美国核管会针对福岛事件对AP1000的评估意见

合集下载

AP1000核电厂质量保证分级方法探讨

AP1000核电厂质量保证分级方法探讨
求 ,从 而保 证 系统 和设备 的质 量 ,达 到 保 证 系
核 电厂 安 全 是通 过 保 守设 计 、系 统 和设 备
的 可靠 性 及 人 因 工 程 ( 括 核 安 全 文 化 ) 等 包 来 保 证 的 。 日本福 岛核事 故 后 ,人 们 对 核 电 的
统 和设 备 的可 靠 性 。
表 1 安 全 分 级 对 比
从上 述 比较 可 以 看 出 ,虽 然 A 1 0 P 0 0技 术 和 传 统 压 水 堆 技 术 的 安 全 分 级 参 考 文 件 不 一
相关 物 项 的 活 动 需 要 建 立 并 实 施 1 C R 0附 0F5 录 B的质 量保 证 大 纲 ” ,附 录 B仅 适 用 于 “ 安 全相 关 的物项 及 活 动 ” ,非 “ 全 重 要 物 项 和 安 服 务 的活 动 ” ,这 与 H F 0 A 0 3规 定 不 同 。但 是 , N C对 安 全 重 要 影 响 非 安 全 物 项 提 出 R N S R T S
( ) 质量 保 证 分 级 同 时应 考 虑 的 因素 2 a 项 或 服 务 的 复 杂 性 ( 如 工 艺 复 杂 .物 例
性 、接 口复 杂 性 ) 、独 特性 和新 颖性 。 b .工 艺 、方 法 和 设 备 是 否 需 要 特 殊 的 控
制 、管理 和 检 查 。
C .功 能 要 求 能 在 多 大 程 度 上 通 过 检 查 和
试 验 进行 证 实 。
A 10 P0 0设计 单 位 西 屋公 司在 A 10 P 0 0设 计
控制 文 件 ( C D D) 和 系统 说 明 书 ( S 均 未 S D) 提及 系统 、构 筑 物 和设 备 的质 量 保 证 分级 。但 是 ,西 屋 公 司根 据安 全 功 能 、设 计 可靠 性 和 电 厂 可用 率 提 出 了 自 己 的 分 级 方 法 , 。根 据 美 国联 邦 法规 1C R 09对 核 电 厂物 项 分类 原 0 F5[ j

“安全兜底”——第三代核电技术的精髓

“安全兜底”——第三代核电技术的精髓

(核能科普 ABC)
������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
DOI:10.16642/ki.ncdg.2019.01.069
新方法廉价制备 下一代太阳能电池材料
研究人员使用超快红外成像技术对 这 种 材 料 的 结 构 与 组 成 进 行 了 观 察 ,发 现 它 十 分 柔 软 ,即 使 原 子 发 生 大 规 模 振 动 ,也 能 保 持 晶 体 结 构 。 而 处 理 硅 等 材 料时,需要将晶体硬化来抑制原子振动。
现大量、低成本生产。
(新华网)
第 27 卷 2019 年第 1 期 农村电工 61
三代,用了二十几年的时间。而如手机通信,从 2G(第 二代)升级到 4G(第四代)只用了 10 年左右的时间。 2 第三代和第二代的根本差别
第三代核电技术与第二代核电技术最为根本的一
第三代核电技术,基本不会发生类似福岛和切尔 诺贝利事故那样的灾难,这是深刻总结了已发生过的 事 故 ,采 取“ 安 全 兜 底 ”的 反 应 堆 设 计 技 术 取 得 的 成 就。目前看来,考验三代核电的最大挑战是其经济性
随后,欧洲也出台了《欧洲用户要求文件(EUR)》, 成为当今国际上核电技术的主流。世界上核电发达国

关于第三代核电站

关于第三代核电站

关于第三代核电站关于第三代核电站前⾔能源危机与环境危机⽇益紧迫,使⽤新的清洁、安全、⾼效能源成为⼈类不争的共识。

除了煤炭、⽯油、天然⽓、⽔⼒资源外,如风能、太阳能、潮汐能、地热能等等新能源逐渐引起⼈们的重视,但是由于技术问题、开发成本及场地等因素,这些能源很难在近期内实现⼤规模的⼯业化⽣产和利⽤;⽽同各种化⽯能源相⽐起来,核能对环境和⼈类健康的危害更⼩,更是⼀种安全、可靠、清洁的能源,且在经济上具有竞争⼒的最为现实的替代能源。

第三代核反应堆是在汲取了第⼆代反应堆运⾏经验和事故教训后,于20世纪90年代后期发展出的安全性更⾼的先进反应堆技术,通常把满⾜《美国⽤户要求⽂件(URD)》或《欧洲⽤户要求⽂件(EUR)》价标准的核电⼚称为第三代核电站。

⽬前,世界上在建和规划待建的核电站,⼤部分将采⽤第三代核电技术。

近年来,我国核电产业发展取得了举世瞩⽬的成绩,核电技术研发和⼯程应⽤⾛在世界前列。

以“华龙⼀号”正式投产和“国和⼀号”成功研发(及其⽰范⼯程的开⼯建设)为标志,我国成为继美国、法国、俄罗斯等核电强国后⼜⼀个拥有独⽴⾃主三代核电技术和全产业链的国家。

核电站⼯作原理核电站是利⽤核分裂(核裂变)或核融合(核聚变)反应所释放的能量产⽣电能的发电⼚。

⽬前商业运转中的核能发电⼚都是利⽤核裂变反应⽽发电。

核电站常见的堆型有四种:压⽔堆、沸⽔堆、重⽔堆和快堆。

压⽔堆核电站发电原理图沸⽔堆核电站发电原理图现在⽐较普遍使⽤的核电站是压⽔反应堆核电站,我国在运、在建的第三代核电站采⽤的都是压⽔堆核电站,它的⼯作原理是:⽤铀制成的核燃料在“反应堆”的设备内发⽣裂变⽽产⽣⼤量热能,再⽤处于⾼压⼒下的⽔把热能带出,在蒸汽发⽣器内(进⾏热能交换,将热能传递给⼆回路供给的主给⽔)产⽣蒸汽,蒸汽推动汽轮机带着发电机⼀起旋转,电就源源不断地产⽣出来,并通过电⽹送到四⾯⼋⽅。

核电站由三个回路组成。

压⽔堆压⽔堆核电站由三个回路组成。

⼀回路:反应堆堆芯因核燃料裂变产⽣巨⼤的热能,由主泵泵⼊堆芯的⽔被加热成327度、155个⼤⽓压的⾼温⾼压⽔,⾼温⾼压⽔流经蒸汽发⽣器内的传热U型管,通过管壁将热能传递给U型管外的⼆回路主给⽔,释放热量后⼜被主泵送回堆芯重新加热再进⼊蒸汽发⽣器。

