100kW光伏并网发电系统典型案例解

合集下载

黎巴嫩100KW(光伏方案)

黎巴嫩100KW(光伏方案)

黎巴嫩 100 KW分布式方案制作单位:北京昆兰新能源技术有限公司编制日期:二零一四年六月目录一、项目概况 (3)二、系统组成 (3)三、设计依据 (3)四、系统方案设计 (3)五、组件方阵设计 (4)六、光伏逆变器 (5)七、光伏阵列智能汇流箱 (6)八、防雷接地装置 (7)九、系统的主要配置清单 (7)十、平均日照辐射分析 (8)十一、方案总体思路 (8)十二、效益分析 (9)十三、现场调试及培训 (9)十四、售后服务 (9)十五、公司简介 (10)尊敬的客户:你们好!首先感谢贵单位公司领导对我们的信赖以及对我们工作的支持,也非常感谢贵单位的人员对现场情况作了详细的介绍。

为开展节能降耗,缓解能源瓶颈制约,建设节能型社会和促进可持续发展,在此,北京昆兰特别提交本方案,旨在引入新的模式来服务贵公司。

1、项目概况:黎巴嫩属热带地中海型气候。

沿海一带夏季气候炎热潮湿,冬季温暖,高山地区积雪可达4—6个月,大部分地区10—4月为雨季。

沿海平原和贝卡谷地7月平均最高气温为32℃,1月平均最低气温分别为7℃和2℃。

年平均降水量1000毫米左右,山区为1200毫米以上。

2、系统组成光伏并网发电系统主要组成如下:(1)光伏组件及其支架;(2)并网逆变器;(3)交流配电柜;(4)系统的防雷及接地装置;(5)汇流箱;(5)电缆及附件等。

3、设计依据(1)黎巴嫩国家相关光伏并网条例。

(2)太阳能光伏发电及各专业相关的设计规程规定。

4、系统方案设计5、组件方阵设计太阳能电池组件(1)选型依据1)选择目前国际市场上主流的电池组件,以便批量采购,减少供货期;同时兼顾高效、使用寿命长、已安装等条件。

2)组件各部分抗紫外线强(符合GB/T18950——2003 橡胶和塑料管静态紫外线新能测定);3)组件必须符合UL、IEC61215、IEC62108、TU-V 标准,保证每块电池组件的质量。

(2)类型选择目前市场主要的电池板类型主要包括:单晶硅电池组件、多晶硅电池组件、蹄化隔电池组件、薄膜电池组件等。

与建筑结合的典型光伏并网案例

与建筑结合的典型光伏并网案例

与建筑结合的典型光伏并网案例本文由璇玑Nene贡献pdf文档可能在WAP端浏览体验不佳。

建议您优先选择TXT,或下载源文件到本机查看。

与建筑结合的典型并网光伏案例及技术分析北京科诺伟业科技有限公司朱伟钢 2009.8.29 December 2008 目录与建筑结合的应用科诺伟业典型案例分析其他案例与建筑结合的应用1、安装方式的选择安装方式不同朝向安装的太阳能电池的发电量-假定向南倾斜纬度角安装的太阳电池发电量为100%;-其他朝向全年发电量均有不同程度的减少。

2、不同太阳能电池对建筑效果的影响晶体硅太阳电池制作的玻璃幕墙(光线欠柔和)非晶体硅太阳电池制作的玻璃幕墙(光线柔和、投影和谐)3、BIPV设计需要注意的几个问题光伏组件的力学性能 ?建筑的美学要求 ?建筑结构与光伏组件电学性能的配合科诺伟业典型案例分析案例1.国家体育馆100kWp并网光伏示范电站(1)室外效果屋顶97.5kWp电站南立面5kWpBIPV室内效果案例1.国家体育馆100kWp并网光伏示范电站(2)━系统容量:100kW ━建成时间:2007年12月━接入电网电压等级:0.4kV ━逆变器方案:支路型逆变器━与建筑结合方式:BIPV安装于南立面的双玻组件安装于屋顶采光带的常规组件本示范电站是唯一与奥运主场馆结合建设并在奥运期间唯一允许正常运行的太阳能发电系统,也是我国第一个同大型体育场馆结合建设的太阳能发电系统,并且采用了两种结合同建筑方式,示范效果突出。

