
H2C
CH
CH CH2
烯丙基自由基
烯丙基氢很活泼,且链转移后生成的烯丙基自由基由于有双键 的共振作用非常稳定,因此对链转移反应非常有利。这样,由 于链转移反应极易发生,ktr>>kp,烯丙基单体聚合只能得到低 聚物,并且由于链转移生成的烯丙基自由基很稳定。不能引发 单体聚合,只能与其它自由基终止,发生自阻聚作用

第五章--配位聚合

第五章--配位聚合

第五章--配位聚合第五章配位聚合习题参考答案1.举例说明聚合物的异构现象,如何评价聚合物的立构规整性?解答:(1)聚合物的异构现象:①结构异构聚合物,如聚甲基丙烯酸甲酯与聚丙烯酸乙酯:CH3|-[-CH2-C-]n--[-CH2-CH-]n-||CO2CH3CO2C2H5聚甲基丙烯酸甲酯聚丙烯酸乙酯②几何异构聚合物,汉分子链中由于双键或环形结构上取代基在空间排列方式不同造成的立体异构称为几何异构,也称顺-反异构。

如丁二烯聚合所形成的1,4-聚丁二烯,其结构单元有顺式结构和反式结构两种:~~~CH2 CH2~~~~~~CH2HC = C C = CH H H CH2~~~顺式结构(顺-1,4聚丁二烯)反式结构(反-1,4聚丁二烯)③光学异构聚合物,如聚环氧丙烷有一个真正的手性碳原子:H|~~~O-C*-CH2~~~|CH3④构象异构聚合物,当大分子链中原子或原子团绕单键自由旋转所占据的特殊空间位置或单键连接的分子链单元的相对位置的改变称构象异构。

构象异构可以通过单键的旋转而互相转换。

(2)当大分子链上大部分结构单元(大于75%)是同一种立体构型时,称该大分子为有规立构聚合物,或立构规整聚合物、定向聚合物。

反之,称为无规立构聚合物。

2.写出下列单体聚合后可能出现的立构规整聚合物的结构式及名称:(1)CH2=CH-CH3(2)CH2-CH-CH3O反式结构(反-1,4聚异戊二烯)全同3,4-聚异戊二烯(R 为-C(CH 3)=CH 2) 间同3,4-聚异戊二烯(R 为-C(CH 3)=CH 2)全同1,2-聚异戊二烯(R 乙烯基) 间同3,4-聚异戊二烯(R 为乙烯基)H H CH 3 R H H CH 3 R H H H H R H H R H HH H H R H H H R H H H CH 3 R H H R CH 3 H H3.什么是配位聚合?主要有几类催化剂(或引发剂),各有什么特点?解答:(1)配位聚合:是指单体分子的碳-碳双键先在显正电性的低价态过渡金属的空位上配位,形成某种形式的络合物(常称σ-π络合物),经过四元环过渡态,随后单体分子插入过渡金属-碳键中进行增长的聚合过程。

大学化学 配位聚合

大学化学 配位聚合

R
2
非桥链型 普通结构
桥链型
限定几何性,几乎100%金属原子都形成活性中心; 单一活性中心,可获得分子量分布很窄、共聚物组成均 一的产物, 立构规整能力高,能引发烯烃聚合生成间规聚合物 几乎能引发所有的乙烯基单体聚合
16
三、聚合物的立构规整性(stereoregularity)
手性中心(chiral center)碳原子:非对称取代的烯 类单体或α—烯烃聚合物分子链中的不对称的碳原子)
18
2. 立构规整结构 2.1 聚α-烯烃
各手性C构型相同,称全同聚合物(isotactic polymer); 若相邻手性C构型相反,且交替排列,则为间同立构聚合物 (syndiotactic polymer); 手性C构型呈无规排列,则称为无规立构聚合物(atactic polymer)。
Mt
丙烯的全同聚合是一级插入
6
二级插入:带取代基的一端(β碳)带负电荷并和过渡金属Mt相连
δ+ δ
CH2 CH R
Mt
+
CH2 CH R
δ+ δ
CH2 CH CH2 CH R R
Mt
丙烯的间同聚合为二级插入
7
几种聚合名称含义的区别
配位聚合、络合聚合 在含义上是一样的,可互用。 一般认为,配位比络合表达的意义更明确。 均指采用具有配位能力的引发剂、链增长都是单体先在 活性种的空位上配位并活化,然后插入烷基金属键中。 可形成有规立构聚合物,也可以是无规聚合物。 Zigler-Natta聚合: 采用Zigler-Natta引发剂的任何单体的聚合或共聚合。 所得的可以是立构规整的,也可以是无规的。
空位
CH R
R
δ