福岛事故对AP1000核电厂厂用水系统设计的启示

福岛事故对AP1000核电厂厂用水系统设计的启示

福岛事故对AP1000核电厂厂用水系统设计的启示摘要:对AP1000中厂用水系统(Service Water System, SWS)系统的重要性和先进性进行了比较性论述,并阐述了SWS系统故障对核电厂的影响,最后针对福岛事故的教训,给出了SWS设计改进建议。

关键词:核电厂AP1000 厂用水系统(SWS) 福岛事故设计改进1 厂用水系统简介厂用水系统是一个非安全相关的系统,无论在电厂正常运行还是在事故工况,该系统都将设备冷却水(Component Cooling Water System,CCS)传输的热量带出。

2 SWS系统对AP1000核电厂安全的影响2.1 AP1000核电厂SWS系统的优越性某些建造年代较早的核电厂,设备冷却水系统(RRI)向核岛内各热交换器供水,并将其热负荷通过重要厂用水系统(Essential Service Water System SEC)传到海水中[1]。

而在AP1000核电厂中,则是CCS系统将核岛构筑物、系统和部件产生的多余热量以及冷停堆过程的衰变热首先传递至设在常规岛的换热器,然后再由SWS系统送至大海或冷却塔。

两者主要区别在于:(1)AP1000的SWS系统均为非安全相关系统,而早期核电厂的SEC则是安全相关的系统,显然前者的建造和运行成本更低。

(2)由于AP1000的非能动设计,SWS系统可以比SEC系统更加简单,只需要两台100%容量的厂用水泵即可,而SEC系统则需要4台安全相关的水泵[2]。

2.2 SWS系统故障对AP1000核电厂的运行影响在电厂功率运行期间,如果两台厂用水泵发生故障,CCS热交换器冷却功能立即受到影响。

CCS升温将导致反应堆冷却剂泵(RCP)定子温度报警,如果SWS没有及时恢复,则四台反应堆冷却剂泵停止运行,反应堆事故停堆保护。

在这种情况下,衰变热通过反应堆冷却剂系统自然循环排出堆芯。

可见SWS对核电厂的正常运行有着重要影响。

美国公众要求推迟批准AP1000设计[1]

美国公众要求推迟批准AP1000设计[1]

美国公众要求推迟批准AP1000设计来源:中国核电信息网作者:张禄庆发布日期:2011-07-14在日本福岛核事故震动了世界核电,世人都以惊疑的眼光注视核电的时候,美国也发生了一件让人关注的事,这就是在美国核管会(NRC)对西屋公司的AP1000机型设计的安全认证审查中发生的风波,许多专家和公众要求NRC推迟对AP1000的设计认证审查。

NRC主席确认AP1000设计存在安全问题,明确表态,为兑现NRC对美国保护公众健康安全的承诺,在西屋公司未拿出解次办法和得到令专家满意的证明之前,不会批准AP1000设计认证。

一、要求推迟AP1000设计的风波(1)资深专家的质疑曾多次主持过有关核安全听证的美国资深核安全专家、民主党众议员Edward Markey,在福岛事故前四天,2011年3月7日,写信给美国核安全监管机构NRC主席Jaczko,敦促NRC,在AP1000 屏蔽厂房设计安全性方面我们所关注的重大问题得到妥善解决之前,不要对AP1000 反应堆的设计,下最终审批结论。

他信中提出了AP1000 屏蔽保护厂房设计中存在的8个尚未解决的安全问题。

要求及时回复。

后来在福岛事件后的一次国会听证会上,他再一次提出对AP1000设计认证的质疑。

这位专家为什么要写这信呢?据说他看到了一篇报导,说NRC 于2011 年1 月31 日已投票批准了AP1000 的设计,感到震惊。

信中提出了关于AP1000屏蔽保护厂房质疑的四亇安全问题是:①AP1000保护壳厂房,釆用钢筋和混凝土的“三明治”式结构,模型强度试验结果表明,无法承受直接的撞击,易断裂,可能会像玻璃杯一样受损。

验证试验未能通过,意味着在发生地震、风暴、飞机撞击时,AP1000 保护壳厂房结构存在严重破坏的风险。

NRC的首席结构工程师John·Ma 博士首先提出了这亇警告。

②西屋公司利用电脑模拟“证明”反应堆厂房“足够坚固”,其证明是不充分的。

AP1000核电汽轮机设计特点分析

AP1000核电汽轮机设计特点分析

·段增辉,高宏喜,陶功新,邱健(东方汽轮机有限公司,四川德阳,618000)摘要:随着安全性要求的提高,AP1000将会是今后国内市场主力堆型之一,文章详细分析了东方引进的匹配AP1000堆型的核电汽轮机的设计特点。

重点介绍了高中压模块、低压模块、末级叶片等主要部件的结构特点及机组的技术成熟性。

关键词:核电汽轮机,ARABELLE,AP1000,末级叶片中图分类号:TK262文献标识码:A文章编号:1674-9987(2020)01-0014-05 Design Characteristics Analysis of AP1000Nuclear Steam TurbineDUAN Zenghui,GAO Hongxi,TAO Gongxin,QIU Jian(Dongfang Turbine Co.,Ltd.,Deyang Sichuan,618000)Abstract:With higher security requirements,AP1000will be the main reactor in the domestic market in the future.In this paper, the design characteristics of the AP1000nuclear steam turbine is analyzed in detail which is imported by DEC.The structural features of the main components of the HIP module,the LP module,the last stage blade and the technical maturity of the unit are mainly introduced.Key words:nuclear steam turbine,ARABELLE,AP1000,last stage blade1前言近年来,我国核电取得长足发展。

美国对福岛事件的反映和我们的思考

美国对福岛事件的反映和我们的思考
பைடு நூலகம்
9 万之 间, 1 8 3 个核 电' 3 K 范围内  ̄ 0m
的人 口超过 1 万人, 6 超过 福岛核 电站 同等距离的人口密度。 别是I d 1 特 n 1 1 a Pit o 核电站, n 若按5 英里应急范围计 O 算, 将涉及2 0 万人。 00 可见, 美国核应
进行设备可靠性评价和指导设备 的维 修 。 0 拥有一 个称为 “ 网”的 IP还 N 核
O s e C e k y t r r e 沸水堆核电站, 和距离
纽 约 市 仅 2 英 里 的 已服 役 近 4 年 的 7 0 Id a on 核 电站 。 n in P it
站设计都 考虑了厂址可能 发生的 自然
灾 害, 地震 、 风 、 如 飓 龙卷 风 、 水灾 、 海
( ) 三 美国核 电站周边人 口高度 密集。 个核 电站 (n 1 n o n , 有8 I d a P 1 t
机 组 在 运 转, 部 都 是 所 谓 “ ” 全 二代 反
制度 。 一 个核 电站至少 派2 每 名安 全
督 察 员 , 不 受任 何 限 制地 查 询 核 电 可
果会更严重。 因此, 岛事件 后, 福 美国 现有核 电站是否安全,自然成 为听证 会质疑的重点。 美国核管会 ( R ) N C 主席和官员在 听证 陈述中, 一再表示核 监管 当局对
Ch n i a ̄ le l eG o g s] ' re
固山 之石l _6 J9 J
美 国参议 院能源与 自然资源委 员会就 福
岛核 电站核 泄漏事故 召开听证会 。
摄影IhpS m d vla C i o o eil/
G ty O tA e ]aC P e tN r h m rc /F

