高考数学140分难点突破训练――圆锥曲线(含详解)概要
高考数学考纲解读与热点难点突破专题17圆锥曲线热点难点突破理含解析
圆锥曲线x2 y2垂足为点A ,1.已知 F ,F 是双曲线 a2- b2= 1( a>0,b>0) 的左、右焦点, 过 F 作双曲线一条渐近线的垂线,122交另一条渐近线于点→ 1 →,且 AF2= F2B ,则该双曲线的离心率为 ()B36 5A. 2B.2 C.3 D .2答案 A2.设椭圆 x2 + y 2 =1(> >0) 的焦点为 1, 2,P 是椭圆上一点,且∠12=π,若△ 12的外接圆和内切a2b2a bF FF PF3F PF圆的半径分别为 R ,r ,当 R = 4r 时,椭圆的离心率为 ( )4212A. 5B. 3C. 2D. 5 答案 B分析x2 y2 1 - c, 2 ,P 为椭圆上一点,且∠ 1 2 π 1 2椭圆 a2+ b2=1( a >b >0) 的焦点为 F(0) ,F ( c, 0) F PF = 3 ,| F F | =2c ,|F1F2| 2c依据正弦定理 sin ∠F1PF2=π =2R ,sin32 3 ∴ R = 3 c ,3∵ R = 4r ,∴ r = 6 c , 由余弦定理,( 2c ) 2= | PF 1 |2+ | PF 2| 2- 2| PF 1||PF 2|cos ∠ F 1PF 2,由 | PF | + | PF | = 2a ,∠ F PF =3 ,1212π 1 24 a2- c2) ,可得 | PF || PF | =3(1则由三角形面积公式 1|PF1| + |PF2| +|F1F2|11 21 22() · r =2| PF || PF |sin ∠F PF ,可得 ( 2a +2c ) ·3 4 3c = ( a2- c2) · ,6 32c 2∴ e == .a33.2000 多年前,古希腊大数学家阿波罗尼奥斯(Apollonius) 发现:平面截圆锥的截口曲线是圆锥曲线.已知圆锥的高为, 为地面直径,顶角为 2θ ,那么可是极点P 的平面与夹角π> >θ 时,截口曲线为PH ABPH 2 a椭圆;与 PH 夹角 a = θ 时,截口曲线为抛物线;与 PH 夹角 θ >a >0 时,截口曲线为双曲线.如图,底面内 的直线 AM ⊥ AB ,过 AM 的平面截圆锥获得的曲线为椭圆,此中与 PB 的交点为 C ,可知 AC 为长轴.那么当 C 在线段上运动时,截口曲线的短轴端点的轨迹为 ()PBA .圆的一部分B .椭圆的一部分C .双曲线的一部分D .抛物线的一部分答案D分析 如图,由于对于给定的椭圆来说,短轴的端点Q 到焦点 F 的距离等于长半轴,但短轴的端点到直aQ线 AM 的距离也是 a ,即说明短轴的端点 Q 到定点 F 的距离等于到定直线 AM 的距离,且点 F 不在定直线 AM上,因此由抛物线的定义可知,短轴的端点的轨迹是抛物线的一部分,应选D.4.过双曲线 x2 - y2=1( a>0, >0) 的左焦点且垂直于x 轴的直线与双曲线交于 , B 两点, D 为虚轴的一个a2 b2bA端点,且△ ABD 为钝角三角形,则此双曲线离心率的取值范围为______________________ .答案 (1, 2)∪( 2+ 2,+∞ )分析 设双曲线 x2 y2a2 - = 1( a >0, b >0) 的左焦点 F 1( - c, 0) ,b2 令 x=- ,可得y =±bc2 - 1=± b 2,ca2a2b2 b2设 A - c , a , B - c ,- a , D (0 ,b ) ,→b2可得 AD = c , b - a ,→ 2b2 →b2 AB =0,-, DB =- c ,- b -,a a 若∠ DAB 为钝角,则→ →AD · AB<0,2b2 b2即 0- a · b - a <0, 化为 a >b ,即有 a 2>b 2=c 2- a 2,22c可得 c <2a ,即 e = a < 2,又 e >1,可得 1<e < 2;→ →若∠ ADB 为钝角,则 DA · DB<0,2b2b2即 c - a+ b a - b <0,化为 c 4- 4a 2c 2+2a 4>0,由 e = c,可得 e 4- 4e 2+2>0, a又 e >1,可得 e > 2+ 2;→ → 2b2b2又 AB · DB = a b + a >0,∴∠ DBA 不行能为钝角.综上可得, e 的取值范围为 (1 , 2) ∪(2+ 2,+∞ ) .5.已知直线 MN 过椭圆x2+y 2=1 的左焦点 F ,与椭圆交于 M ,N 两点,直线 PQ 过原点 O 与 MN 平行,且与椭2|PQ|2圆交于 P ,Q 两点,则 |MN| = ________.3答案 2 2分析 方法一 特别化,设 MN ⊥ x 轴,则 | | = 2b2 = 2= 2,| |2 = 4, |PQ|2= 4 =2 2.MN a PQ|MN| 222b2|PQ|2方法二 由题意知 F ( - 1,0) ,当直线 MN 的斜率不存在时, | MN |= a = 2,| PQ | = 2b = 2,则 |MN| =2 2;当直线的斜率存在时,设直线 的斜率为 k ,MNMN则 MN 的方程为 y =k ( x + 1) , M ( x 1, y 1) ,N ( x 2, y 2) ,联立方程 错误 !整理得 (2 k 2+ 1) x 2+ 4k 2 x +2k 2- 2= 0,= 8k 2+ 8>0.由根与系数 的关系,得x1+ 4k2,12= 2k2 - 22=-,x2k2+ 1 x x2k2 + 1则 | MN |= 1+ k2错误 != 2 2+ .2k2 + 1直线 PQ 的方程为 y = kx , P ( x, y ) , Q ( x ,y ) ,3344y = kx ,22k222 则 x2解得 x = 1+ 2k2 , y = 1+2k2, 2 + y2 =1,则 | OP | 2= x 23+ y 32=错误 !,又| PQ | =2| OP | ,因此 | PQ | 2= 4| OP |2=错误 !,4|PQ|2因此 |MN| = 2 2.|PQ|2综上, |MN| = 2 2.6.已知抛物线 C :y 2= 2px ( p >0) 的焦点为 F ,过点 F 的直线 l 与抛物 线 C 交于 A ,B 两点,且直线l 与圆 x 223 2- px +y- 4p = 0 交于 C , D 两点,若 | AB | = 3| CD |,则直线 l 的斜率为 ________.2答案 ± 2p2232 p222分析 由题意得 F 2, 0 ,由 x - px + y -4p = 0,配方得 x - 2 + y = p , 因此直线 l 过圆心 p ,可得 | CD | =2p ,2,p若直线 l 的斜率不存在,则 l : x = 2, | AB | = 2p , | CD | =2p ,不切合题意,∴直线 l 的斜率存在.p∴可设直线 l 的方程为 y = k x - 2 , A ( x 1, y 1) , B ( x 2, y 2) ,p联立 y =k x - 2 ,y2= 2px ,化为 x 2-p +2p x +p2= 0,k24因此 x 122p+x=p + k2,因此 | AB | =x 1+ x 2+ p = 2p + k22p ,2p由 | AB | = 3| CD | ,因此 2p +k2= 6p ,21 2可得 k = 2,因此 k =± 2 .7.已知 A , B 是椭圆 C 上对于原点对称的两点,若椭圆C 上存在点 P ,使得直线 PA , PB 斜率的绝对值之和5为 1,则椭圆 C 的离心率的取值范围是 ________.答案23, 12b由题意得 a≤ 1,因此 a 2≥ 4b 2= 4a 2- 4c 2,即 3a 2≤ 4c 2,23 因此 e ≥ 4,又由于 0< <1,因此3 ≤ <1.e 2 ex2 y21 38.已知椭圆 C :a2+ b2= 1( a >b >0)的离心率为 2,且点1,2 在该椭圆上.(1) 求椭圆 C 的方程;6 2(2) 过椭圆 C 的左焦点 F 1 的直线 l 与椭圆 C 订交于 A ,B 两点,若△ AOB 的面积为 7 ,求圆心在原点 O 且与直线 l 相切的圆的方程.(2) 由 (1) 知 F 1( - 1,0) ,设直线 l 的方程为 x = ty - 1,x = ty - 1,由 x2 y222消去 x ,得 (4 + 3t ) y - 6t y - 9=0,4 +3 = 1,明显 >0 恒建立,设 A ( x 1,y 1 ) , B ( x 2,y 2) ,则 y 1+ y 2=6t9, y 1y 2=-,4+ 3t24+ 3t2因此 | y 1- y 2| =错误 != 错误 !=错误 !,6高考数学考纲解读与热门难点打破专题17圆锥曲线热门难点打破理含分析 11 / 11 1因此 S △AOB = 2·|F 1O | ·|y 1- y 2|6 t2 + 1 6 2= = ,4+ 3t2 7化简得 18t 4- t 2- 17=0,即 (18 t 2+ 17)( t 2- 1) =0,17解得 t 21= 1, t 2=- 18( 舍去 ) .|0 -t ×0+ 1| = 1又圆 O 的半径 r = ,1+ t2 1+ t22 2 2 1因此 r = 2 ,故圆 O 的方程为 x + y = 2.7。
高中数学圆锥曲线解题技巧方法总结及高考试题和答案
圆锥曲线1.圆锥曲线的两定义:第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。
若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
如方程8=表示的曲线是_____(答:双曲线的左支)2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时2222bx a y +=1(0a b >>)。
方程22Ax By C +=表示椭圆的充要条件是什么(ABC ≠0,且A ,B ,C 同号,A ≠B )。
若R y x ∈,,且62322=+y x ,则y x +的最大值是____,22y x +的最小值是___(答:)(2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:2222bx a y -=1(0,0a b >>)。
方程22Ax By C +=表示双曲线的充要条件是什么(ABC ≠0,且A ,B异号)。
如设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为_______(答:226x y -=)(3)抛物线:开口向右时22(0)y px p =>,开口向左时22(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。
高考数学复习之圆锥曲线(题量大,含大量高考真题)
圆锥曲线讲义(1)椭圆(1)一、知识要点: 椭圆、双曲线、抛物线的标准方程与几何性质椭圆 双曲线 抛物线定义 1.到两定点F 1,F 2的距离之和为定值2a(2a>|F 1F 2|)的点的轨迹 1.到两定点F 1,F 2的距离之差的绝对值为定值2a(0<2a<|F 1F 2|)的点的轨迹2.与定点和直线的距离之比为定值e 的点的轨迹.(0<e<1) 2.与定点和直线的距离之比为定值e 的点的轨迹.(e>1)与定点和直线的距离相等的点的轨迹.图形方 程 标准方程 12222=+b y a x (b a >>0) 12222=-b y a x (a>0,b>0) y 2=2px 参数方程 为离心角)参数θθθ(sin cos ⎩⎨⎧==b y a x 为离心角)参数θθθ(tan sec ⎩⎨⎧==b y a x ⎩⎨⎧==pt y pt x 222(t 为参数) 范围 ─a ≤x ≤a ,─b ≤y ≤b |x| ≥ a ,y ∈Rx ≥0 中心 原点O (0,0) 原点O (0,0)顶点(a,0), (─a,0), (0,b) , (0,─b)(a,0), (─a,0) (0,0) 对称轴 x 轴,y 轴; 长轴长2a,短轴长2b x 轴,y 轴; 实轴长2a, 虚轴长2b. x 轴焦点F 1(c,0), F 2(─c,0) F 1(c,0), F 2(─c,0) )0,2(p F 焦距 2c (c=22b a -) 2c (c=22b a +) 离心率 )10(<<=e a ce )1(>=e a ce e=1准线 x=c a 2±x=c a 2±2p x -= 渐近线y=±ab x焦半径 ex a r ±=r =∣a ±e x ∣ 2p x r += 通径a b 22 ab 22 2p1.椭圆的定义:第一种定义:平面内与两个定点F 1、F 2的距离之和等于常数(大于|F 1F 2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距.第二种定义:平面内一个动点到一个定点的距离和它到一条定直线的距离的比是小于1的正常数,这个动点的轨迹叫椭圆,定点是椭圆的焦点,定直线叫做椭圆的准线. 2.椭圆的标准方程: (1))0(12222>>=+b a b y a x ,焦点:F 1(-c,0),F 2(c,0),其中c=22b a -. (2))0(12222>>=+b a ay b x ,焦点:F 1(0,-c),F 2(0,c),其中c=22b a -. 3.椭圆的参数方程:⎩⎨⎧==θθsin cos b y a x ,(参数θ是椭圆上任意一点的离心率).4.椭圆的几何性质:以标准方程)0(12222>>=+b a by a x 为例:①范围:|x|≤a,|y|≤b;②对称性:对称轴x=0,y=0,对称中心为O(0,0);③顶点A(a,0),A′(-a,0),B(0,b),B′(0,-b);长轴|AA′|=2a,短轴|BB′|=2b ;④离心率:e=ac,0<e<1;⑤准线x=±ca 2;⑥焦半径:|PF 1|=a+ex,|PF 2|=a-ex,其中P(x,y)是椭圆上任意一点.二、基本训练1.设一动点P 到直线3x =的距离与它到点A (1,0)的距离之比为3,则动点P 的轨迹方程是 . 2.曲线192522=+y x 与曲线)9(192522<=-+-k k y k x 之间具有的等量关系是 . 3.已知椭圆的长轴长是短轴长的3倍,长、短轴都坐标上,且过点(3,0)A ,则椭圆的方程是 . 4.底面直径为12cm 的圆柱被与底面成30的平面所截,截口是一个椭圆,这个椭圆的长轴长 ,短轴长 ,离心率 .5.已知椭圆22221(0)x y a b a b+=>>的离心率为35,若将这个椭圆绕着它的右焦点按逆时针方向旋转2π后,所得新椭圆的一条准线方程是163y =,则原来的椭圆方程是 ;新椭圆方程是 .三、例题分析例1.如图,已知椭圆的中心在坐标原点,焦点F 1,F 2在x 轴上,长轴A 1A 2的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程;y xOF 1F 2P αβyO x 1l F 2 F 1 A 2 A 1P M l (Ⅱ)若直线l 1:x =m (|m |>1),P 为l 1上的动点,使∠F 1PF 2最大的点P 记为Q ,求点Q的坐标(用m 表示).例2.设,A B 是两个定点,且||2AB =,动点M 到A 点的距离是4,线段MB 的垂直平分线l 交MA 于点P ,求动点P 的轨迹方程.例3.已知椭圆22221(0)x y a b a b+=>>,P 为椭圆上除长轴端点外的任一点,12,F F 为椭圆的两个焦点,(1)若α=∠21F PF ,21PF F β∠=,求证:离心率2cos2cosβαβα-+=e ;(2)若θ221=∠PF F ,求证:21PF F ∆的面积为2tan b θ⋅.例4.设椭圆2211x y m +=+的两个焦点是12(,0),(,0)(0)F c F c c ->,且椭圆上存在点P ,使得直线1PF 与直线2PF 垂直.(1)求实数m 的取值范围;(2)设l 是相应于焦点2F 的准线,直线2PF 与l 相交于点Q ,若22||23||QF PF =-,求直线2PF 的方程.例5.点A 、B 分别是椭圆1203622=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ⊥。
