最新北师大版八年级数学第一学期《数据的分析》达标检测题及答案解析-精品试题
新北师大数八年级上册:数据的分析达标测试卷
第六章达标测试卷一、选择题(每题3分,共30分)1.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是( )A.6 B.7 C.8 D.92.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩.小明说:“我们组成绩是86分的同学最多.”小英说:“我们组7位同学的成绩排在最中间的恰好也是86分.”上面两位同学的话能反映的统计量分别是( )A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数3.一组数据为-1,0,4,x,6,16,这组数据的中位数为5,则这组数据众数可能是( )A.5 B.6 C.-1 D.5.54.已知一组数据3,a,4,5的众数为4,则这组数据的平均数为( ) A.3 B.4 C.5 D.65.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生要想知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )A.众数B.方差C.平均数D.中位数6.甲、乙、丙、丁四人进行射箭测试,每人10次,射箭成绩的平均数都是8.9环,方差分别是s甲2=0.65,s乙2=0.55,s丙2=0.50,s丁2=0.45,则射箭成绩最稳定的是( )A.甲B.乙C.丙D.丁7.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( )A.2 400元,2 400元B.2 400元,2 300元C.2 200元,2 200元D.2 200元,2 300元(第8题)8.某赛季甲、乙两名篮球运动员12场比赛得分情况如图所示,对这两名运动员的成绩进行比较,下面四个结论中,不正确的是( ) A .甲运动员得分的极差大于乙运动员得分的极差 B .甲运动员得分的中位数大于乙运动员得分的中位数 C .甲运动员得分的平均数大于乙运动员得分的平均数 D .甲运动员的成绩比乙运动员的成绩稳定9.已知A 样本的数据如下:72,73,76,76,77,78,78,78,B 样本的数据恰好是A 样本数据每个都加2,则A ,B 两个样本的下列统计量对应相同的是( ) A .平均数 B .标准差C .中位数D .众数10.已知5个正数a 1,a 2,a 3,a 4,a 5的平均数是a ,且a 1>a 2>a 3>a 4>a 5,则数据a 1,a 2,a 3,0,a 4,a 5的平均数和中位数是( )A .a ,a 3B .a ,a 2+a 2+a 32C. 56a ,a 2+a 32D. 56a ,a 3+a 42二、填空题(每题3分,共24分)11.已知一组数据为25,25,27,27,26,则其平均数为________.12.某项目六名礼仪小姐的身高(单位:cm)如下:168,166,168,167,169,168,则她们身高的众数是________,极差是________.13.如图是某商场一天的运动鞋销售量情况统计图,这些运动鞋的尺寸的众数和中位数分别为____________ .(第13题)(第16题)14.某学生数学学科课堂表现为90分,平时作业为92分,期末考试为85分,若这三项成绩分别按30%,30%,40%的比例计入总评成绩,则该学生数学学科总评成绩是________分.15.已知样本数据x1,x2,x3,x4的方差为2,则4x1,4x2,4x3,4x4的方差是________.16.甲、乙两名射击运动员进行10次射击,甲的成绩(单位:环)是7,7,8,9,8,9,10,9,9,9,乙的成绩如图所示,则甲、乙两人射击成绩的方差之间的关系是s甲2________s乙2(填“>”“<”或“=”).17.某班40名学生的某次数学测验成绩统计表如下:若这个班的数学平均成绩是74分,则x=________,y=________.18.某商店3月份、4月份出售同一品牌各种规格的空调台数如下表:型号根据表中的数据回答下列问题:(1)该商店这两个月平均每月销售空调________台;(2)请你帮助该商店经理考虑下,6月份进货时,商店对________型号的空调要多进,对________型号的空调要少进.三、解答题(19~21题每题10分,其余每题12分,共66分)19.从甲、乙、丙三个厂家生产的同一种产品中各抽取8件,对其使用寿命跟踪调查.结果如下(单位:年):甲:3 4 5 6 8 8 9 10乙:4 6 6 6 8 9 12 13丙:3 3 4 7 9 10 11 12三个厂家在广告中都称该产品的使用寿命是8年,请根据结果来判断厂家在广告中分别运用了平均数、众数、中位数的哪一种集中趋势的特征数.20.小亮和小莹自制了一个标靶进行投标比赛,两人各投了10次,下图是他们投标成绩的统计图.(第20题)(1)根据图中信息填写上表;(2)分别用平均数和中位数解释谁的成绩比较好.21.某饮料店为了了解本店一种果汁饮料上半年的销售情况,随机调查了8天该种饮料的日销售量,结果如下(单位:听):33,32,28,32,25,24,31,35.(1)这8天的平均日销售量是多少听?(2)根据上面的计算结果,估计上半年(按181天计算)该店能销售这种饮料多少听?22.张林、李明、王浩、刘平、陈亮五人学习小组在两次数学测试中,成绩如表所示. (1)为了比较学习小组数学测验成绩某种意义上的稳定性,可采取绝对差作为评价标准.若绝对差的计算公式是:绝对差=1n (|x 1-x |+|x 2-x |+…+|x n -x |)(其中x表示n 个数据x 1,x 2,…,x n 的平均数),并规定绝对差小的稳定性好.请问这两次数学测验成绩,哪一次测验成绩更稳定?(2)请你设计一种能评价张林两次数学测验成绩好与差的方案?并通过计算说明.223.某次学生夏令营活动,有小学生、初中生、高中生和大学生参加,共200人,各类学生人数比例见扇形统计图(如图). (1)参加这次夏令营活动的初中生共有多少人?(2)活动组织者号召参加这次夏令营活动的所有学生为贫困学生捐款.结果小学生每人捐款5元,初中生每人捐款10元,高中生每人捐款15元,大学生每人捐款20元.问平均每人捐款多少元?(3)在(2)的条件下,把每个学生的捐款数额(单位:元)一一记录下来,则在这组数据中,众数是多少?(第23题)24.某市甲、乙两个汽车销售公司1至10月每月销售同种品牌汽车的情况如图所示.(1)请你根据统计图填写下表:(2)请你从以下两个不同的方面对甲、乙两个汽车销售公司1至10月的销售情况进行分析(分析哪个汽车销售公司较有潜力):①从平均数和方差结合看;②从折线图上甲、乙两个汽车销售公司销售量的趋势看.(第24题)答案一、1.C 2.D 3.B 4.B 5.D 6.D 7.A 8.D 9.B 10.D 二、11.26 12.168 cm ;3 cm 13.25 cm 和24.5 cm 14.88.6 15.3216.< 17.10;8 18.(1)52 (2)B ;D三、19.解:甲厂用了众数,乙厂用了平均数,丙厂用了中位数. 20.解:(1)7;7;7.5(2)平均数相等说明两人整体水平相当,成绩一样好;小莹的中位数大说明小莹的成绩比小亮好.21.解:(1)这8天的平均日销售量是18(33+32+28+32+25+24+31+35)=30(听).(2)30×181=5 430(听).所以估计上半年该店能销售这种饮料5 430听.22.解:(1)设两次数学测验成绩的绝对差分别是P 1,P 2,则P 1=15(|81-80|+|82-80|+|79-80|+|78-80|+|80-80|)=1.2,P 2=15(|82-82|+|79-82|+|89-82|+|85-82|+|75-82|)=4.因为P 1<P 2,所以第1次数学测验成绩更稳定. (2)答案不唯一,以下提供一种设计方案参考:第1次测验成绩81分排序是第2名,第2次测验成绩82分排序是第3名,所以从排名序号来看,张林第1次测验成绩比第2次更好些.23.解:(1)200×(1-10%-20%-30%)=80(人).(2)[(20%×5+30%×15+10%×20)×200+80×10]÷200=11.5(元). (3)众数是10元.24.解:(1)甲乙司的销售情况稳定.②因为甲汽车销售公司每月销售量在平均数上下波动,而乙汽车销售公司每月销售量总体上呈上升趋势,并且从6月起每月都比甲汽车销售公司销售量多,所以乙汽车销售公司较有潜力.。
北师大版八年级数学上数据的分析单元测试题及答案
初中数学试卷数据的分析单元测试题及答案一、选择题(30分)1、要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是( ) A .调查全体女生 B .调查全体男生C .调查九年级全体学生D .调查七、八、九年级各100名学生 2、下列调查适合作普查的是( ) A .了解在校大学生的主要娱乐方式 B .了解宁波市居民对废电池的处理情况 C .日光灯管厂要检测一批灯管的使用寿命D .对甲型H1N1流感患者的同一车厢的乘客进行医学检查 3、下列调查适合作抽样调查的是A .了解义乌电视台“同年哥讲新闻”栏目的收视率 B.了解某甲型H1N1确诊病人同机乘客的健康状况 C.了解某班每个学生家庭电脑的数量D.“神七”载人飞船发射前对重要零部件的检查 4、为了了解我市参加中考的15000名学生的视力情况,抽查了1000名学生的视力进行统计分析.下面四个判断正确的是( )A .15000名学生是总体B .1000名学生的视力是总体的一个样本C .每名学生是总体的一个个体D .上述调查是普查5、在对n 个数据进行分组整理的过程中,各组频数之和与频率之和等于( ) A. 1、n B. n 、1 C. n 、n D. 1、16、为了从甲、乙、丙、丁四位同学中选派两位选手参加数学竞赛,老师对他们的五次数学测验成绩进行统计,得出他们的平均分均为85分,且1002=甲s 、1102=乙s 、1202=丙s 、902=丁s . 根据统计结果,派去参加竞赛的两位同学是( )A .甲、乙B .甲、丙C .甲、丁D .乙、丙7、已知数据: 2,,3,2,31- π 其中无理数出现的频率为( )A. 20%B. 40%C. 60%D. 80%8.日期 一 二 三 四 五 方差 平均气温 最低气温1℃-1℃2℃0℃■■1℃被遮盖的两个数据依次是 A .3℃,2B .3℃,65C .2℃,2D .2℃,859、今年3月份某周,我市每天的最高气温(单位:℃)12,9,10,6, 11,12,17,则这组数据的中位数与极差分别是( ) A .8,11 B .8,17 C .11,11 D .11,1710、下列说法中:①一组数据不可能有两个众数;②将一组数据中的每一个数据都加上(或都减去)同一个常数后,方差恒不变;③随意翻到一本书的某页,这页的数码是奇数,这个事件是必然发生的;④要反映西昌市某一天内气温的变化情况,宜采用折线统计图。
北师大版八年级(上)数学《数据的分析》单元测试2(含答案)
第六章数据的分析单元测试一、选择题1. 数据5、3、2、1、4的平均数是()A. 2B. 5C. 4D. 32. 某电视台举办的青年歌手电视大奖赛上,六位评委给3号选手的评分如下:90、96、91、96、95、94,这组数据的中位数是()A. 95B. 94C. 94.5D. 963. 某校四个科技兴趣小组在“科技活动周”上交的作品数分别如下:10、10、x、8,已知这组数据的众数与平均数相等,则这组数据的中位数是()A. 8B. 9C. 10D. 124. 某组数据3、3、2、3、6、3、10、3、6、3、2,①这组数据的众数是3;②这组数据的众数与中位数数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有()A. 1个B. 2个C. 3个D. 4个5. 已知一组数据20、30、40、50、50、50、60、70、80,其中平均数、中位数、众数的大小关系是()A. 平均数>中位数>众数B. 平均数<中位数<众数C. 中位数<众数<平均数D. 平均数=中位数=众数6. 某车间对生产的零件进行抽样调查,在10天中,该车间生产的零件次品数如下(单位:个):0、3、0、1、2、1、4、2、1、3,在这10天中,该车间生产的零件次品数的()A. 中位数是2B. 平均数是1C. 众数是1D. 以上均不正确7. 从鱼塘捕获同时放养的草鱼240条,从中任选8条称得每条鱼的质量分别为1.5、1.6、1.4、1.3、1.5、1.2、1.7、1.8(单位:千克),那么可估计这240条鱼的总质量大约为()A. 300千克B. 360千克C. 36千克D. 30千克8. 一组数据由5个整数组成,已知中位数是4,唯一众数是5,则这组数据最大和的可能是()A. 19B. 20C. 22D. 239. A 、B 、C 、D 、E 五名射击运动员在一次比赛中的平均成绩是80环,而A 、B 、C 三人的平均成绩是78环,那么下列说法中一定正确的是( )A. D 、E 的成绩比其他三人好B. D 、E 两人的平均成绩是83环C. 最高分得主不是A 、B 、CD. D 、E 中至少有1人的成绩不少于83环。
最新北师大版八年级数学上册《数据的分析》单元检测及解析
《第6章 数据的分析》一、选择题1.已知一组数据:12,5,9,5,14,下列说法不正确的是( ) A .平均数是9B .极差是5C .众数是5D .中位数是92.某市测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是( )A .50和50B .50和40C .40和50D .40和403.已知一组数据3,a ,4,5的众数为4,则这组数据的平均数为( ) A .3B .4C .5D .64.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选( ) 甲 乙 丙 丁 平均数 80 85 85 80 方 差42425459A .甲B .乙C .丙D .丁5.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映出的统计量是( )A .众数和平均数B .平均数和中位数C .众数和方差D .众数和中位数6.已知一组数据10,8,9,x ,5的众数是8,那么这组数据的方差是( )A .2.8B .C .2D .57.已知:一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,方差是,那么另一组数据3x 1﹣2,3x 2﹣2,3x 3﹣2,3x 4﹣2,3x 5﹣2的平均数和方差分别是( )A .2,B .2,1C .4,D .4,38.为了估计湖中有多少条鱼,先从湖中捕捉50条鱼做记号,然后放回湖里,经过一段时间,等带记号的鱼完全混于鱼群中之后,再捕捞第二次,鱼共200条,有10条做了记号,则估计湖里有多少条鱼( )A.400条B.500条C.800条D.1000条9.某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是()A.全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B.将六个平均成绩之和除以6,就得到全年级学生的平均成绩C.这六个平均成绩的中位数就是全年级学生的平均成绩D.这六个平均成绩的众数不可能是全年级学生的平均成绩10.有一组数据7、11、12、7、7、8、11.下列说法错误的是()A.中位数是7 B.平均数是9 C.众数是7 D.极差是5二、填空题11.一组数据2、﹣2、4、1、0的中位数是______.12.近年来,义乌市民用汽车拥有量持续增长,2007年至2011年我市民用汽车拥有量依次约为(单位:万辆):11,13,15,19,x,这五个数的平均数为16.2,则x的值为______.13.李好在六月连续几天同一时刻观察电表显示的度数,记录如下:日期1号2号3号4号5号6号7号8号…30号电表显示(度)120 123 127 132 138 141 145 148 …估计李好家六月份总月电量是______度.15.商店某天销售了11件衬衫,其领口尺寸统计如下表:领口尺寸(单位:cm)38 39 40 41 42件数 1 4 3 1 2则这11件衬衫领口尺寸的众数是______cm,中位数是______cm.16.已知三个不相等的正整数的平均数,中位数都是3,则这三个数分别为______.17.已知一个样本:1,3,5,x,2,它的平均数为3,则这个样本的方差是______.18.甲,乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:班级参赛人数中位数方差平均字数甲55 149 191 135乙55 151 110 135某同学分析上表后得出如下结论:①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数19.一次演讲比赛,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制,然后再按演讲内容:演讲能力:演讲效果=5:4:1的比例计算选手的综合成绩(百分制).进入决赛的前两名选手的单项成绩如下表所示:选手演讲内容演讲能力演讲效果A 85 95 95B 95 85 95请决出两人的名次.20.广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环境保护局公布的2006﹣2010这五年各年的全年空气质量优良的天数,绘制折线图如图.根据图中信息回答:(1)这五年的全年空气质量优良天数的中位数是______,极差是______.(2)这五年的全年空气质量优良天数与它前一年相比,增加最多的是______年(填写年份).(3)求这五年的全年空气质量优良天数的平均数.21.