福岛核事故介绍及经验反馈

福岛核事故介绍及经验反馈

中国军转民60福岛核事故介绍及经验反馈■ 吴勇摘要:核事故对人类影响深远,一度“谈核色变”。

利用核能是人类文明发展史的里程碑,不能因核事故放弃和平利用核能。

前苏联切尔诺贝利核事故后,福岛核电站加盖安全壳厂房,美国三里岛核事故发生后,人们认识到将核反应燃料抑制在反应堆压力容器或核安全厂房内,是避免大范围核灾难至关重要的举措。

本文简单介绍、分析福岛核事故的发生,在此基础上进行经验反馈,思考在兴建内陆核电时可以进行的优化工作。

关键词:氢爆;堆芯熔毁;福岛七级核事故;内陆核电美国是世界上核电站最多的国家,法国是世界核电站第二多的国家,核电能排到世界上第三名的是日本。

美国的核电标准是ASME;法国经ASME 授权后编制RCC-M,出口核电;日本采买进口美国核电后,极大地缓解了能源紧张,促进经济发展。

以福岛核电站为代表的沸水堆,占据日本核电的半壁江山,然而平稳运行时间长了,忧患意识逐渐淡泊,正常的运维演练也不进行,在天灾到临时,人祸也显露出来了。

一、福岛核电站简介日本国位于亚欧大陆板块、太平洋板块、印度洋板块的交界线上,其中太平洋板块俯冲在亚欧大陆板块下面,俯冲处形成日本海沟,亚欧大陆板块顶起成岛链。

地震频发,台风、海啸肆虐,火山伺机而动,生存条件堪忧,生活所需能源极其短缺,化石能源严重依赖进口。

为缓解能源危机,上世纪70年代初,日本开始发展核电,首先引进英国160MWe 气冷镁诺克斯型商用反应堆,随后压水堆(PWR)和沸水堆(BWR)竞相发展,各占约50%比例,期间也发展先进热中子原型堆(ATR)。

压水堆有主给水、堆芯冷却剂、主蒸汽三个回路,且有钢制安全壳,功率稳定、安全性能优越、造价高。

沸水堆只有一个回路,结构简单、造价便宜、运维方便,尤其是建造周期短,对资源匮乏亟待发展的日本国来说尤为重要,在这种情况下,沸水堆核电站由于其结构简单、造价便宜、维护方便、建造周期短等优点,受到了日本政府的青睐。

尤其是通用电器公司的“Mark1”沸水反应堆,成了日本建设核电站的首选堆型。

AP1000堆芯严重事故下安全壳辐射屏蔽的蒙特卡洛模拟

AP1000堆芯严重事故下安全壳辐射屏蔽的蒙特卡洛模拟
摘 要 :针 对 A P 1 0 0 0反应堆在堆 芯严重事故下 安全壳的辐射屏蔽 问题 ,采用 MC NP 5程序 ,建立 了精 确的三维 蒙
特卡 洛模型 ,模拟 了堆 芯熔毁 的严重事 故工 况下安 全壳 对射线 粒子 的பைடு நூலகம் 蔽情 况 。结 果表 明 :即使在 熔堆 情况 下
A P 1 0 0 0 反应堆安全壳对射线粒子的屏蔽效果仍然 良好 ,从而在一定程度上验证 了 A P I O 0 0 设计的可靠性 。
公 司研 发 的 AP 1 0 0 0和 欧洲 E P R为代 表 的第 3代 核 电 技 术 受 到 了亲 睐 ,本 文 以 我 国正 在 三 门 建 设 的
关键 词 :A P1 0 0 0 ;严重事故 ;安 全壳 ;蒙特卡洛 ;MC N P
中图分类号 :T L 4 1 1 . 5 ;O5 7 1 . 4 文献标 志码 :A 文章编号 :1 0 0 5 -7 6 7 6( 2 0 1 4 )0 1 一o 0 0 9 —0 3
Ra d i a t i o n S h i e l d i n g o f API O 0 0 Re a c t o r Co r e Co n t a i n me n t Mo n t e Ca r l o S i mu l a t i o n u n d e r S e r v i c e Ac c i d e n t
a c c i d e n t c o n d i t i o n s o f c o r e me l t d o wn s i t u a t i o n . T h e API O 0 0 r e a c t o r , e v e n n i c o r e me l t d o wn s i t u a t i o n , t h e r e s u l t s s h o w t h a t t h e c o n ai t n me n t o f r a y p a r t i c l e s s h i e l d i n g e f f e c t i s s t i l l f e a s i b l e , a n d d e mo n s t r a t e s he t AP1 0 0 0 d e s i g n i s r e l i a b l e a n d s a f e .

亲历中国引进第三代核电技术始末③

亲历中国引进第三代核电技术始末③

亲历中国引进第三代核电技术始末③作者:陈肇博李凤桃来源:《中国经济周刊》2014年第16期口述:原核工业部常务副部长、现任国家核电技术公司专家委员会主任陈肇博撰文:《中国经济周刊》记者李凤桃引进吸收再创新,我们不搞“交钥匙”做法在引入美国西屋公司的第三代核电技术AP1000之后,我国就要实现这一技术的自主化和再创新。

党中央国务院决定成立国家核电技术公司(下称“国家核电”)来完成这一任务。

作为时任国家核电筹备组组长,我参与了组建国家核电。

2007年2月13日,中组部和国资委宣布了以王炳华为董事长和党组书记的国家核电领导班子。

我被中组部任命为该公司独立董事。

国家核电为一股份制公司,国资委代表国家控股60%,中核集团、广核集团、中电投集团和通用机械集团各占10%股份。

国家核电的任务是:代表国家受让第三代先进核电技术,实施AP1000依托工程项目管理,通过消化吸收再创新形成我国具有自主知识产权的核电技术品牌。

中国不仅要消化AP1000技术,实现核电设计的自主化和设备的国产化,还要在AP1000的基础上开发出中国自主品牌的CAP1400、CAP1700大型压水堆。

这是我国核电事业中一项极具挑战性的艰巨任务。

公司被冠以“国家”二字,这在国企中是少有的,表明党中央国务院对该公司的重视和寄托的希望。

国家专项投资百亿元研发CAP1400由于再创新的研发需要大量投入,我国三代核电技术自主化需要资金支持。

那时候,正好科技部牵头制定“国家中长期科技发展规划”。

根据规划,国家计划通过核心技术突破和资源集成,在一定时限内完成多项科技研发,完成战略产品、关键共性技术和重大工程,设立16个重大专项,包括高级芯片研制、商用大飞机等,其中有一个重大专项就是“大型先进压水堆及高温气冷堆核电站”项目。