高考数学140分难点突破训练――圆锥曲线(含详解)概要
高考数学140分难点突破训练――圆锥曲线(含详解)概要高考数学140分难点突破训练——圆锥曲线1. 已知椭圆C的焦点在轴上,它的一个顶点恰好是抛物线的焦点,离心率为。
w.w.w.k.s.5.u.c.o.m(1)求椭圆C的方程;(2)设A、B为椭圆上的两个动点,,过原点O作直线AB的垂线OD,垂足为D,求点D的轨迹方程.2. 设直线与双曲线相交于A,B两点,O为坐标原点.(I)为何值时,以AB为直径的圆过原点.(II)是否存在实数,使且,若存在,求的值,若不存在,说明理由.3. (理)设双曲线C:(a>0,b>0)的离心率为e,若准线l与两条渐近线相交于P、Q两点,F为右焦点,△FPQ为等边三角形.(1)求双曲线C的离心率e的值;(2)若双曲线C被直线y=ax+b截得的弦长为求双曲线c的方程.(文)在△ABC中,A点的坐标为(3,0),BC边长为2,且BC 在y轴上的区间[-3,3]上滑动.(1)求△ABC外心的轨迹方程;(2)设直线l∶y=3x+b与(1)的轨迹交于E,F两点,原点到直线l的距离为d,求的最大值.并求出此时b的值.4. 已知点N(1,2),过点N的直线交双曲线于A、B两点,且(1)求直线AB的方程;(2)若过N的直线l交双曲线于C、D两点,且,那么A、B、C、D四点是否共圆?为什么?5. 设(为常数),若,且只有唯一实数根(1)求的解析式(2)令求数列的通项公式。
6. 已知点C(-3,0),点P在y轴上,点Q在x轴的正半轴上,点M在直线PQ上,且满足(1)当点P在y轴上运动时,求点M的轨迹C的方程;(2)是否存在一个点H,使得以过H点的动直线L被轨迹C截得的线段AB为直径的圆始终过原点O。
若存在,求出这个点的坐标,若不存在说明理由。
7. 设为直角坐标平面内x,y轴正方向上的单位向量,若向量.(1求点M(x,y)的轨迹C的方程;(2过点(0,3作直线与曲线C 的交于A、B两点,设,是否存在这样的直线,使得四边形OAPB为矩形?若存在,求出直线的方程;若不存在,说明理由.8. 已知倾斜角为的直线过点和点,点在第一象限,。
第09讲 高考难点突破一:圆锥曲线的综合问题(定点问题) (精讲)(含答案解析)
第09讲高考难点突破一:圆锥曲线的综合问题(定点问题)(精讲)-2第09讲高考难点突破一:圆锥曲线的综合问题(定点问题)(精讲)题型三:抛物线中的定点问题角度1:抛物线中的直线过定点问题典型例题例题1.(2022·辽宁·建平县实验中学模拟预测)1.已知点()1,M p p -在抛物线()2:20C y px p =>上.(1)求抛物线C 的方程;(2)过点M 作斜率分别为12,k k 的两条直线12,l l ,若12,l l 与抛物线C 的另一个交点分别为,A B ,且有122k k +=,探究:直线AB 是否恒过定点?若是,求出该定点;若否,说明理由.例题2.(2022·陕西西安·三模(理))2.已知抛物线()2:20C y px p =>上的点()()4,0G t t >到其准线的距离为5.不过原点的动直线交抛物线C 于A ,B 两点,M 是线段AB 的中点,点M 在准线l 上的射影为N .(1)求抛物线C 的方程;(2)当1NA NB ⋅=时,求证:直线AB 过定点.例题3.(2022·全国·高三专题练习)3.已知线段AB 是抛物线24y x =的弦,且过抛物线焦点F .(1)过点B 作直线与抛物线对称轴平行,交抛物线的准线于点E ,求证:A O E 、、三点共线(O 为坐标原点);(2)设M 是抛物线准线上一点,过M 作抛物线的切线,切点为11A B 、.求证:(i )两切线互相垂直;(ii )直线11A B 过定点,请求出该定点坐标.同类题型归类练(2022·湖南·长沙一中高三开学考试)4.已知抛物线C :22y px =(0p >),直线1x =+交抛物线C 于A ,B 两点,且三角形OAB 的面积为O 为坐标原点).(1)求实数p 的值;(2)过点D (2,0)作直线L 交抛物线C 于P ,Q 两点,点P 关于x 轴的对称点为P '.证明:直线P 'Q 经过定点,并求出定点坐标.(2022·湖北武汉·高二期末)5.已知动圆M 过定点()2,0A ,且在y 轴上截得的弦长为4,圆心M 的轨迹为曲线L .(1)求L 的方程;(2)已知点()3,2B --,()2,1C ,P 是L 上的一个动点,设直线PB ,PC 与L 的另一交点分别为E ,F ,求证:当P 点在L 上运动时,直线EF 恒过一个定点,并求出这个定点的坐标.(2022·江西景德镇·高二期末(文))6.已知抛物线C :()220y px p =>的焦点为F ,过焦点F 且垂直于x 轴的直线交C 于H ,I 两点,O 为坐标原点,OHI 的周长为8.(1)求抛物线C 的方程;(2)过点F 作抛物线C 的两条互相垂直的弦AB ,DE ,设弦AB ,DE 的中点分别为P ,Q ,试判断直线PQ 是否过定点?若过定点.求出其坐标;若不过定点,请说明理由.(2022·江西·上饶市第一中学模拟预测(文))7.已知抛物线()220y px p =>的焦点为F ,过焦点FA 、B 两点(点A 在第一象限),交抛物线准线于G ,且满足83BG =.(1)求抛物线的标准方程;(2)已知C ,D 为抛物线上的动点,且OC OD ⊥,求证直线CD 过定点P ,并求出P 点坐标;(3)在(2)的条件下,求PC PD ⋅的最大值.角度2:抛物线存在定点满足某条件问题典型例题例题1.(2022·内蒙古赤峰·高二期末(文))8.已知抛物线()2:20C y px p =>的焦点为F ,过点()2,0A 的直线l 交C 于M ,N 两点,当l 与x 轴垂直时,4MN =.(1)求C 的方程:(2)在x 轴上是否存在点P ,使得OPM OPN ∠=∠恒成立(O 为坐标原点)?若存在求出坐标,若不存在说明理由.例题2.(2022·河南·开封市东信学校模拟预测(文))9.已知直线:10l x ky --=与抛物线2:2(0)N y px p =>交于A ,B 两点,当直线l x ⊥轴时,||4AB =.(1)求抛物线N 的标准方程;(2)在x 轴上求一定点C ,使得点(2,0)M p 到直线AC 和BC 的距离相等.例题3.(2022·贵州铜仁·高二期末(理))10.已知F 为抛物线2:2(0)C y px p =>的焦点,过F 的动直线交抛物线C 于,A B 两点.当直线与x 轴垂直时,||4AB =.(1)求抛物线C 的方程;(2)设直线AB 的斜率为1且与抛物线的准线l 相交于点M ,抛物线C 上存在点P 使得直线,,PA PM PB 的斜率成等差数列,求点P 的坐标.同类题型归类练(2022·湖北·鄂南高中模拟预测)11.已知曲线2:2(0)C y px p =>的焦点为F ,曲线C 上有一点()0,Q x p 满足2QF =.(1)求抛物线C 的方程;(2)过原点作两条相互垂直的直线交曲线C 于异于原点的两点,A B ,直线AB 与x 轴相交于N ,试探究x 轴上存在一点是否存在异于N 的定点M 满足AM AN BMBN=恒成立.若存在,请求出M 点坐标;若不存在,请说明理由.(2022·全国·高三专题练习(理))12.已知抛物线2:2(0)E x py p =>的焦点为F ,过F 的直线交抛物线E 于1122(,),(,)A x y B x y 两点,11AF y =+.(1)求抛物线E 的标准方程;(2)在x 轴的正半轴上是否存在点P ,连接PA ,PB 分别交抛物线E 于另外两点C ,D ,使得4AB CD =?并说明理由.(2022·江苏省苏州实验中学高二阶段练习)13.已知抛物线2:8C y x =,点()(),00M a a >,直线l 过点M 且与抛物线C 相交于,A B 两点.(1)当a 为变量时,P 为抛物线C 上的一个动点,当线段MP 的长度取最小值时,P 点恰好在抛物线C 的顶点处,请指出此时M 点运动的轨迹;(2)当a 为定值时,在x 轴上是否存在异于点M 的点N ,对任意的直线l ,都满足直线,AN BN 关于x 轴对称?若存在,指出点N 的位置并证明,若不存在请说明理由.(2022·重庆市育才中学高三阶段练习)14.已知抛物线2:4E x y =的焦点为F ,过F 的直线交抛物线E 于A 、B 两点.(1)当直线AB 的斜率为1时,求弦AB 的长度AB ;(2)在x 轴的正半轴上是否存在一点P ,连接PA ,PB 分别交抛物线E 于另外两点C 、D ,使得//AB CD 且4AB CD =?若存在,请求出点P 的坐标,若不存在,请说明理由.(2022·全国·高考真题(文))15.已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.参考答案:1.(1)24y x=(2)直线AB 恒过定点()1,0-【分析】(1)将M 点坐标代入抛物线方程即可构造方程求得结果;(2)设()11,A x y ,()22,B x y ,利用斜率公式表示出122k k +=,得到124y y =;设:AB x my t =+,与抛物线方程联立可得韦达定理的形式,由此可得1t =-,可得:1AB x my =-,由此可得定点坐标.(1)()1,M p p - 在抛物线上,()221p p p ∴=-,解得:2p =,∴抛物线C 的方程为:24y x =.(2)由(1)得:()1,2M ;设()11,A x y ,()22,B x y ,则11121112241214y y k y x y --===-+-;同理可得:2242k y =+;122k k += ,1244222y y ∴+=++,整理可得:124y y =;当直线AB 斜率为0时,其与抛物线C 只有一个公共点,不合题意;当直线AB 斜率不为0时,设:AB x my t =+,由24y x x my t ⎧=⎨=+⎩得:2440y my t --=,则124y y t =-,44t ∴-=,解得:1t =-;:1AB x my ∴=-,则直线AB 过定点()1,0-;综上所述:直线AB 恒过定点()1,0-.【点睛】思路点睛:本题考查直线与抛物线综合应用中的直线过定点问题的求解,求解此类问题的基本思路如下:①假设直线方程,与抛物线方程联立,整理为关于x 或y 的一元二次方程的形式;②利用0∆>求得变量的取值范围,得到韦达定理的形式;③利用韦达定理表示出已知中的等量关系,代入韦达定理可整理得到变量间的关系,从而化简直线方程;④根据直线过定点的求解方法可求得结果.2.(1)24y x =(2)证明见解析【分析】(1)由抛物线的定义可求解;(2)设直线AB ,并与抛物线联立,运用韦达定理、向量的数量积可求解.【详解】(1)由抛物线C 的方程可得其准线方程2p x =-,依抛物线的性质得452p+=,解得2p =.∴抛物线C 的方程为24y x =.(2)当直线AB 的斜率为0时,显然不符合题意;当直线AB 的斜率不为0时,设直线:(0)AB x my n n =+≠,211,4y A y ⎛⎫⎪⎝⎭、222,4y B y ⎛⎫ ⎪⎝⎭、()00,M x y ,由24y x x my n ⎧=⎨=+⎩化简得2440y my n --=,()2160m n ∆=+>,124y y m +=,124y y n =-,12022y y y m +==,所以()1,2N m -,所以2111,24y NA y m ⎛⎫=+- ⎪⎝⎭ ,2221,24y NB y m ⎛⎫=+- ⎪⎝⎭ ,所以()()222121112244y y NA NB y m y m ⎛⎫⎛⎫⋅=+++-- ⎪⎪⎝⎭⎝⎭()()222121221212122124164y y y y y y y y m y y m +-=+++-++()22222216814842114m n n n m m n n n +=++--+=-+=-若1NA NB ⋅= ,即()211n -=,解得2n =或0n =(舍去),所以直线AB 过定点()2,0.3.(1)证明见解析(2)证明见解析.【分析】(1)由题知抛物线24y x =的焦点()1,0F ,准线为=1x -,故设直线AB 的方程为:1x my =+,()()1122,,,A x y B x y ,进而得()21,E y -,再结合韦达定理证明OA OE k k =即可;(2)(i)设()01,M y -,过()01,M y -作抛物线的切线,斜率为()0k k ≠,则方程为()01y y k x -=+,切线11,MA MB 的切线斜率分别为12,k k ,进而结合韦达定理即可得121k k =-,进而证明;(ii )结合(i )得221121211212,,A k k B k k ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭、,进而得1102A B k y =,直线11A B 的方程为2202221y x k y k ⎛⎫-=- ⎪⎝⎭,整理即可得()021y x y =-,进而得定点坐标.