配位聚合

配位聚合

缺点
低温抗冲性能差,耐寒性稍低(-35℃以
下易脆化) 耐老化性能差, 纤维的染色性能和吸湿性能差。
二、生产
1、浆液法丙烯聚合的物系组成:
丙烯 (纯度>99.5%) 汽油 (含水量<25ppm) TiCl3 Al(C2H5)2Cl H2 25% 75% 0.024~0.032% 0.64% 100~20ppm
TiCl4 与金属有机化合物的反应是铝钛络合催 化剂的重要反应。 (1)TiCl4 + Al(C2H5)3 Al(C2H5)2Cl TiCl3 + Al(C2H5)2Cl Al(C2H5) Cl2 C2H5· 3 + TiCl
C2H5· 2 + TiCl
1 1 TiCl2 C2 H 4 C2 H 6 2 2
生产聚丙烯的方法有三种:溶液聚合法,液相 聚合法和气相聚合法。 通用型热塑料品种名列第四。
分子结构分为全同立构,间同立构,无规立构。
具有高结晶度和高熔点, 用Zigler-Natta催化剂制得
优点
比 重 轻 0.90~0.91 。 机 械 性 能 好 , 抗 张 强 度 253kg/cm2,耐磨,弯曲疲劳性能好,耐热性 好,熔点164~170℃,软化温度140℃以上, 沸水中不失去结晶性。不受外力作用,加热至 50℃不变形。非极性对高频电的绝缘性能好。 化学稳定性好。薄膜抗拉伸强度好,透明性好, 蒸汽透过率低、纤维强度高。应用广泛,可注 射挤出加工。
2、助催化剂 promoter

周期表中第一至第三族的有机烷基化合物如:Al、
Mg、Be、Li,

主要形式为:AlHnR3-n、AlRnX3-n、(X=F,Cl,Br,I)

第七章 配位聚合

第七章  配位聚合

7.1 配位聚合的基本概念
1)什么是配位聚合? 配位聚合最早是Natta用Z-N引发剂引发α-烯烃 聚合解释机理时提出的新概念。 配位聚合是一种新型的加聚反应,从词义上理 解是单体与引发剂通过配位方式进行的聚合反应。 即烯类单体的C=C首先在过渡金属引发剂活性 中心上进行配位、活化,由此使单体分子相继插 入过渡金属-碳键(Mt-C)中进行链增长的过程。 ( )
高分子化学
第七章 配位聚合 (Coordination Polymerization)
乙烯、丙烯在热力学上均具聚合倾向,但在很 长一段时间内,却未能合成出高分子量的聚合物。 为什么? 为什么?
1938年,英国ICI公司在高温(180~200℃)、高压 (150~300 MPa)条件下,以O2为引发剂,合成出了低 密度聚乙烯(LDPE)。 1953年,德国化学家Ziegler发现了乙烯低压(0.2~1.5 MPa)聚合的引发剂,合成出了支链少、密度大、结晶度 高的高密度聚乙烯(HDPE)。 1954年,意大利化学家Natta发现了丙烯聚合的引发剂, 合成出了规整度很高的等规聚丙烯(iPP)。
7.4 α-烯烃的配位聚合 α-烯烃:以丙烯为代表 丙烯: 用α-TiCl3-AlEt3在30~70℃下聚合得等规聚丙 烯; 用VCl4-AlEt2Cl于-78℃下得间同聚丙烯。 等规度、分子量是评价聚丙烯性能的重要指标。
1)引发剂组分对聚丙烯I.I.的影响
主引发剂的定向能力
紧密堆积的层状结晶结构
丁二烯
1,4加成和1,2加成,得到4种立体异构,分别为: 顺式1,4;反式1,4;全同1,2;间同1,2聚丁二烯。
几何异构对聚合物的性能影响很大,如: 顺式1,4聚丁二烯是性能很好的橡胶(顺丁橡 胶); 全反式聚丁二烯则是塑料。