2006年6月,国务院召开常务会议,对这个规划的纲要进行讨论研究。

温家宝总理主持会议。

在会议中,我也做了发言,我建议大型先进压水堆项目必须和正在招标引进的第三代压水堆项目结合,在引进技术基础上,通过进一步研发再创新,开发出具有自主产权的更先进的中国品牌的大型压水堆。

小型模块化反应堆技术及我国应用前景

小型模块化反应堆技术及我国应用前景

小型模块化反应堆技术及我国应用前景作者中电投电力工程有限公司,上海市田林路888弄8号楼200233摘要:分析了小型反应堆较常规核电机组的优势,介绍了中美设计进度较快的小型压水堆的技术特点,并探讨了小型反应堆在我国应用的前景。

关键词:核能小型反应堆模块化应用前景1.简介国际原子能机构(IAEA)将“小型”反应堆定义为电功率300MWe以下的核反应堆机组。

福岛事故后随着对核电安全要求的提高,小型反应堆因其固有安全、设计简单、具有规模经济性等优势,重新引起人们的关注。

美国核管会(NRC)表示将接受相关企业的小型反应堆设计认证申请,并已与部分企业开展了设计认证审批前的交流工作,以缩短审批时间。

美国能源部(DOE)成立小型模块化反应堆(SMR)项目办公室,以支持小型反应堆的市场化,且已于2012年11月将第一轮资金资助计划中2.26亿美元资金用于支持巴威公司开发mPower小型堆,并开始接受第二轮资金资助计划申请(2013年7月前)。

主要的小型反应堆有:美国西屋电气公司的SMR(原IRIS)、巴威公司的mPower、NuScale Power 公司的NuScale、俄罗斯的浮动式核电厂、韩国的SMART、我国清华大学的低温供热堆和高温气冷堆、中核集团ACP100等。

2.小型反应堆优点2.1安全性高首先,多数小型堆采用“设计安全”原则,体现在反应堆一体化设计、非能动设计和埋地设计等。

反应堆一体化将一回路所有部件布置在压力容器内,从而消除了一回路主管道破裂造成的大破口失水事故。

其次,采用非能动安全设计,无需外部电源可通过自然循环排除堆芯余热,降低了事故后人的干预。

此外,多数小型反应堆都采用埋地设计,部分小型反应堆浸没在地下水池中,可保持堆芯长期冷却,可避免失水事故导致堆芯熔化。

埋地设计也增加了放射性释放屏障,强化了抵抗外部事件的能力。

因此,先进小型压水堆的安全性(体现在堆芯熔化概率和大量放射性释放概率)比第三代压水堆高。

对后续AP1000项目核电厂不需要设置低压移动电源的分析论证

对后续AP1000项目核电厂不需要设置低压移动电源的分析论证

Telecom Power Technology
运营探讨
项目核电厂不需要设置低压移动电源的分析论证
龙拔升
(中电投广西核电有限公司,广西
福岛核电站事故的重要教训之一是确保紧急情况具有可用电源。

事故发生后,为了进一步提高核设施的安全水平,国家核安全局发布了《福岛核事故后核电厂改进行动通用技术要求》。

基于此,首先介绍了依据核安全法规要求核电
AP1000项目核电厂动力电源设置,最后对后续
Analytical Demonstration of the Need to Set up Low-Voltage Mobile Power for the
Subsequent AP1000 Project Nuclear Power Plants
LONG Ba-sheng
SPIC Guangxi Nuclear Power Limited Company,
One of the important lessons of the Fukushima nuclear power plant accident is to ensure that power is available
order to further improve。

AP1000机组设计的抗震适应性

AP1000机组设计的抗震适应性
区都具 有广泛 的代 表性 。
22 扩 大 了核 岛地面 运动 峰值加 速度 .
工程 的设计经 验 ,在 自主设计 实践 中对位 于我 国 低 、 、 烈度 区划 的厂址 , P 0 0 中 高 在A 1 0 机组 核 岛基 础底板 以上包括所 有工 艺系统 的标准设 计保持 不
变 的前 提下 ,提 出了针对新一 代核 电厂抗震设 计 标准 即将 提升 的适应性设 计及 附加基 础隔震 的策 划, 以确保今 后 自主设 计 的A 10 机 组具有 应 对 P00 不 同地 区厂址 的抗震 需求 的安全裕度 。
基岩 ) ; 坚硬 土至 软质 岩石 场地 U S B M:
再 新建 核 电厂 , 对如何 更 合理 地确 定核 电厂 的 但
地 震设计 输 入地震 动还 在作 认真 的思考 。 电力 研 究 院 (P I E R )及 劳伦 斯 ・ 弗 莫 尔 国立 试 验 室 利
中硬 土至 坚硬 土场 地S M: 中硬 土场 地S ( S 3 0 /) S V > 0m s。
作 为标 准 抗 震 设 计 , P O 0 岛采 用 上 述 A I0 核
多 次包 络 概 念后 ,大大 增 强 了A 10 机 组 的适 P 00
应 性 , 为标 准设 计这 是一 种非 常 明智 的作法 。 作 25 裕 度地震 高达 O5 . .g A 1 0 机组 核 岛的 岩基 标 准设 计 的裕 度 地 P 00
据 。核 岛 中设 备 抗 震 鉴 定所 依 据 的楼 面 设 计谱
更 是 通 过 多 次包 络 形 成 的 :第 一 次 是 针 对 三 维
概率 达 1 -年 的新 概念 。 05 /
2 0 年 ,美 国土 木工 程 师 协会 采 用 创新 型 05 的基 于 功 能 的 方 法 确 定 核 电厂 的 设 计 地 震 基

轻水堆核电厂事故工况下安全壳内气溶胶去除因子计算方法比较研究

轻水堆核电厂事故工况下安全壳内气溶胶去除因子计算方法比较研究

轻水堆核电厂事故工况下安全壳内气溶胶去除因子计算方法比较研究赵云飞;童节娟;张立国;张勤;刘涛;曲静原【摘要】本文主要介绍目前核事故应急中源项估计广泛应用的分别针对喷淋和自然去除过程中气溶胶去除因子的3种计算方法,并比较各方法24 h内的去除因子DF。