(1)解:由题知抛物线24y x =的焦点()1,0F ,准线为=1x -,所以,设直线AB 的方程为:1x my =+,所以,联立方程214x my y x=+⎧⎨=⎩得2440y my --=,设()()1122,,,A x y B x y ,则12124,4y y m y y +==-,因为过点B 作直线与抛物线对称轴平行,交抛物线的准线于点E ,所以()21,E y -因为2114y x =,故2114y x =所以112211214444OA y y y y y x y k =====--,221OE k y y ==--,所以,OA OE k k =,即A O E 、、三点共线.(2)解:(i )设()01,M y -,所以,设过()01,M y -作抛物线的切线,斜率为()0k k ≠,则方程为()01y y k x -=+,所以,()0214y y k x y x⎧-=+⎨=⎩得204440ky y y k -++=,所以,()0164440k y k ∆=-+=,即2010k ky +-=,设切线11,MA MB 的切线斜率分别为12,k k ,则12,k k 为方程2010k ky +-=的实数根,所以121k k =-,120k k y +=-,所以,两切线互相垂直.(ii)由(i )知204440ky y y k -++=,2010k ky +-=,所以,22204440k y ky ky k -++=,即()2224420k y ky ky -+=-=,所以221121211212,,A k k B k k ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭、,所以,1121121222210221122A B k k k k k k y k k k =+==--,所以,直线11A B 的方程为2202221y x k y k ⎛⎫-=- ⎪⎝⎭,整理得()2022222020200200202222222221y k k y x x x y k y k y y k y y k y --=+-=+=+=-,即()021y x y =-所以,直线11A B 过定点()1,0.4.(1)2p =;(2)证明见解析,定点()2,0-.【分析】(1)设()()1122,,,A x y B x y ,联立直线和抛物线方程得到韦达定理,求出12y y -即得解;(2)设()()3344,,,P x y Q x y ,不妨令43y y >,设直线L 的方程为2x ty =+,联立直线和抛物线的方程得到韦达定理,求出直线P Q '的方程即得解.(1)解:由题得直线1x =+过点()1,0,.设()()1122,,,A x y B x y ,联立21,2,x y px ⎧=+⎪⎨=⎪⎩得220y p --=,所以1212,2y y y y p +==-,所以122y y -=所以三角形OAB的面积12112S y y =⨯⨯-==又0p >,解得2p =(30p =-<舍去).所以2p =.(2)证明:由(1)抛物线C 的方程为24y x =,设()()3344,,,P x y Q x y ,不妨令43y y >,则()33,P x y '-,设直线L 的方程为2x ty =+,联立22,4,x ty y x =+⎧⎨=⎩消去x 得2480y ty --=,则34344,8y y t y y +==-,则直线P Q '的方程为()()433343y y y y x x x x +--=--,即()()43434343x x y x y y y x y x -+=+-,则()()()()4343434322ty ty y ty y y y x y ty -++=+-+,即()()()4343433422t y y y y y x ty y y y -=+--+,即()()43433422y y y x ty y y y =+--+,所以()42824y tx t t =-⨯--⨯,即()2y t x =+,令20,0,x y +=⎧⎨=⎩解得2,0,x y =-⎧⎨=⎩所以直线P Q '恒过定点()2,0-5.(1)24y x=(2)证明见解析,定点110,33⎛⎫- ⎪⎝⎭;【分析】(1)设圆心(),C x y ,圆的半径为R ,依题意得到方程,整理即可;(2)设200,4y D y ⎛⎫ ⎪⎝⎭,121,4y E y ⎛⎫ ⎪⎝⎭,222,4y F y ⎛⎫⎪⎝⎭,即可得到直线EF 的方程,同理可得直线DE与直线DF 的方程,再根据直线DE 过点()3,2B --,直线DF 过点()2,1C ,即可消去0y ,从而求出EF 过定点坐标;(1)解:设圆心(),C x y ,圆的半径为R ,则()()22222220R x x y =+=-+-,整理得24y x =.所以动圆圆心的轨迹方程为24y x =.(2)证明:抛物线的方程为24y x =,设200,4y D y ⎛⎫ ⎪⎝⎭,121,4y E y ⎛⎫ ⎪⎝⎭,222,4y F y ⎛⎫⎪⎝⎭,则直线EF 的方程为()1211221244y y y y x x y y --=--,得2111211121212124444x y y y x x x y y y y y y y y y y +-=-+=+++++,又2114y x =,所以直线EF 的方程为1212124y y xy y y y y =+++.同理可得直线DE 的方程为1010104y y xy y y y y =+++,直线DF 的方程为0022024y y xy y y y y =+++因为直线DE 过点()3,2B --,所以()1101222y y y -=+;因为直线DF 过点()2,1C ,所以()22081y y y -=-.消去0y ,得()121210433y y y y =++.代入EF 的方程,得12411033y x y y ⎛⎫=++ ⎪+⎝⎭,所以直线EF 恒过一个定点110,33⎛⎫- ⎪⎝⎭.6.(1)28y x=(2)直线PQ 过定点()6,0【分析】(1)将2px =代入抛物线22y px =中,得出HI 的长度,再由勾股定理得出OH ,结合条件建立关于p 的方程,得出答案.(2)由题意设直线AB 的方程为2x my =+,()11,A x y ,()22,B x y ,联立直线AB 的方程与抛物线的方程,由韦达定理得出P 点坐标,同理得出Q 点坐标,从而得出直线PQ 方程,得出答案.(1)由题意,02p F ⎛⎫⎪⎝⎭,在22y px =中代入2p x=,得222p y p =⋅,解得y p =±,所以2HI p =.由勾股定理得|OH OI p ===,则OHI 的周长为2822p p p ++=,解得4p =,故抛物线C 的方程为28y x =.(2)由题意可知()2,0F ,直线AB 的斜率存在,且不为0.设直线AB 的方程为2x my =+,()11,A x y ,()22,B x y .联立22,8,x my y x =+⎧⎨=⎩消去x ,得28160y my --=,264640m ∆=+>,则128y y m +=,从而()21212484x x m y y m +=++=+.因为P 是弦AB 的中点,所以()242,4P m m +,同理可得2442,Q mm ⎛⎫+- ⎪⎝⎭.当21m ≠,即1m ≠±时,直线PQ 的斜率2224441422PQm m m k m m m ⎛⎫-- ⎪⎝⎭==-⎛⎫+-+ ⎪⎝⎭,则直线PQ 的方程为()224421my m x m m -=---,即()()216m y m x -=-.故直线PQ 过定点()6,0;当21m =,即1m ≠±时,直线PQ 的方程为6x =,也过点()6,0.综上所述,直线PQ 过定点()6,0.7.(1)24y x=(2)证明见解析;P 点坐标为(4,0)(3)16-【分析】(1)过点B 作准线的垂线,垂足为H ,设准线与x 轴相交于点M ,由直线的斜率得出倾斜角,利用三角函数及抛物线的定义求出||MF 即可得解;(2)设直线CD 的方程为:x my t =+,211,4y C y ⎛⎫ ⎪⎝⎭,222,4y D y ⎛⎫⎪⎝⎭,联立方程组,由根与系数的关系求出12y y ,再由OC OD ⊥建立斜率的方程即可得解;(3)由向量的数量积坐标运算化简,利用二次函数求最值.(1)过点B 作准线的垂线,垂足为H ,设准线与x 轴相交于点M,如图,由题知,直线l 的倾斜角为π3.∴在R t BGH 中,π3GBH ∠=,又∵83BG =,∴43BH =,∴43BF =.∴4GF BG BF =+=,∴在R t GFM 中,又3MFG π∠=,∴2MF =,∴2p =,∴抛物线的标准方程为24y x =.(2)由(1)可知,抛物线方程为24y x =,设直线CD 的方程为:x my t =+,211,4y C y ⎛⎫ ⎪⎝⎭,222,4y D y ⎛⎫⎪⎝⎭,直线与抛物线联立:24x my ty x=+⎧⎨=⎩,得:2440y my t --=,则124y y m +=,124y y t =-,∵14OC k y =,24OD k y =且OC OD ⊥,∴12161614OC OD k k y y t ⋅===--则4t =,∴直线CD 过定点(4,0),即P 点坐标为(4,0),(3)由(2)可知P 点坐标为(4,0),∴()2222212121216161616y y PC PD y y y y m ⋅=-+++=-- ,∴PC PD ⋅的最大值为16-.8.(1)22y x =(2)存在,()2,0-【分析】(1)易知||4MN ==,求出p 即可;(2)设()0,0P x ,()11,M x y ,()22,N x y ,由题可知直线l 斜率不为零,设: 2l x m y =+,代入抛物线方程22y x =消去x ,得2240y my --=,由OPM OPN ∠=∠可得0MP NP k k +=,利用斜率公式,根与系数的关系求解即可【详解】(1)当l 与x轴垂直时,由题意易得||MN =,从而4=,解得p =1,所以C 的方程为22y x =;(2)设()0,0P x ,()11,M x y ,()22,N x y ,由题可知直线l 斜率不为零,设: 2l x m y =+,代入抛物线方程22y x =消去x ,得2240y my --=,从而122y y m +=,124y y =-,①由OPM OPN ∠=∠可得0MP NP k k +=12121020102022MP NP y y y y k k x x x x my x my x +=+=+--+-+-()()()()1201210202222my y x y y my x my x +-+=+-+-将①代入上式,得()()102042022m mx my x my x --=+-+-恒成立,所以02x =-,因此存在点P ,且满足题意,P 点坐标为()2,0-.9.(1)24y x =(2)(1,0),(1,0),(4,0)-【分析】(1)直线l x ⊥轴时,将1x =代入抛物线方程求得,A B 纵坐标,得出AB ,从而可得p 值,得抛物线方程;(2)设()()(),,,,,0A A B B C A x y B x y C x ,直线方程与抛物线方程联立,消元后应用韦达定理得A B y y +,A B y y ,题意即为0AC BC k k +=,代入韦达定理的结论可求得C x ,同时注意,,A B C 共线或C 与M 重合的情形,从而得出结论.(1)当直线l x ⊥轴时,方程为1x =,代入抛物线方程得22y p =,y =,∴||4AB ==,解得2p =.∴抛物线N 的标准方程为24y x =;(2)设()()(),,,,,0A A B B C A x y B x y C x .联立210,4,x ky y x --=⎧⎨=⎩得2440y ky --=.∴4,4A B A B y y k y y +=⋅=-.①由题意可知()()()()0A B C B A C A BAC BC A C B C A C B C y x x y x x y y k k x x x x x x x x -+-+=+==----,∴()()0A B C B A C y x x y x x -+-=,即()B A A B C A B x y x y x y y +=+.∴()()()11B A A B C A B ky y ky y x y y +++=+,即()()2A B A B C A B ky y y y x y y ++=+.∴844C k k kx -+=.∵0k ≠,可知1C x =-.∴点C 的坐标由抛物线的图象可知,还有点(1,0),(4,0)满足题意,故这样的点有3个,坐标分别为(1,0),(1,0),(4,0)-.10.(1)24y x =(2)(1,2)P ±【分析】(1)求出抛物线的焦点坐标,根据题意,令2px =,求出纵坐标的值,再根据AB 4=进行求解即可;(2)设直线AB 的方程,与抛物线方程联立,求出直线PA ,PM ,PB 的斜率表达式,结合等差数列和一元二次方程根与系数关系,得到一个等式,根据等式成立进行求解即可.(1)因为(,0)2pF ,在抛物线方程22y px =中,令2p x =,可得y p =±,所以当直线与x 轴垂直时24AB p ==,解得2p =,抛物线的方程为24y x =.(2)(2)因为抛物线24y x =的准线方程为=1x -,由题意可知直线AB 的方程为1x y =+,所以(1,2)M --.联立241y x x y ⎧=⎨=+⎩消去x ,得2440y y --=,设11(,)A x y ,22(,)B x y ,则124y y +=,124y y =-,若存在定点00(,)P x y 满足条件,则2PM PA PB k k k =+,即0010200102221y y y y y x x x x x +--⋅=++--,因为点,,P A B 均在抛物线上,所以222012012,444y y y x x x ===.代入化简可得00122200120122(2)24()y y y yy y y y y y y +++=++++,将124y y +=,124y y =-代入整理可得002200022444y y y y y ++=++-,即202(4)0y -=,所以2040y -=,解得02y =±,将02y =±代入抛物线方程,可得01x =,于是点(1,2)P ±即为满足题意的定点.11.(1)24y x =(2)存在,()4,0M -【分析】(1)由焦半径公式代入求解p ,从而得抛物线方程;(2)设直线方程,联立方程组,将韦达定理代入所给条件求解.(1)Q 在曲线C 上,则202p px =,则02px =,而022pQF x p ==+=,故抛物线C 的方程为24y x =.