案例1.国家体育馆100kWp并网光伏示范电站(3)常规光伏组件设计理念:① 能够产生绿色电能为体育馆内部分用电设备提供电力;② 解决体育馆内日常采光(非比赛时);③ 避免阳光直射;④ 体现“绿色奥运、科技奥运”的奥运理念。

双玻光伏组件常规光伏组件1100块,容量97.5kWp,结合屋面10条采光带进行安装;?双玻光伏组件24块,容量5kWp,结合南侧玻璃幕墙进行安装。

案例1.国家体育馆100kWp并网光伏示范电站(4)常规组件的安装① 经过科学计算,确定光伏阵列倾角18度,保证冬至日9:00-15:00无遮挡;② 设计阶段屋顶钢结构同光伏支架同时结合设计,预留安装光伏支架节点,使光伏组件同屋顶良好结合;③ 支架氟炭涂层处理,与屋顶整体颜色和谐统一,体现BIPV理念;④ 避雷板设计有效预防直击雷侵袭;案例1.国家体育馆100kWp并网光伏示范电站(5)常规组件安装效果跨采光带安装的常规光伏组件,利用国家体育馆的弧度,良好的与建筑屋面进行了结合,同时实现了建筑师提出的即为体育馆内部提供阳光自然照明又起到了遮挡直射光的设计要求。

100kW光伏并网发电系统典型案例解

100kW光伏并网发电系统典型案例解

100kW光伏并网发电系统典型案例解100kW光伏并网发电系统典型案例解析1、项目地点分析本项目采用光伏并网发电系统设计方案,应用类别为村级光伏电站项目。

项目安装地为江西,江西位于位于中国的东南部,长江中下游南岸。

地处北纬24°29′-30°04′,东经113°34′—118°28′之间。

项目所在地坐标为北纬25°8′,东经114°9′。

根据查询到的经纬度在NASA上查询当地的峰值日照时间如下:(以下数据来源于美国太空总署<NASA〉数据库)从上表可以看出,项目建设地江西在国内属于二三类太阳能资源地区,年平均太阳能辐射量峰值平均每天为3.41kWh/m2,年平均太阳能总辐射量峰值为:3.41kWh/m2*365=1244。

65 kWh/m2。

2、光伏组件2。

1光伏组件的选择本项目选用晶硅太阳能电池板,单块功率为260Wp。

下面是一组多晶硅的性能参数,组件尺寸为1650*990*35mm。

2。

2光伏组件安装角度根据项目所在地理位置坐标,项目所在地坐标为项目所在地坐标为北纬25°8′,东经114°9′,光伏组件安装最佳倾角为20°如下图所示:2.3组件阵列间距及项目安装面积采用260Wp的组件,组件尺寸为1650*990*35mm,共用400块太阳能电池板,总功率104kWp。

根据下表公式可以计算出组件的前后排阵列间距为2。

4m,单块组件及其间距所占用面积为2.39㎡.104kWp光伏组件组成的光伏并网发电系统占地面积为2.39*400=956㎡,考虑到安装间隙、周围围墙等可能的占地面积,大约需要1000㎡。

3、光伏支架本项目为水平地面安装,采用自重式支架安装方式.自重式解决方案适用于平屋顶及地面系统。

利用水泥块压住支架底部的铝制托盘,起到固定系统的作用.4、光伏逆变器选型本光伏发电工程是并网型光伏发电系统,逆变器采用组串式并网型光伏逆变器。

光伏并网逆变器设计方案讲解

光伏并网逆变器设计方案讲解

100kW光伏并网逆变器设计方案目录1. 百千瓦级光伏并网特点 (2)2 光伏并网逆变器原理 (3)3 光伏并网逆变器硬件设计 (3)3.1主电路 (6)3.2 主电路参数 (7)3.2.1 变压器设计............................................................................. 错误!未定义书签。