通过比较研究发现,喷淋过程各种方法计算结果有较大差异,而自然过程中除RASCAL使用的方法外,其他两种计算结果总体趋势大致相同。

借此研究,推荐了核事故应急中源项估计可采用的气溶胶去除计算方法,对相关研究工作具有较好的参考意义。

%Three types of widely used calculation methods for spray removal process and natural removal process were introduced ,and the corresponding decontamination factors within 24 hours were compared in the paper . The results indicate that deviations between the methods can be significant for spray process ,and calculation results for different methods have roughly same trend for natural process except the method used in RASCAL .Through this work ,a more reasonable aerosol removal determination method in source term estimation is recommended to be used in nuclear emergency .【期刊名称】《原子能科学技术》【年(卷),期】2015(000)006【总页数】6页(P1095-1100)【关键词】核事故应急;源项;气溶胶去除机制;喷淋过程;自然去除过程【作者】赵云飞;童节娟;张立国;张勤;刘涛;曲静原【作者单位】清华大学核能与新能源技术研究院,北京 100084;清华大学核能与新能源技术研究院,北京 100084;清华大学核能与新能源技术研究院,北京100084;清华大学核能与新能源技术研究院,北京 100084;清华大学核能与新能源技术研究院,北京 100084;清华大学核能与新能源技术研究院,北京 100084【正文语种】中文【中图分类】TL36轻水堆核电厂发生事故时,快速准确地估算放射性物质向环境释放量,即事故源项,对于核应急中采取相应防护措施至关重要。

AP1000非安全级系统的监管要求(RTNSS)探析

AP1000非安全级系统的监管要求(RTNSS)探析

计标准” 从纵深防御的角度全面提高了非能动先进轻水堆事故 7 2 h后 和 地 震 后 所 使 用 的 重 要 非 安 全 级 系统 的可 靠 性 和可 用 性 要 求 。非 能动 先 进 轻 水 堆 A P I O O 0设 计 与 标 准 审 查 大 纲 的 一 致 性 评 估 是 核 安 全
S t u d y o n t he Re g u l a t o r y Tr e a t me nt o f No n 。 s a f e t y S y s t e mYo n g — h u a , Z H AO De — p e n g , BAI J i n — h u a , HE Ke — y u, Z H AO S h u — f e n g
Ad v a n c e d Li g h t Wa t e r Re a c t o r s ” wa s a d d e d t o S t a n d a r d Re v i e w P l a n f o r t h e Re v i e w o f S a f e t y An a l y s i s Re p o r t s f o r Nu c l e a r Po we r Pl a n t s b y Un i t e d S t a t e s Nu c l e a r Re g u l a t o r y
监 管 当局 的审 查 重 点 , 也 是 核 电 厂 设 计 的 重 要 工 作 之 一 。 首 先 介 绍 了 非 安 全 级 系 统 监 管 要 求 的演 变 历
程和实施步骤 , 其 次评 估 了 AP 1 0 0 0 设 计 与《 标准审查大 纲》 1 9 . 3章 要 求 的 一 致 性 , 并进一 步从可用 性 、

AP1000与 EPR 仪控系统平台对比分析

AP1000与 EPR 仪控系统平台对比分析

AP1000与 EPR 仪控系统平台对比分析周晓宁【摘要】The three generation nuclear power technology is currently under construction set higher safety tech-nology,instrument control system is one of the most important system in nuclear power plant.Based on the AP1000 and EPR instrument control system platform overallstructure,software and hardware aspects of the analysis and comparing,the different point of the three generation of nuclear instrument control system plat-form was compared,AP1000 instrument control system platform was more safe and reliable.%三代核电技术是目前在建机组安全性较高的技术,而仪控系统是核电站中重要系统之一。

通过对AP1000和 EPR 仪控系统的平台总体结构、软硬件等方面进行分析并做了对比,比较了三代核电仪控系统平台的不同点,得出 AP1000仪控系统平台更加安全、可靠。