配位聚合相关研究

配位聚合相关研究

配位聚合相关研究配位聚合是一种化学反应过程,其中两个或多个分子通过金属离子作为中间体形成配合物。

这种反应广泛应用于无机化学和有机化学领域,并在催化剂设计、材料合成和药物研发等方面发挥重要作用。

配位聚合反应的基本原理是通过金属离子与配体之间的配位键形成稳定的配位化合物。

配体可以是有机分子,如胺、酮和醇,也可以是配体离子,如氰离子和氧离子。

金属离子可以是过渡金属离子或主族金属离子。

通过配位键的形成,金属离子和配体之间形成了坚固的结合,从而形成了新的配位化合物。

配位聚合反应通常在溶液中进行。

在反应过程中,金属离子与配体之间发生配位键的形成和断裂,从而形成新的配位化合物。

这种反应可以在常温下进行,并且通常是可逆的。

通过控制反应条件,可以选择性地合成特定的配位化合物。

配位聚合反应在催化剂设计中起着重要作用。

催化剂是一种能够加速化学反应速率的物质。

通过将催化剂与金属离子和配体进行配位聚合反应,可以合成具有特定催化活性和选择性的配位化合物。

这些配位化合物可以用作催化剂,用于加速各种化学反应,如氧化反应、还原反应和加成反应。

配位聚合反应还可以用于合成新的材料。

通过选择不同的金属离子和配体,可以合成具有特定结构和性质的配位聚合物。

这些配位聚合物可以应用于材料科学和工程领域,如催化剂载体、光电材料和磁性材料等。

配位聚合反应在药物研发中也具有重要意义。

通过将药物分子与金属离子和配体进行配位聚合反应,可以合成具有增强药物活性和选择性的配位化合物。

这些配位化合物可以用于治疗多种疾病,如癌症、心血管疾病和神经系统疾病等。

配位聚合是一种重要的化学反应过程,通过金属离子与配体之间的配位键形成稳定的配位化合物。

这种反应在无机化学和有机化学领域有广泛的应用,尤其在催化剂设计、材料合成和药物研发等方面发挥重要作用。

配位聚合反应的研究将进一步推动化学科学的发展,并促进新材料和新药物的合成与应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 写出下列催化剂组份的分子结构式和缩写式
(1)三乙酰丙酮钴;
(2)二π-烯丁基镍; (π-C4H7)2Ni
(3)二甲基硅桥联苯并茚基茂基二氯化锆
(4)π-烯丙基三氟乙酸镍; π-C3H5NiOOCCF3
(5)环烷酸镍; C22H14NiO4
(6)异丙基(茂基-1-芴基)二氯化铪
(7)亚乙基双(1-茚基)二氯化钛;
(8)倍半铝Al2Et3Cl3
2. 在Ziegler-Natta聚合中产品的分子量控制重要手段是什么,为什么不用温度控制?写出其反应式。