某班实行小组量化考核制,为了了解同学们的学习情况,王老师对甲、乙两个小组连续六周的综合评价得分进行了统计,并将得到的数据制成如下的统计表:周次组别一二三四五六甲组12 15 16 14 14 13乙组9 14 10 17 16 18(1)请根据上表中的数据完成下表;(注:方差的计算结果精确到0.1)(2)根据综合评价得分统计表中的数据,请在图中画出甲、乙两组综合评价得分的折线统计图;(3)由折线统计图中的信息,请分别对甲、乙两个小组连续六周的学习情况做出简要评价.平均数中位数方差甲组______ ______ ______乙组______ ______ ______23.“最美女教师”张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某中学九年级一班全体同学参加了捐款活动,该班同学捐款情况的部分统计图如图所示:(1)求该班的总人数;(2)将条形图补充完整,并写出捐款总额的众数;(3)该班平均每人捐款多少元?24.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次第二次第三次第四次第五次第六次甲10 8 9 8 10 9乙10 7 10 10 9 8(1)根据表格中的数据,分别计算甲、乙的平均成绩.(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.《第6章数据的分析》参考答案一、选择题1.已知一组数据:12,5,9,5,14,下列说法不正确的是()A.平均数是9 B.极差是5 C.众数是5 D.中位数是9【解答】解:这组数据的平均数为: =9,极差为:14﹣5=9,众数为:5,中位数为:9.故选B.2.某市测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是()A.50和50 B.50和40 C.40和50 D.40和40【解答】解:从小到大排列此数据为:37、40、40、50、50、50、75,数据50出现了三次最多,所以50为众数;50处在第4位是中位数.故选:A.3.已知一组数据3,a,4,5的众数为4,则这组数据的平均数为()A.3 B.4 C.5 D.6【解答】解:数据3,a,4,5的众数为4,即4次数最多;即a=4.则其平均数为(3+4+4+5)÷4=4.故选B.4.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选()甲 乙 丙 丁 平均数 80 85 85 80 方 差42425459A .甲B .乙C .丙D .丁【解答】解:由于乙的方差较小、平均数较大,故选乙. 故选:B .5.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映出的统计量是( )A .众数和平均数B .平均数和中位数C .众数和方差D .众数和中位数【解答】解:在一组数据中出现次数最多的数是这组数据的众数,排在中间位置的数是中位数, 故选:D .6.已知一组数据10,8,9,x ,5的众数是8,那么这组数据的方差是( )A .2.8B .C .2D .5【解答】解:因为一组数据10,8,9,x ,5的众数是8,所以x=8.于是这组数据为10,8,9,8,5.该组数据的平均数为:(10+8+9+8+5)=8,方差S 2= [(10﹣8)2+(8﹣8)2+(9﹣8)2+(8﹣8)2+(5﹣8)2]= =2.8.故选:A .7.已知:一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,方差是,那么另一组数据3x 1﹣2,3x 2﹣2,3x 3﹣2,3x 4﹣2,3x 5﹣2的平均数和方差分别是( )A .2,B .2,1C .4,D .4,3【解答】解:∵x 1,x 2,…,x 5的平均数是2,则x 1+x 2+…+x 5=2×5=10. ∴数据3x 1﹣2,3x 2﹣2,3x 3﹣2,3x 4﹣2,3x 5﹣2的平均数是:′= [(3x1﹣2)+(3x 2﹣2)+(3x 3﹣2)+(3x 4﹣2)+(3x 5﹣2)]= [3×(x 1+x 2+…+x 5)﹣10]=4,S′2=×[(3x1﹣2﹣4)2+(3x2﹣2﹣4)2+…+(3x5﹣2﹣4)2],=×[(3x1﹣6)2+…+(3x5﹣6)2]=9× [(x1﹣2)2+(x2﹣2)2+…+(x5﹣2)2]=3.故选D.8.为了估计湖中有多少条鱼,先从湖中捕捉50条鱼做记号,然后放回湖里,经过一段时间,等带记号的鱼完全混于鱼群中之后,再捕捞第二次,鱼共200条,有10条做了记号,则估计湖里有多少条鱼()A.400条B.500条C.800条D.1000条【解答】解:设湖中有x条鱼,则200:10=x:50,解得x=1 000(条).故选D.9.某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是()A.全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B.将六个平均成绩之和除以6,就得到全年级学生的平均成绩C.这六个平均成绩的中位数就是全年级学生的平均成绩D.这六个平均成绩的众数不可能是全年级学生的平均成绩【解答】解:A、全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间,正确;B、可能会出现各班的人数不等,所以,6个的班总平均成绩就不能简单的6个的班的平均成绩相加再除以6,故错误;C、中位数和平均数是不同的概念,故错误;D、六个平均成绩的众数也可能是全年级学生的平均成绩,故错误;故选A.10.有一组数据7、11、12、7、7、8、11.下列说法错误的是()A.中位数是7 B.平均数是9 C.众数是7 D.极差是5【解答】解:这组数据按照从小到大的顺序排列为:7、7、7、8、11、11、12,则中位数为:8,平均数为: =9,众数为:7,极差为:12﹣7=5.故选:A.二、填空题11.一组数据2、﹣2、4、1、0的中位数是 1 .【解答】解:从小到大排列此数据为:﹣2、0、1、2、4,处在中间位置的是1,则1为中位数.所以本题这组数据的中位数是1.故答案为1.12.近年来,义乌市民用汽车拥有量持续增长,2007年至2011年我市民用汽车拥有量依次约为(单位:万辆):11,13,15,19,x,这五个数的平均数为16.2,则x的值为23 .【解答】解:根据题意得:(11+13+15+19+x)÷5=16.2,解得:x=23,则x的值为23;故答案为:23.13.李好在六月连续几天同一时刻观察电表显示的度数,记录如下:日期1号2号3号4号5号6号7号8号…30号电表显示(度)120 123 127 132 138 141 145 148 …估计李好家六月份总月电量是120 度.【解答】解:×30=120(度).15.商店某天销售了11件衬衫,其领口尺寸统计如下表:领口尺寸(单位:cm)38 39 40 41 42件数 1 4 3 1 2则这11件衬衫领口尺寸的众数是39 cm,中位数是40 cm.【解答】解:同一尺寸最多的是39cm,共有4件,所以,众数是39cm,11件衬衫按照尺寸从小到大排列,第6件的尺寸是40cm,所以中位数是40cm.故答案为:39,40.16.已知三个不相等的正整数的平均数,中位数都是3,则这三个数分别为1,3,5或2,3,4 .【解答】解:因为这三个不相等的正整数的中位数是3,设这三个正整数为a,3,b(a<3<b);其平均数是3,有(a+b+3)=3,即a+b=6.且a b为正整数,故a可取1,2,分别求得b的值为5,4.故这三个数分别为1,3,5或2,3,4.故填1,3,5或2,3,4.17.已知一个样本:1,3,5,x,2,它的平均数为3,则这个样本的方差是 2 .【解答】解:∵1,3,x,2,5,它的平均数是3,∴(1+3+x+2+5)÷5=3,∴x=4,∴S2= [(1﹣3)2+(3﹣3)2+(4﹣3)2+(2﹣3)2+(5﹣3)2]=2;∴这个样本的方差是2.故答案为:2.18.甲,乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:班级参赛人数中位数方差平均字数甲55 149 191 135乙55 151 110 135某同学分析上表后得出如下结论:①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数19.一次演讲比赛,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制,然后再按演讲内容:演讲能力:演讲效果=5:4:1的比例计算选手的综合成绩(百分制).进入决赛的前两名选手的单项成绩如下表所示:选手演讲内容演讲能力演讲效果A 85 95 95B 95 85 95请决出两人的名次.【解答】解:选手A的最后得分是:(85×5+95×4+95×1)÷(5+4+1)=900÷10=90,选手B最后得分是:(95×5+85×4+95×1)÷(5+4+1)=910÷10=91.由上可知选手B获得第一名,选手A获得第二名.20.广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环境保护局公布的2006﹣2010这五年各年的全年空气质量优良的天数,绘制折线图如图.根据图中信息回答:(1)这五年的全年空气质量优良天数的中位数是345 ,极差是24 .(2)这五年的全年空气质量优良天数与它前一年相比,增加最多的是2008 年(填写年份).(3)求这五年的全年空气质量优良天数的平均数.【解答】解:(1)这五年的全年空气质量优良天数按照从小到大排列如下:333、334、345、347、357,所以中位数是345;极差是:357﹣333=24;(2)2007年与2006年相比,333﹣334=﹣1,2008年与2007年相比,345﹣333=12,2009年与2008年相比,347﹣345=2,2010年与2009年相比,357﹣347=10,所以增加最多的是2008年;(3)这五年的全年空气质量优良天数的平均数===343.2天.21.某班实行小组量化考核制,为了了解同学们的学习情况,王老师对甲、乙两个小组连续六周的综合评价得分进行了统计,并将得到的数据制成如下的统计表:周次组别一二三四五六甲组12 15 16 14 14 13乙组9 14 10 17 16 18(1)请根据上表中的数据完成下表;(注:方差的计算结果精确到0.1)(2)根据综合评价得分统计表中的数据,请在图中画出甲、乙两组综合评价得分的折线统计图;(3)由折线统计图中的信息,请分别对甲、乙两个小组连续六周的学习情况做出简要评价.平均数中位数方差甲组14 14 1.7乙组14 15 11.7【解答】解:(1)填表如下:平均数中位数方差甲组14 14 1.7乙组14 15 11.7(2)如图:(3)从折线图可看出:甲组成绩相对稳定,但进步不大,且略有下降趋势;乙组成绩不够稳定,但进步较快,呈上升趋势.23.“最美女教师”张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某中学九年级一班全体同学参加了捐款活动,该班同学捐款情况的部分统计图如图所示:(1)求该班的总人数;(2)将条形图补充完整,并写出捐款总额的众数;(3)该班平均每人捐款多少元?【解答】解:(1)=50(人).该班总人数为50人;(2)捐款10元的人数:50﹣9﹣14﹣7﹣4=50﹣34=16,图形补充如右图所示,众数是10;(3)(5×9+10×16+15×14+20×7+25×4)=×655=13.1元,因此,该班平均每人捐款13.1元.24.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次第二次第三次第四次第五次第六次甲10 8 9 8 10 9乙10 7 10 10 9 8(1)根据表格中的数据,分别计算甲、乙的平均成绩.(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.【解答】解:(1)甲的平均成绩是:(10+8+9+8+10+9)÷6=9,乙的平均成绩是:(10+7+10+10+9+8)÷6=9;(2)甲的方差= [(10﹣9)2+(8﹣9)2+(9﹣9)2+(8﹣9)2+(10﹣9)2+(9﹣9)2]=.乙的方差= [(10﹣9)2+(7﹣9)2+(10﹣9)2+(10﹣9)2+(9﹣9)2+(8﹣9)2]=.(3)推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.。
北师大版八年级(上)数学《数据的分析》单元测试3(含答案)
第六章数据的分析一.填空题。
1.若一组数据6,7,5,x,1的平均数是5,则这组数据的众数为___________。
2.若x 1、x 2、x 3的平均数为3,则5x1+1、5x2+2、5x3+3的平均数为__________。
3.已知某班某次数学成绩中10名同学的成绩分别为89,70,65,89,75,92,88,87,90,86,这10名同学的成绩的中位数、众数分别是__________。
4.在某次歌手大赛中,10位评委对某歌手打分分别为:9.8,9.0,9.5,9.7,9.6,9.0,9.0,9.5,9.9,8.9,则去掉一个最高分一个最低分后,该歌手的得分应是__________。
5.某果园有果树100棵,从中随机抽取5棵,每棵果树的产量如下(单位:千克):98,102,97,103,105,这5棵果树的平均产量为__________千克,估计这100棵果树的总产量为__________千克。
6.某小组某次英语听写的平均成绩为80分,5名同学中有4名同学的成绩分别为:82,85,90,75,则另一名同学的成绩为__________分。
7.数据0,-1,1,-2,1,这组数据的众数是__________,中位数是__________。
8.为了解八年级(1)班学生的营养状况,抽取了8位同学的血样进行血色素检测,以此来估计这个班学生的血色素水平,测得结果如下(单位:克):13.8,12.5,10.6,11,14.7,12.4,13.6,12.2,则这8位同学血色素的平均值为__克。
9.某出租公司在“五一”长假期间平均每天的营业额为5万元,由此推断5月份的总营业额约为5×31=155万元,这样的推断是否合理?答:_____________。
10.在一次科技知识竞赛中一组学生成绩统计如下:这组学生成绩的中位数是_________,众数是_________。
二. 选择题。
11.下列说法中正确的有()(1)描述一组数据的平均数只有一个;(2)描述一组数据的中位数只有一个; (3)描述一组数据的众数只有一个;(4)描述一组数据的平均数,中位数,众数都一定是这组数据里的数; (5)一组数据中的一个数大小发生了变化,一定会影响这组数据的平均数,众数,中位数。
最新北师大版八年级数学上册《数据的分析》综合测评及答案(精品试卷).docx
第六章 数据的分析综合测评一、选择题(每小题3分,共30分)1. 小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2∶3∶5的比例确定成绩,则小王的成绩是( )A .255分B .84分C .84.5分D .86分 2. 在数据75,80,80,85,90中,众数、中位数分别是( ) A .75,80 B .80,80 C .80,85 D .80,903. 某射击小组有20人,教练根据他们某次射击的数据绘制了如图1所示的统计图,则这组数据的众数和中位数分别是( ) A .7环,7环 B .8环,7.5环 C .7环,7.5环 D .8环,6环4. 甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数x 与方差s 2如下表所示:根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择( ) A .甲 B .乙 C .丙 D .丁甲 乙 丙 丁 平均数x (cm )561 560 561 560 方差s 23.53.515.516.55. 某班七个兴趣小组人数分别为4,4,5,x ,6,6,7.已知这组数据的平均数是5,则这组数据的中位数是( )A .7B .6C .5D .46. 如果一组数据x 1,x 2,…,x n 的方差是4,则另一组数据x 1+3,x 2+3,…,x n +3的方差是( )A .4B .7C .8D .197. 李东同学参加校团委组织的演讲赛,共21名选手参赛,预赛成绩各不相同,按成绩取前10名的选手参加复赛,李东在知道自己成绩的情况下,要判断自己能否进入复赛,还需要知道这21名选手成绩的( )A .平均数B .方差C .众数D .中位数8. 某校2015年九年级(1)班全体学生初中毕业体育考试的成绩统计如下表所示:根据上表中的信息判断,下列结论中错误的是( )A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分D .该班学生这次考试成绩的平均数是45分 9. 10名同学分成甲、乙两队进行篮球比赛,他们身高(单位:cm )如下表所示:队员1 队员2 队员3 队员4 队员5 甲队 177 176 175 172 175 乙队170175173174183设两队队员身高的平均数依次为x 甲,x 乙,身高的方差依次为22,s s 乙甲,则下列关系中完全正确成绩(分) 35 39 42 44 45 48 50 人数(人) 2566876的是( )A .x 甲=x 乙,22s s >乙甲 B .x 甲=x 乙,22s s <乙甲 C .x 甲>x 乙,22s s >乙甲 D .x 甲<x 乙,22s s <乙甲 10. 某单位若干名职工参加普法知识竞赛,将成绩制成如图2所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是( ) A .94分,96分 B .96分,96分 C . 94分,96.4分 D .96分,96.4分二、填空题(每小题4分,共32分)11. 某大学自主招生考试只考数学和物理.计算综合得分时,按数学占60%,物理占40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是 分.12. 两组数据:3,a ,2b ,5与a ,6,b 的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为 .13. 