(2)易知直线AB 的斜率不为0,故设()()()1122:,,,,,,0AB l x ty n A x y B x y M m =+联立:224404x ty ny ty n y x=+⎧⇒--=⎨=⎩,故12124,4y y t y y n +==-.222121244y y x x n =⋅=,因为OA OB ⊥,则2121240OA OB x x y y n n ⋅=+=-=则4n =或0n =(舍),故()4,0N .因为,M N 都在x 轴上,要使得AM AN BMBN=,则x 轴为AMB ∠的角平分线,若1m x =,则AM 垂直于x 轴,x 轴平分AMB ∠,则BM 垂直于x 轴,则直线AB 的方程为4x =,此时4m n ==,而,M N 相异,故1m x ≠,同理2m x ≠故AM 与BM 的斜率互为相反数,即12122112120y y x y x y m x m x m y y ++=⇒=--+()()1221121212442324444ty y ty y ty y t m y y y y t+++-⇒==+=+=-++为定值.故当()4,0M -时,有AM AN BMBN=恒成立.【点睛】解答直线与抛物线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.12.(1)24x y =(2)见解析【分析】(1)根据点A 到点F 的距离等于点A 到直线1y =-,结合抛物线的定义得出抛物线E 的标准方程;(2)设()()330,,,0C x y P x ,由4PA PC = 结合抛物线方程得出12,x x 是方程2200230x x x x --=的两根,设直线AB 的方程为1y kx =+,并与抛物线方程24x y =联立结合韦达定理得出点P 坐标.(1)因为点F 是抛物线2:2(0)E x py p =>的焦点,且11AF y =+所以点A 到点F 的距离等于点A 到直线1y =-所以由抛物线的定义可知1,22pp ==所以抛物线E 的标准方程为24x y =(2)设()()330,,,0C x y P x 由4AB CD = 得://AB CD ,且4AB CD =,得4PA PC= 即()()101303,4,x x y x x y -=-,所以101333,44x x yx y +==代入抛物线方程24x y =,得221011344x x x y +⎛⎫==⎪⎝⎭整理得221010230x x x x --=,同理可得222020230x x x x --=故12,x x 是方程2200230x x x x --=的两根,20160x ∆=>由韦达定理可得21201202,3x x x x x x +==-①由题意,直线AB 的斜率一定存在,故设直线AB 的方程为1y kx =+与抛物线方程24x y =联立可得2440x kx --=由韦达定理可得12124,4x x k x x +==-②由①②可得033x k ==故在x 轴的正半轴上存在一点,03P ⎛⎫⎪ ⎪⎝⎭满足条件.13.(1)M 点的运动轨迹是x 轴的(]0,4部分的线段;(2)存在点(),0N a -,证明见解析.【分析】(1)设2,8y P y ⎛⎫ ⎪⎝⎭,可表示出2MP ,根据线段MP 的长度取最小值时,P 点恰好在抛物线C 的顶点处可确定对称轴位置,由此可得轨迹;(2)当l 斜率不存在时知x 轴上任意异于点M 的点N 均满足题意;当l 斜率存在时,假设l 方程,与抛物线方程联立后可得韦达定理的形式,代入0AN BN k k +=中整理可得定点;综合两种情况可得结论.(1)设2,8y P y ⎛⎫ ⎪⎝⎭,则224222218644y y a MP a y y a ⎛⎫⎛⎫=-+=+-+ ⎪ ⎪⎝⎭⎝⎭, 当线段MP 的长度取最小值时,P 点恰好在抛物线C 的顶点处,即当0y =时,线段MP 的长度取最小值a ;140132a-∴-≤,解得:4a ≤,04a ∴<≤;M ∴点的运动轨迹是x 轴的(]0,4部分的线段.(2)①当直线l 斜率不存在时,对于x 轴上任意异于点M 的点N ,都满足直线,AN BN 关于x 轴对称;②当直线l 斜率存在时,设:l x ty a =+,()11,A x y ,()22,B x y ,由28x ty a y x=+⎧⎨=⎩得:2880y ty a --=,则,设(),0N n ,直线,AN BN 关于x 轴对称,0AN BN k k ∴+=,()()()()2212121221121212221212121212880y y y y n y y x y n y y x y y y x n x n x x n x x n x x n x x n -++-++∴+===---+--+-,即()()()12121288808y y y y n y y at nt n a t +-+=--=-+=,∴当n a =-时,0AN BN k k +=恒成立,即(),0N a -;综上所述:存在点(),0N a -,对任意的直线l ,都满足直线,AN BN 关于x 轴对称.【点睛】思路点睛:本题考查直线与抛物线综合应用中的定点问题的求解,求解此类问题的基本思路如下:①假设直线方程,与抛物线方程联立,整理为关于x 或y 的一元二次方程的形式;②利用0∆>求得变量的取值范围,得到韦达定理的形式;③利用韦达定理表示出已知中的等量关系,代入韦达定理可整理得到变量间的关系,从而化简直线方程或得到恒成立的式子;④求解定点得到结果.14.(1)8(2)存在,,03P ⎛⎫ ⎪ ⎪⎝⎭【分析】(1)由题意得到直线AB 的方程10x y -+=,与抛物线2:4E x y =联立,再利用抛物线的定义求解;(2)由//AB CD 且4AB CD =,得到4PA PC =,表示点C 的坐标,代入抛物线方程,整理得到221010230x x x x --=,同理得到222020230x x x x --=,12,x x 是方程2200230x x x x --=的两根,设直线AB 的方程为1y kx =+,与抛物线2:4E x y =联立,由韦达定理求解.(1)解:设()11,A x y ,()22,B x y ,()33,C x y ,()0,0P x ,由题意知,点F 的坐标为()0,1,直线AB 的方程为10x y -+=.与抛物线2:4E x y =联立可得2610y y -+=.由韦达定理有126y y +=,故1228AB y y =++=.(2)设()11,A x y ,()22,B x y ,()33,C x y ,()0,0P x .由//AB CD 且4AB CD =,得4PA PC = ,即()()101303,4,x x y x x y -=-.所以10334x x x +=,134y y =.代入抛物线2:4E x y =,得221011344x x x y +⎛⎫== ⎪⎝⎭,整理可得221010230x x x x --=,同理可得222020230x x x x --=,故12,x x 是方程2200230x x x x --=的两根,20120x ∆=>,由韦达定理有1202x x x +=,21203x x x =-,①由题意,直线AB 的斜率一定存在,故设直线AB 的方程为1y kx =+,与抛物线2:4E x y =联立可得2440x kx --=,由韦达定理有124x x k +=,124x x =-,②由①②可得0x =,3k =,故x轴的正半轴上存在一点3P ⎛⎫ ⎪ ⎪⎝⎭满足条件.15.(1)22143y x +=(2)(0,2)-【分析】(1)将给定点代入设出的方程求解即可;(2)设出直线方程,与椭圆C 的方程联立,分情况讨论斜率是否存在,即可得解.【详解】(1)解:设椭圆E 的方程为221mx ny +=,过()30,2,,12A B ⎛--⎫ ⎪⎝⎭,则41914n m n =⎧⎪⎨+=⎪⎩,解得13m =,14n =,所以椭圆E 的方程为:22143y x +=.(2)3(0,2),(,1)2A B --,所以2:23+=AB y x ,①若过点(1,2)P -的直线斜率不存在,直线1x =.代入22134x y +=,可得(1,M ,N ,代入AB 方程223y x =-,可得(3,T -,由MT TH = 得到(5,H -.求得HN 方程:(2)23y x =+-,过点(0,2)-.②若过点(1,2)P -的直线斜率存在,设1122(2)0,(,),(,)kx y k M x y N x y --+=.联立22(2)0,134kx y k x y --+=⎧⎪⎨+=⎪⎩得22(34)6(2)3(4)0k x k k x k k +-+++=,可得1221226(2)343(4)34k k x x k k k x x k +⎧+=⎪⎪+⎨+⎪=⎪+⎩,()()12221228234444234k y y k k k y y k ⎧-++=⎪+⎪⎨+-⎪=⎪+⎩,且1221224(*)34k x y x y k -+=+联立1,223y y y x =⎧⎪⎨=-⎪⎩可得111113(3,),(36,).2y T y H y x y ++-可求得此时1222112:()36y y HN y y x x y x x --=-+--,将(0,2)-,代入整理得12121221122()6()3120x x y y x y x y y y +-+++--=,将(*)代入,得222241296482448482436480,k k k k k k k +++---+--=显然成立,综上,可得直线HN 过定点(0,2).-【点睛】求定点、定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.。
高考数学圆锥曲线专题练习及答案解析
X = —½距离为6,点P,Q是椭圆上的两个动点©
C
(1)求椭圆C的方程;
(2)若直线AP丄40,求证:直线P0过泄点R,并求出R点的坐标。
【例二・】已知一动圆经过点M(2,0),且在y轴上截得的弦长为4,设该动圆圆心的轨迹为曲 线C。
(1)求曲线C的方程;
(2)过点N(1,O)任意作两条互相垂直的直线∕1,∕2,分别交曲线C于不同的两点A,B和
的焦点,直线4F的斜率为少,O为坐标原点。
3
(1)求E方程;
(2)设过点A的直线/与E相交于PQ两点,当AOP0的面积最大时,求/的方
程。
专题练习
1•在平面直角坐标系XOy中,已知点A(O,—OB点在直线y = -3±, M点满足
MB//QA,莎•亦=屁•鬲M点的轨迹为曲线C。
(1)求C的方程:
(2)P为C上的动点,/为C在P点处的切线,求O点到/距离的最小值。
10.抛汤钱屮阿基来德三角形鲂纟见般质及疝用
11.(S傩曲钱屮的戒切後龜哩
锥曲线中的求轨迹方程问题
解题技巧
求动点的轨迹方程这类问题可难可易是高考中的髙频题型,求轨迹方程的主要方法有直译法、
相关点法、泄义法、参数法等。它们的解题步骤分别如下:
1.直译法求轨迹的步骤:
(1)设求轨迹的点为P(χ,y);
(2)由已知条件建立关于x,y的方程;
D,Q设线段ABQE的中点分别为几。・
①求证:直线P0过左点R,并求出泄点/?的坐标;
②求PGl的最小值。
专题练习
1.设椭圆E:丄y+ =y=l(α> b > 0)的右焦点到直线x-y + 2√z2=0的距离为3,且过点Cr Ir
I
高考数学难点突破_难点25__圆锥曲线综合题
难点25 圆锥曲线综合题圆锥曲线的综合问题包括:解析法的应用,与圆锥曲线有关的定值问题、最值问题、参数问题、应用题和探索性问题,圆锥曲线知识的纵向联系,圆锥曲线知识和三角、复数等代数知识的横向联系,解答这部分试题,需要较强的代数运算能力和图形认识能力,要能准确地进行数与形的语言转换和运算,推理转换,并在运算过程中注意思维的严密性,以保证结果的完整.●难点磁场(★★★★)若椭圆2222by a x +=1(a >b >0)与直线l :x +y =1在第一象限内有两个不同的交点,求a 、b 所满足的条件,并画出点P (a ,b )的存在区域.●案例探究[例1]已知圆k 过定点A (a ,0)(a >0),圆心k 在抛物线C :y 2=2ax 上运动,MN 为圆k 在y 轴上截得的弦.(1)试问MN 的长是否随圆心k 的运动而变化?(2)当|OA |是|OM |与|ON |的等差中项时,抛物线C 的准线与圆k 有怎样的位置关系? 命题意图:本题考查圆锥曲线科内综合的知识及学生综合、灵活处理问题的能力,属 ★★★★★级题目.知识依托:弦长公式,韦达定理,等差中项,绝对值不等式,一元二次不等式等知识. 错解分析:在判断d 与R 的关系时,x 0的范围是学生容易忽略的.技巧与方法:对第(2)问,需将目标转化为判断d =x 0+2a 与R =a x +20的大小. 解:(1)设圆心k (x 0,y 0),且y 02=2ax 0,圆k 的半径R =|AK |=2202020)(a x y a x +=+- ∴|MN |=2202202022x a x x R -+=-=2a (定值) ∴弦MN 的长不随圆心k 的运动而变化.(2)设M (0,y 1)、N (0,y 2)在圆k :(x -x 0)2+(y -y 0)2=x 02+a 2中, 令x =0,得y 2-2y 0y +y 02-a 2=0 ∴y 1y 2=y 02-a 2∵|OA |是|OM |与|ON |的等差中项. ∴|OM |+|ON |=|y 1|+|y 2|=2|OA |=2a . 又|MN |=|y 1-y 2|=2a ∴|y 1|+|y 2|=|y 1-y 2|∴y 1y 2≤0,因此y 02-a 2≤0,即2ax 0-a 2≤0. ∴0≤x 0≤2a . 圆心k 到抛物线准线距离d =x 0+2a ≤a ,而圆k 半径R =220a x +≥a . 且上两式不能同时取等号,故圆k 必与准线相交.[例2]如图,已知椭圆122-+m y m x =1(2≤m ≤5),过其左焦点且斜率为1的直线与椭圆及其准线的交点从左到右的顺序为A 、B 、C 、D ,设f (m )=||AB |-|CD ||(1)求f (m )的解析式; (2)求f (m )的最值.命题意图:本题主要考查利用解析几何的知识建立函数关系式,并求其最值,体现了圆锥曲线与代数间的科间综合.属★★★★★级题目.知识依托:直线与圆锥曲线的交点,韦达定理,根的判别式,利用单调性求函数的最值. 错解分析:在第(1)问中,要注意验证当2≤m ≤5时,直线与椭圆恒有交点.技巧与方法:第(1)问中,若注意到x A ,x D 为一对相反数,则可迅速将||AB |-|CD ||化简.第(2)问,利用函数的单调性求最值是常用方法.解:(1)设椭圆的半长轴、半短轴及半焦距依次为a 、b 、c ,则a 2=m ,b 2=m -1,c 2=a 2-b 2=1 ∴椭圆的焦点为F 1(-1,0),F 2(1,0).