3.2.3 电抗器设计 (7)3.3 硬件框图 (10)3.3.1 DSP控制单元 (11)3.3.2 光纤驱动单元 (11)3.3.2键盘及液晶显示单元 (13)3 光伏并网逆变器软件 (13)1. 百千瓦级光伏并网特点2010年全球太阳能光伏发电系统装机容量将达到10000MWp(我国将达到400MWp),2010年以后还将呈进一步加速发展趋势。

百千瓦级大型光伏发电并网用逆变控制功率调节设备,成本低,效率高,容量大,被国内外光伏界公认为是适合大功率光伏发电并网用的最具技术含量、最有发展前景的新一代主流产品,直接影响到未来光伏发电的走向。

百千瓦级大功率光伏并网逆变电源其应用对象主要为大型光伏并网电站,从原理上讲,其并网控制技术与中小功率光伏并网系统的控制技术基本相同,但由于装置容量较大,在技术指标的实现达标和功能设计方面却有较大区别。

在技术指标上,主要会影响:1.并网电流畸变率在系统的额定容量达到一定数量级时,一些存在的技术问题将会逐步暴露并影响到系统的性能指标,其最重要的一点就是并网电流波形畸变率的控制和电流滤波方式。

该系统中的主变压器一般选择为三相Δ/Y型式,且容量较大,此时变压器的非线性和励磁电流对并网电流波形的影响不容忽视,否则会引起并网电流波形的明显畸变和三相电流不平衡。

2.电磁噪声由于是三相桥式逆变结构,受IGBT功率模块的开关频率限制及考虑系统的效率指标,系统的电流脉动要远高于中小功率系统,对电流的滤波和噪声控制需要特别注意,此时对系统的滤波电路设计和并网电流PWM控制方式的研究至关重要。

国家体育场_鸟巢_100kW光伏并网发电系统设计

国家体育场_鸟巢_100kW光伏并网发电系统设计

会 在这 一 瞬 间产生 很 大 的冲击 电流 从 而 损 坏设 备 逆 变器 采用 了两 种 孤 岛效 应 检 测方 法 包括 被 动式 和主 动式 两种检测 方 法 被动 式 检测 方法 指 实时 检测
“ ”
, 。 、
,
,

当 电网失 电时 会 在 电 网 电压 的 幅值 频率 和相 位参数 上 产 生跳 变 信号 通 过检 测 跳变 信号来判断 电网是否 失 电 − 主 动式检测方 法 指对 电网 参数产 生小 干扰 信 号 通 过检 测反 馈 信号 来判
第 十届 中 国 太 阳 能 光 伏 会 议 论 文 案
国 家体 育场 !鸟 巢 ∀
#∃∃ % &
,
光伏 并 网 发 电系 统设计
,
朱知 洋


,
张 光春
,
施正 荣
( ∋
! 尚德 能源 工 程 有 限 公 司
江苏 无锡
) ∋ ∗

为 了体现 绿 色奥 运 的理 念 无 锡 尚德 电力 有限 公 司 在 国 家体育场 !鸟巢 ∀ 建造 一座 (! % , 光伏并 网发 电 系统 ∀ + 本系统 安装 在 位于 国 家体育场 !鸟巢 ∀ 主 体建筑四 周 的 个安检 棚 的顶 部 设 计为 一 个 并网 发 电单元
> 9
, , , , ,
每 片三 角形 电池尺 寸大 多不 同 划 片 时需要 不 断修 改划 片机 的程 序 宽度 较大 目前又 没 有适合 的 4 14 工 艺方 面通 过 用 现有 的 4 叮 拼接 后再 裁切 的
,
,
,
,