乳液聚合中若温度一定,聚合物的分子量调节靠什么手段,能否用引发剂用量?试从动力学方程解释。

常用H2来调节分子量,
添加分子量调节剂,高活性活泼H顺式含量
3. 试举一例说明立构规整聚合物的合成方法和路线,并讨论这种聚合物与性能的相互关系。

全同聚丙烯:α-TiCl3/AlEt3/P 30-70℃
间同聚丙烯:α-TiCl3/AlEt3/P -70℃
间规聚丙烯的抗冲击强度为等规聚丙烯的两倍,但刚性和硬度则仅及后者的一半
间规PP的分子链间距较大,分子链活动能力较好,排列规整性赶不上等规PP,所以结晶度也小,导致冲击韧性好,受冲击时分子链滑移和断裂能吸收更多的能量,结晶度低也就导致刚性下降,模量下降。

4. 活性中心浓度的测定有几种方法,活性中心是否缔合,如何判定
活性中心浓度:动力学法,猝灭法,同位素标记法
动力学法:依据聚合物分子量或聚合物的分子数随聚合时间的变化
猝灭法:聚合反应加入猝灭剂(QL),增长链立即与猝灭剂发生反应,测定L的含量
同位素标记法:14C标记助催化剂,测定标记基团数目
聚合速率方程,通过对活性中心的指数可以确定
测定活性链增长前后的浓度变化,死的连段粘度无变化;通过光散射法测定终止前后的分子量变化。

通过带帽封端法,在测量聚合前后的粘度变化
5. 与典型的Ziegler-Natta催化剂相比,Kaminsky催化剂催化烯烃聚合有何特色?有何缺点?为什么目前大家都在竞相研究Kaminsky 催化剂的载体化
特色:超高活性、并能制成几乎所有类型的聚烯烃产品
缺点:①均相聚合,导致聚合物颗粒形态复制控制差,所得颗粒形态差
②助催化剂用量大
载体化:提高催化活性,提高催化剂的利用率和活性种数目。

满足先进工艺的要求
6. 茂金属催化剂对烯烃聚合立体化学结构控制有何贡献?简述其应用的可能工业前景
1) 均相茂金属催化剂具有空间立体构型和刚性(Stereorigid),可以合成全同聚丙烯,和非
均相催化剂得到产物相同,突破了必须用非均相催化剂合成等规聚合物的结论
2) 证明催化剂的活性中心的手性是聚合物立体化学控制的主要因素
3) 突破了只有低温聚合是间规聚合的必要条件
a) 聚烯烃的优化,实现无规乙烯丙烯共聚物
b) 茂金属催化实现多种单体共聚,如乙烯和极性单体共聚
c) 进行多环烯烃的共聚
d) 制备间同sps
7. 何谓易位聚合,它对配位聚合机理有何贡献?试说明Green-Ivon模型的优点和缺陷?现在利用活性易位聚合可以合成那些功能性高分子?
环烯烃在适宜的催化剂作用下发生开环聚合,既不是双键打开相互加成,又不是C-C单键断裂而开环,而是C=C不断易位而开环,这类聚合反应称为易位聚合。

机理提出了活性金属卡宾机理(碳-金属卡宾机理)
Green-Ivon机理较好的解释为什么同一催化剂在相同条件下既可以发生α-烯烃的配位聚合,又可以进行环烯烃的开环易位聚合。

在形成环化物以及环化物中α-氢的转移还有待进一步解释。

机理多为推算,缺少实验证明。

制备AB型嵌段共聚物,接枝共聚物,侧链液晶聚合物,共轭高分子,导电高分子。

8. 稀土催化丁二烯聚合与镍系催化剂有何特点,为何大家都在努力研究和生产钕系顺丁胶?
Li-BR 顺式含量低gel低Mn低
Ni-BR 顺式含量高gel高(活性大分子转移)Mn高
镧系-BR 顺式含量高gel低Mn极高(无偶合终止,无链转移)
其中钕系顺丁橡胶性能比较接近于天然橡胶,凝胶含量少,顺式高,性能优越
9. 用何种手段可将现有的胶种的力学性能象天然橡胶那样,即应力随形变的增加而增加?
10. 在Ziegler-Natta催化剂催化烯烃聚合中,提出了三个比较有特色的聚合机理,试说出三种机理的优缺点。