某校运动会前夕,要选择256名身高基本相同的女同学组成表演方阵,在这个问题中,最值得关注的是该校所有女生身高的________(填“平均数”、“中位数”或“众数”).14. 在射击比赛中,某运动员的6次射击成绩(单位:环)为7,8,10,8,9,6,这组数据的方差为 .15. 甲、乙两班各有45人,某次数学考试成绩的中位数分别是88分和90分,若90分及90分以上为优秀,则优秀人数多的班级是________. 16. 甲、乙两人各射击5次,成绩统计如下表所示:环数678910图2甲(次数) 1 1 1 1 1 乙(次数)221那么射击成绩比较稳定的是 (填“甲”或“乙”).17. 跳远运动员李刚对训练效果进行测试,6次跳远的成绩(单位:m )如下:7.6,7.8,7.7,7.8,8.0,7.9.这6次成绩的平均数为7.8,方差为601.如果李刚再跳两次,成绩分别为7.7,7.9,则李刚这8次跳远成绩的方差_____(填“变大”、“不变”或“变小”).18. 若x 1,x 2,…,x 9这9个数的平均数x =10,方差s 2=2,则x 1,x 2,…,x 9,x 这10个数的平均数为___,方差为___.三、解答题(共58分)19. (8分)某公司欲招聘一名工作人员,对甲、乙两位应聘者进行面试和笔试,他们的成绩(百分制)如下表所示:应聘者 面试 笔试 甲 87 90 乙9182若公司分别赋予面试成绩和笔试成绩6和4的权,计算甲、乙两人各自的平均成绩,谁将被录用?20. (9分)在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图3所示的统计图.请根据相关信息,解答下列问题:(直接填写结果)(1)这次调查获取的样本数据的众数是 ;(2)这次调查获取的样本数据的中位数12108642010080503020人数费用/元是 ;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有 人.21. (9分)学校准备从甲、乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如下表:选手 表达能力 阅读理解 综合素质 汉字听写 甲 85 78 85 73 乙73808283(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁?(2)如果表达能力、阅读理解、综合素质、汉字听写分别赋予它们2、1、3、4的权,请分别计算两名选手的平均成绩,从他们的这一成绩看,应选派谁?22. (10分)在学校组织的社会实践活动中,甲、乙两人参加了射击比赛,每人射击七次,命中的环数如下表所示: 甲(环) 7 8 8 6 9 8 10 乙(环)5106781010根据以上信息,解决下列问题: (1)写出甲、乙两人命中环数的众数;(2)已知通过计算求得甲x =8,2甲s ≈1.43,试比较甲、乙两人谁的成绩更稳定?23. (10分)我市某中学举行“中国梦•校园好声音”歌手大赛,初、高中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图4所示.(1)根据图示填写下表:平均数(分)中位数(分)众数(分)初中部85高中部85 100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.24. (12分)某校团委举办了一次“中国梦,我的梦”演讲比赛,满分10分,学生得分均为整数,成绩达6分以上(含6分)为合格,达9分以上(含9分)为优秀.这次竞赛中甲、乙两组学生成绩分布的条形统计图如图5所示.(1)补充完成下列的成绩统计分析表:组别平均分中位数方差合格率优秀率甲 6.7 3.41 90% 20%乙7.5 80% 10%(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是组学生;(填“甲”或“乙”)(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.参考答案第六章数据的分析综合测评一、1.D 2.B 3.C 4.A 5.C 6.A 7.D 8.D 9.B 10.D二、11.90 12.6 13.众数14.15.乙班16.乙17.变小18.10 1.8三、19.解:甲的平均成绩为(87×6+90×4)÷10=88.2(分),乙的平均成绩为(91×6+82×4)÷10=87.4(分).因为甲的平均分数较高,所以甲将被录用.20.(1)30元(2)50元(3)250 提示:调查的总人数是:6+12+10+8+4=40(人),则估计本学期计划购买课外书花费50元的学生有×1000=250(人).21.解:(1)乙的平均成绩为73+80+82+834=79.5.因为80.25 >79.5,所以应选派甲.(2)甲的平均成绩为85×2+78×1+85×3+73×410= 79.5,乙的平均成绩为73×2+80×1+82×3+83×410 = 80.4.因为79.5<80.4,所以应选派乙.22.解:(1)甲、乙两人命中环数的众数分别为8环、10环. (2)乙x ==8,2乙s =[(5﹣8)2+(10﹣8)2+…+(10﹣8)2]=≈3.71.因为甲x =8,2甲s ≈1.43,所以甲x =乙x ,2甲s <2乙s ,甲的成绩更稳定.23.解:(1)初中部:平均数为85分,众数为85分;高中部:中位数为80分.(2)因为两个队的平均数都相同,初中部的中位数高,所以在平均数相同的情况下,中位数高的初中部成绩好些.(3)因为2初s =51[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70,2高s =51[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160,所以2初s <2高s ,因此,初中代表队选手成绩较为稳定.24.解:(1)甲组:3,6,6,6,6,6,7,8,9,10,中位数为6; 乙组:5,5,6,7,7,8,8,8,8,9,平均数为7.1,方差为1.69. (2)因为甲组的中位数为6,所以7分在甲组排名属中游略偏上,故填甲.(3)答案不唯一,合理即可.如:乙组的平均数高于甲组;乙组的中位数高于甲组,所以乙组的成绩要好于甲组.。
最新北师大版八年级数学上册《第六章数据的分析》单元检测试题(含答案)
北师大版八年级数学上册第六章《数据的分析》单元检测试题一.选择题(共12小题)1.一组数据﹣3,2,2, 0,2,1的众数是()A.﹣3 B.2 C.0 D.12.在一次数学测验中,甲、乙、丙、丁四位同学的分数分别是90、x、90、70,若这四个同学得分的众数与平均数恰好相等,则他们得分的中位数是()A.100 B.90 C.80 D.703.801班的全体同学为本校一贫困生共揖款125元,根据下表(不完整)中该班的捐款数和捐款人数,可以知道该班捐款数的平均数和中位数依次是()A.2.5元,2元B.2.5元,2.5元C.2元,2.5元D.2元,2元4.为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:那么关于这10户居民用电量(单位:度),下列说法错误的是()4A.中位数是55 B.众数是60 C.平均数是54 D.方差是29 5.已知5个数a1、a2、a3、a4、a5的平均数是a,则数据a1+1,a2+2,a3+3,a4+4,a5+5的平均数为()A.a B.a+3 C. a D.a+156.有8个数的平均数是11,另外有12个数的平均数是12,这20个数的平均数是()A.11.6 B.2.32 C.23.2 D.11.57.某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为186cm的队员换下场上身高为192cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大8.某市6月份日平均气温统计如图所示,那么在日平均气温这组数据中,中位数是()A.8 B.10C.21 D.229.甲、乙、丙三种糖果的售价分别为每千克6元、7元、8元,若将甲种8千克,乙种10千克,丙种3千克混在一起,则售价应定为每千克()A.7元B.6.8元C.7.5元D.8.6元10.一组数据3,5,7,m,n的平均数是6,则m,n的平均数是()A.6 B.7 C.7.5 D.1511.国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,我市就“你每天在校体育活动时间是多少”的问题随机调查了某区300名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t<0.5h;B组:0.5h≤t<1h;C组:1h≤t<1.5h;D组:t≥1.5h.根据上述信息,你认为本次调查数据的中位数落在()A.B组B.C组C.D组D.A组12.如果数据x1,x2,…,x n的方差是3,则另一组数据2x1,2x2,…,2x n的方差是()A.3 B.6 C.12 D.5二.填空题(共5小题)13.有一组数据:3,a,4,6,7,它们的平均数是5,则a= ,这组数据的方差是.14.某水果店销售11元,18元,24元三种价格的水果,根据水果店一个月这三种水果销售量的统计图(如图),可计算出该店当月销售出水果的平均价格是元.15.某单位要招聘1名英语翻译,张明参加招聘考试的成绩如下表所示若把听、说、读、写的成绩按3:3:2:2计算平均成绩,则张明的平均成绩为16.某学校抽查了30名学生参加“学雷锋社会实践”活动的次数,并根据数据绘制成了如图所示的条形统计图,则30名学生参加活动的次数的中位数是次.17.一次数学测验满分是100分,全班38名学生平均分是67分.如果去掉A、B、C、D、E五人的成绩,其余人的平均分是62分,那么在这次测验中,C的成绩是分.三.解答题(共4小题)18.某农业科学研究所用新技术种植了一块棉花试验田,又在试验田旁边用老方法种植了一块面积相等的棉花田作比较,科研人员在棉花生长期间分别从两块地里各取了10株棉苗,测得它们的苗高如下:(单位:mm)(1)分别计算两块田里棉苗高度的平均数;(2)分别计算两块田里棉苗高度的方差,并指出哪块田里的棉苗长得整齐些.19.小明和小红5次数学单元测试成绩如下:(单位:分)小明:89、67、89、92、96;小红:86、62、89、92、92.他们都认为自己的成绩比另一位同学好.(1)分别计算小明和小红5次数学单元测试成绩的平均数、中位数和众数,并分析他们各自认为自己的成绩比另一位同学好的理由;(2)你认为谁的成绩更好些?说一说你的理由.20.小明的爸爸为了解小明这学期在家的作息时间,随机挑选了某个星期对小明进行了观察,并记录了他娱乐的时间:(1)小明这周内娱乐时间的平均数是分,中位数是分.(2)应选中位数和平均数中的哪一个表示小明这一周的一般娱乐时间更好?(3)是否可以用(2)的数据表示本学期小明在家娱乐的一般时间?(请填“可以”或“不可以”).21.为了从甲、乙两名选手中选拔一人参加射击比赛,对他们的射击水平做了一次测验,两人在相同条件下各射靶10次,命中的环数如下:甲:9 6 7 6 2 7 7 9 8 9乙:2 4 6 8 7 7 8 9 9 10为了比较两人的成绩,制作了如下的统计图表:1我们可以制定不同的规则来评判甲、乙两人的成绩.如:①平均数与方差相结合.平均数大的胜,平均数相同时,方差小的胜;②从射击命中的趋势来看,即看射击成绩发展趋势,有发展潜力的胜.在规则①下:甲胜,因为甲、乙两人平均数相等,甲的方差小;在规则②下:乙胜,因为从图中可以看出,乙的成绩处于上升趋势,有发展潜力.现在,请你制定两种不同的评判规则,并根据你的规则对甲、乙两人的成绩作出评判.参考答案一.选择题(共12小题)1.B;2.B;3.A;4.D;5.B;6.A;7.A;8.D;9.B;10.C;11.B;12.C;二.填空题(共5小题)13.5;2;14.15.3;15.84;16.2;17.100;三.解答题(共4小题)18.略 19.略 20.130;65;中位数;可以;21.略。
北师大版八年级数学上册第六章 数据的分析综合测评(Word版 含答案)
第六章 数据的分析综合测评(时间: 分钟 满分:100分)(班级: 姓名: 得分: )一、选择题(每小题4分,共32分)1. 数据-1,0,1,2,3的平均数是( ) A .-1 B .0 C .1 D .52. 在一次体操比赛中,六位评委对某位选手的打分分别为(单位:分):9.2,9.4,9.1,9.3,9.2,9.6,这组数据的众数为( )A .9.3B .9.2C .9.1D .9.63. 在《学习方法报》社举办的一次3D 打印“青少年创新大赛”中,有13名同学成绩优异,现取前6名进入决赛.小尚同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的( )A .方差B .众数C .平均数D .中位数4. 在一次训练中,甲、乙、丙三人各射击10次的成绩如图1所示,在这三人中,此次射击成绩最稳定的是( )A .甲B .乙C .丙D .无法判断图1 图25. 若x 个数的平均数为a ,y 个数的平均数为b ,则这(x+y )个数的平均数是( ) A .2a b + B .a y x b ++ C .xa yb x y ++ D .xa yba b++6. 甲、乙两地去年12月前5天的日平均气温如图2所示,下列描述错误的是( )A .甲地气温的中位数是6 ℃B .两地气温的平均数相同C .乙地气温的众数是8 ℃D .乙地气温相对比较稳定7. 甲、乙两班举行电脑汉字输入比赛,每班参赛学生成绩(每分钟输入汉字的个数)统计后结果如下表所示:参加人数 中位数 平均数 方 差甲 班 45 148 135 190 乙 班45151135110某同学根据表中数据分析得出如下结论:①甲、乙两班学生成绩的平均水平相同;②乙班优秀人数多于甲班优秀人数(规定每分钟输入汉字大于或等于150个为优秀);③乙班成绩比较稳定.其中结论正确的有( )A .0个B .1个C .2个D .3个 8. 某射击运动员练习射击,5次成绩分别为(单位:环):8,9,7,8,x .下列说法中正确的是( ) A .若这5次成绩的中位数为8,则x=8 B .若这5次成绩的众数是8,则x=8 C .若这5次成绩的方差为8,则x=8D .若这5次成绩的平均成绩是8,则x=8 二、填空题(每小题5分,共30分)9. 某生产小组6名工人某天加工零件的个数分别是10,10,11,12,8,10,则这组数据的中位数是 .10. 若甲.乙两个街舞团的人数相同,平均身高相同,通过计算身高的方差发现身高更整齐的街舞团是甲,那么s甲2s乙2(填“>”或“<”).11.(2019年盘锦)在中考体育加试中,某班30名男生的跳远成绩如下表:成绩/m 1.95 2.00 2.05 2.10 2.15 2.25人数239853这些男生跳远成绩的众数、中位数分别是.12. 学完方差的知识后,小明了解了他最要好的四个朋友的身高分别是(单位:cm):176,174,177,173,那么小明四个好朋友身高的方差是.13. 某校招聘一名数学老师,对应聘者分别进行了教学能力、科研能力和组织能力三项测试,其中甲、乙两名应聘者的成绩如下表所示(单位:分):教学能力科研能力组织能力甲81 85 86乙92 80 74如果根据实际需要,学校将教学、科研和组织能力三项测试得分按5:3:2的比例计算两人的总成绩,得分高者被录用,那么将被录用.14. 若10个数的平均数是3,方差是4,现将这10个数都扩大2倍,则这组新数据的方差是.三、解答题(共38分)15. (12分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数(名) 1 3 2 3 16 24 1每人月工资(元)21 000 8400 2025 2200 1800 1600 950 请你根据上述内容,解答下列问题:(1)所有员工月工资的中位数为元,众数为元;(2)所有员工的月平均工资为2500元,这样的工资能否反映该公司员工的月工资实际水平?若不合理,则选择哪个数据更合理?16. (12分)某校为了分析九年级学生艺术考试的成绩,随机抽查了两个班各5名学生的成绩,它们分别为:九(1)班:96,92,94,97,96;九(2)班:90,98,97,98,92.通过数据分析,列表如下:(1)补全表格;(2)计算两个班所抽取的学生艺术成绩的方差,判断哪个班的艺术成绩比较稳定.17. (14分)某校拟派一名跳高运动员参加校际比赛,对甲、乙两名同学进行了8次跳高选拔比赛,他们的原始成绩(单位:cm)如下表:第1次第2次第3次第4次第5次第6次第7次第8次甲169 165 168 169 172 173 169 167乙161 174 172 162 163 172 172 176两名同学的8次跳高成绩数据分析如下表:平均数中位数众数方差甲 a b c 5.75乙169 172 172 31.25根据图表信息回答下列问题:(1)a=,b=,c=;(2)这两名同学中,的成绩更为稳定(填甲或乙);(3)若跳高165 cm就可能获得冠军,该校为了获取跳高比赛冠军,你认为应该选择同学参赛,理由是:;(4)若跳高170 cm方可夺得冠军,该校为了获取跳高比赛冠军,你认为应该选择同学参赛,班由是:.第六章数据的分析综合测评一、1. C 2. B 3. D 4. B 5. C 6. C 7. D 8. D二、9. 10 10. < 11. 2.05,2.10 12. 5213. 乙14. 16三、15. 解:(1)1700 1600(2)不能.因为将近一半的员工工资为1600元,所以平均工资不能反映该公司员工月工资的平均水平.选择中位数或众数更为合理.16. 解:(1)表格数据从上到下从左到右依次为96,95,98;(2)九(1)班的方差为15×[(96-95)2+(92-95)2+(94-95)2+(97-95)2+(96-95)2]=3.2,九(2)班的方差为15×[(90-95)2+(98-95)2+(97-95)2+(98-95)2+(92-95)2]=11.2,因为两班平均成绩相等,且3.2<11.2,所以九(1)班学生的艺术成绩比较稳定.17. 解:(1)a=18(169+165+168+169+172+173+169+167)=169;b=1691692=169;因为169出现了3次,出现次数最多,所以c的值为169.(2)因为甲、乙两名同学成绩的平均数相同,但甲的方差小于乙的方差,所以甲的成绩更稳定. (3)若跳高1.65米就获得冠军,那么成绩在1.65或1.65米以上的次数甲多,所以选择甲. (4)若跳高1.70米就获得冠军,那么成绩在1.70或1.70米以上的次数乙多,所以选择乙.。