故直线的方程为y =x +1,又椭圆的准线方程为x =±ca 2,即x =±m .∴A (-m ,-m +1),D (m ,m +1)考虑方程组⎪⎩⎪⎨⎧=-++=11122m y m x x y ,消去y 得:(m -1)x 2+m (x +1)2=m (m -1) 整理得:(2m -1)x 2+2mx +2m -m 2=0 Δ=4m 2-4(2m -1)(2m -m 2)=8m (m -1)2∵2≤m ≤5,∴Δ>0恒成立,x B +x C =122--m m. 又∵A 、B 、C 、D 都在直线y =x +1上∴|AB |=|x B -x A |=2=(x B -x A )·2,|CD |=2(x D -x C ) ∴||AB |-|CD ||=2|x B -x A +x D -x C |=2|(x B +x C )-(x A +x D )| 又∵x A =-m ,x D =m ,∴x A +x D =0 ∴||AB |-|CD ||=|x B +x C |·2=|mm 212--|·2=m m222 (2≤m ≤5)故f (m )=mm222,m ∈[2,5]. (2)由f (m )=mm222,可知f (m )=m1222-又2-21≤2-m1≤2-51∴f (m )∈[324,9210]故f (m )的最大值为324,此时m =2;f (m )的最小值为9210,此时m =5.[例3]舰A 在舰B 的正东6千米处,舰C 在舰B 的北偏西30°且与B 相距4千米,它们准备捕海洋动物,某时刻A 发现动物信号,4秒后B 、C 同时发现这种信号,A 发射麻醉炮弹.设舰与动物均为静止的,动物信号的传播速度为1千米/秒,炮弹的速度是3320g 千米/秒,其中g 为重力加速度,若不计空气阻力与舰高,问舰A 发射炮弹的方位角和仰角应是多少?命题意图:考查圆锥曲线在实际问题中的应用,及将实际问题转化成数学问题的能力,属★★★★★级题目.知识依托:线段垂直平分线的性质,双曲线的定义,两点间的距离公式,斜抛运动的曲线方程.错解分析:答好本题,除要准确地把握好点P 的位置(既在线段BC 的垂直平分线上,又在以A 、B 为焦点的抛物线上),还应对方位角的概念掌握清楚.技巧与方法:通过建立恰当的直角坐标系,将实际问题转化成解析几何问题来求解.对空间物体的定位,一般可利用声音传播的时间差来建立方程.解:取AB 所在直线为x 轴,以AB 的中点为原点,建立如图所示的直角坐标系.由题意可知,A 、B 、C 舰的坐标为(3,0)、(-3,0)、(-5,23).由于B 、C 同时发现动物信号,记动物所在位置为P ,则|PB |=|PC |.于是P 在线段BC 的中垂线上,易求得其方程为3x -3y +73=0.又由A 、B 两舰发现动物信号的时间差为4秒,知|PB |-|P A |=4,故知P 在双曲线5422y x -=1的右支上. 直线与双曲线的交点为(8,53),此即为动物P 的位置,利用两点间距离公式,可得|P A |=10.据已知两点的斜率公式,得k P A =3,所以直线P A 的倾斜角为60°,于是舰A 发射炮弹的方位角应是北偏东30°.设发射炮弹的仰角是θ,初速度v 0=3320g ,则θθcos 10sin 200⋅=⋅v g v ,∴sin2θ=23102=v g ,∴仰角θ=30°. ●锦囊妙计解决圆锥曲线综合题,关键是熟练掌握每一种圆锥曲线的定义、标准方程、图形与几何性质,注意挖掘知识的内在联系及其规律,通过对知识的重新组合,以达到巩固知识、提高能力的目的.(1)对于求曲线方程中参数的取值范围问题,需构造参数满足的不等式,通过求不等式(组)求得参数的取值范围;或建立关于参数的目标函数,转化为函数的值域.(2)对于圆锥曲线的最值问题,解法常有两种:当题目的条件和结论能明显体现几何特征及意义,可考虑利用数形结合法解;当题目的条件和结论能体现一种明确的函数关系,则可先建立目标函数,再求这个函数的最值.●歼灭难点训练 一、选择题1.(★★★★)已知A 、B 、C 三点在曲线y =x 上,其横坐标依次为1,m ,4(1<m <4),当△ABC 的面积最大时,m 等于( )A.3B.49 C.25 D.23 2.(★★★★★)设u ,v ∈R ,且|u |≤2,v >0,则(u -v )2+(vu 922--)2的最小值为( ) A.4B.2C.8D.22二、填空题3.(★★★★★)A 是椭圆长轴的一个端点,O 是椭圆的中心,若椭圆上存在一点P ,使 ∠OP A =2π,则椭圆离心率的范围是_________. 4.(★★★★)一辆卡车高3米,宽1.6米,欲通过抛物线形隧道,拱口宽恰好是抛物线的通径长,若拱口宽为a 米,则能使卡车通过的a 的最小整数值是_________.5.(★★★★★)已知抛物线y =x 2-1上一定点B (-1,0)和两个动点P 、Q ,当P 在抛物线上运动时,BP ⊥PQ ,则Q 点的横坐标的取值范围是_________.三、解答题6.(★★★★★)已知直线y =kx -1与双曲线x 2-y 2=1的左支交于A 、B 两点,若另一条直线l 经过点P (-2,0)及线段AB 的中点Q ,求直线l 在y 轴上的截距b 的取值范围.7.(★★★★★)已知抛物线C :y 2=4x .(1)若椭圆左焦点及相应的准线与抛物线C 的焦点F 及准线l 分别重合,试求椭圆短轴端点B 与焦点F 连线中点P 的轨迹方程;(2)若M (m ,0)是x 轴上的一定点,Q 是(1)所求轨迹上任一点,试问|MQ |有无最小值?若有,求出其值;若没有,说明理由.8.(★★★★★)如图,为半圆,AB 为半圆直径,O 为半圆圆心,且OD ⊥AB ,Q 为线段OD 的中点,已知|AB |=4,曲线C 过Q 点,动点P 在曲线C 上运动且保持|P A |+|PB |的值不变.(1)建立适当的平面直角坐标系,求曲线C 的方程;(2)过D 点的直线l 与曲线C 相交于不同的两点M 、N ,且M 在D 、N 之间,设DNDM=λ,求λ的取值范围.[学法指导]怎样学好圆锥曲线圆锥曲线将几何与代数进行了完美结合.借助纯代数的解决手段研究曲线的概念和性质及直线与圆锥曲线的位置关系,从数学家笛卡尔开创了坐标系那天就已经开始.高考中它依然是重点,主客观题必不可少,易、中、难题皆有.为此需要我们做到: 1.重点掌握椭圆、双曲线、抛物线的定义和性质.这些都是圆锥曲线的基石,高考中的题目都涉及到这些内容.2.重视求曲线的方程或曲线的轨迹,此处作为高考解答题的命题对象难度较大.所以要掌握住一般方法:定义法、直接法、待定系数法、相关点法、参数法等.3.加强直线与圆锥曲线的位置关系问题的复习.此处一直为高考的热点.这类问题常涉及到圆锥曲线的性质和直线的基本知识点、线段的中点、弦长、垂直问题,因此分析问题时利用数形结合思想和设而不求法与弦长公式及韦达定理联系去解决.这样加强了对数学各种能力的考查.4.重视对数学思想、方法进行归纳提炼,达到优化解题思维、简化解题过程. (1)方程思想解析几何的题目大部分都以方程形式给定直线和圆锥曲线,因此把直线与圆锥曲线相交的弦长问题利用韦达定理进行整体处理,就简化解题运算量.(2)用好函数思想方法对于圆锥曲线上的一些动点,在变化过程中会引入一些相互联系、相互制约的量,从而使一些线的长度及a ,b ,c ,e 之间构成函数关系,函数思想在处理这类问题时就很有效.(3)掌握坐标法坐标法是解决有关圆锥曲线问题的基本方法.近几年都考查了坐标法,因此要加强坐标法的训练.参考答案难点磁场解:由方程组⎪⎩⎪⎨⎧=+=+112222b y ax y x 消去y ,整理得(a 2+b 2)x 2-2a 2x +a 2(1-b 2)=0①则椭圆与直线l 在第一象限内有两个不同的交点的充要条件是方程①在区间(0,1)内有两相异实根,令f (x )=(a 2+b 2)x 2-2a 2x +a 2(1-b 2),则有⎪⎪⎩⎪⎪⎨⎧>><<<<>+⇒⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧>><+<>-+-=>-=>-+-=∆010101 0100)1()1(0)1()0(0)1)((442222222222222222b a a b b a b a b a a b a a b f b a f b b a a a 同时满足上述四个条件的点P (a ,b )的存在区域为下图所示的阴影部分:歼灭难点训练一、1.解析:由题意知A (1,1),B (m ,m ),C (4,2). 直线AC 所在方程为x -3y +2=0, 点B 到该直线的距离为d =10|23|+-m m .|41)23(|21|23|2110|23|1021||212--=+-=+-⨯⨯=⋅=∆m m m m m d AB S ABC ∵m ∈(1,4),∴当23=m 时,S △ABC 有最大值,此时m =49.答案:B2.解析:考虑式子的几何意义,转化为求圆x 2+y 2=2上的点与双曲线xy =9上的点的距离的最小值.答案:C二、3.解析:设椭圆方程为2222b y a x +=1(a >b >0),以OA 为直径的圆:x 2-ax +y 2=0,两式联立消y 得222ab a -x 2-ax +b 2=0.即e 2x 2-ax +b 2=0,该方程有一解x 2,一解为a ,由韦达定理x 2=2e a -a ,0<x 2<a ,即0<2ea-a <a 22⇒<e <1. 答案:22<e <1 4.解析:由题意可设抛物线方程为x 2=-ay ,当x =2a 时,y =-4a ;当x =0.8时,y =-a64.0.由题意知a a 64.04-≥3,即a 2-12a -2.56≥0.解得a 的最小整数为13. 答案:135.解析:设P (t ,t 2-1),Q (s ,s 2-1)∵BP ⊥PQ ,∴ts t s t t ----⋅+-)1()1(11222=-1, 即t 2+(s -1)t -s +1=0∵t ∈R ,∴必须有Δ=(s -1)2+4(s -1)≥0.即s 2+2s -3≥0, 解得s ≤-3或s ≥1.答案:(-∞,-3]∪[1,+∞) 三、6.解:设A (x 1,y 1),B (x 2,y 2).由⎩⎨⎧=--=1122y x kx y ,得(1-k 2)x 2+2kx -2=0, 又∵直线AB 与双曲线左支交于A 、B 两点,故有⎪⎪⎪⎩⎪⎪⎪⎨⎧>--=<--=+>-+=∆≠-0120120)1(8)2(01221221222k x x k k x x k k k解得-2<k <-1.222),22,1(22)1,2(,222,0).2(221221211120111,12),,(22222200200221000-<+>--∈-+∴--∈-+==+-+=∴-+=+--=+--=-=+-=+=b b k k k k k b x x k k y l k k k k k x y l k kx y k k x x x y x Q 或即又则令的方程为的斜率为则设7.解:由抛物线y 2=4x ,得焦点F (1,0),准线l :x =-1.(1)设P (x ,y ),则B (2x -1,2y ),椭圆中心O ′,则|FO ′|∶|BF |=e ,又设点B 到l 的距离为d ,则|BF |∶d =e ,∴|FO ′|∶|BF |=|BF |∶d ,即(2x -2)2+(2y )2=2x (2x -2),化简得P 点轨迹方程为y 2=x -1(x >1).(2)设Q (x ,y ),则|MQ |=22)(y m x +-)1(45)]21([1)(22>-+---+-=x m m x x m x(ⅰ)当m -21≤1,即m ≤23时,函数t =[x -(m -21)2]+m -45在(1,+∞)上递增,故t 无最小值,亦即|MQ |无最小值.(ⅱ)当m -21>1,即m >23时,函数t =[x 2-(m -21)2]+m -45在x =m -21处有最小值m-45,∴|MQ |min =45-m .8.解:(1)以AB 、OD 所在直线分别为x 轴、y 轴,O 为原点,建立平面直角坐标系, ∵|P A |+|PB |=|QA |+|QB |=2521222=+>|AB |=4. ∴曲线C 为以原点为中心,A 、B 为焦点的椭圆.设其长半轴为a ,短半轴为b ,半焦距为c ,则2a =25,∴a =5,c =2,b =1.∴曲线C 的方程为52x +y 2=1.(2)设直线l 的方程为y =kx +2, 代入52x +y 2=1,得(1+5k 2)x 2+20kx +15=0.Δ=(20k )2-4×15(1+5k 2)>0,得k 2>53.由图可知21x x DN DM ==λ由韦达定理得⎪⎪⎩⎪⎪⎨⎧+=⋅+-=+22122151155120k x x k k x x将x 1=λx 2代入得 ⎪⎪⎩⎪⎪⎨⎧+=λ+=λ+2222222225115)51(400)1(k x k k x 两式相除得)15(380)51(15400)1(2222k k k +=+=λλ+ 316)51(3804,320515,3510,532222<+<<+<∴<<∴>kk k k 即 331,0,316)1(42<λ<∴>=λ<λλ+<∴解得DN DM① ,21DNDM x x ==λ M 在D 、N 中间,∴λ<1②又∵当k 不存在时,显然λ=31DN DM (此时直线l 与y 轴重合).Von Neumann说过:In mathematics you don't understand things .You just get used to them.掌握了课本,一般的数学题就都可以做了。
高中数学圆锥曲线难点题解思路归纳总结
高中数学圆锥曲线难点题解思路归纳总结圆锥曲线是解析几何的重要组成部分,也是高考数学的重要考点之一。
在历年的高考数学中,圆锥曲线的题目类型多种多样,解题的思路难度基本排在高考解答题的第二位,又兼具对考生的计算能力的考察,到时大多数高中同学对其相当的头痛。
学好圆锥曲线必须从其底层逻辑出发、究其本质,才能在高考时得心应手。
我们来看一下近几年高考考察圆锥曲线部分都有哪些专类题型,并从中总结出解题的思路与步骤,以便大家从更高的维度上去学习圆锥曲线。
第一类考察曲线的位置关系一般是选、填题。
较为简单,相信大多数同学都会,但要特别注意,直线斜率不存在的情况。
第二类曲线与矢量结合问题可以出现在选、填题,也可以是解答题的第一问。
主要利用向量的相等、平行、垂直来求坐标之间的数量关系,通常要转化成根和系数之间的关系。
借助数形结合,可以直观上进行简化。
难度也不是很大。
第三类曲线与弦问题①涉及弦长问题,常用“根与系数的关系”设而不求计算弦长(即应用弦长公式),对于弦长问题一定要牢记弦长公式,但不要死记硬背。
思考一下:弦长公式适用于那些曲线,每种曲线都亲自推导一下,加深记忆。
实际上这也是个二级结论。