双金属机理
优:(1)可以很好解释助催化剂对立构规整度和反应速度的影响。

因为有机金属化合物参与了活性中心的组成。

(2)有相当的实验根据并能解释许多实验现象。

缺:(1)有很多实验证明没有有机金属化合物,即用单一过渡金属化合物照样可以聚合,这些数据很难用Natta的双金属模型解释。

因此活性中心不一定是双金属结构。

(2)Natta没有强调活性中心有空位。

(3)Natta并没有明确指出Al和Ti的立体结构是八面体结构还是四面体结构,因而对于空位,配位点,配位等问题都有点含糊不清。

(4)Natta机理几乎完全没有涉及规整聚合物的成因。

作为典型的定向聚合,没有这一条是难以令人信服的。

而作为Natta模型的最大缺陷,还是Ti上引发,Al增长,没有足够的证据,现在证明是错误的。

Cossee-Arlman单金属机理
优:解释了没有AlR3等参与也可以引发α-烯烃聚合的事实
通过实验和计算,推算得到空位的位置和数量
缺:Ti-C键的存在缺乏直接的实验证据
“飞来飞去”的假定一是在动力学上不合理,二是与茂金属催化剂实验相矛盾
单金属模型不能解释助催化剂对立构规整度和聚合速率的影响。

卡宾机理
优:较好的解释了为什么在同一催化剂在相同条件下既可以发生α-烯烃的配位聚合、又可以进行环烯烃的开环易位聚合
缺:在形成环化物以及环化物中α-氢的转移还有待进一步解释
11. 茂金属催化剂对烯烃聚合立体化学结构控制有何贡献,简述其应用的可能前景贡献。

同前
12.在环烯烃开环聚合中的Ziegler-Natta催化剂中有几大类,这些催化的与α-烯烃及二烯烃的聚合催化剂有何区别和共同点?
双金属
13. 在茂金属发现之前后过渡金属很难用于α-烯烃的聚合,为何?而近年来很多学者参照茂金属的配位基可改变催化剂中心的性质,发展了用于α-烯烃的聚合的后过渡金属催化剂,这些催化剂的特点是什么?都可制得什么特性的聚α-烯烃?
特点:主催化剂的配体由Ziegler-Natta催化剂的卤素或烷氧基、茂金属催化剂的茂基扩展至共轭芳氮基
突破了只有前过渡金属(主要是ⅣB族)催化剂对α-烯烃有高活性的界限
实现了过渡金属均可形成对α-烯烃聚合有高活性催化剂的理论预期
14. 在连锁聚合发展历程上,有何哲学思想?
15. 后过渡金属催化剂的发现是基于何种理论指导?
茂金属催化剂对α-烯烃聚合有较好的立构控制和聚合速率控制
MAO具有较高的还原性
共轭芳氮环能够改变配体的极性
16. 后过渡金属催化烯烃聚合有何特性?
1) 催化活性高、体系为均相、单一活性种,所得聚烯烃的分子量分布窄
2) 通过改变聚合温度、乙烯的压力和配体上的取代基,可以合成出支化度不同的短支链支
化聚乙烯
3) 后过渡金属催化剂还可用于α-烯烃与极性单体的共聚。

4) 开拓出乙烯低聚制取长链α-烯烃的高活性催化剂。

5) 催化剂容易制备,且在空气中相当稳定,可长期保存
17. 后过渡金属催化剂的发现对配位聚合理论有何贡献?
突破了只有前过渡金属才对α-烯烃有催化作用,实现了全过渡金属对聚合均有催化作用。

相关文档
最新文档