【期刊名称】《电力与能源》【年(卷),期】2014(000)006【总页数】5页(P757-760,763)【关键词】AP1000;EPR;仪控系统【作者】周晓宁【作者单位】中电投电力工程有限公司,海阳 265100【正文语种】中文【中图分类】TP311.52随着日本福岛核泄漏事故的发生,我国要求核电一律采用三代核电技术,而AP1000技术是我国引进的第三代核电技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Comment to the proposed rule on theAP1000 Design Certification AmendmentDocket ID NRC-2010-0131As noticed in the Federal Register on February 24, 2011 Report Prepared for Friends of the EarthBy Chief Engineer Arnie GundersenFairewinds Associates, IncMay 10, 2011Table of ContentsIntroduction and Background (3)Is Zero Percent Leakage Reasonable? (3)Five Containment Failure Modes: (4)NRC Uses Flawed Data (5)Issues Proven by Fukushima Accidents (9)AP1000 Is Only A Simulated Design (10)Numerous Single Points of Vulnerability in the AP1000 Design (12)Fairewinds Associates’ Conclusion (23)Introduction and BackgroundThis report, prepared by Fairewinds Associates, Inc for Friends of the Earth, is being submitted as a comment to the proposed rule on the AP1000 Design Certification Amendment, Docket ID NRC-2010-0131 as noticed in the Federal Register on February 24, 20111. Fairewinds’ comments, which are of a technical nature and merit close scrutiny, support the position that issuance of a notice of rulemaking is premature and that approval of the design certification of the AP1000 reactor is not warranted.Prior to the nuclear power plant accidents at Japan’s Fukushima Boiling Water Reactors (BWR’s), intervenors, NGO’s, expert witnesses, industry insiders, and staff members within the Nuclear Regulatory Commission (NRC) had expressed significant doubts about the integrity and rigor of the proposed AP1000 design. To this date, the NRC has not adequately addressed the issues raised.During the fall of 2009, Fairewinds Associates, Inc was retained by the AP1000 Oversight Group to independently evaluate the proposed design of the Westinghouse AP1000 nuclear power plant. Following six months of research and peer review, Fairewinds Associates prepared and submitted an expert report entitled Post Accident AP1000 Containment Leakage, An Unreviewed Safety Issue2 to the AP1000 Oversight Group, which in turn submitted that report to the NRC. Subsequently, Fairewinds’ Chief Engineer Arnie Gundersen and AP1000 Oversight Group Attorney John Runkle were invited to present their concerns to the NRC’s Advisory Committee on Reactor Safeguards (ACRS) June 25, 2010. Subsequently, the AP1000 Oversight Group submitted the Nuclear Containment Failures: Ramifications for the AP1000 Containment Design supplemental report December 21, 2010. The two reports, the associated power point, and the June 25, 2010 presentation to the NRC coordinated with the NRC meeting audio may be found at Fairewinds Website under the reports and multi-media tabs.Is Zero Percent Leakage Reasonable?Both the NRC in its regulatory role and Westinghouse as the design engineer have declined to adequately scrutinize or calculate the reality of containment failure and leakage in the single-wall1AP1000 Design Certification Amendment, Docket ID NRC-2010-0131/2011/2011-3989.htm2 F airewinds A ssociates’ w ebsite: f containment structure upon which the proposed AP1000 design is predicated. Nuclear power industry operating experience during the past 40 years indicates repeated instances where containments have developed failures. Despite these repeated incidents, the Nuclear Regulatory Commission assumes that the probability of containment failure or leakage during operation of the AP1000 design is zero. In complete defiance of more than 40 years of actual nuclear power industry operating experience, the Nuclear Regulatory Commission perpetuates the myth that nuclear power plant containments do not fail and leak radioactivity. Thereby the regulatory agency continues to approve the faulty design features of the highly touted and fast-trackedAP1000 design by claiming that such containment failure never occurs.Well before the proven inadequacy and even possible complete rupture of at least three separate nuclear power plant containment systems at Japan’s troubled Fukushima nuclear power plant, the NRC's assumption of a zero failure rate diametrically opposes all historical data and sound engineering analysis on record. Fairewinds Associates has analyzed containment probabilities dating back more than 40 years and has detailed the history of containment failure and leakage in several reports submitted to the NRC and presented in person to the NRC Advisory Committee on Reactor Safeguards (ACRS). We have attached those reports to this filing, and while we will not currently review them in detail, we are submitting the following conclusions as part of this evidentiary report.Five Containment Failure Modes:1. There are numerous instances of containment failure where rust hasdeveloped on the outside of the containment building and progressed all theway from its outside origin through the wall to the inside of the containment.None of these failures were identifiable during any visual examination until theholes had propagated completely through the containment wall.2. There are numerous instances of containment failure at which time rustdeveloped on the inside and progressed from inside-out all the way through thewall to the outside of the containment. Once again, these actual containmentbreakdowns and failures could not be identified by any method of visualexamination until the actual hole had propagated completely through thecontainment system.3. Fairewinds’ analyses has shown that these phenomena are not just limited tothrough-wall rust and holes. The nuclear power industry data has numerousexamples of containment failure where actual cracks have developed andpropagated completely through the containment. These cracks were notidentified by visual examinations, and instead were only uncovered when theactual crack propagated completely through the containment system.4. Protective coatings are often touted by the nuclear power industry as asolution to containment cracking, holes, and leakage, but protective coatings donot perform as well as the nuclear power industry claims. Instead, there arenumerous instances in which protective coatings have failed and were notidentified by inspection personnel for significant periods of time, thus notprotecting the public from containment leakage. Additionally, personnel whoapply protective coating have been harassed and intimidated by industryexecutives for bringing their coating concerns to management’s attention.5. The nuclear power industry also claims that the visual inspection techniqueupon which the industry relies assures complete containment integrity. Inactuality, the inspection procedures heralded by the nuclear power industryhave repeated failed to identify cracks, holes and containment coatingdeterioration until gross degradation has already occurred.NRC Uses Flawed DataBased upon a thorough analysis containment failure and degradation as delineated in this report in points 1 to 5 listed above, Fairewinds concludes that there is a finite probability of a containment failure or containment leakage in the AP1000 design. Fairewinds’ conclusion was reported to the NRC and ACRS prior to the very real containment failure and leakage evidenced at Japan’s Fukushima nuclear power plants. Yet, despite actual evidence to the contrary, the Nuclear Regulatory Commission continues to allow Westinghouse to assume and calculate a zero percent (0%) probability of containment degradation leading to failure or leakage evenwithout an accident scenario, let alone from additional stress during a LOCA (Loss of Coolant Accident). Such claims are not based upon sound scientific analysis and engineering review, but appear instead to be based upon the mythical dreaming of an aggressive industry and its captive regulator. Moreover, throughout the AP1000 docket there is no supporting documentation proving Westinghouse’s SAMDA analysis and the NRC’s endorsement of that SAMDA claiming that there is a zero percent probability of containment failure.On June 28, 2010, three days after the ACRS meeting, Fairewinds Associates, Inc informed the ACRS of yet another containment failure, this time at the Fitzpatrick nuclear power plant in 2005. The photo below of the 4 ½” crack was taken in 2005 from the outside of the containment torus at the Fitzpatrick nuclear power plant in Oswego, NY.As a result of questions during the ACRS discussion period relating to BWR thick containment designs like the through wall cracks at Hatch 1 and 2, Fairewinds researched additional failuresand found that the Fitzpatrick nuclear power plant developed a large though-wall leak that was not due to corrosion. Once again, here is a unique violation of the BWR containment system that is directly applicable to the Westinghouse design of the AP1000.The Fitzpatrick crack is due to differential expansion in a thick containment that is of similar thickness to the proposed AP1000 design and like the cracks previously uncovered at Hatch 1 and Hatch 2. Thus to date, three thick containment systems have experienced complete through-wall failures that remained undetectable by ASME visual techniques until each through-wall crack actually appeared. Similar stresses resulting in cracks could also occur in an AP1000 nuclear power plant if it is constructed to the current inadequate specifications.Immediately after Fairewinds provided these photos and detailed analysis of the AP1000 design to the ACRS and without detailed analysis of any kind, either the NRC staff or members of the ACRS itself leaked their opinion to pro-nuclear bloggers stating that Fairewinds analysis was incorrect. While