②涉及弦的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化第四类定点和定值问题圆锥曲线的定点、定值问题会涉及到曲线上的动点、动直线,是一个难点问题。
有两种思路:①先利用特殊值或对称性探索定点,后证明结论。
②计算消除变量,得到定值。
该专类题型一般需要引入参数。
引参求定值:利用题设写出已知点的坐标(或直线的方程),设出动点的坐标(或直线的方程),引入参数,结合已知条件将目标式用参变量表示,再根据点在某曲线上代入消参求得定值,或经过整理化简后恒为定值.应注意到繁难的代数运算是此类问题的特点,设而不求法、整体思想和消元的思想的运用可有效地简化运算.引参求定点:①引进的参数一般为点的坐标、直线的斜率、直线的夹角等②根据题设条件,表示出对应的动态直线或曲线方程③探求直线过定点若是动态的直线方程,将动态的直线方程转化为:若是直线y-y0=k(x-x0)的形式,则K∈R时直线恒过定点(x0,y0);若是动态的曲线方程,将动态的曲线方程转化成f(x,y)+γg(x,y)=0的形式,则γє R时曲线恒过的定点即是f(x,y)=0与g(x,y)=0的交点。
高考数学140分难点突破训练—圆锥曲线(精选各地调研题)
2009届高考数学140分难点突破训练——圆锥曲线1. 已知椭圆C 的焦点在x 轴上,它的一个顶点恰好是抛物线214y x =的焦点,离心率为(1)求椭圆C 的方程;(2)设A 、B 为椭圆上的两个动点,0OA OB =,过原点O 作直线AB 的垂线OD ,垂足为D ,求点D 的轨迹方程.2. 设直线:1l y ax =+与双曲线22:31C x y -=相交于A,B 两点,O 为坐标原点. (I )a 为何值时,以AB 为直径的圆过原点.(II )是否存在实数a ,使OA OB =且(2,1)OA OB λ+=,若存在,求a 的值,若不存在,说明理由.3. (理)设双曲线C :12222=-by a x (a >0,b >0)的离心率为e ,若准线l 与两条渐近线相交于P 、Q 两点,F 为右焦点,△FPQ 为等边三角形.(1)求双曲线C 的离心率e 的值;(2)若双曲线C 被直线y =ax +b 截得的弦长为ae b 22求双曲线c 的方程.(文)在△ABC 中,A 点的坐标为(3,0),BC 边长为2,且BC 在y 轴上的区间[-3,3]上滑动.(1)求△ABC 外心的轨迹方程;(2)设直线l ∶y =3x +b 与(1)的轨迹交于E ,F 两点,原点到直线l 的距离为d ,求dEF ||的最大值.并求出此时b 的值.4. 已知点N (1,2),过点N 的直线交双曲线1222=-y x 于A 、B 两点,且)(21OB OA ON +=(1)求直线AB 的方程;(2)若过N 的直线l 交双曲线于C 、D 两点,且0=⋅,那么A 、B 、C 、D 四点是否共圆?为什么?5. 设c bx x x f +=)((c b ,为常数),若21)2(=f ,且02)(=-xx f 只有唯一实数根 (1)求)(x f 的解析式(2)令)(,111-==n n a f a a 求数列{}n a 的通项公式。
高考数学140分难点突破训练(圆锥曲线2答案)
答案:1. (1)设椭圆C 的方程为()222210x y a b a b+=>>.由题意可得:1,c b a ==a ∴=2215x y ∴+= (2)(1)当直线AB 的斜率k 存在时,设直线AB 的方程为()()122,,,,y kx m x y B x y =+1设A2215x y y kx m ⎧+=⎪⎨⎪=+⎩,()2225110550k x kmx m ∴+++-= 1221051kmx x k ∴+=-+()()()2212121212y y kx m kx m k x x km x x m ∴=++=+++ 0OA OB =,12120x x y y ∴+=即()()22121210k x x km x x m ++++=,()()22222221551005151k m k m m k k +--+=++ 226550m k ∴--= ①又(),,OD AB D x y ⊥设,xk y∴=-② 又点(),D x y 在直线AB 上,y kx m ∴=+2x m y kx y y∴=-=+ ③把②③代入①得22226550x x y y y ⎛⎫+--= ⎪⎝⎭,()22222650x y x y y +⎡⎤∴+-=⎣⎦ ∴点D 的轨迹方程为()22506x y y +=≠ (2)当直线AB的斜率不存在时,,06D ⎛⎫± ⎪ ⎪⎝⎭,满足2256x y += ∴点D 的轨迹方程为2256x y +=2. 解(I )设1122(,),(,)A x y B x y由22221(3)22031y ax a x ax x y =+⎧⇒---=⎨-=⎩22212212248(3)0302323a a a a x x a x x a ⎧∆=+->⎪-≠⎪⎪∴⎨+=-⎪⎪⋅=⎪-⎩26a <且23a ≠,又以AB 为直径的圆过原点.既2121212120(1)()10x x y y a x x a x x ⋅+⋅=⇒+⋅+++=1a ∴=± (II )1212y y a x x -=- 121212121(2,1)(,)(2,1)2y y OA OB x x y y x x λλ++=⇒++=⇒=+2222112212121212()()()()0OA OB x y x y x x x x y y y y =⇒+=+⇒+⋅-++⋅-=111022a a ∴+⋅=⇒=- 右准线l 的方程为:x =c a 2,两条渐近线方程为:x aby ±=.∴ 两交点坐标为 c a P 2(,)c ab 、c a Q 2(,)cab-.∵ △PFQ 为等边三角形,则有||23||PQ MF =(如图). ∴ )(232c ab c ab c a c +=-⋅,即cab c a c 322=-. 解得 a b 3=,c =2a .∴ 2==ace . (2)由(1)得双曲线C 的方程为把132222=-ay a x .把a ax y 3+=代入得0632)3(2222=++-a x a x a .依题意 ⎪⎩⎪⎨⎧>--=∆≠-0)3(2412032242,a a a a ∴ 62<a ,且32≠a .∴ 双曲线C 被直线y =ax +b 截得的弦长为 ]4))[(1())(1()()(2122122212221221x x x x a x x a y y x x l -++=-+=-+-=222242)3()1(2412)1(---+=a a a a a ∵ a ac b l 1222==. ∴ 224222)3(1272)1(144--+=⋅a a a a a .整理得 010*******=+-a a . ∴ 22=a 或13512=a . ∴ 双曲线C 的方程为:16222=-y x 或115313511322=-y x . (文)(1)设B 点的坐标为(0,0y ),则C 点坐标为(0,0y +2)(-3≤0y ≤1), 则BC 边的垂直平分线为y =0y +1 ① )23(3200-=+x y y y ② 由①②消去0y ,得862-=x y .∵ 130≤≤-y ,∴ 2120≤+=≤-y y .故所求的△ABC 外心的轨迹方程为:)22(862≤≤--=y x y . (2)将b x y +=3代入862-=x y 得08)1(6922=++-+b x b x . 由862-=x y 及22≤≤-y ,得234≤≤x . 所以方程①在区间34[,2]有两个实根.设8)1(69)(22++-+=b x b x x f ,则方程③在34[,2]上有两个不等实根的充要条件是:⎪⎪⎪⎩⎪⎪⎪⎨⎧≤--≤≥++-+=≥++-+=>+--=∆⋅⋅⋅⋅⋅⋅.,,,292)1(634082)1(629)2(0834)1(6)34(9)34(0)8(94)]1(6[222222b b b f b b f b b 之得34-≤≤-b .∵ 7232984)]1(32[4)(||222122121--=+--=-+=-⋅b b b x x x x x x∴ 由弦长公式,得721032||1||212--=-+=⋅b x x k EF 又原点到直线l 的距离为10||b d =, ∴71)711(73202732072320||222++-=--=--=b b b b b d EF ∵ 34-≤≤-b ,∴ 41131-≤≤-b . ∴ 当411-=b ,即4-=b 时,35||max =d EF .4. (1)设直线AB :2)1(+-=x k y 代入1222=-y x 得02)2()2(2)2(222=------k x k k x k (*) 令A (x 1,y 1),B (x 2,y 2),则x 1、x 2是方程的两根∴ 022≠-k 且 2212)2(2kk k x x --=+ ∵ )(21+= ∴ N 是AB 的中点 ∴1221=+xx∴ 2)2(2+-=-k k k k = 1 ∴AB 方程为:y = x + 1 (2)将k = 1代入方程(*)得0322=--x x 1-=x 或3=x由1+=x y 得01=y ,42=y ∴ )0,1(-A ,)4,3(B∵ 0=⋅AB CD ∴ CD 垂直平分AB ∴ CD 所在直线方程为 2)1(+--=x y 即x y -=3代入双曲线方程整理得01162=-+x x 令),(33y x C ,),(44y x D 及CD 中点),(00y x M则643-=+x x ,1143-=⋅x x , ∴32430-=+=x x x , 60=y|CD | =104,102||21||||===CD MD MC102||||==MB MA ,即A 、B 、C 、D 到M 距离相等 ∴ A 、B 、C 、D 四点共圆 12分5. (1)直线l 方程为c x y -=代入)0(12222>>=+b a b y a x 得02)(22222222=-+-+b a c a cx a x b a ,设),(),,(2211y x B y x A 则22221222212,2b a cb y y b ac a x x +-=++=+ += C ∴点的坐标为)2,2(222222b a cb b ac a +-+ C 在椭圆上1)(4)(42222422224=+++∴b a c b b a c a 即222222414b a c b a c +=∴=+2225a c =∴510=∴e (2)ab a ac a b a ca a c a x x e a ex a ex a BF AF AB 232222)(2)()(2222222121=+-=+⋅-=+-=-+-=+=已知60,102,510,1015232=∴===∴=b a e a a∴椭圆方程为16010022=+y x 22.(1)b c c b f 242122)2(-=∴=+= ,又cbx bx c x x x f 22)2(2)(+--=-令02)(=-xx f 得0)2(=--bx c x 当0≠b 时得方程的实数根0=x 和bcx -=2 于是1,2==b c 当0=b 时4=c 方程有唯一实数根0=xx x x f +=∴2)(或4)(x x f = (2)当xxx f +=2)(时,211+=--n n n a a a ,令,1n n a b =则121+=-n n b b , )1(211+=+∴-n n b b12112-=∴-=∴nn n n a b当4)(x x f =时,141-=n n a a {}n a ∴为等比数列,1)41(-=n n a 121-=∴nn a 或nn a -=146. (1)设M(x,y), P(0, t), Q(s, 0) 则),(),,3(t s PQ t CP -==由0=⋅PQ CP 得3s —t 2=0……………………………………………………①又由MQ PM 21=得),(21),(y x s t y x --=- ⎪⎪⎩⎪⎪⎨⎧-=--=∴)(21)(21y t y x s x , ⎪⎩⎪⎨⎧==∴y t x s 233……………………………………②把②代入①得2)23(9y x -=0,即y 2=4x ,又x ≠0 ∴点M 的轨迹方程为:y 2=4x (x ≠0)(2)如图示,假设存在点H ,满足题意,则0=⋅⊥OB OA OB OA 即设),4(),,4(222121y yB y y A ,则由0=⋅OB OA 可得016212221=+y y y y 解得1621-=y y 又21212212444y y y y y y k AB +=--=则直线AB 的方程为:)4(421211yx y y y y -+=-即212121214)(y x y y y y y y -=--+把1621-=y y 代入,化简得0)()164(1=+--y y y x令y=0代入得x=4,∴动直线AB 过定点(4,0)答,存在点H (4,0),满足题意。
高考数学压轴题突破训练——圆锥曲线(含详解)
(Ⅰ)若当点P的坐标为 时, ,求双曲线的方程;
(Ⅱ)若 ,求双曲线离心率 的最值,并写出此时双曲线的渐进线方程.
15. 若F 、F 为双曲线 的左右焦点,O为坐标原点,P在双曲线的左支上,点M在右准线上,且满足; .
(1)求该双曲线的离心率;
(Ⅱ)若直线 与(Ⅰ)中所求点Q
的轨迹交于不同两点F,H,O是坐标原点,
且 ,求△FOH的面积的取值范围。
18. 如图所示,O是线段AB的中点,|AB|=2c,以点A为圆心,2a为半径作一圆,其中 。
(1)若圆A外的动点P到B的距离等于它到圆周的最短距离,建立适当坐标系,求动点P的轨迹方程,并说明轨迹是何种曲线;
(2)D分有向线段 的比为 ,A、D同在以B、C为焦点的椭圆上,
当 ―5≤ ≤ 时,求椭圆的离心率e的取值范围.
29.在直角坐标平面中, 的两个顶点 的坐标分别为 , ,平面内两点 同时满足下列条件:
① ;② ;③ ∥
(1)求 的顶点 的轨迹方程;
(2)过点 的直线 与(1)中轨迹交于 两点,求 的取值范围
由 消去 得: ①
,
而
由方程①知 > <
, < < , .
7.解:解:令
则 即
即
又∵ ∴
所求轨迹方程为
(Ⅱ)解:由条件(2)可知OAB不共线,故直线AB的斜率存在
设AB方程为
则
∵OAPB为矩形,∴OA⊥OB
∴ 得
所求直线方程为 …
8.解:(I)由题意,抛物线顶点为(-n,0),又∵焦点为原点∴m>0
高考数学压轴题突破训练:圆锥曲线
1. 如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A,点B、D在直线l1上(B、D 位于点A右侧),且|AB|=4,|AD|=1,M是该平面上的一个动点,M在l1上的射影点是N,且|BN|=2|DM|.