2018-2019学年最新北师大版八年级数学上册《数据的分析》单元检测题及解析-精品试题
《第6章数据的分析》一、选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.一组数据中有f1个x1,f2个x2,f3个x3,则这些数据的平均数是()A.B.C.D.2.以下说法中正确的是()A.一组数据中有唯一的众数B.中位数是一组数据中居中数据的平均数C.一组数据中有唯一的中位数D.众数比中位数更靠近平均数3.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为()A.8,9 B.8,8 C.8.5,8 D.8.5,94.由2003个32组成的一组数据,它们的平均数、中位数和众数分别是()A.32,32,32 B.32,1002,2003C.2003,1002,32 D.2003,1002,20035.某住宅小区六月份中1日至6日每天用水量变化情况如折线图所示,那么这6天的平均用水量是()A.30吨B.31吨C.32吨D.33吨6.a,b,c三个数的平均数是6,则2a+3,2b﹣2,2c+5的平均数是()A.6 B.8 C.12 D.147.已知一组数据有50个数,它们的平均数为40,将其中的两个数30和50舍去,则余下的数的平均数为()A.38 B.39 C.40 D.418.某服装厂生产一批男衬衫,经过抽样调查60名中年男子,得知所需衬衫型号的人数如下表所示.求出它的中位数是74,众数是76,平均数是74.4,下列说法正确的是()型号(单位:cm)70 72 74 76 78人数 3 8 20 27 2A.所需78号人数太少,78号的可以不生产B.这批衬衫可以一律按身长是74.4这个平均数生产C.因为众数是76,故76号的生产量要占第一位D.因为中位数是74,故74号的生产量要占第一位9.由小到大排列的一组数据x1,x2,x3,x4,x5,其中,每个数据都小于﹣1,则样本1,x1,﹣x2,x3,﹣x4,x5的中位数为()A.B.C.D.10.某学校举行理科(含数学、物理、化学、生物四科)综合能力比赛,四科的满分都为100分.甲、乙、丙三人四科的测试成绩如下表:综合成绩按照数学、物理、化学、生物四科测试成绩的1.2:1:1:0.8的比例计分,则综合成绩的第一名是()学科数学物理化学生物甲95 85 85 60乙80 80 90 80丙70 90 80 95A.甲B.乙C.丙D.不确定二、填空题11.已知一组数据4,5,6,7,它们出现的次数依次为2,3,2,1,则这组数据的众数是,中位数是,平均数是.12.如果一组数据同时减去350后,新数据中众数为7.3,中位数为8.2,则原数据的众数是,中位数是.13.随机抽取某城市一年(以365天计)中的30天的日平均气温状况统计如下:温度(x℃)10 14 18 22 26 30 32天数(t) 3 5 5 7 6 2 2请根据上述数据填空.(1)该组数据的中位数是℃.(2)该城市一年中日平均气温为26℃的约有天.14.甲、乙两班各有45人,某次数学考试成绩的中位数分别是88分和90分.若90分及90分以上为优秀,则优秀人数多的班级是班.15.若一组数据6,7,5,6,x,1的平均数是5,则这组数据的众数是.16.数据a,b,c,x,y的平均数是m,若a+b+c=3n,则数据a,b,c,﹣x,﹣y的平均数为.17.已知数据x1,x2…x n的平均数为a,数据y1,y2…y n的平均数为b,则数据2x l+3y1,2x2+3y2,2x3+3y3…2x n+3y n的平均数为.18.甲、乙两车站相距120km,一客车以每小时30km的速度由甲地开往乙地,又以每小时20km的速度返回,该车在甲、乙两地往返一次的平均速度是每小时km.19.已知直线y=kx+b上有n个点(x1,y1),(x2,y2)…(x n,y n),若x1,x2…x n的平均数是,则y1,y2…y n的平均数是.三、运算题:本大题共5小题,共44分,解答应写出必要的计算过程、推演步骤或文字说明.20.某校八年级一班期末数学成绩如图所示,根据图表,求数学成绩的平均分.21.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输成了15,则由此求出的平均数与实际平均数的差是多少?22.在我市2010年的一次中学生运动会上,参加男子跳高比赛的有17名运动会,通讯员在将成绩表送组委会时不慎被墨水污染掉一部分(如下表),但他记得这组运动员的成绩的众数是1.75米,表中每个成绩都至少有一名运动员.根据这些信息,试分析和计算出成绩是1.75米和1.80米的运动员各有几人?这17名运动员的平均跳高成绩是多少?(精确到0.01米)成绩(单位:米) 1.50 1.60 1.65 1.70 1.75 1.80 1.85 1.90人数 2 3 2 3 1 123.有两组数据:甲:3,x,7,y;乙:x2,6,y2,10,若甲组数据的平均数为4,乙组数据的平均数为9,求x、y的值,如果把这两组数据合并,问合并后的8个数据的平均数、众数、中位数各是多少?24.某公司有15名员工,他们所在的部门相应每人所创的年利润如表所示:根据表中提供的信息填空.(1)该公司每人所创年利润的平均数是多少万元;(2)该公司每人所创年利润的中位数是多少万元;(3)你认为应该使用平均数和中位数中哪一个来描述公司每人所创年利润的一般水平?《第6章数据的分析》参考答案与试题解析一、选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.一组数据中有f1个x1,f2个x2,f3个x3,则这些数据的平均数是()A.B.C.D.【考点】加权平均数.【分析】根据加权平均数的计算方法,求出所有数据的和,然后除以数据的总个数即可.【解答】解:∵数据中有f1个x1,f2个x2,f3个x3,∴这些数据的平均数是:,故选:B.【点评】此题考查了加权平均数,用到的知识点是加权平均数的计算公式,关键是数量掌握公式,列出算式.2.以下说法中正确的是()A.一组数据中有唯一的众数B.中位数是一组数据中居中数据的平均数C.一组数据中有唯一的中位数D.众数比中位数更靠近平均数【考点】众数;算术平均数;中位数.【分析】根据中位数及众数的定义,结合各选项进行判断即可.【解答】解:A、一组数据的众数可以有多个,原说法错误,故本选项错误;B、中位数是从小到大排列后,居中数据的平均数,原说法错误,故本选项错误;C、一组数据中有唯一的中位数,说法正确,故本选项正确;D、众数与中位数那个更靠近平均数是无法比较的,原说法错误,故本选项错误;故选C.【点评】本题考查了众数、中位数及平均数的知识,注意理解三者的定义.3.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为()A.8,9 B.8,8 C.8.5,8 D.8.5,9【考点】众数;中位数.【专题】常规题型.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:这组数据中出现次数最多的一个数是8,所以这组数据的众数是8环;22是偶数,按大小顺序排列后中间两个数是8和8,所以这组数据的中位数是8(环).故选B.【点评】本题考查的是众数和中位数.注意掌握中位数和众数的定义是关键.4.由2003个32组成的一组数据,它们的平均数、中位数和众数分别是()A.32,32,32 B.32,1002,2003C.2003,1002,32 D.2003,1002,2003【考点】众数;算术平均数;中位数.【分析】根据平均数、中位数和众数的定义及其意义回答即可.【解答】解:由题意2003个32组成的一组数据,那么此组数据是由32组成的,并且有2003个,所以,它们的平均数、中位数和众数都是32;故选:A.【点评】本题考查统计知识中的中位数、平均数和众数的定义及其运用,即将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数;平均数只要求出数据之和再除以总个数即可;众数是一组数据中出现次数最多的数.5.某住宅小区六月份中1日至6日每天用水量变化情况如折线图所示,那么这6天的平均用水量是()A.30吨B.31吨C.32吨D.33吨【考点】折线统计图;算术平均数.【专题】图表型.【分析】从图中得到6天用水量的6个数据,然后根据平均数的概念计算这6个数据的平均数就可得到平均用水量.【解答】解:这6天的平均用水量:=32吨,故选C.【点评】要熟悉统计图,读懂统计图,熟练掌握平均数的计算方法.6.a,b,c三个数的平均数是6,则2a+3,2b﹣2,2c+5的平均数是()A.6 B.8 C.12 D.14【考点】算术平均数.【分析】先根据a,b,c三个数的平均数是6,求出a+b+c的值,再根据2a+3、2b﹣2、2c+5的平均数=[2(a+b+c)+6]÷3,代入计算即可.【解答】解:由题意得:(a+b+c)÷3=6,∴a+b+c=18.2a+3、2b﹣2、2c+5的平均数=(2a+3+2b﹣2+2c+5)÷3=[2(a+b+c)+6]÷3=42÷3=14.故选D.【点评】本题考查了算术平均数,关键是求出2a+3、2b﹣2、2c+5的平均数=[2(a+b+c)+6]÷3,用到的知识点是平均数的计算公式.7.已知一组数据有50个数,它们的平均数为40,将其中的两个数30和50舍去,则余下的数的平均数为()A.38 B.39 C.40 D.41【考点】算术平均数.【分析】首先根据求平均数公式得出这50个数的和,再利用此公式求出余下的数的平均数.【解答】解:有50个数它们的平均数为45.那么这50个数的和为50×45.若将其中的两个数30和50舍去,则余下的平均数是:=40.故选C.【点评】本题考查的是样本平均数的求法及运用,熟记公式是解决本题的关键.8.某服装厂生产一批男衬衫,经过抽样调查60名中年男子,得知所需衬衫型号的人数如下表所示.求出它的中位数是74,众数是76,平均数是74.4,下列说法正确的是()型号(单位:cm)70 72 74 76 78人数 3 8 20 27 2A.所需78号人数太少,78号的可以不生产B.这批衬衫可以一律按身长是74.4这个平均数生产C.因为众数是76,故76号的生产量要占第一位D.因为中位数是74,故74号的生产量要占第一位【考点】中位数;算术平均数;众数.【专题】图表型.【分析】众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;平均数为所有数求和再除以个数.根据实际情况,此题关心的是众数.【解答】解:因为众数是76,说明此型号的衬衫需求最大,故76号的生产量要占第一位.故选C.【点评】本题为统计题,考查众数与中位数、平均数的意义,解题的关键是理解商家的挣钱理念.9.由小到大排列的一组数据x1,x2,x3,x4,x5,其中,每个数据都小于﹣1,则样本1,x1,﹣x2,x3,﹣x4,x5的中位数为()A.B.C.D.【考点】中位数.【分析】将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.根据这个定义求出.【解答】解:因为x1<x2<x3<x4<x5<﹣1,题目中数据共有六个,排序后为x1<x3<x5<1<﹣x4x2,<﹣故中位数是按从小到大排列后第三,第四两个数的平均数作为中位数,故这组数据的中位数是(x5+1).故选C.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.要明确定义.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.10.某学校举行理科(含数学、物理、化学、生物四科)综合能力比赛,四科的满分都为100分.甲、乙、丙三人四科的测试成绩如下表:综合成绩按照数学、物理、化学、生物四科测试成绩的1.2:1:1:0.8的比例计分,则综合成绩的第一名是()学科数学物理化学生物甲95 85 85 60乙80 80 90 80丙70 90 80 95A.甲B.乙C.丙D.不确定【考点】加权平均数.【专题】图表型.【分析】根据题意这四项课程的权分别为1.2:1:1:0.8.只需按加权平均数的计算公式分别计算并加以比较即可.【解答】解:由题意知,甲综合成绩=95×1.2+85+85+60×0.8=332分,乙综合成绩=80×1.2+80+90+80×0.8=330分,丙综合成绩=70×1.2+90+80+95×0.8=330分,∴甲综合成绩最高.故选A.【点评】本题考查了加权平均数的计算方法.加权平均数等于各数据与其权的积得和除以数据的个数.在计算时搞清楚数据对应的权.二、填空题:本大题共9小题,每小题4分,共36分,把答案填写在题中横线上.11.已知一组数据4,5,6,7,它们出现的次数依次为2,3,2,1,则这组数据的众数是 5 ,中位数是 5 ,平均数是 5.25 .【考点】众数;算术平均数;中位数.【分析】根据众数,中位数、平均数的定义即可求解.【解答】解:众数是5,中位数是5,平均数是=5.25.故答案是:5,5,5.25.【点评】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.12.如果一组数据同时减去350后,新数据中众数为7.3,中位数为8.2,则原数据的众数是357.3 ,中位数是358.2 .【考点】众数;中位数.【分析】一组数据同时减去350后,则中位数也减小350,众数也减小350,由此可得原数据的众数及中位数.【解答】解:原数据的众数为357.3;中位数为:358.2.故答案为:357.3,358.2.【点评】本题考查了众数及中位数的知识,一组数据同时减去n,那么这组数据的中位数、众数、平均数均减小n.13.随机抽取某城市一年(以365天计)中的30天的日平均气温状况统计如下:温度(x℃)10 14 18 22 26 30 32天数(t) 3 5 5 7 6 2 2请根据上述数据填空.(1)该组数据的中位数是22 ℃.(2)该城市一年中日平均气温为26℃的约有73 天.【考点】中位数;用样本估计总体.【分析】(1)根据中位数是第15、16个数的平均数,即可得出该组数据的中位数是(22+22),(2)先求出日平均气温为26℃的天数占,再乘以365即可.【解答】解:(1)∵共有30个数,∴中位数是第15、16个数的平均数,∴该组数据的中位数是(22+22)÷2=22,(2)∵日平均气温为26℃的天数占=,∴城市一年中日平均气温为26℃的约有365×=73(天),故答案为;22,73.【点评】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).14.甲、乙两班各有45人,某次数学考试成绩的中位数分别是88分和90分.若90分及90分以上为优秀,则优秀人数多的班级是乙班.【考点】中位数.【专题】应用题.【分析】中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,已知中位数,就是已知第23名的成绩.从而可以作出判断.【解答】解:根据中位数的定义:将甲、乙两班的45人的数学成绩,从小到大排列后,第23人的成绩就是中位数;甲班为88分,乙班为90分.若90分及90分以上为优秀,则优秀人数多的班级是乙班,至少是23人.故填乙.【点评】本题考查中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.15.若一组数据6,7,5,6,x,1的平均数是5,则这组数据的众数是5和6 .【考点】众数;算术平均数.【专题】计算题.【分析】先根据平均数计算公式求出x的值,对于众数可由这组数据中出现频数最大数据写出.【解答】解:由题意得:=5,解得x=5.这组数据中5和6出现频数相同且最大,所以这组数据的众数为5和6.故填5和6.【点评】本题考查的是平均数和众数的概念.注意一组数据的众数可能不只一个.16.数据a,b,c,x,y的平均数是m,若a+b+c=3n,则数据a,b,c,﹣x,﹣y的平均数为n ﹣m .【考点】算术平均数.【分析】根据平均数的定义求出a+b+c+x+y的值,再由a+b+c=3n,可求出x+y的值,继而可计算数据a,b,c,﹣x,﹣y的平均数.【解答】解:∵数据a,b,c,x,y的平均数是m,∴a+b+c+x+y=5m,又∵a+b+c=3n,∴x+y=5m﹣3n,∴数据a,b,c,﹣x,﹣y的平均数==n﹣m,故答案为:n﹣m.【点评】本题考查了算术平均数的知识,解答本题的关键是掌握平均数的定义.17.已知数据x1,x2…x n的平均数为a,数据y1,y2…y n的平均数为b,则数据2x l+3y1,2x2+3y2,2x3+3y3…2x n+3y n的平均数为2a+3b .【考点】算术平均数.【分析】把2x l+3y1,2x2+3y2,2x3+3y3…2x n+3y n的平均数的式子用和表示出来即可.【解答】解:∵x1、x2、x3的平均数为a,y1、y2、y3的平均数为b∴(2x1+3y1+2x3+3y3…2x n+3y n)÷3=[2(x1+x2+x3+••+x n)+3(y1+y2+y3+…+y n)]÷3=[2×3a+3×3b])÷3=2a+3b.故答案为:2a+3b.【点评】本题考查了平均数的计算.本题说明了一组数据若是由两组数据的和或倍数组成,则数据的平均数是这两组数据的平均数的和或倍数.18.甲、乙两车站相距120km,一客车以每小时30km的速度由甲地开往乙地,又以每小时20km的速度返回,该车在甲、乙两地往返一次的平均速度是每小时24 km.【考点】加权平均数.【分析】根据平均速度是总路程除以往返一次的总时间,列出算式,即可得出答案.