Fairewinds has never had the privilege of a detailed NRC response, the NRC used its typical backchannel communications with its friends in the nuclear industry in an attempt to discredit the veracity of the Fairewinds report. When Fairewinds issued its report discussing the critical safety flaw of the chimney effect, Westinghouse immediately issued a press release ignoring all of Fairewinds peer-reviewed data and instead attempted to impugn integrity of Fairewinds Associates. And, rather than analyze the Fairewinds report, the NRC apparently read the Westinghouse press release and simply parroted those words to back to the pro-nuclear bloggers. The April 29, 2010 edition of Nuclear Engineering International quotes the Westinghouse cover-up:Westinghouse spokesman Vaughn Gilbert responded vigorously to the claims:We disagree completely and unequivocally with every conclusion that was putforward. We are certainly never surprised when an antinuclear group with anantinuclear agenda puts forth antinuclear comments. The reality is that the steel inquestion is 1.75 inches thick, it is corrosion-resistant, and it is highly unlikelycorrosion would ever be an issue. Contrary to what they reported, if corrosionwere to begin, it would be quickly discovered in a manner that is prompt andappropriate, and it would be remedied before it would come close to being aproblem. The announcements were plain and simple wrong.33 A pril 29, 2010 e dition o f N uclear E ngineering I nternational/story.asp?storyCode=2056229In its jaundiced statement to Nuclear Engineering International, Westinghouse attempts to ignore the real findings of Fairewinds’ analysis by attempting to obfuscate the truth. By mischaracterizing accurate scientific analysis and thorough engineering review by trying to label it as anti-nuclear comments, Westinghouse follows the 60-year-old pattern of the nuclear industry. Whenever it is confronted with engineering errors and debacles, the industry shouts to the rooftops that whoever criticizes them is a rabid anti-nuke. The acceptance of such innuendo and slander by the NRC staff and the ACRS rather than doing what it is chartered to do by Congress and conduct a thorough overall safety analysis of the AP1000 design shows its industry bias and capitulation to industry pressure for a fast-tracked process of a new and inadequately reviewed AP1000 design.Despite historical data and reams of analysis indicating that containment failures do in fact occur, the NRC has repeatedly ignored these facts and has not responded to Fairewinds’ analysis delineating existing containment failures. Fairewinds requests a complete and thorough review of this critical design-basis safety flaw.As Fairewinds has already stated, the NRC has not adequately analyzed the unreviewed safety issue Mr. Gundersen identified on the AP1000 regarding containment leakage. The currentAP1000 design is not consistent with very basic "defense in depth" and "multiple barrier" principles to which the NRC must adhere by statute. Information available to Fairewinds shows that the NRC appears not to understand that unlike on current PWRs, the shield building on the AP1000 does NOT function as a secondary containment. Quite simply, the AP1000 shield building does not prevent the release of radiation to the environment; it is not a secondary containment building.The December 10, 2010 Nuclear Engineering International, indicates just how widespread the false belief is throughout the entire nuclear industry that the AP1000 has both a primary and a secondary containment system.The amended design includes a redesigned AP1000 Shield Building, a massivearmored structure made of concrete and steel that protects the containment vesselfrom external forces, such as tornado-driven objects, earthquakes and aircraftPage 9 o f 23impact. It also acts as a secondary radiation barrier (4)The Nuclear Engineering International article emphasizes the factually incorrect conclusion that the shield building “also acts as a secondary radiation barrier”.As Fairewinds stressed to the NRC more than one year ago, not only does the shield building not serve as a secondary radiation barrier during a severe accident, which is when it would be critically needed to perform that function, but also through the “chimney effect”, it actually aids dispersal of any radioactivity that leaks from the primary containment.That this prestigious nuclear magazine could so visibly misunderstand the purpose of the shield building is an indication why so many engineers working on this project or reviewing theAP1000 for licensure have not understood this basic safety flaw. Once again, for the record, the AP1000 shield building does not function as an additional radiation barrier in the event of an accident.Issues Proven by Fukushima AccidentsGiven the failure of three containment systems at Japan’s stricken Fukushima nuclear power plants, it is imperative that the NRC reevaluates the new AP1000 design in light of its potential for containment failure. The AP1000 shield building vents directly to the outside environment and was never designed to be a secondary containment system. As Fairewinds Associates notified the NRC more than one year ago, the AP1000 shield building was never designed as a secondary containment system. Moreover, not only will the shield building not contain any radioactivity in the case of an accident, the shield building creates what Fairewinds has named the chimney effect, and actually wafts radiation out into the environment, which will significantly compromise the surrounding population during an accident.Although final data from the multiple Fukushima nuclear power plants are not yet available, it is readily apparent that the Fukushima nuclear plants, which are the same BWR Mark 1 model as many US plants, are suffering cataclysmic containment failure and leakage.4 D ecember 10, 2010 Nuclear Engineering International/story.asp?storyCode=2058414Page 10 o f 23•Fukushima Unit 2 has a containment system that has failed completely and is allowing highly radioactive releases from inside the containment to freely enter the environment.•Fukushima Unit 1 has also suffered a loss of containment integrity as evidenced by Tokyo Electric Power Company’s (TEPCO’s) continuous addition of gaseous nitrogen in aneffort to reestablish containment integrity and pressure without success.•While data from Fukushima Unit 3 is inconclusive, there is also evidence that Unit 3’s containment has also been breached.Consequently, during just the last two months, three allegedly robust nuclear containment systems have failed entirely. If such a containment breach, failure, or leakage were to occur in the new AP1000 design, the results would be catastrophic for the surrounding communities. In prior reports and testimony, Fairewinds Associates has already identified the AP1000 chimney effect that would waft enormous amounts of radiation out of the reactor and into the surrounding communities. Given that there is 40 years of data indicating a bevy of containment failures in nuclear power plants operating within the United States, and given that there are now three Japanese nuclear power plants that have failed containment systems in Fukushima, it is obvious that the NRC's acceptance of a zero percent (0%) probability of containment failure is not only mathematically and historically incorrect, but appears to prove that the NRC is failing in its regulatory role.Furthermore, it is now evident that a detonation shock wave (not deflagration) occurred at Fukushima Unit 3, destroying much of the structure. The AP1000 containment is not designed to withstand a detonation shock wave. Until the cause of the detonation is determined, design approval of the AP1000 containment should not be granted. Once again, Fairewinds reiterates that the “issuance of a notice of rulemaking is premature and that approval of the design certification of the AP1000 reactor is not warranted”.AP1000 Is Only A Simulated DesignFairewinds has great concern regarding the AP1000 design that has only been simulated on a limited Computer Aided Design (CAD) program. Neither the shield building nor the containment building have been constructed in verification of the their computer simulateddesign analysis. In fact, the AP1000 shield building technique has never been used in the United States on any comparable structure. Previously, the NRC demanded full scale testing of the Mark 3 BWR containment in the mid-1970’s due to its unique design. However, the NRC has required no full-scale tests on the unique AP1000 containment design. Furthermore, Fairewinds Associates’ review has uncovered analytical problems with the containment design computer codes applied to both the AP1000 containment analysis and the analysis of the AP1000 shield building.Careful analysis by Fairewinds of significant containment defects at Progress Energy’s Crystal River nuclear power plant (NPP) illustrate the deficiencies in its similar containment analysis via state-of-the-art computer programs simulating containment performance. Beginning in 2009, in order to uprate the power (increase the power output) at the Crystal River NPP, contractors cut into the containment in order to replace the steam generators so that the power output could be increased. The contractors at the Crystal River NPP used concrete-cutting saws to cut into the nuclear power plant’s containment, and in the process unwittingly created a 60foot long delamination (splitting apart into layers) of the containment.Fairewinds notes that this was allegedly a carefully analyzed quality-assured process. In spite of the fact that