仔 细测 量 以 保 证外 观要 求
最后

100kW太阳能并网型设计方案

100kW太阳能并网型设计方案

100kW太阳能光伏并网型发电系统设计方案北京日佳电源有限公司2008-04-02目录第1章太阳能光伏发电系统概述1.1 利用新型能源(太阳能)作为供电电源的意义1.2 天津地理位置及日照、气温等气象数据分析1.3 太阳能光伏发电系统的应用领域1.4 太阳能光伏独立发电系统介绍1.5 太阳能光伏并网发电系统介绍第2章100kW太阳能光伏应急并网型发电系统运行数据分析2.1 太阳能光伏并网型发电系统的年发电量统计2.2 太阳能光伏并网型发电系统的环保效果统计第3章100kW太阳能光伏并网型发电系统实施设计方案3.1 太阳电池方阵施工设计3.2 功率调节器柜及隔离变压器柜施工设计3.3 太阳能光伏发电系统显示展板及计算机通信施工设计3.4 变压器施工设计3.5 系统各单元间电缆施工设计3.6 系统防雷接地等安全措施设计3.7 系统调试、运行及维护等设计第4章太阳能光伏发电系统实际工程图片第5章100kW太阳能光伏应急并网型发电系统设备一览表第1章太阳能光伏发电系统概述1.1 利用新型能源(太阳能)作为供电电源的意义随着我国科技与经济的高速发展,能源的消费量在不断地提高,但是我国矿产资源人均占有量不到世界的一半,而单位产值能耗为世界平均水平的2倍,主要产品的能耗比发达国家高40%,70%靠火力发电。

矿产资源的储量是有限的(即不可再生),据统计按照目前我国的经济发展速度,从2000年开始我国能源的使用年限分别为,石油15年、天然气30年、煤105年、铀50年。

由于能源问题是关系到一个国家生存与发展的一件大事,因此需要迫切寻找新类型的可再生能源,以补充矿产资源不可再生的局限性。

太阳能作为与其它新型可再生能源(风、水力、生物质能等)相比具有分布范围广(世界各地只要能有太阳光照到的地方都可以使用太阳能)、使用安全(不产生爆炸或可燃性气体等危险气体,采光板在静止状态下即可发电)、对周围环境不产生有害影响(不产生有毒气体、不破坏自然环境的平衡)等诸多优点,太阳能可再生能源作为许多世界发达国家首选并大力发展的能源,例如日本的“阳光计划”、德国的“百万屋顶计划”等都是针对太阳能光伏发电讲的。

100KW分布式光伏电站设计方案

100KW分布式光伏电站设计方案

lOOKWp光伏并网发电系统技术方案一、总体设计方案 (2)二、系统组成 (3)三、相关规范和标准 (3)四、设计过程 (4)4.1并网逆变器 (4)4.1.1性能特点简介 (4)4.1.2电路结构 (5)4.1.3技术指标 (5)4.1.4 LCD液晶显示及菜单简介 (6)4.1.5并网逆变器图片 (16)4.2光伏电池组件 (17)4.3光伏阵列防雷汇流箱 (17)4.4交直流防雷配电柜 (18)4.5系统接入电网 (19)4.6系统监控装置 (19)4.7环境监测仪 (22)4.8系统防雷接地装置 (22)五、系统主要设备配置清单 (23)六、系统电气原理框图 (25)一、总体设计方案针对100KW|光伏并网发电系统项目,我公司建议采用分块发电、集中并网方案,元,通过1台SG100K3100KVV并网逆变器接入0.4KV交流电网,实现并网发电功能。

系统的电池组件可选用180Wp(35V单晶硅光伏电池组件,其工作电压约为35V,开路电压约为45V。

根据SG100K3并网逆变器的MPP■工作电压范围(450V〜820V),每个电池串列按照16块电池组件串联进行设计,100KW勺并网单元需配置35个电池串列,共560块电池组件,其功率为100.8KWp为了减少光伏电池组件到逆变器之间的连接线,以及方便维护操作,建议直流侧采用分段连接,逐级汇流的方式连接,即通过光伏阵列防雷汇流箱(简称“汇流箱”)和配电柜将光伏阵列进行汇流。

汇流箱的防护等级为IP65,可在户外安装在电池支架上,每个汇流箱可接入6路电池串列,每100KW并网单元需配置6台汇流箱,整个100KW的并网系统需配置6台汇流箱。

并网发电系统配置1台交直流防雷配电柜,该配电柜包含了直流防雷配电单元和交流防雷配电单元。

其中:直流防雷配电单元是将6台汇流箱进行配电汇流,接入SG100K3 逆变器;交流防雷配电单元提供一台SG100K3逆变器的三相AC380V,50Hz交流并网接口,并经三相计量表后接入电网。