【解答】解:这辆汽车往返一次的平均速度==24(km);故答案为:24.【点评】本题考查的是加权平均数的求法,关键是根据公式列出算式,本题易出现的错误是求30,20这两个数的平均数,对平均数的理解不正确.19.已知直线y=kx+b上有n个点(x1,y1),(x2,y2)…(x n,y n),若x1,x2…x n的平均数是,则y1,y2…y n的平均数是=k+b .【考点】一次函数图象上点的坐标特征;算术平均数.【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.【解答】解:由题意知,(x1+x2+…x n)=,(y1+y2+…y n)=.∵直线y=kx+b上有n个点(x1,y1),(x2,y2)…(x n,y n),∴(y1+y2+…y n)=(kx1+kx2+…kx n+nb)=(x1+x2+…x n)•k+b=k+b,即.故答案是:=k+b.【点评】本题考查了一次函数图象上点的坐标特征和算术平均数.经过函数的某点一定在函数的图象上.三、运算题:本大题共5小题,共44分,解答应写出必要的计算过程、推演步骤或文字说明.20.某校八年级一班期末数学成绩如图所示,根据图表,求数学成绩的平均分.【考点】加权平均数;条形统计图.【分析】利用加权平均数的计算方法求平均分即可.【解答】解:平均分为:=74【点评】本题考查了加权平均数及条形统计图的知识,解题的关键是记准公式.21.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输成了15,则由此求出的平均数与实际平均数的差是多少?【考点】计算器-平均数.【专题】计算题.【分析】本题知道30个数据中的一个的相应误差,求平均数的误差,只需看它对平均数产生的“影响”.【解答】解:该数据相差105﹣15=90,∴平均数与实际平均数相差=3.答:求出的平均数与实际平均数的差是﹣3.【点评】熟练掌握平均数的计算.22.在我市2010年的一次中学生运动会上,参加男子跳高比赛的有17名运动会,通讯员在将成绩表送组委会时不慎被墨水污染掉一部分(如下表),但他记得这组运动员的成绩的众数是1.75米,表中每个成绩都至少有一名运动员.根据这些信息,试分析和计算出成绩是1.75米和1.80米的运动员各有几人?这17名运动员的平均跳高成绩是多少?(精确到0.01米)成绩(单位:米) 1.50 1.60 1.65 1.70 1.75 1.80 1.85 1.90人数 2 3 2 3 1 1【考点】众数;加权平均数.【分析】根据已有12人的成绩,且这组运动员的成绩的众数是1.75米,表中每个成绩都至少有一名运动员,可知成绩为1.75的有4人,成绩为1.80的有1人,根据这些信息,就可以计算出这17名运动员的平均跳高成绩.【解答】解:根据题意可知,∵已有12人的成绩,∴1.75米和1.80米的共有5人,∵这组运动员的成绩的众数是1.75米,表中每个成绩都至少有一名运动员,∴成绩为1.75的有4人,成绩为1.80的有1人,所以这17名运动员的平均跳高成绩是=(1.50×2+1.60×3+1.65×2+1.70×3+1.75×4+1.80+1.85+1.90)÷17≈1.69米.答:1.75米和1.80米的运动员各有4人,1人,这17名运动员的平均跳高成绩是1.69米.【点评】本题考查了加权平均数的计算方法.若n个数x1,x2…x n的权分别是w1,w2…那么这组数的平均数为(w1+w2+…w n=n),公式适用范围:当数据x1,x2…x n中有一些值重复出现时,适宜运用加权平均数公式.23.有两组数据:甲:3,x,7,y;乙:x2,6,y2,10,若甲组数据的平均数为4,乙组数据的平均数为9,求x、y的值,如果把这两组数据合并,问合并后的8个数据的平均数、众数、中位数各是多少?【考点】众数;算术平均数;中位数.【分析】根据平均数的定义,列出方程组,求出x,y的值,然后按顺序排列这组数据,求出平均数、众数、中位数即可.【解答】解:由已知得,,解得:或,合并后的数据按从小到大的顺序排列为:2,3,4,4,6,7,10,16,则众数为4;中位数为5;平均数为=6.5.【点评】本题考查了众数、中位数、平均数的定义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.24.某公司有15名员工,他们所在的部门相应每人所创的年利润如表所示:根据表中提供的信息填空.(1)该公司每人所创年利润的平均数是多少万元;(2)该公司每人所创年利润的中位数是多少万元;(3)你认为应该使用平均数和中位数中哪一个来描述公司每人所创年利润的一般水平?【考点】中位数;算术平均数.【专题】应用题;图表型.【分析】(1)平均数=年利润总数÷总人数(2)15个数据的中位数是第8个数(3)个别特殊的数值对平均数是具有很大的影响,但中位数和众数不受“干扰”.【解答】解:(1)=(20×1+5×1+2.5×2+2.1×4+1.5×4+1.2×3)=3.2(万元);(2)15个数据的中位数是第8个数,所以中位数为2.1万元;(3)应该使用中位数来描述公司每人所创年利润的一般水平.因为个别特殊的数值对平均数是具有很大的影响.【点评】本题用到的知识点是:中位数的定义,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数;平均数=总数÷个数.做标准一般应采用中位数或众数.。
北师大版八年级数学上册 第六章 数据的分析单元评价检测试卷(含答案)
班级姓名学号评价等级一、选择题1.如果3,2,x,5的平均数是4,那么x等于()(A)2(B)4(C)6(D)82.已知一组数据10,20,80,40,30,90,50,40,50,40,它的众数和中位数分别是()(A)40,40(B)40,60 (C)50,45(D)45,403.一个样本数据按从小到大的顺序的排顺列为13、14、19、x、23、27、28、31,其中位数为22,则x等于() (A)21(B)22(C)20(D)234.某公司销售部有营销人员25人,销售部为了制定某种商品的销售定额,统计了25人某月的销售如下表: 每人销售量(单位:件) 600 500 400 350 300 200人数(单位:人) 1 44673公司营销人员该月销售的中位数是() (A)400件(B)350件(C)300件(D)360件 5.某服装销售在进行市场占有率的调查时,他最应该关注的是()(A)服装型号的平均数(B)服装型号的众数(C)服装型号的在中位数(D)最小的服装型号6.甲、乙两名学生进行射击练习,两人在相同条件下各射靶5次,射击成绩统计如下:命中环数(单位:环)78910甲命中相应环数的次数2201乙命中相应环数的次数1310从射击成绩的平均数评价甲、乙两人的射击水平,则()定(A)21(B)22(C)23(D)248.为了让人们感受丢弃塑料袋对环境造成的影响程度,某班环保小组的六名同学记录了自己家中一周内丢弃的塑料袋的数量,结果如下(单位:个):33,25,28,26,25,31,如果该班有45名学生,那么根据上面提供的数据估计本周全班同学家中总共丢弃塑料袋的数量约为()(A)900个(B)1080个(C)1260个(D)1800个9.已知a,b,c三数的平均数是4,且a,b,c,d四个数的平均数是5,则d的值为()(A)4(B)8(C)12(D)2010.部队准备从新兵中组建一个升旗部队,抽查了一批新兵的身高,在这次实验中,部队最关心的是新兵身高数据的( )(A)平均数(B)加权平均数(C)中位数(D)众数二、填空题11.一个小组共有6名学生,在一次“引体向上”的测试中,他们分别做了8,10,8,7,6,9个,这6个学生平均每人做了个.12.一射击运动员在一次射击练习中打出的成绩是(单位:环):7,8,9,8,6,8,10,7,这组数据的众数是_________.13.在一节综合实践课上,六名同学做手工的数量(单位:件)分别为5,7,3,6,6,4,则这组数据的中位数为件.14.下表是食品营养成分表的一部分(每100克食品可食部分营养成分的含量). 蔬菜种类绿豆芽白菜油菜卷菜菠菜韭菜胡萝卜(红)碳水化合物(克)4344247432众数为________,中位数为________.三、解答题16.已知四个数的和为33,其中一个数为12,那么其余三个数的平均数是多少?17.利用计算器计算下列数据的平均数:(1)9. 48,9. 46,9. 43,9. 49,9. 47,9. 45,9. 44,9. 42,9. 47,9. 46(2)某工人在30天中加工一种零件的日产量为2天51件,3天52件,6天53件,8天54件,7天55件,3天56件,1天59件,求这个工人平均每天加工零件多少件?18.某校八年级(1)班50名学生参加2007年贵阳市数学质量监控考试,全班学生的成绩统计如下表:成绩71747880828385868890919293(分)人数1235453784332请根据表中提供的信息解答下列问题:(1)该班学生考试成绩的众数是.(2)该班学生考试成绩的中位数是.19.某班组织一次数学测试,全班学生成绩的分布情况如图2:(1)全班学生数学成绩的众数是______分,全班学生数学成绩为众数的有______人。
新北师大版初二数学第一学期 数据的分析 试题(含解析)
第六章《数据的分析》单元测试姓名:___________班级:___________座号:___________一、选择题(每题3分,共30分)1.在某次体育测试中,九年级(2)班6位同学的立定跳远成绩(单位:米)分别是:1.83,1.85,1.96,2.08,1.85,1.98,则这组数据的众数是( ) A 、1.83 B 、1.96 C 、2.08 D 、1.85 2.一组数据4,1,3,2,-1 的极差是 A .5 B .4 C .3 D .23.已知一组数据3,7,9,10,x ,12的众数是9,则这组数据的中位数是( ) A .9 B .9.5 C .3 D .124.某校有9名同学报名参加科技竞赛,学校通过测试取前4名参加决赛,测试成绩各不相同,小英已经知道了自己的成绩,她想知道自己能否参加决赛,还需要知道这9名同学测试成绩的 ( )A.中位数 B .平均数 C .众数 D .方差 5.若一组数据1,2,x ,4的众数是1,则这组数据的方差为( ) A .1 B .2 C .1.5 D .6.甲、乙两人在相同的条件下,各射靶10次,经过计算:甲、乙射击成绩的平均数都是8环,甲的方差是1.2,乙的方差是1.8.下列说法中不一定正确的是( ) A .甲、乙射中的总环数相同 B .甲的成绩稳定 C .乙的成绩波动较大 D .甲、乙的众数相同7.某课外小组的同学们在社会实践活动中调查了20个小区的入住率,得到的数据如下表:则这些数据中的众数和中位数分别是( ).A .0.56, 0.34B .0.34, 0.42C .0.42, 0.49D .0.42, 0.56 8.已知一组数据54321,,,,a a a a a 的平均数为8,则另一组数15a +,25a -,35a +,45a -,55+a 的平均数为( )9.一名射击运动员连续打靶8次,命中的环数如图所示,这组数据的众数与中位数分别为()A.9与8 B.8与9 C.8与8.5 D.8.5与910.甲、乙两班举行跳绳比赛,参赛选手每分钟跳绳的次数经统计计算后填入下表:某同学根据上表分析得出如下结论:①甲、乙两班学生跳绳成绩的平均水平相同,②乙班优秀的人数多于甲班优秀的人数(每分钟跳绳次数≥170为优秀),③甲班的成绩的波动情况比乙班的成绩的波动大.上述结论正确的是()A.①②③ B.①② C.②③ D.①③二、填空题(每题3分,共24分)11.某衬衫店为了准确进货,对一周中商店各种尺码的衬衫的销售情况进行统计,结果如下:38码的5件、39码的3件、40码的6件、41码的4件、42码的2件、43码的1件.则该组数据中的中位数是码.12.如果一组数据1,11,x,5,9,4的中位数是6,那么x= .13.某公司欲招聘一名公关人员,对甲、乙、丙三位候选人进行了面试和笔试,他们的成绩如下(单位:分):公司认为,作为公关人员面试的成绩比笔试的成绩更重要,所以面试和笔试的成绩按6∶4 计算,那么根据三人各自的平均成绩,公司将录取.14.某班七个兴趣小组人数分别为4,4,5,,6,6,7.已知这组数据的平均数是5,则这组数据的方差是.15.为了从甲、乙、丙三位同学中选派一位同学参加环保知识竞赛,老师对他们的五次环保知识测验成绩进行了统计,他们的平均分都为85分,方差分别为s2甲=18,s2乙=12,s2丙=23,根据统计结果,应派去参加竞赛的同学是.(填“甲”、“乙”、“丙”中的一个)16.一组数据0,1,0,2,2的方差S2= .17.(3分)有10个数据的平均数为12,另有20个数据的平均数为15,那么所有这30个数据的平均数是.18.在一组数据4,5,8,-1,0中插入一个数据x,使得新的数据的中位数是3,则x= .三、解答题(46分)19.(7分)下表是某校九年级(1)班20名学生某次数学测验的成绩统计表:(1)若这20名学生的平均分是84分,求x和y的值;(2)这20名学生的本次测验成绩的众数和中位数分别是多少?20.(7分)射击集训队在一个月的集训中,对甲、乙两名运动员进行了10次测试,成绩如图(折线图中,粗线表示甲,细线表示乙):(1)根据图中所提供的信息填写下表:(2)请从下列四个不同的角度对测试结果进行分析:①从平均数和方差结合看_______的成绩好;②从平均数和众数结合看_______的成绩好;③从折线图上两人射击环数的走势看_____更有潜力.④如果你是教练,会选择哪位运动员参加比赛?说明理由.21.(8分)某班为了从甲、乙两同学中选出班长,进行了一次演讲答辩和民主测评,A、B、C、D、E五位老师作为评委,对“演讲答辩”情况进行了评价,全班50位同学参与了民主测评,结果如下表:规则:①演讲答辩得分按“去掉一个最高分和一个最低分后,再算出平均分”的方法确定;②民主测评得分=“好”票数×2分+“较好”票数×1分+“一般”票数×0分;③演讲答辩得分和民主测评得分按4:6确定权重,计算综合得分,请你计算一下甲、乙的综合得分,选出班长.22.(8分)某学校抽查了某班级某月5天的用电量,数据如下表(单位:度):(1)求这5天的用电量的平均数;(2)求这5天用电量的众数、中位数;(3)学校共有36个班级,若该月按22天计,试估计该校该月的总用电量.23.(8分)甲、乙两位运动员进行射击比赛,各射击了10次,每次命中环数如下: 甲:8,6,7,8,9,10,6,5,4,7 乙:7,9,8,5,6,7, 7,6,7,8 (1)甲、乙运动员的平均成绩分别是多少? (2)这十次比赛成绩的方差分别是多少? (3)试分析这两名运动员的射击成绩.(注:方差公式()()[()]2222121x x x x x x ns n -+⋅⋅⋅+-+-=24.(8分)在“全校读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图.请根据相关信息,解答下列问题:(直接填写结果)/元(1)这次调查获取的样本数据的众数是 ; (2)这次调查获取的样本数据的中位数是 ;(3)若该校共有学生2400人,根据样本数据,估计本学期计划购买课外书花费50元的学生有多少人?参考答案1.D【解析】试题分析:因为数据1.83,1.85,1.96,2.08,1.85,1.98中1.85出现了最多的两次,所以数据的众数是1.85,故选:D.考点:众数.2.A.【解析】试题解析:4-(-1)=5.考点:极差.3.A.【解析】试题解析:∵众数是9,∴x=9,从小到大排列此数据为:3,7,9,9,10,12,处在第3、4位的数都是9,9为中位数.所以本题这组数据的中位数是9.故选A.考点:1.众数;2.中位数.4.A.【解析】试题分析:中位数是一组数据中间的数或中间两个数的平均数,由于有9名同学参加科技竞赛,要取前4名参加决赛,根据中位数的定义可知应考虑中位数的大小.故答案选A.考点:中位数.5.C【解析】试题分析:因为一组数据1,2,x,4的众数是1,所以x=1,所以平均数1+214x=24++=,所以这组数据的方差为21(1014) 1.5 4s=⨯+++=,故选:C.考点:众数、方差.6.D【解析】试题分析:解:A、根据平均数的定义,正确;B、根据方差的定义,正确;C、根据方差的定义,正确,D、一组数据中出现次数最多的数值叫众数.题目没有具体数据,无法确定众数,错误.故选D.考点:方差、极差、标准差.7.C.【解析】试题分析:0.42出现次数最多,所以这些数据中的众数为0.42,按大小排序后,第10个数是0.56,第11个数是0.42,它们的平均数是0.49,所以这些数据中的中位数是0.49.故选:C.考点:众数;中位数.8.C.【解析】试题解析:∵数据a、b、c、d、e的平均数是8,∴a+b+c+d+e=40,∴15(a+5+b-5+c+5+d-5+e+5)=15[(a+b+c+d+e)+(5-5+5-5+5)]=15×40+15×5=8+1=9;故选C.考点:算术平均数9.C.【解析】试题解析:这组数据从小到大排列为7,8,8,8,9,9,10,10,众数为8,中位数为898.5 2+=.故选C.考点:1.众数;2.中位数.10.A【解析】试题分析:根据表中的平均数可知:①甲、乙两班学生跳绳成绩的平均水平相同,①正确;从中位数上可以看出②乙班优秀的人数多于甲班优秀的人数(每分钟跳绳次数≥170为优秀),②正确;从方差上可以看出③甲班的成绩的波动情况比乙班的成绩的波动大,③正确;故选:A.考点:方差;算术平均数;中位数11.40.【解析】试题解析:这组数据按照从小到大的顺序排列为:38,38,38,38,38,39,39,39,40,40,40,40,40,40,41,41,41,41,42,42,43则这组尺码数据的中位数是:40.考点:中位数12.7.【解析】试题分析:∵共6个数,∴中位数是第3和第4个的平均数,∵中位数为6,∴52x+=6,解得:x=7,故答案为:7.考点:中位数.13.乙.【解析】试题解析:甲的平均成绩为:(86×6+90×4)÷10=87.6;乙的平均成绩为:(92×6+83×4)÷10=87.2;丙的平均成绩为:(90×6+83×4)÷10=87.2.因为乙的平均成绩最高,所以乙将被录取.