高中数学圆锥曲线问题常用方法经典例题(含问题详解)
专题:解圆锥曲线问题常用方法(一)【学习要点】解圆锥曲线问题常用以下方法: 1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。
(2))0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k by a x(3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.【典型例题】例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________(2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 标为 。
高中数学圆锥曲线解题技巧方法总结及高考试题和答案
高中数学圆锥曲线解题技巧方法总结及高考试题和答案1 / 7圆锥曲线1. 圆锥曲线的两定义 :第必定义 中要 重视“括号” 内的限制条件 :椭圆中 ,与两个定点 F 1 , F 2 的距离的和等于常数 2a ,且此 常数 2a 必定要大于 F 1 F 2 ,当常数等于 F 1 F 2 时,轨迹是线段 F 1 F 2 ,当常数小于 F 1 F 2 时,无轨迹; 双曲线中,与两定点 F 1 ,F 2 的距离的差的绝对值等于常数2a ,且此常数 2a 必定要小于 |F 1 F 2 | ,定义中的 “绝对值”与 2a < |F 1 F 2 | 不行忽略 。
若 2a = |F 1 F 2 | ,则轨迹是以 F 1 , F 2 为端点的两条射线,若 2a ﹥|F 1 F 2 | ,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
如 方 程 ( x 6)2y 2( x 6)2 y 28 表 示 的曲线是 _____(答:双曲线的左支)2. 圆锥曲线的标准方程 (标准方程是指中心 (极点) 在原点,坐标轴为对称轴时的标准地点的方程) :( 1 ) 椭 圆 : 焦 点 在 x 轴 上 时 x2y 2 1a 2b 2 (a b0),焦点在y 轴 上 时y 2 x 2= 1a2b 2( ab0 )。
方程 Ax 2By 2C 表示椭圆的充要条件是什么( ABC ≠ 0,且 A , B , C 同号, A ≠ B )。
若 x, y R ,且 3x22 y26 ,则 x y 的最大值是 ____, 22 ___5,2xy 的最小值是 (答: )22( 2)双曲线 :焦点在 x 轴上: x2y 2 =1 ,焦ab点 在 y 轴 上 :y2 22x2 = 1 ( a0, b 0 )。
方 程a bAx 2 By 2C 表示双曲线的充要条件是什么(ABC ≠0,且 A , B 异号)。
如 设中心在座标原点O,焦点 F 1 、 F 2 在座标轴上,离心率 e 2 的双曲线 C 过点 P(4, 10) ,则 C的方程为 _______(答: x 2 y 26 )( 3)抛物线 :张口向右时y22 px( p 0) ,开口 向 左 时 y22 px( p 0) ,张口向上时x22 py( p 0) ,张口向下时 x22 py( p 0) 。
(高考数学)2020届高三数学备考冲刺140分问题37圆锥曲线中的存在探索问题 附答案解析
问题37圆锥曲线中的存在、探索问题一、考情分析圆锥曲线中的存在性问题、探索问题是高考常考题型之一 ,它是在题设条件下探索某个数学对象 (点、线、数等 )是否存在或某个结论是否成立.由于题目多变,解法不一,我们在平时的教学中对这类题目训练较少,因而学生遇到这类题目时,往往感到无从下手,本文针对圆锥曲线中这类问题进行了探讨.二、经验分享解决探索性问题的注意事项探索性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时要分类讨论;(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件;(3)当条件和结论都不知,按常规方法解题很难时,要开放思维,采取另外合适的方法.三、知识拓展探索性问题是一种具有开放性和发散性的问题,此类题目的条件或结论不完备。
要求解答者自己去探索,结合已有条件,进行观察、分析、比较和概括。
它对学生的数学思想、数学意识及综合运用数学方法的能力提出了较高的要求。
它有利于培养学生探索、分析、归纳、判断、讨论与证明等方面的能力,使学生经历一个发现问题、研究问题、解决问题的全过程。
探索性问题一般可分为:条件追溯型,结论探索型、条件重组型,存在判断型,规律探究型,实验操作型。
每一种类型其求解策略又有所不同。
因此,我们在求解时就必须首先要明辨它是哪一种类型的探索问题,然后再根据所属类型制定解题策略。
下面分别加以说明:1、条件追溯型这类问题的基本特征是:针对一个结论,条件未知需探索,或条件增删需确定,或条件正误需判断。
解决这类问题的基本策略是:执果索因,先寻找结论成立的必要条件,再通过检验或认证找到结论成立的充分条件。
在“执果索因”的过程中,常常会犯的一个错误是不考虑推理过程的可逆与否,误将必要条件当作充分条件,应引起注意。
2、结论探索型这类问题的基本特征是:有条件而无结论或结论的正确与否需要确定。
解决这类问题的策略是:先探索结论而后去论证结论。
高考数学复习短时间速成秘籍(基础薄弱,特长生,艺术生)--圆锥曲线大题(详解答案)
高考数学复习(特长生,艺术生)短时间速成秘籍-------圆锥曲线大题(详解答案)一、解答题1.已知抛物线22(0)y px p =>的准线方程为1x =-. (Ⅰ)求p 的值;(Ⅱ)直线:1l y x =-交抛物线于A 、B 两点,求弦长AB .2.设点 是椭圆上一动点,椭圆的长轴长为 ,离心率为.(1)求椭圆 的方程;(2)求点 到直线 距离的最大值.3.已知:双曲线:C 221169x y -=.(1)求双曲线C 的焦点坐标、顶点坐标、离心率;(2)若一条双曲线与已知双曲线C 有相同的渐近线,且经过点3)A -,求该双曲线的方程.4.已知椭圆C: 22221(0)x y a b a b+=>>,离心率为2,左准线方程是2x =-,设O 为原点,点A 在椭圆C 上,点B 在直线y =2上,且OA ⊥OB .(1)求椭圆C 的方程;(2)求ΔAOB 面积取得最小值时,线段AB 的长度; 5.已知直线l 经过抛物线24y x =的焦点F ,且与抛物线相交于A 、B 两点. (1)若4AF =,求点A 的坐标;(2)若直线l 的倾斜角为45︒,求线段AB 的长.6.已知点(2,1)P -在椭圆()222:102x yC a a +=>上,动点,A B 都在椭圆上,且直线AB 不经过原点O ,直线OP 经过弦AB 的中点. (1)求椭圆C 的方程; (2)求直线AB 的斜率.7.已知圆(22116O x y ++=:,A 为圆O 1上任意一点,点D 在线段1O A 上.)B ,已知BC CA =,0DC AB ⋅=. (1)求点D 的轨迹方程H ;(2)若直线y kx m =+与方程H 所表示的图像交于E ,F 两点,()00,G x y 是椭圆22182x y+=上任意一点.若OG 平分弦EF ,且01my >-,1GEF S ∆=,试判断四边形OEGF 形状并证明.8.已知点F 是椭圆C :22221(0)x y a b a b +=>>的右焦点,且其短轴长2,0a A c ⎛⎫⎪⎝⎭点满足20FO FA +=(其中点O 为坐标原点). (1)求椭圆的方程;(2)若斜率为1的直线与椭圆C 交于P ,Q 两点,与y 轴交于点B ,若点P 是线段BQ 的中点,求该直线方程;若12//l l ,求实数a 的值;9.已知双曲线C :22221(0,0)x y a b a b -=>>与双曲线221164x y -=有相同的渐近线,且双曲线C 过点(.(1)若双曲线C 的左、右焦点分别为1F ,2F ,双曲线C 上有一点P ,使得1260F PF ∠=︒,求△12F PF 的面积;(2)过双曲线C 的右焦点2F 作直线l 与双曲线右支交于A ,B 两点,若△1F AB 的周长是403,求直线l 的方程.10.已知抛物线()220y px p =>上横坐标为4的点A 到焦点F 的距离为92,直线()1y k x =+与抛物线有两个不同交点.(Ⅰ)求抛物线的方程; (Ⅱ)求k 的取值范围.11.设椭圆2222:1x y C a b +=(0)a b >>的左、右焦点分别为12F F 、,过2F 的直线交椭圆于A B ,两点,若椭圆C 的离心率为12,1ABF 的周长为8.(Ⅰ)求椭圆C 的方程;(Ⅱ)已知直线:2l y kx =+与椭圆C 交于M N 、两点,是否存在实数k 使得以MN 为直径的圆恰好经过坐标原点?若存在,求出k 的值;若不存在,请说明理由.12.已知点()1,e ,e ⎛ ⎝⎭在椭圆C :()222210x y a b a b +=>>上,其中e 为椭圆的离心率,椭圆的右顶点为D . (Ⅰ)求椭圆C 的方程;(Ⅱ)直线l 过椭圆C 的左焦点F 交椭圆C 于A ,B 两点,直线DA ,DB 分别与直线ax e=-交于N ,M 两点,求证:0NF MF ⋅=.13.已知椭圆2222:1(0)x y C a b a b +=>>过点()2,1P ,且离心率2e =.(1)求椭圆C 的方程; (2)直线l :12y x m =+,直线l 与椭圆C 交于A B ,两点,求PAB △面积的最大值. 14.已知椭圆22221(0)x y a b a b +=>>的离心率为2,若椭圆上的点与两个焦点构成的三角形中,面积最大为1. (1)求椭圆的标准方程;(2)设直线l 与椭圆的交于,A B 两点,O 为坐标原点,且OA OB ⊥,证明:直线l 与圆2223x y +=相切. 15.已知椭圆方程为22163x y +=.(1)设椭圆的左右焦点分别为1F 、2F ,点P 在椭圆上运动,求1122PF PF PF PF +⋅的值;(2)设直线l 和圆222x y +=相切,和椭圆交于A 、B 两点,O 为原点,线段OA 、OB分别和圆222x y +=交于C 、D 两点,设AOB ∆、COD ∆的面积分别为1S 、2S ,求12S S 的取值范围.16.已知椭圆C :22221(0)x y a b a b+=>>过点(2,左焦点(2,0)F -(1)求椭圆C 的标准方程;(2)过点F 作于x 轴不重合的直线l ,l 与椭圆交于A ,B 两点,点A 在直线4x =-上的投影N 与点B 的连线交x 轴于D 点,D 点的横坐标0x 是否为定值?若是,请求出定值;若不是,请说明理由17.已知双曲线2222:1(0,0)x y E a b a b-=>>的两条渐近线分别为12:l y x =,22:l y x =-.(1)求双曲线E 的离心率;(2)如图,O 为坐标原点,动直线l 分别交直线1l ,2l 于A ,B 两点(A ,B 分别在第一、四象限),且OAB 的面积恒为8.试探究:是否存在总与直线l 有且只有一个公共点的双曲线E ?若存在,求出双曲线E 的方程;若不存在,说明理由.18.已知双曲线2222y x a b-=1(a >0,b >0)的一条渐近线方程为2x +y =0,且顶点到渐近线的. (1)求此双曲线的方程;(2)设P 为双曲线上一点,A ,B 两点在双曲线的渐近线上,且分别位于第一、二象限,若AP PB =uu u r uu r,求△AOB 的面积.19.已知双曲线的中心在原点,焦点1F ,2F 在坐标轴上,且过点(4,P . (1)求双曲线的方程;(2)若点(3,)M m 在双曲线上,求证:120MF MF =.20.已知抛物线()2:20C y px p =>的焦点F 到准线的距离为2,过点F 作斜率为1的直线l 交抛物线C 于A ,B 两点. (1)求抛物线C 的方程; (2)求OAB ∆面积.21.已知椭圆2222:1(0)x y C a b a b +=>>的短半轴长为1,离心率为2.(1)求椭圆C 的方程;(2)过右焦点F 作直线l 交椭圆C 于A ,B 两点,若1OA OB ⋅=-,求直线l 的方程.22.在平面直角坐标系xOy 中,已知椭圆()2222:10x y C a b a b+=>>过点()2,1P ,且离心率e =(1)求椭圆C 的方程; (2)直线l 的斜率为12,直线l 与椭圆C 交于A 、B 两点,求PAB ∆的面积的最大值. 23.已知斜率为k 的直线l 与椭圆C :22143x y +=交于A ,B 两点,线段AB 的中点为M (1,m )(m >0). (1)证明:k <-12; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:,,FA FP FB 成等差数列,并求该数列的公差.24.已知点M 在椭圆2222:1(0)x y G a b a b +=>>.(1)求椭圆G 的方程;(2)若斜率为1的直线l 与椭圆G 交于A 、B 两点,以AB 为底做等腰三角形,顶点为(3,2)P -,求PAB ∆的面积.25.设椭圆22221x y a b +=(a >b >0)的右顶点为A ,上顶点为B .已知椭圆的离心率为|AB |(1)求椭圆的方程;(2)设直线l :y =kx (k <0)与椭圆交于P ,Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若△BPM 的面积是△BPQ 面积的2倍,求k 的值.26.已知椭圆22221x y a b+= (a >b >0),F 1,F 2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另一点B . (1)若∠F 1AB =90°,求椭圆的离心率; (2)若222AF F B =,132AF AB ⋅=,求椭圆的方程.27.已知A 、B 分别为椭圆()2222:10y x C a b a b+=>>在x 轴正半轴、y 轴正半轴上的顶点,原点O 到直线AB ,且AB =(1)求椭圆C 的离心率;(2)直线:l y kx m =+与圆222x y +=相切,并与椭圆C 交于M 、N 两点,若MN =k 的值.28.椭圆2222:1(0)x y C a b a b +=>>的焦点是1(1,0)F -,2(1,0)F ,且过点(1,2A .(1)求椭圆C 的标准方程;(2)过左焦点1F 的直线l 与椭圆C 相交于B 、D 两点,O 为坐标原点.问椭圆C 上是否存在点P ,使线段BD 和线段OP 相互平分?若存在,求出点P 的坐标,若不存在,说明理由.29.已知椭圆()2222:10x y a b a bΓ+=>>经过点(,Γ的四个顶点围成的四边形的面积为(1)求Γ的方程;(2)过Γ的左焦点F 作直线l 与Γ交于M 、N 两点,线段MN 的中点为C ,直线OC (O 为坐标原点)与直线4x =-相交于点D ,是否存在直线l 使得MDF ∆为等腰直角三角形,若存在,求出l 的方程;若不存在,说明理由.30.已知椭圆E :()222210x y a b a b+=>>的离心率为12,点A ,B 分别为椭圆E 的左、右顶点,点C 在E 上,且ABC 面积的最大值为(1)求椭圆E 的方程;(2)设F 为E 的左焦点,点D 在直线4x =-上,过F 作DF 的垂线交椭圆E 于M ,N 两点.证明:直线OD 平分线段MN .参考答案1.(Ⅰ)2;(Ⅱ)8. 【解析】 【分析】(Ⅰ)依已知得12p =,所以2p =;(Ⅱ)设()11,A x y ,()22,B x y ,由214y x y x=-⎧⎨=⎩消去y ,得2610x x -+=,再利用韦达定理求弦长AB . 【详解】 (Ⅰ)依已知得12p=,所以2p =; (Ⅱ)设()11,A x y ,()22,B x y ,由214y x y x=-⎧⎨=⎩消去y ,得2610x x -+=, 则126x x +=,121x x =, 所以AB ===8==.