the CAD simulation program had allegedly thoroughly analyzed containment design at the Crystal River NPP prior to any concrete cuts by contractors, the simulation erroneously predicted no damage to the containment structure.Following the erroneous CAD analysis and subsequent damage to the nuclear power plant’s vital containment system in 2009, Crystal River NPP and the NRC have proclaimed that Crystal River engineers and contractors have applied sophisticated computer codes to thoroughly reanalyze Crystal River’s containment building in order to create a new methodology for rebuilding and resealing the nuclear power plant's containment in order to seal up and restart the nuclear power plant.Despite assurances by the NRC and Progress Energy regarding the veracity of the computer code analysis the CAD program once again failed dramatically leaving the Crystal River containment building with a new and large delamination. Allegedly, thousands of hours of analysis byProgress Energy and review by the NRC occurred before these repairs were implemented. Yet once again the Crystal River containment repair was a failure and the plant remains shutdown.Fairewinds believes that this second failure of the allegedly rigorous CAD program proves the total inadequacy of the current computer code in analyzing and predicting containment integrity. The Crystal River containment analysis and design was likely the most heavily analyzed containment design in the world, yet sophisticated computer programs specifically built to analyze containment structures failed to prevent not only one but two significant delamination to Crystal River’s containment building. The containment integrity debacle evidenced at Progress Energy’s Crystal River NPP establishes and validates the complete failure of the nuclear industry computer code and computer aided design programs to accurately assess or calculate shield building and containment integrity.Dr. John Ma, the NRC’s lead structural engineer for the AP1000 has already been rebuffed when he stated his concerns about the NRC’s analysis of the AP1000 shield building. The evidence of the marked failure of the containment integrity computer code analysis and CAD programs at Crystal River unequivocally proves the weakness in the fast-track design and analysis of both the AP1000 Shield and Containment buildings. The evidence shows that the computer models created to conceptualize and design the nuclear power plant containment system are undeniably flawed.Moreover, the NRC is given its authority to regulate and license nuclear power plants based upon its primary responsibility to protect public health and safety as it grants permits for the design, construction and operation of all U.S. nuclear power plants. The utter failure of the CAD computer code to correctly analyze containment integrity at Crystal River and other operating nuclear plants clearly demonstrates the inability of the computer code and CAD program to analyze even the rudimentary containment integrity and shield building stability of the proposed AP1000.Numerous Single Points of Vulnerability in the AP1000 DesignHistorically the Nuclear Regulatory Commission has evaluated single points of vulnerability on active, not passive, containment systems. However, the three accidents at Fukushima clearlyindicate the need to evaluate all single points of vulnerability. Fairewinds review shows that the AP1000 design has at least two such single points of vulnerability and that given the tragedy at Fukushima, a viable airtight secondary containment system is vital to any new reactor design.1.The first single point of vulnerability is the possibility of a leak or failure in large watertank balanced atop the reactor’s shield building.o Should this tank fail to perform its intended function, the AP1000 design will not adequately remove heat from the containment building during a design basisaccident that would lead to a meltdown. This single source of cooling waterperched atop the shield building is unique to the AP1000 design andWestinghouse’s reliance upon it creates a single point of vulnerability that hasnot been thoroughly evaluated by industry regulator NRC due to the rush forAP1000 certification and licensure.o While Westinghouse, the AP1000 nuclear power plant vendor, has allegedly completely evaluated the 8-million-pound water tank perched atop thecontainment and claims the design is robust, the computer codes used to analyzethis tank are similar to the codes used to repeatedly analyze the Crystal River 3containment that has repeatedly failed despite NRC review and approval.o The tragic nuclear plant accidents at Fukushima prove the travesty of an inadequate design like the Mark 1 BWR that GE pressured regulators toapprove5. Westinghouse is applying the same pressure to the NRC in 2011.Events at Fukushima corroborate the necessity of proactive design integrity ofmechanical structures designed to withstand anticipated and unanticipated forcesof nature.o Therefore, the evidence collected from the Fukushima accidents clearly demonstrate the absolute necessity of the Nuclear Regulatory Commission toreevaluate the unique and unprecedented AP1000 NPP design that uses a singlewater tank perched atop the shield building design as its primary and only source5 N RC I nternal M emo: J oseph H endrie t o J ohn O’Leary, S eptember 22, 1972.of emergency cooling. Should there be a design basis accident and the tank fails,all capacity for cooling the AP1000 nuclear power plant will be lost asemergency cooling capacity was lost at Fukushima by the single point ofvulnerability of the weather-caused destruction of the intake cooling pumps.Computer codes approved by the NRC predicted the Crystal River containmentwould be robust and were proven wrong. Computer codes claim to show that theAP1000 water tank will be robust as well. In light of Crystal River andFukushima, that trust has no basis in the actual record.o Moreover, this tank is subject to wind loads from hurricanes or tornadoes as well as seismic loads. Fairewinds believes that the Fukushima nuclear powerplant accidents clearly show that what was previously identified as a maximumcredible design basis accident must be reevaluated.o Furthermore, this 8-million-pound water tank must be refilled within 3days after an accident. The nuclear accidents at Fukushima have also publicallyunveiled the nightmare of water demand during a design basis accident caused byhurricanes, tornadoes, floods, tsunamis, or earthquakes. It is scientificallyimpossible to suggest that such an unreasonably short time frame could befulfilled in the midst of a national disaster that has damaged access to the nuclearpower plant. The evidence reviewed clearly reveals this single point ofvulnerability inherent in the AP1000 shield building design, and such asignificant safety flaw demands regulatory attention and AP1000 redesign.2.Second, Fairewinds is not alone in its belief that the new AP1000 design features must bereevaluated in light of the three Fukushima nuclear power accidents. To date, Dr. Akira T.Tokuhiro, Associate Professor of Nuclear Engineering at the University of Idaho, hasidentified at least five vulnerable areas that must be reevaluated prior to any new reactor design certification following the Fukushima tragedy. These single points of vulnerability include, but are not limited to:2.1.Zirconium-based fuel cladding. The use of zirconium-based fuel cladding has createdhydrogen explosions 5 times during the past 40 years. The Three Mile Island nuclearpower plant accident in 1979 and four of the six Fukushima nuclear reactors have had experienced hydrogen explosions as a direct result of zirconium-based fuel cladding.2.1.1.Yet the AP 1000 design once again relies upon the flawed and accident-pronezirconium-based fuel cladding.2.1.2.Given the likelihood that a hydrogen-induced explosion will occur, as now hashappened 5 times during the past 35 years, it should be mandatory that non-zirconium-based fuel cladding be evaluated for any new reactor design prior todesign certification and licensure.2.2.The Danger of Multiple Nuclear Power Plants on the Same Site. Events at theFukushima nuclear power plant site have shown the dangerous implication of placing multiple reactors on the same site. Should a design basis event occur, Fukushimademonstrates the necessity for reevaluating all multi-reactor sites for their ability towithstand multiple design basis accidents and for the region’s ability to sustain services and power in the event of a natural disaster like a hurricane, tornado, earthquake, orflood.2.2.1.Currently operating nuclear reactors on a multi-unit nuclear power plant site havenot been evaluated in terms of how a multi-unit site functions during an accident orLOCA. This process must be expanded to evaluate how a multi-unit site operatesduring an accident or LOCA for the new AP1000 design. Fairewinds believes thisis especially important for multi-unit sites for which the new AP1000 is underconsideration on the same site as multi-unit older generation reactors.2.2.2.Two AP1000 nuclear power plants are already proposed for construction andlicensure at the Vogtle site, and separately two AP1000 reactors are proposed for the Turkey Point site both of which already have other nuclear reactors presently inoperation. Additionally, at V.C. Summer, two AP1000 reactors are planned for thatsingle reactor site. The older reactors have different, lower design basis eventdesigns that could fail before the AP1000 yet increase the likelihood of an AP1000failure as part of a sequence of cascading failures similar to Fukushima. For。

相关文档
最新文档