考点:加权平均数.14.12 7【解析】试题分析:因为这组数据的平均数是5,所以4+4+5+x+6+6+7=35,所以x=3,所以组数据的方差2112 (1104114)77s=++++++=.考点:平均数、方差.15.乙 【解析】试题分析:∵s 2甲=18,s 2乙=12,s 2丙=23,∴乙的方差最小,故应派乙去参加竞赛; 考点:方差. 16.54 【解析】试题分析:先计算出这组数据的平均数15x =(0+1+0+2+2)=1,然后代入方差公式计算22222214[(01)(11)(01)(21)(21)]55s =-+-+-+-+-=.考点:方差 17.14. 【解析】试题分析:根据加权平均数计算公式可得14200·115201210=+⨯+⨯.考点:加权平均数. 18.2. 【解析】试题分析:这组数据按照从小到大的顺序排列为:-1,0,4,5,8, ∵中位数为3, ∴x 在0和4之间, 则(4+x )÷2=3, 解得:x=2. 考点:中位数.19.(1)1,11(2)众数为90,中位数为:90. 【解析】试题分析:(1)根据20名学生的平均分是84分可得出关于x ,y 的二元一次方程组,然后解方程组即可;(2)根据众数和中位数的定义分别求解即可.试题解析:解:(1)由题意得,20860705809010022084x y x y +=-⎧⎨+⨯+++⨯=⨯⎩,解得:111 xy=⎧⎨=⎩,即x的值为1,y的值为11;(2)∵成绩为90分的人数最多,故众数为90,∵共有20人,∴第10和11为学生的平均数为中位数,中位数为:90902+=90.考点:二元一次方程组、统计表、众数、中位数.20.(1)7,6,8,1.2;(2)①甲,②乙,③乙,④选择乙,理由见解析.【解析】试题分析:(1)结合折线统计图给出的数据,根据平均数、众数和方差的定义,进行计算填表.(2)结合平均数、众数、折线统计图的走势和方差4个方面进行分析.试题解析:(1)7,6,8,1.2;(2)①甲,②乙,③乙,④如果我是教练,会选择乙运动员参加比赛,因为乙运动员的成绩呈上升趋势.考点:平均数、众数、方差、折线统计图.21.甲的综合得分89分,乙的综合得分88.4分,甲当选班长.【解析】试题分析:根据演讲答辩得分按“去掉一个最高分和一个最低分再算平均分”的方法分别计算每人的平均演讲答辩得分;根据民主测评得分=“好”票数×2分+“较好”票数×1分+“一般”票数×0分,得到每人的民主测评得分;再计算他们的综合得分.试题解析:解:甲的答辩得分=(90+92+94)÷3=92分,甲的民主测评分=40×2+7=87分,甲的综合得分=(92×4+87×6)÷(6+4)=89分,乙的答辩得分=(89+87+91)÷3=89分,乙的民主测评分=42×2+4=88分,乙的综合得分=(89×4+88×6)÷(6+4)=88.4分;∴甲当选班长.考点:加权平均数.22.(1)9.6度;(2)9度;9度;(3)7603.2度.【解析】试题分析:(1)用加权平均数的计算方法计算平均用电量即可;(2)分别利用众数、中位数及极差的定义求解即可;(3)用班级数乘以日平均用电量乘以天数即可求得总用电量.试题解析:解:(1)平均用电量为:(9×3+10×1+11×1)÷5=9.6度;(2)9度出现了3次,最多,故众数为9度;第3天的用电量是9度,故中位数为9度;(3)总用电量为22×9.6×36=7603.2度.考点:用样本估计总体;加权平均数;中位数;众数.23.(1)分分乙甲77__==x x ;(2)32=甲s , 1.22=乙s ;(3)从平均成绩看,乙甲__x x =,甲乙成绩一样好从方差来看,22乙甲s s >,乙的成绩更稳定. 【解析】试题分析:(1)根据平均数的公式计算即可; (2)根据方差的公式计算即可;(3)平均数大的成绩好,方差小的成绩更稳定.试题解析:(1)7107456109878=+++++++++=甲x , 7108767765897=++++++++++=乙x ; 3107-107-47-57-97-827-827-8222222222=++++++=)()()()()()()(甲s .21107-627-57-827-97-74222222=++++=)()()()()(乙s (3)从平均成绩看,乙甲__x x =,甲乙成绩一样好从方差来看,22乙甲s s >,乙的成绩更稳定 考点:方差,平均数.24.(1)30元;(2)50元;(3)600人;【解析】试题分析:(1)根据众数的定义即可判判断;根据中位数的定义即可判断;先计算出样本中计划购买课外书花费50元的学生所占的比例,然后在乘以总人数即可;试题解析:(1)花费30元的有12人,最多,故众数是30元;一共有40个数据,排序后第20、21个数据的平均数即是中位数,6+12=18<20,6+12+10=28>20,故第20、21个数据都是50元,故中位数是50元;10÷40×2400=600(人),故估计本学期计划购买课外书花费50元的学生有50人.考点:1.中位数;2.众数;3.条形统计图;4.用样本估计总体.。
北师大版八年级数学上册《数据的分析》单元测试卷及答案解析
北师大版八年级数学上册《数据的分析》单元测试卷一、选择题1、已知下面一组数据:5、-2、0、1、4,这组数据的中位数是()A.0 B.-2 C.1 D.42、已知甲、乙两名同学在四次模拟测试中的数学平均成绩都是112分,但他们的方差不同,分别是s=5,s=12,那么成绩比较稳定的是()A.甲B.乙C.甲和乙一样D.无法确定3、甲、乙、丙、丁四名射击运动员参加了预选赛,其平均环数及方差s2如下表所示.假如要从两人中选出一个成绩较好且状态稳定的一个去参赛,那么应选()A. 甲B. 乙C. 丙D. 丁4、已知一组数据3,5,7,m ,n的平均数是6,那么m,n的平均数是( )A.7.5 B.7 C.6.5 D.65、下列哪种说法是错误的?()A.选举中,人们通常最关心的数据是众数B.从1,2,3,4,5中随机抽取一个数,取得奇数的可能性比较大C.甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为,,则甲的射击成绩较稳定D.数据3,5,4,1,-2的中位数是46、甲、乙、丙三种糖果每千克售价分别是6元、7元、8元,如果把甲种8千克、乙种10千克和丙种3千克混合在一起,那么每千克售价应定为多少元?().A.6.7元B.6.8元C.7.5元D.8.6元7、一位同学使用计算器求30个数据的平均数时,将其中一个数据108错误地输成18,那么由此求出的平均数与实际平均数的差是()A.3.5 B.3 C.0.5 D.﹣38、假如数据、、的平均数是3,那么数据、、的平均数是 ( )A.2 B.3 C.4 D.69、已知一组数据从小到大依次为-1,0,4,x,6,15,中位数为5,那么其众数为 ( ) A.4 B.5 C.5.5 D.610、如果将一组数据中的每一个数都减去40后,得到新的一组数据的平均数是2,那么原来那组数据的平均数是()A.40 B.42 C.38 D.2二、填空题11、在大华中学七年级(1)班随机抽取 7 名女同学,称得她们的体重(单位:kg)分别是:53、40、42、42、35、36、45 。
最新北师大版八年级数学上册《数据的分析》同步检测题及解析(精品试卷).docx
第6章数据的分析一、选择题(共22小题)1.一组数据3、5、8、3、4的众数与中位数分别是()A.3,8 B.3,3 C.3,4 D.4,32.已知数据:2,4,2,5,7.则这组数据的众数和中位数分别是()A.2,2 B.2,4 C.2,5 D.4,43.某舞蹈队10名队员的年龄分布如下表所示:年龄(岁)13 14 15 16 人数 2 4 3 1则这10名队员年龄的众数是()A.16 B.14 C.4 D.34.若一组数据3,x,4,5,6的众数为6,则这组数据的中位数为()A.3 B.4 C.5 D.65.云南鲁甸发生地震后,某社区开展献爱心活动,社区党员积极向灾区捐款,如图是该社区部分党员捐款情况的条形统计图,那么本次捐款钱数的众数和中位数分别是()A.100元,100元B.100元,200元C.200元,100元D.200元,200元6.为了帮扶本市一名特困儿童,某班有20名同学积极捐款,他们捐款的数额如下表:捐款的数额(单位:元)20 50 80 100人数(单位:名) 6 7 4 3对于这20名同学的捐款,众数是()A.20元B.50元C.80元D.100元7.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数和中位数分别是()A.7,7 B.8,7.5 C.7,7.5 D.8,6.58.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是()A.21,21 B.21,21.5 C.21,22 D.22,229.在“青春脉动•唱响黔南校园青年歌手大赛”总决赛中,7位评委对某位选手评分为(单位:分):9、8、9、7、8、9、7.这组数据的众数和平均数分别是()A.9、8 B.9、7 C.8、7 D.8、810.某市七天的空气质量指数分别是:28,45,28,45,28,30,53,这组数据的众数是()A.28 B.30 C.45 D.5311.某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,10,8,9,16,12,7,这组数据的中位数和众数分别是()A.10,12 B.12,11 C.11,12 D.12,1212.某校对九年级6个班学生平均一周的课外阅读时间进行了统计,分别为(单位:h):3.5,4,3.5,5,5,3.5.这组数据的众数是()A.3 B.3.5 C.4 D.513.在以下数据75,80,80,85,90中,众数、中位数分别是()A.75,80 B.80,80 C.80,85 D.80,9014.2015年某中学举行的春季田径径运动会上,参加男子跳高的15名运动员的成绩如表所示:成绩(m) 1.80 1.50 1.60 1.65 1.70 1.75人数 1 2 4 3 3 2这些运动员跳高成绩的中位数和众数分别是()A.1.70m,1.65m B.1.70m,1.70m C.1.65m,1.60m D.3,415.济南某中学足球队的18名队员的年龄如表所示:年龄(单位:岁)12 13 14 15人数 3 5 6 4这18名队员年龄的众数和中位数分别是()A.13岁,14岁B.14岁,14岁C.14岁,13岁D.14岁,15岁16.某校篮球队13名同学的身高如下表:身高(cm)175 180 182 185 188人数(个) 1 5 4 2 1则该校篮球队13名同学身高的众数和中位数分别是()A.182,180 B.180,180 C.180,182 D.188,18217.小红根据去年4~10月本班同学去孔学堂听中国传统文化讲座的人数,绘制了如图所示的折线统计图,图中统计数据的众数是()A.46 B.42 C.32 D.2718.一组数据3,2,x,1,2的平均数是2,则这组数据的中位数和众数分别是()A.3,2 B.2,1 C.2,2.5 D.2,219.已知某同学近几次的数学成绩(单位:分)分别为92,90,88,92,93,则该同学这几次数学成绩的平均数和众数分别是()A.90分,90分B.91分,92分C.92分,92分D.89分,92分20.2015年5月31日,我国飞人苏炳添在美国尤金举行的国际田联钻石联赛100米男子比赛中,获得好成绩,成为历史上首位突破10秒大关的黄种人.如表是苏炳添近五次大赛参赛情况:比赛日期2012﹣8﹣4 2013﹣5﹣21 2014﹣9﹣28 2015﹣5﹣20 2015﹣5﹣31比赛地点英国伦敦中国北京韩国仁川中国北京美国尤金成绩(秒)10.19 10.06 10.10 10.06 9.99则苏炳添这五次比赛成绩的众数和平均数分别为()A.10.06秒,10.06秒B.10.10秒,10.06秒C.10.06秒,10.08秒D.10.08秒,10.06秒21.一组数据1,1,4,3,6的平均数和众数分别是()A.1,3 B.3,1 C.3,3 D.3,422.某中学篮球队12名队员的年龄如下表所示:年龄(岁)15 16 17 18人数 4 5 2 1则这12名队员年龄的众数和平均数分别是()A.15,15 B.15,16 C.16,16 D.16,16.5二、填空题(共8小题)23.一组数据8,7,8,6,6,8的众数是.24.一组数据10,13,9,16,13,10,13的众数与平均数的和是.25.数据4,7,7,8,9的众数是.26.在市委宣传部举办的以“弘扬社会主义核心价值观”为主题的演讲比赛中,其中9位参赛选手的成绩如下:9.3;9.5;8.9;9.3;9.5;9.5;9.7;9.4;9.5,这组数据的众数是.27.一组数据2,3,x,5,7的平均数是4,则这组数据的众数是.28.已知数据:﹣1,4,2,﹣2,x的众数是2,那么这组数据的平均数为.29.一组数据3,5,5,4,5,6的众数是.30.小亮上周每天的睡眠时间为(单位:小时):8,9,10,7,10,9,9,这组数据的众数是.第6章数据的分析参考答案与试题解析一、选择题(共22小题)1.一组数据3、5、8、3、4的众数与中位数分别是()A.3,8 B.3,3 C.3,4 D.4,3【考点】众数;中位数.【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:把这组数据从小到大排列:3、3、4、5、8,3出现了2次,出现的次数最多,则众数是3.处于中间位置的那个数是4,由中位数的定义可知,这组数据的中位数是4;故选C.【点评】本题为统计题,考查中位数与众数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.2.已知数据:2,4,2,5,7.则这组数据的众数和中位数分别是()A.2,2 B.2,4 C.2,5 D.4,4【考点】众数;中位数.【分析】根据众数和中位数的定义求解即可,中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:2出现了2次,故众数为2;把这组数据按照从小到大的顺序排列为:2,2,4,5,7,故中位数为4,故选B.【点评】本题考查了众数和中位数的定义,此题比较简单,易于掌握,解题的关键是牢记定义,并能熟练运用.3.某舞蹈队10名队员的年龄分布如下表所示:年龄(岁)13 14 15 16 人数 2 4 3 1则这10名队员年龄的众数是()A.16 B.14 C.4 D.3【考点】众数.【分析】众数可由这组数据中出现频数最大数据写出;【解答】解:这组数据中14岁出现频数最大,所以这组数据的众数为14;故选B.【点评】本题考查的是众数的定义.要注意,当所给数据有单位时,所求得的平均数、众数和中位数与原数据的单位相同,不要漏单位.4.若一组数据3,x,4,5,6的众数为6,则这组数据的中位数为()A.3 B.4 C.5 D.6【考点】众数;中位数.【分析】根据众数和中位数的概念求解.【解答】解:∵这组数据的众数为6,∴x=6,则这组数据按照从小到大的顺序排列为:3,4,5,6,6,中位数为:5.故选C.【点评】本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.云南鲁甸发生地震后,某社区开展献爱心活动,社区党员积极向灾区捐款,如图是该社区部分党员捐款情况的条形统计图,那么本次捐款钱数的众数和中位数分别是()A.100元,100元B.100元,200元C.200元,100元D.200元,200元【考点】众数;条形统计图;中位数.【分析】认真观察统计图,根据中位数和众数的定义求解即可.【解答】解:从图中看出,捐100元的人数最多有18人,所以众数是100元,捐款人数为48人,中位数是第24、25的平均数,所以中位数是200元,故选:B.【点评】本题考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),从统计图中获取正确的信息是解题的关键.6.为了帮扶本市一名特困儿童,某班有20名同学积极捐款,他们捐款的数额如下表:捐款的数额(单位:元)20 50 80 100人数(单位:名) 6 7 4 3对于这20名同学的捐款,众数是()A.20元B.50元C.80元D.100元【考点】众数.【分析】众数指一组数据中出现次数最多的数据,结合题意即可得出答案.【解答】解:由题意得,所给数据中,50元出现了7次,次数最多,即这组数据的众数为50元.故选B.【点评】此题考查了众数的定义及求法,一组数据中出现次数最多的数据叫做众数.求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.7.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数和中位数分别是()A.7,7 B.8,7.5 C.7,7.5 D.8,6.5【考点】众数;条形统计图;中位数.【专题】图表型.【分析】中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.【解答】解:由条形统计图中出现频数最大条形最高的数据是在第三组,7环,故众数是7(环);因图中是按从小到大的顺序排列的,最中间的环数是7(环)、8(环),故中位数是7.5(环).故选C.【点评】本题考查的是众数和中位数的定义.要注意,当所给数据有单位时,所求得的众数和中位数与原数据的单位相同,不要漏单位.8.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是()A.21,21 B.21,21.5 C.21,22 D.22,22【考点】众数;条形统计图;中位数.【专题】数形结合.【分析】根据条形统计图得到各数据的权,然后根据众数和中位数的定义求解.【解答】解:这组数据中,21出现了10次,出现次数最多,所以众数为21,第15个数和第16个数都是22,所以中位数是22.故选C.【点评】本题考查了众数的定义:一组数据中出现次数最多的数据叫做众数.也考查了条形统计图和中位数.9.在“青春脉动•唱响黔南校园青年歌手大赛”总决赛中,7位评委对某位选手评分为(单位:分):9、8、9、7、8、9、7.这组数据的众数和平均数分别是()A.9、8 B.9、7 C.8、7 D.8、8【考点】众数;中位数.