【点睛】本题主要考查抛物线的简单几何性质和弦长的计算,意在考查学生对这些知识的理解能力掌握水平及其应用能力.2.(1);(2)【解析】 【分析】(Ⅰ)利用椭圆的离心率,长轴长为 ,求出几何量,即可得椭圆的方程;(2) 设点,利用点到直线的距离公式即可求出. 【详解】(1)由已知得,得椭圆 (2)设 ,则当时,.【点睛】本题考查求椭圆的标准方程,利用点到直线的距离公式和三角函数的有界性求的最大值,属于基础题.3.(1)焦点()5,0±,顶点()4,0±,离心率54e =;(2)224194y x -=【解析】 【分析】(1)由双曲线:C 221169x y -=可得:4,3a b ==,从而求得:5c =,问题得解.(2)设所求双曲线的方程为:22169x y -=λ,将()3A -代入即可求得λ,问题得解. 【详解】双曲线:C 221169x y -=,所以4,3a b ==,∴5c =,∴双曲线C 的焦点坐标()5,0-,()5,0,顶点坐标()4,0-,()4,0,离心率54c e a ==. (2)设所求双曲线的方程为:22169x y -=λ,将()3A -代入上式得:(()223169λ--=,解得:14λ=-∴所求双曲线的方程为:224194y x -=.【点睛】(1)主要考查了双曲线的简单几何性质,属于基础题.(2)主要考查了共渐近线的双曲线方程的特征-若双曲线方程为:22221x y a b-=()0,0a b >>则与它共共渐近线的双曲线方程可设为:2222x y a bλ-=,属于基础题.4.(1) 2212x y += (2)【解析】试题分析:(1)求椭圆标准方程,一般方法为待定系数法,即根据条件列两个独立方程222c a a c⎧=⎪⎪⎨⎪=⎪⎩,解方程组得1a c b ⎧=⎪⎨==⎪⎩ (2)三角形面积公式显然选用S ΔOAB =12OA ⋅OB ,因此选用直线斜率表示,由直线OA 与椭圆交点得A 的坐标,由直线OB 与直线y =2交点得B 的坐标,代入得S =令t则1)S t t=+≥,根据最值时k 的值,确定A ,B 坐标,根据两点间距离公式求线段AB 的长度试题解析:(1)设椭圆的半焦距为c,则由题意的22c a a c ⎧=⎪⎪⎨⎪=⎪⎩,解得1a c b ⎧=⎪⎨==⎪⎩ 所以椭圆C 的方程为2212x y +=. (2)由题意,直线OA 的斜率存在,设直线OA 的斜率为k ,若k =0,则A,0)或,0),B (0,2),此时ΔAOB,AB.若k≠0,则直线OA :y =kx 与椭圆2212x y +=联立得: (1+22k )2x =2,可得OA直线OB :y =1k -x 与y =2联立得:B (-2k ,2),则OB =,S ΔOAB =12OA ⋅OBt,则S ΔOAB211)2t t t-=+>所以S ΔOAB ,在k =0时取得,此时AB .(注:若利用S ΔOAB =1)2t t+≥k≠0的条件,求出答案的,本问给2分) 考点:直线与椭圆位置关系 【思路点睛】解析几何最值问题,一般解决方法为设参数,运用推理,将该问题涉及的几何式转化为代数式或三角问题,然后直接推理、计算,并在计算推理的过程中消去变量,得到函数解析式,最后根据函数求最值方法求解.其中直线和圆锥曲线的位置关系,一般转化为直线方程与圆锥曲线方程组成的方程组,利用韦达定理或求根公式进行转化,涉及弦长的问题中,应熟练地利用根与系数关系,设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学140分难点突破训练——圆锥曲线1. 已知椭圆C的焦点在轴上,它的一个顶点恰好是抛物线的焦点,离心率为。
w.w.w.k.s.5.u.c.o.m(1)求椭圆C的方程;(2)设A、B为椭圆上的两个动点,,过原点O作直线AB的垂线OD,垂足为D,求点D的轨迹方程.2. 设直线与双曲线相交于A,B两点,O为坐标原点.(I)为何值时,以AB为直径的圆过原点.(II)是否存在实数,使且,若存在,求的值,若不存在,说明理由.3. (理)设双曲线C:(a>0,b>0)的离心率为e,若准线l与两条渐近线相交于P、Q两点,F为右焦点,△FPQ为等边三角形.(1)求双曲线C的离心率e的值;(2)若双曲线C被直线y=ax+b截得的弦长为求双曲线c的方程.(文)在△ABC中,A点的坐标为(3,0),BC边长为2,且BC在y轴上的区间[-3,3]上滑动.(1)求△ABC外心的轨迹方程;(2)设直线l∶y=3x+b与(1)的轨迹交于E,F两点,原点到直线l的距离为d,求的最大值.并求出此时b的值.4. 已知点N(1,2),过点N的直线交双曲线于A、B两点,且(1)求直线AB的方程;(2)若过N的直线l交双曲线于C、D两点,且,那么A、B、C、D四点是否共圆?为什么?5. 设(为常数),若,且只有唯一实数根(1)求的解析式(2)令求数列的通项公式。
6. 已知点C(-3,0),点P在y轴上,点Q在x轴的正半轴上,点M在直线PQ上,且满足(1)当点P在y轴上运动时,求点M的轨迹C的方程;(2)是否存在一个点H,使得以过H点的动直线L被轨迹C截得的线段AB为直径的圆始终过原点O。
若存在,求出这个点的坐标,若不存在说明理由。
7. 设为直角坐标平面内x,y轴正方向上的单位向量,若向量.(1求点M(x,y)的轨迹C的方程;(2过点(0,3作直线与曲线C 的交于A、B两点,设,是否存在这样的直线,使得四边形OAPB为矩形?若存在,求出直线的方程;若不存在,说明理由.8. 已知倾斜角为的直线过点和点,点在第一象限,。
(1)求点的坐标;(2)若直线与双曲线相交于两点,且线段的中点坐标为,求的值;(3)对于平面上任一点,当点在线段上运动时,称的最小值为与线段的距离。
已知在轴上运动,写出点到线段的距离关于的函数关系式。
9. 如图,已知定点,动点P在y轴上运动,过点P作交x轴于点M,延长MP 到N,使⑴求动点N的轨迹C的方程;⑵设直线与动点N的轨迹C交于A,B两点,若若线段AB的长度满足:,求直线的斜率的取值范围。
10. 在中,点分线段所成的比为,以、所在的直线为渐近线且离心率为的双曲线恰好经过点.⑴求双曲线的标准方程;⑵若直线与双曲线交于不同的两点、,且、两点都在以点为圆心的同一圆上,求实数的取值范围.11. 经过抛物线y的焦点F的直线L与该抛物线交于A,B两点.(1)若线段AB的斜率为k,试求中点M的轨迹方程;(2)若直线的斜率k>2,且点M到直线3 x+4y+m=0的距离为,试确定m的取值范围。
12. 一束光线从点出发,经直线上一点反射后,恰好穿过点.(Ⅰ)求点关于直线的对称点的坐标;(Ⅱ)求以、为焦点且过点的椭圆的方程;(Ⅲ)设直线与椭圆的两条准线分别交于、两点,点为线段上的动点,求点到的距离与到椭圆右准线的距离之比的最小值,并求取得最小值时点的坐标.13. 已知椭圆E:,点P是椭圆上一点。
(1)求的最值。
(2)若四边形ABCD内接于椭圆E,点A的横坐标为5,点C的纵坐标为4,求四边形面积的最大值。
14. 已知椭圆的一个焦点,对应的准线方程为,且离心率满足,,成等比数列.(1求椭圆的方程;(2试问是否存在直线,使与椭圆交于不同的两点、,且线段恰被直线平分?若存在,求出的倾斜角的取值范围;若不存在,请说明理由.15. 已知向量.(Ⅰ)求点的轨迹C的方程;(Ⅱ)设曲线C与直线相交于不同的两点M、N,又点,当时,求实数的取值范围。
16. 设直线与椭圆相交于A、B两个不同的点,与x轴相交于点C,记O为坐标原点.(I)证明:;(II)若的面积取得最大值时的椭圆方程.17. 如图,已知⊙:及点A,在⊙上任取一点A′,连AA′并作AA′的中垂线l,设l与直线A′交于点P,若点A′取遍⊙上的点.(1)求点P的轨迹C的方程;(2)若过点的直线与曲线交于、两点,且,则当时,求直线的斜率的取值范围.18. 如图,已知⊙:及点,在⊙上任取一点′,连′,并作′的中垂线l,设l与′交于点P,若点′取遍⊙上的点.(1)求点P的轨迹C的方程;(2)设直线与轨迹C相交于A、B两个不同的点,与x轴相交于点D.若的面积取得最大值时的椭圆方程.19. 点A、B分别是以双曲线的焦点为顶点,顶点为焦点的椭圆C长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆C上,且位于x轴上方,(1)求椭圆C的的方程;(2)求点P的坐标;(3)设M是椭圆长轴AB上的一点,点M到直线AP的距离等于|MB|,求椭圆上的点到M的距离d的最小值。
20. 已知正方形的外接圆方程为,A、B、C、D按逆时针方向排列,正方形一边CD所在直线的方向向量为(3,1.(1)求正方形对角线AC与BD所在直线的方程;(2)若顶点在原点,焦点在轴上的抛物线E经过正方形在x轴上方的两个顶点A、B,求抛物线E的方程.答案:1. (1)设椭圆C的方程为.由题意可得:,,(2)(1)当直线AB的斜率存在时,设直线AB的方程为,,即,①又,②又点在直线AB上,③把②③代入①得,点D的轨迹方程为(2)当直线AB的斜率不存在时,,满足点D的轨迹方程为2. 解(I)设由且,又以AB为直径的圆过原点.既(II)右准线l的方程为:x=,两条渐近线方程为:.∴两交点坐标为,、,.∵△PFQ为等边三角形,则有(如图).∴,即.解得,c=2a.∴.(2)由(1)得双曲线C的方程为把.把代入得.依题意∴,且.∴双曲线C被直线y=ax+b截得的弦长为∵.∴.整理得.∴或.∴双曲线C的方程为:或.(文)(1)设B点的坐标为(0,),则C点坐标为(0,+2)(-3≤≤1),则BC边的垂直平分线为y=+1 ①②由①②消去,得.∵,∴.故所求的△ABC外心的轨迹方程为:.(2)将代入得.由及,得.所以方程①在区间,2有两个实根.设,则方程③在,2上有两个不等实根的充要条件是:之得.∵∴由弦长公式,得又原点到直线l的距离为,∴∵,∴.∴当,即时,.4. (1)设直线AB:代入得(*)令A(x1,y1),B(x2,y2),则x1、x2是方程的两根∴ 且∵ ∴ N是AB的中点∴∴ k = 1 ∴AB方程为:y = x + 1(2)将k = 1代入方程(*)得或由得,∴ ,∵ ∴ CD垂直平分AB ∴ CD所在直线方程为即代入双曲线方程整理得令,及CD中点则,,∴,|CD| =,,即A、B、C、D到M距离相等∴ A、B、C、D四点共圆 12分5. (1)直线方程为代入得,设则点的坐标为在椭圆上即(2)已知椭圆方程为22.(1),又令得当时得方程的实数根和于是当时方程有唯一实数根或(2)当时,,令则,当时,为等比数列,或6. (1)设M(x,y, P(0, t, Q(s, 0则由得3s—t2=0……………………………………………………①又由得,……………………………………②把②代入①得=0,即y2=4x,又x≠0∴点M的轨迹方程为:y2=4x(x≠0)(2)如图示,假设存在点H,满足题意,则设,则由可得解得又则直线AB的方程为:即把代入,化简得令y=0代入得x=4,∴动直线AB过定点(4,0)答,存在点H(4,0),满足题意。
7. (1即点M(x,y到两个定点F1(0,-2、F2(0,2的距离之和为8,点M(x,y)的轨迹C为以F1(0,-2、F2(0,2为焦点的椭圆,其方程为.(2由题意可设直线方程为,由消去y得:(4+3kx2 +18kx-21=0.此时,△=(18k2-4(4+3k2 (-21>0恒成立,且由知:四边形OAPB为平行四边形.假设存在直线,使得四边形OAPB为矩形,则 .因为,所以,而,故,即.所以,存在直线:,使得四边形OAPB为矩形.8. (1)设,,(2)设由得,,(3)设线段上任意一点当时,即时,当时,;当时,即时,当时,;当时,即时,当时,。
9. (1 设动点则直线的方程为,令。
是MN的中点,,故,消去得N的轨迹C 的方程为.(2 直线的方程为,直线与抛物线的交点坐标分别为,由得,又由得由可得,解得的取值范围是10. (1由已知得即,∴,∴(2当时,,∴,∴……(3(),假设存在符合条件的使命题成立,则①当为偶数时,为奇数,则,由得.②当为奇数时,是偶数,则,由得矛盾.综合以上知,存在使得.20.解:(1因为双曲线离心率为,所以可设双曲线的标准方程由此可得渐近线的斜率从而,又因为点分线段所成的比为,所以,将点的坐标代入双曲线方程的,所以双曲线的方程为.(2设线段的中点为.由则且①由韦达定理的由题意知,所以②由①、②得或11. .(1设A(直线AB的方程为y=k(x-1 (k≠0,代入,得k x-(2k+4x+k=0设M(x ,y.则∴点M的坐标为(消去k可得M的轨迹方程为(2由 d=得即 0<<,得0<,即或故的取值范围为 (-12. (Ⅰ)设的坐标为,则且.解得,因此,点的坐标为.(Ⅱ),根据椭圆定义,得,,.∴所求椭圆方程为.(Ⅲ),椭圆的准线方程为.设点的坐标为,表示点到的距离,表示点到椭圆的右准线的距离.则,.,令,则,当,,,.∴在时取得最小值.因此,最小值=,此时点的坐标为.注:的最小值还可以用判别式法、换元法等其它方法求得.说明:求得的点即为切点,的最小值即为椭圆的离心率.13. (1)由得,则则所以的最大值为25,最小值为16。
(2)如图,由及椭圆方程得A(5,0)。
同理C(0,4),设为椭圆上任一点,又AC方程为,即。
所以B到AC的距离为同理得D到直线AC的距离所以四边形ABCD最大面积。
14. (1)∵成等比数列∴设是椭圆上任意一点,依椭圆的定义得即为所求的椭圆方程.(2)假设存在,因与直线相交,不可能垂直轴因此可设的方程为:由①方程①有两个不等的实数根∴②设两个交点、的坐标分别为∴∵线段恰被直线平分∴∵∴③把③代入②得∵∴∴解得或∴直线的倾斜角范围为15.由题意得:(II)由得,由于直线与椭圆有两个不同的交点,,即①(1)当时,设弦MN的中点为分别为点M、N的横坐标,则又②.将②代入①得,解得, 由②得 , 故所求的取值范围是(2)当时,16.依题意,直线l显然不平行于坐标轴,故将,得①由直线l与椭圆相交于两个不同的点,得,即(II)解:设由①,得因为,代入上式,得于是,△OAB的面积其中,上式取等号的条件是由将这两组值分别代入①,均可解出所以,△OAB的面积取得最大值的椭圆方程是17. (1∵l是线段A的中垂线,∴,∴||PA|-|P||=||P|-|P||=||=.即点P在以、A为焦点,以4为焦距,以为实轴长的双曲线上,故轨迹C的方程为.(2设,,则直线的方程为,则由,得,.由,得.∴,,.由,,,消去,得.∵,函数在上单调递增.∴,,所以或.故斜率的取值范围为.18. (1∵l是线段的中垂线,∴,∴|PM|+|P|=|P|+|P|=||=2m.即点P在以、M为焦点,以为焦距,以为长轴长的椭圆上,故轨迹C的方程为,即.(2)由得将代入消去,得①由直线l与椭圆相交于两个不同的点,得整理得,即设由①,得.∵而点, ∴,所以,代入上式,得于是,△OAB的面积其中,上式取等号的条件是即由可得.将及这两组值分别代入①,均可解出∴△OAB的面积取得最大值的椭圆方程是19. (1)已知双曲线实半轴a1=4,虚半轴b1=2,半焦距c1=,∴椭圆的长半轴a2=c1=6,椭圆的半焦距c2=a1=4,椭圆的短半轴=,∴所求的椭圆方程为(2)由已知,,设点P的坐标为,则由已知得则,解之得,由于y>0,所以只能取,于是,所以点P的坐标为9分(3)直线,设点M是,则点M到直线AP的距离是,于是,又∵点M在椭圆的长轴上,即∴当时,椭圆上的点到的距离又∴当时,d取最小值20. (1 由(x-12)2+y2=144-a(a<144,可知圆心M的坐标为(12,0,依题意,∠ABM=∠BAM=,kAB= , 设MA、MB的斜率k.则且,解得=2,=-.∴所求BD方程为x+2y-12=0,AC方程为2x-y-24=0.(2 设MB、MA的倾斜角分别为θ1,θ2,则tanθ1=2,tanθ2=-,设圆半径为r,则A(12+),B(12-,),再设抛物线方程为y2=2px (p>0,由于A,B两点在抛物线上,∴∴ r=4,p=2.。