【专题】计算题.【分析】根据众数和平均数的定义求解.【解答】解:9出现了三次,出现次数最多,所以这组数据的众数是9,这组数据的平均数=≈8.故选A.【点评】本题考查了众数的定义:一组数据中出现次数最多的数据叫做众数.也考查了条形统计图和中位数.10.某市七天的空气质量指数分别是:28,45,28,45,28,30,53,这组数据的众数是()A.28 B.30 C.45 D.53【考点】众数.【分析】根据众数的定义进行解答.【解答】解:28出现了3次,出现的次数最多,所以众数为28;故选:A.【点评】本题考查了众数.一组数据中出现次数最多的数据叫做众数.11.某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,10,8,9,16,12,7,这组数据的中位数和众数分别是()A.10,12 B.12,11 C.11,12 D.12,12【考点】众数;中位数.【专题】计算题.【分析】先把原数据按由小到大排列,然后根据中位数和众数的定义求解.【解答】解:原数据按由小到大排列为:7,8,9,10,12,12,14,16,所以这组数据的中位数==11,众数为12.故选C.【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数的定义.12.某校对九年级6个班学生平均一周的课外阅读时间进行了统计,分别为(单位:h):3.5,4,3.5,5,5,3.5.这组数据的众数是()A.3 B.3.5 C.4 D.5【考点】众数.【分析】一组数据中出现次数最多的数据叫做众数,依此求解即可.【解答】解:在这一组数据中3.5出现了3次,次数最多,故众数是3.5.故选B.【点评】本题考查了众数的定义,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.13.在以下数据75,80,80,85,90中,众数、中位数分别是()A.75,80 B.80,80 C.80,85 D.80,90【考点】众数;中位数.【分析】首先找出这组数据中出现次数最多的数,则它就是这组数据的众数;然后把这组数据从小到大排列,则中间的数就是这组数据的中位数,据此解答即可.【解答】解:∵数据75,80,80,85,90中,80出现的次数最多,出现了2次,∴这组数据的众数是80;把数据75,80,80,85,90从小到大排列,可得75,80,80,85,90,所以这组数据的中位数是80.故选:B.【点评】(1)此题主要考查了众数的含义和求法,要熟练掌握,解答此题的关键是要明确:①一组数据中出现次数最多的数据叫做众数.②求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.(2)此题还考查了中位数的含义和求法,要熟练掌握,解答此题的关键是要明确:将一组数据按照从小到大(或从大到小)的顺序排列,①如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.②如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.14.2015年某中学举行的春季田径径运动会上,参加男子跳高的15名运动员的成绩如表所示:成绩(m) 1.80 1.50 1.60 1.65 1.70 1.75人数 1 2 4 3 3 2这些运动员跳高成绩的中位数和众数分别是()A.1.70m,1.65m B.1.70m,1.70m C.1.65m,1.60m D.3,4【考点】众数;中位数.【分析】首先根据这组数据的个数是奇数,则处于中间位置的数就是这组数据的中位数,判断出这些运动员跳高成绩的中位数即可;然后找出这组数据中出现次数最多的数,则它就是这些运动员跳高成绩的众数,据此解答即可.【解答】解:∵15÷2=7…1,第8名的成绩处于中间位置,∴男子跳高的15名运动员的成绩处于中间位置的数是1.65m,∴这些运动员跳高成绩的中位数是1.65m;∵男子跳高的15名运动员的成绩出现次数最多的是1.60m,∴这些运动员跳高成绩的众数是1.60m;综上,可得这些运动员跳高成绩的中位数是1.65m,众数是1.60m.故选:C.【点评】(1)此题主要考查了众数的含义和求法,要熟练掌握,解答此题的关键是要明确:①一组数据中出现次数最多的数据叫做众数.②求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.(2)此题还考查了中位数的含义和求法,要熟练掌握,解答此题的关键是要明确:将一组数据按照从小到大(或从大到小)的顺序排列,①如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.②如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.15.济南某中学足球队的18名队员的年龄如表所示:年龄(单位:岁)12 13 14 15人数 3 5 6 4这18名队员年龄的众数和中位数分别是()A.13岁,14岁B.14岁,14岁C.14岁,13岁D.14岁,15岁【考点】众数;中位数.【分析】首先找出这组数据中出现次数最多的数,则它就是这18名队员年龄的众数;然后根据这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,判断出这18名队员年龄的中位数是多少即可.【解答】解:∵济南某中学足球队的18名队员中,14岁的最多,有6人,∴这18名队员年龄的众数是14岁;∵18÷2=9,第9名和第10名的成绩是中间两个数,∵这组数据的中间两个数分别是14岁、14岁,∴这18名队员年龄的中位数是:(14+14)÷2=28÷2=14(岁)综上,可得这18名队员年龄的众数是14岁,中位数是14岁.故选:B.【点评】(1)此题主要考查了众数的含义和求法,要熟练掌握,解答此题的关键是要明确:①一组数据中出现次数最多的数据叫做众数.②求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.(2)此题还考查了中位数的含义和求法,要熟练掌握,解答此题的关键是要明确:将一组数据按照从小到大(或从大到小)的顺序排列,①如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.②如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.16.某校篮球队13名同学的身高如下表:身高(cm)175 180 182 185 188人数(个) 1 5 4 2 1则该校篮球队13名同学身高的众数和中位数分别是()A.182,180 B.180,180 C.180,182 D.188,182【考点】众数;中位数.【分析】众数是一组数据中出现次数最多的数据;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:由图表可得,众数是:180cm,中位数是:182cm.故选:C.【点评】本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.17.小红根据去年4~10月本班同学去孔学堂听中国传统文化讲座的人数,绘制了如图所示的折线统计图,图中统计数据的众数是()A.46 B.42 C.32 D.27【考点】众数;折线统计图.【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:在这一组数据中32是出现次数最多的,故众数是32.故选C.【点评】本题为统计题,考查众数的意义,解题的关键是通过仔细的观察找到出现次数最多的数.18.一组数据3,2,x,1,2的平均数是2,则这组数据的中位数和众数分别是()A.3,2 B.2,1 C.2,2.5 D.2,2【考点】众数;算术平均数;中位数.【分析】先根据平均数的定义求出x的值,再把这组数据从小到大排列,求出最中间两个数的平均数和出现次数最多的数即可.【解答】解:∵这组数据3,2,x,1,2的平均数是2,∴(3+2+x+1+2)÷5=2,解得:x=2,把这组数据从小到大排列为1,2,2,2,3,∴这组数据的中位数是2,∵2出现的次数最多,∴这组数据的众数是2.故选D.【点评】此题考查了众数和中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数.19.已知某同学近几次的数学成绩(单位:分)分别为92,90,88,92,93,则该同学这几次数学成绩的平均数和众数分别是()A.90分,90分B.91分,92分C.92分,92分D.89分,92分【考点】众数;算术平均数.【分析】观察这组数据发现92出现的次数最多,进而得到这组数据的众数为92,将五个数据相加求出之和,再除以5即可求出这组数据的平均数.【解答】解:∵这组数据中,92出现了2次,最多,∴这组数据的众数为92,∵这组数据分别为:92,90,88,92,93,∴这组数据的平均数=91.故选B.【点评】此题考查了众数及算术平均数,众数即为这组数据中出现次数最多的数,算术平均数即为所有数之和与数的个数的商.20.2015年5月31日,我国飞人苏炳添在美国尤金举行的国际田联钻石联赛100米男子比赛中,获得好成绩,成为历史上首位突破10秒大关的黄种人.如表是苏炳添近五次大赛参赛情况:比赛日期2012﹣8﹣4 2013﹣5﹣21 2014﹣9﹣28 2015﹣5﹣20 2015﹣5﹣31比赛地点英国伦敦中国北京韩国仁川中国北京美国尤金成绩(秒)10.19 10.06 10.10 10.06 9.99则苏炳添这五次比赛成绩的众数和平均数分别为()A.10.06秒,10.06秒B.10.10秒,10.06秒C.10.06秒,10.08秒D.10.08秒,10.06秒【考点】众数;算术平均数.【分析】根据众数和平均数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:9.99,10.06,10.06,10.10,10.19,则众数为:10.06,平均数为:=10.08.故选C.【点评】本题考查了众数和平均数的知识,一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.21.一组数据1,1,4,3,6的平均数和众数分别是()A.1,3 B.3,1 C.3,3 D.3,4【考点】众数;算术平均数.【分析】根据众数和平均数的概念求解.【解答】解:平均数为:=3,∵1出现的次数最多,∴众数为1.故选B.【点评】本题考查了众数和平均数的知识,一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.22.某中学篮球队12名队员的年龄如下表所示:年龄(岁)15 16 17 18人数 4 5 2 1则这12名队员年龄的众数和平均数分别是()A.15,15 B.15,16 C.16,16 D.16,16.5【考点】众数;加权平均数.【专题】计算题.【分析】根据表格中的数据,求出众数与平均数即可.【解答】解:根据题意得:这12名队员年龄的众数为16;平均数为=16,故选C【点评】此题考查了众数,以及加权平均数,熟练掌握各自的定义是解本题的关键.二、填空题(共8小题)23.一组数据8,7,8,6,6,8的众数是8 .【考点】众数.【分析】根据众数的定义求解即可.【解答】解:数据8出现了3次,出现次数最多,所以此数据的众数为8.故答案为8.【点评】本题考查了众数:在一组数据中出现次数最多的数叫这组数据的众数.24.一组数据10,13,9,16,13,10,13的众数与平均数的和是25 .【考点】众数;加权平均数.【分析】根据众数与平均数的定义就可以求出众数与平均数,再相加从而得出答案.【解答】解:13出现的次数最多,故众数是13,平均数==12,所有众数与平均数的和为:13+12=25.故答案为:25.【点评】主要考查了众数的概念和平均数的计算.注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.平均数是所有数据的和除以数据的个数.25.数据4,7,7,8,9的众数是7 .【考点】众数.【分析】根据众数的定义即可得出结论.【解答】解:∵数据4,7,7,8,9中7出现的次数较多,∴这一组数据的众数是7.故答案为:7.【点评】本题考查的是众数,熟知一组数据中出现次数最多的数据叫做众数是解答此题的关键.26.在市委宣传部举办的以“弘扬社会主义核心价值观”为主题的演讲比赛中,其中9位参赛选手的成绩如下:9.3;9.5;8.9;9.3;9.5;9.5;9.7;9.4;9.5,这组数据的众数是9.5 .【考点】众数.【分析】根据众数的概念求解.【解答】解:这组数据中出现次数最多的数为9.5,即众数为9.5.故答案为:9.5.【点评】本题考查了众数的知识,一组数据中出现次数最多的数据叫做众数.27.一组数据2,3,x,5,7的平均数是4,则这组数据的众数是 3 .【考点】众数;算术平均数.【专题】计算题.【分析】根据平均数的定义可以先求出x的值,再根据众数的定义求出这组数的众数即可.【解答】解:利用平均数的计算公式,得(2+3+x+5+7)=4×5,解得x=3,则这组数据的众数即出现最多的数为3.故答案为:3.【点评】本题考查的是平均数和众数的概念.注意一组数据的众数可能不只一个.28.已知数据:﹣1,4,2,﹣2,x的众数是2,那么这组数据的平均数为 1 .【考点】众数;算术平均数.【分析】先根据众数的定义求出x的值,然后再求这组数据的平均数.【解答】解:数据:﹣1,4,2,﹣2,x的众数是2,即的2次数最多;即x=2.则其平均数为:(﹣1+4+2﹣2+2)÷5=1.故答案为:1.【点评】本题考查平均数与众数的意义.平均数等于所有数据之和除以数据的总个数;众数是一组数据中出现次数最多的数据.29.一组数据3,5,5,4,5,6的众数是 5 .【考点】众数.【分析】根据众数的定义:一组数据中出现次数最多的数据即可得出答案.【解答】解:这组数据中出现次数最多的数据为:5.故众数为5.故答案为:5.【点评】本题考查了众数的知识,属于基础题,解答本题的关键是熟练掌握一组数据中出现次数最多的数据叫做众数.30.小亮上周每天的睡眠时间为(单位:小时):8,9,10,7,10,9,9,这组数据的众数是9 .【考点】众数.【分析】众数是一组数据中出现次数最多的数,根据定义就可以求解.【解答】解:在这一组数据中9是出现次数最多的,故众数是9.故答案为:9.【点评】本题为统计题,考查众数的意义.众数是一组数据中出现次数最多的数.。
北师大八年级数学上册:第六章数据的分析单元测试题(含答案)
第六章数据的分析综合测评一、选择题(每小题3分,共30分)1.一组数据6,7,8,9,10,这组数据的平均数是()A.6 B.7 C.8 D.92.已知一组数据75,80,80,85,90,那么这组数据的众数和中位数分别为()A.75,80 B.80,85 C.80,90 D.80,803.九年级某班12名同学练习定点投篮,每人各投10次,进球数统计如下:进球数(1 2 3 4 5 7个)人数(人) 1 1 4 2 3 1这12名同学进球数的众数是()A.3.75B.3C.3.5D.74. 教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在相同条件下各射出5发子弹,命中环数如下:甲:9,8,7,7,9;乙:10,8,9,7,6.应该选择参加比赛的是()A.甲B.乙C.甲、乙都可以D.无法确定5. (2021年临沂)某老师为了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成图1所示的条形统计图,则这10名学生周末学习的平均时间是()A.1小时B.2小时C.3小时D.4小时图1 图26. 某电脑公司销售部为了定制下个月的销售计划,对20位销售人员本月的销售量(单位:台)进行了统计,绘制成图2所示的统计图,则这20位销售人员本月销售量的中位数、众数分别是()A.20台,14台B.19台,20台C.20台,20台D.25台,20台7. 若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x的值为()A.1 B.6 C.1或6 D.5或68.九年级体育素质测试,某小组5名同学成绩如下表所示,其中有两个数据被遮盖:那么被遮盖的两个数据依次是()A.35,2B.36,4C.35,3D.36,39. 某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的()A.中位数B.最高分C.方差D.平均数10. 下表是某校合唱团成员的年龄分布情况:年龄/岁13 14 15 16频数 5 15 x 10﹣x对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.中位数、方差C.平均数、方差D.众数、中位数二、填空题(每小题4分,共32分)11. 某学习小组有8人,在一次数学测验中的成绩分别是102,115,100,105,92,105,85,104,则他们成绩的平均数是_____________.12. 某超市决定招聘广告策划人员一名,一位应聘者三项素质测试的成绩如下表:测试项目创新能力综合知识语言表达测试成绩(分)70 80 92将创新能力、综合知识和语言表达三项测试成绩按5∶3∶2的比例计入总成绩,则该应聘者的总成绩是_____________分.13某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是___________岁.14.已知一组数据3,3,4,7,8,则这组数据的方差为____________.15.若干名同学制作卡通图片,他们制作的卡通图片张数的条形统计图如图3所示,设他们制作的卡通图片张数的平均数为a,中位数为b,众数为c,则a,b,c的大小关系为________.图316. 一组数据2,x,4,6,7,已知这组数据的众数是6,那么这组数据的方差是________.17.两组数据3,a,2b,5与a,6,b的平均数都是8,若将这两组数据合并为一组数据,则这组新数据的众数为________,中位数为________.18. 下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择____________.三、解答题(共58分)19.(8分)在一次男子马拉松长跑比赛中,随机抽得12名选手所用的时间(单位:分)得到如下样本数据:140146143175125164134155152168162148(1)计算该样本数据的中位数和平均数;(2)如果一名选手的成绩是147分,请你依据样本数据的中位数,推断他的成绩如何?20.(2021年盐城)(8分)甲、乙两位同学参加数学综合素质测试,各项成绩如下(单位:分):(1)分别计算甲、乙成绩的中位数;(2)如果数与代数、空间与图形、统计与概率、综合与实践的成绩按3︰3︰2︰2计算,那么甲、乙的数学综合素质成绩分别为多少分?21. (8分)从甲、乙两名同学中选拔一人参加“中华好诗词”大赛,在相同的测试条件下,两人5次测试成绩(单位:分)如下:甲:79,86,82,85,83;乙:88,79,90,81,72.请回答下列问题:(1)甲成绩的平均数是,乙成绩的平均数是;(2)经计算知2s甲=6,2s乙=42,你认为选谁参加比赛更合适,说明理由.22.(10分)八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):甲7 8 9 7 10 10 9 10 10 10 乙10 8 7 9 8 10 10 9 10 9 (1)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是队.23.(12分)某校九年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100个)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):1号2号3号4号5号总成绩甲班100 98 110 89 103 500乙班89 100 95 119 97 500经统计发现两班总成绩相等,只好将数据中的其他信息作为参考.根据要求回答下列问题:(1)计算两班的优秀率;(2)求两班比赛数据的中位数;(3)求两班比赛数据的方差;(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述理由.24.(12分)为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛活动.七、八、九三个年级根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分为100分)如下表所示:决赛成绩(单位:分)七年级80 86 88 80 88 99 80 74 91 89八年级85 85 87 97 85 76 88 77 87 88九年级82 80 78 78 81 96 97 88 89 86(1)请你填写下表:平均数众数中位数七年级85.5 87八年级85.5 85九年级84(2)请从以下两个不同的角度对三个年级的决赛成绩进行分析:①从平均数和众数相结合看(分析哪个年级成绩好些);②从平均数和中位数相结合看(分析哪个年级成绩好些).(3)如果在每个年级参加决赛的选手中分别选出3人参加总决赛,你认为哪个年级的实力更强一些?并说明理由.附加题(15分,不计入总分)25. 小红的奶奶开了一个金键牛奶销售店,主要经营“金键学生奶”、“金键酸牛奶”、“金键原味奶”,由于经营不善,经常导致牛奶滞销(没卖完)或脱销(量不够),为此细心的小红结合所学知识帮奶奶统计了一个星期牛奶的销售情况,并绘制成下表:(1)计算各品种牛奶的日平均销售量,并说明哪种牛奶销量最高;(2)计算各品种牛奶的方差(保留两位小数),并比较哪种牛奶销量最稳定;(3)假如你是小红,会给奶奶哪些建议?第六章数据的分析综合测评参考答案一、1. C 2. D 3. B 4. A 5. C 6. C 7. C 8. B 9. A 10. D二、11. 101 12. 77.413. 15 14. 4.415. c<a<b16. 3.2 17.12 6 18.甲三、19. 解:(1)将样本数据按从小到大的顺序排列,得到最中间两个数据是148,152,所以中位数为150分,平均数为112(140+146+143+…+148)=151(分).(2)由(1)知样本数据的中位数为150分,可以估计这次马拉松比赛有一半选手的成绩快于150分,这名选手的成绩为147分,快于中位数150分,可以推断他的成绩比一半以上选手的成绩好.20. 解:(1)将甲的成绩按从小到大的顺序排列为89,90,90,93,中位数为90;将乙的成绩按从小到大的顺序排列为86,92,94,94,中位数为(92+94)÷2=93.(2)甲的数学综合素质成绩为90×310+93×310+89×210+90×210=27+27.9+17.8+18=90.7(分);乙的数学综合素质成绩为94×310+92×310+94×210+86×210=28.2+27.6+18.8+17.2=91.8(分).21. 解:(1)83 82(2)选甲参加比赛更合适.理由如下:∵甲成绩的平均数>乙成绩的平均数,且2s甲<2s乙,∴甲的平均成绩高于乙,且甲的成绩更稳定,故选拔甲参加比赛更合适.22. 解:(1)9.5 10(2)乙队的平均成绩是110(10×4+8×2+7+9×3)=9,则方差是110[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1.(3)乙23.解:(1)甲班踢100个以上(含100个)的人数是3,则优秀率是60%;乙班踢100个以上(含100个)的人数是2,则优秀率是40%.(2)甲班比赛数据的中位数是100,乙班比赛数据的中位数是97.(3)因为两班的总分均为500,所以平均数都为100.2 s 甲=15[(100﹣100)2+(98﹣100)2+(110﹣100)2+(89﹣100)2+(103﹣100)2]=46.8;2 s 乙=15[(89﹣100)2+(100﹣100)2+(95﹣100)2+(119﹣100)2+(97﹣100)2]=103.2.(4)应把冠军奖状给甲班.理由:甲班的优秀率、中位数都高于乙班,甲班的方差小于乙班,说明甲班成绩更稳定.24.解:(1)表从上到下、从左到右依次填80,86,85.5,78(2)①八年级的成绩更好一些.②七年级的成绩好一些.(3)九年级的实力较强.理由:如果从三个年级中分别选出3人参加总决赛,可以看到九年级的高分较多,成绩更好一些.25.解:(1)金键学生奶的平均数是3,金键酸牛奶的平均数是80,金键原味奶的平均数是40,金键酸牛奶的销量最高.(2)学生奶的方差=17[(2﹣3)2+2×(1﹣3)2+2×(0﹣3)2+(9﹣3)2+(8﹣3)2]≈12.57;酸牛奶的方差=17[2×(70﹣80)2+(80﹣80)2+(75﹣80)2+(84﹣80)2+(81﹣80)2+(100﹣80)2]≈91.71;原味奶的方差=17[(40﹣40)2+2×(30﹣40)2+(35﹣40)2+(38﹣40)2+(47﹣40)2+(60﹣40)2]≈96.86.金键学生奶销量最稳定.(3)答案不唯一,合理即可.如建议学生奶平常尽量少进或不进,周末可以进几瓶.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章达标检测卷(120分,90分钟)题号一二三总分得分一、选择题(每题3分,共30分)1.有一组数据:1,3,3,4,5,这组数据的众数为( )A.1 B.3 C.4 D.52.小明记录了今年元月份某五天的最低温度(单位:℃):1,2,0,-1,-2,这五天的最低温度数据的平均值是( )A.1 B.2 C.0 D.-13.某校为纪念世界反法西斯战争胜利70周年,举行了主题为“让历史照亮未来”的演讲比赛,其中九年级的5位参赛选手的比赛成绩(单位:分)分别为:8.6,9.5,9.7,8.8,9,则这5个数据的中位数是( )A.9.7 B.9.5 C.9 D.8.84.某商场试销一款新型衬衫,一周内的销售情况如下表所示,商场经理要了解哪种型号最畅销,则下述数据的统计量中,对商场经理来说最有意义的是( )型号/cm 38 39 40 41 42 43数量/件25 30 36 50 28 8A.平均数B.众数C.中位数D.方差5.小王想在某一路段开一个鲜花店,因此记录了15天同一时间段的人流量,其中2天是142人,2天是145人,6天是156人,5天是157人.则这15天在该时间段通过这一路段的平均人数是( )A.146 B.150 C.153 D.6006.已知甲、乙、丙三个旅行团的游客人数都相等,且每一个旅行团游客的平均年龄都是35岁,这三个旅行团游客年龄的方差分别是s甲2=17,s乙2=14.6,s丙2=19,如果你最喜欢带游客年龄相近的旅行团,若在三个旅行团中选一个,则你应选择( )A.甲旅行团B.乙旅行团C.丙旅行团D.采取抽签方式,随便选一个7.若一组数据-1,0,3,5,x的极差为7,则x的值是( )A.-3 B.6 C.7 D.6或-28.某小组5位同学参加实验操作考试(满分20分)的平均成绩是16分,其中三位男生成绩的方差为6,两位女生的成绩分别为17分、15分,则这5位同学成绩的标准差为( )A. 3 B.2 C. 6 D.69.甲、乙两名射击运动员在某场测试中各射击10次,成绩如下(单位:环):甲:7,7,8,8,8,9,9,9,10,10;乙:7,7,7,8,8,9,9,10,10,10;这两人射击成绩的平均数x甲=x乙=8.5环.则测试成绩比较稳定的是( )A.甲B.乙C.甲、乙两人的成绩一样稳定D.无法确定10.已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是( )A.a<13,b=13 B.a<13,b<13 C.a>13,b<13 D.a>13,b=13二、填空题(每题3分,共24分)11.众志成城,抗震救灾.某小组7名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):50,20,50,30,50,25,135.这组数据的众数和中位数分别是________.12.一组数据-1,0,1,2,x的众数是2,则这组数据的平均数是________.13.在射击比赛中,某运动员的6次射击成绩(单位:环)为7,8,10,8,9,6,计算这组数据的方差为________.14.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是________.(第14题)(第15题)15.某校男子足球队队员的年龄分布如图所示,则这些队员的年龄的中位数是________. 16.若一组数据6,9,11,13,11,7,10,8,12的中位数是m ,众数是n ,则关于x ,y 的方程组⎩⎨⎧mx -10y =10,10x -ny =6的解是________.17.在某市2014年的一次中学生运动会上,参加男子跳高比赛的有17名运动员,在将成绩表送组委会时不慎被通讯员用墨水污染掉一部分(如下表),但他记得这组运动员的成绩的众数是1.75 m ,表中每个成绩都至少有一名运动员.根据这些信息,可以计算出这17名运动员的平均跳高成绩是________.(结果精确到0.01 m)成绩/m 1.50 1.60 1.65 1.70 1.751.801.85 1.90 人数23231118.一组数据x 1,x 2,…,x n 的平均数为a ,方差为b ,另一组数据2x 1+5,2x 2+5,…,2x n +5的平均数为________,方差为________.三、解答题(19~21题每题10分,22~24题每题12分,共66分)19.一个电梯的最大载质量是1 000 kg ,现有平均体重为80 kg 的11人和平均体重为70 kg 的2人,他们能否一起搭乘这个电梯?他们的平均体重是多少千克?(结果精确到0.1 kg)20.八年级(2)班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩(10分制,单位:分)如下表:甲7 8 9 7 10 10 9 10 10 10乙10 8 7 9 8 10 10 9 10 9(1)甲队成绩的中位数是________分,乙队成绩的众数是________分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是________队.21.某校要从八年级(1)班或(2)班中选取10名女同学组成礼仪队,选取的两班女生的身高如下:(单位:cm)(1)班:168 167 170 165 168 166 171 168 167 170(2)班:165 167 169 170 165 168 170 171 168 167(1)补充完成下面的统计分析表:班级平均数方差中位数极差(1)班168 168 6(2)班168 3.8(2)请选一个合适的统计量作为选择标准,说明哪一个班能被选取.22.王大伯几年前承包了甲、乙两片荒山,各栽100棵杨梅树,成活率为98%.现已挂果,经济效益初步显现.为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵杨梅树的产量如折线统计图所示.(第22题)(1)分别计算甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和;(2)试通过计算说明,哪片山上的杨梅产量较稳定?23.某公司欲招聘一名翻译,将对候选人进行面试、笔试、口试三个方面的考核,各项成绩均按百分制,然后再按面试成绩占10%,笔试成绩占40%,口试成绩占50%的比例计算选手的综合成绩(百分制).小强、小明两人的单项成绩如下表:面试成绩/分笔试成绩/分口试成绩/分小明75 90 90小强80 95 80(1)请你计算两个人各自的综合成绩,看看小强、小明谁将被录取;(2)若要招聘的是一名笔译,请你分别给面试成绩、笔试成绩、口试成绩赋予一个适当的“权”,使小强可以被录取,并说明理由;(3)请你把小明和小强的成绩在条形统计图中表示出来(包括加权后的综合成绩).24.观察与探究:(1)观察下列各组数据并填空:A:1,2,3,4,5,x A=________,s A2=________;B:11,12,13,14,15,x B=________,s B2=________;C:10,20,30,40,50,x C=________,s C2=________;D:3,5,7,9,11,x D=________,s D2=________.(2)分别比较A与B,C,D的计算结果,你能发现什么规律?(3)若已知一组数据x1,x2,…,x n的平均数为x,方差为s2,那么另一组数据3x1-2,3x2-2,…,3x n-2的平均数是________,方差是________.答案一、1.B 2.C 3.C 4.B 5.C 6.B 7.D 8.B 9.A 10.A 二、11.50,50 12.0.8 13.5314.乙 15.15岁 16.⎩⎨⎧x =5,y =4 点拨:这组数据按从小到大的顺序排列为6,7,8,9,10,11,11,12,13.由题意得m =10,n =11.由⎩⎨⎧10x -10y =10,10x -11y =6解得⎩⎨⎧x =5,y =4.17.1.69 m 18.2a +5;4b三、19.解:80×11+70×2=1 020(kg),1 020 kg>1 000 kg ,所以他们不能一起搭乘这个电梯.他们的平均体重为1 020÷(11+2)≈78.5(kg).20.解:(1)9.5;10 (2)x 乙=10+8+7+9+8+10+10+9+10+910=9(分).s 乙2=110×[(10-9)2+(8-9)2+…+(9-9)2]=1.(3)乙21.解:(1)补全表格如下:班级 平均数 方差 中位数 极差 (1)班 168 3.2 168 6 (2)班1683.81686(2)(答案不唯一)选方差作为选择标准.因为(1)班方差<(2)班方差,所以(1)班学生身高波动小,所以(1)班能被选取. 22.解:(1)x 甲=14×(50+36+40+34)=40,x 乙=14×(36+40+48+36)=40,产量总和为40×100×98%×2=7 840(kg).(2)s 甲2=14×[(50-40)2+(36-40)2+(40-40)2+(34-40)2]=38,s 乙2=14×[(36-40)2+(40-40)2+(48-40)2+(36-40)2]=24.因为s 甲2>s 乙2,所以乙山上的杨梅产量比较稳定.23.解:(1)小明的综合成绩为75×10%+90×40%+90×50%=7.5+36+45=88.5(分),小强的综合成绩为80×10%+95×40%+80×50%=8+38+40=86(分).因为88.5分>86分,所以小明将被录取.(2)(答案不唯一)按面试成绩占50%,笔试成绩占40%,口试成绩占10%赋予权时,小强可以被录取.理由:小明的综合成绩为75×50%+90×40%+90×10%=37.5+36+9=82.5(分), 小强的综合成绩为80×50%+95×40%+80×10%=40+38+8=86(分).因为86分>82.5分,所以小强将被录取.(3)如图所示.(第23题)24.解:(1)3;2;13;2;30;200;7;8(2)A与B比较,B组数据是A组各数据加10得到的,所以x B=x A+10=3+10=13,而方差不变,即s B2=s A2=2.A与C比较,C组数据是A组各数据的10倍,所以x C=10x A=10×3=30,s C2=102·s A2=100×2=200.A与D比较,D组数据是A组各数据的2倍加1,所以x D=2x A+1=2×3+1=7,s D2=22·s A2=4×2=8.规律:有两组数据,设其平均数分别为x1,x2,方差分别为s12,s22.①当第二组每个数据是第一组每个数据加m时,有x2=x1+m,s22=s12;②当第二组每个数据是第一组每个数据的n倍时,有x2=nx1,s22=n2s12;③当第二组每个数据是第一组每个数据的n倍加m时,有x2=nx1+m,s22=n2s12.(3)3x-2;9s2。