100KW分布式光伏电站设计方案

100KW分布式光伏电站设计方案

100KWp光伏并网发电系统技术方案目录一、总体设计方案 (2)二、系统组成 (3)三、相关规范和标准 (3)四、设计过程 (4)4.1并网逆变器 (4)4.1.1性能特点简介 (4)4.1.2电路结构 (5)4.1.3技术指标 (5)4.1.4 LCD液晶显示及菜单简介 (6)4.1.5并网逆变器图片 (16)4.2光伏电池组件 (17)4.3光伏阵列防雷汇流箱 (17)4.4交直流防雷配电柜 (18)4.5系统接入电网 (19)4.6系统监控装置 (19)4.7环境监测仪 (22)4.8系统防雷接地装置 (22)五、系统主要设备配置清单 (23)六、系统电气原理框图 (25)一、总体设计方案针对100KWp光伏并网发电系统项目,我公司建议采用分块发电、集中并网方案,元,通过1台SG1OOK3(100KW)并网逆变器接入0.4KV交流电网,实现并网发电功能。

系统的电池组件可选用180Wp(35V)单晶硅光伏电池组件,其工作电压约为35V,开路电压约为45V。

根据SG100K3并网逆变器的MPPT工作电压范围(450V~820V),每个电池串列按照16块电池组件串联进行设计,100KW的并网单元需配置35个电池串列,共560块电池组件,其功率为100.8KWp。

为了减少光伏电池组件到逆变器之间的连接线,以及方便维护操作,建议直流侧采用分段连接,逐级汇流的方式连接,即通过光伏阵列防雷汇流箱(简称“汇流箱”)和配电柜将光伏阵列进行汇流。

汇流箱的防护等级为IP65,可在户外安装在电池支架上,每个汇流箱可接入6路电池串列,每100KW并网单元需配置6台汇流箱,整个100KWp的并网系统需配置6台汇流箱。

并网发电系统配置1台交直流防雷配电柜,该配电柜包含了直流防雷配电单元和交流防雷配电单元。

其中:直流防雷配电单元是将6台汇流箱进行配电汇流,接入SG100K3逆变器;交流防雷配电单元提供一台SG100K3逆变器的三相AC380V,50Hz交流并网接口,并经三相计量表后接入电网。

100kW光伏并网逆变器设计方案讲解

100kW光伏并网逆变器设计方案讲解

100kW光伏并网逆变器设计方案目录1. 百千瓦级光伏并网特点 (2)2 光伏并网逆变器原理 (3)3 光伏并网逆变器硬件设计 (3)3.1主电路 (6)3.2 主电路参数 (7)3.2.1 变压器设计............................................................................. 错误!未定义书签。

3.2.3 电抗器设计 (7)3.3 硬件框图 (10)3.3.1 DSP控制单元 (11)3.3.2 光纤驱动单元 (11)3.3.2键盘及液晶显示单元 (13)3 光伏并网逆变器软件 (13)1. 百千瓦级光伏并网特点2010年全球太阳能光伏发电系统装机容量将达到10000MWp(我国将达到400MWp),2010年以后还将呈进一步加速发展趋势。

百千瓦级大型光伏发电并网用逆变控制功率调节设备,成本低,效率高,容量大,被国内外光伏界公认为是适合大功率光伏发电并网用的最具技术含量、最有发展前景的新一代主流产品,直接影响到未来光伏发电的走向。

百千瓦级大功率光伏并网逆变电源其应用对象主要为大型光伏并网电站,从原理上讲,其并网控制技术与中小功率光伏并网系统的控制技术基本相同,但由于装置容量较大,在技术指标的实现达标和功能设计方面却有较大区别。

在技术指标上,主要会影响:1.并网电流畸变率在系统的额定容量达到一定数量级时,一些存在的技术问题将会逐步暴露并影响到系统的性能指标,其最重要的一点就是并网电流波形畸变率的控制和电流滤波方式。

该系统中的主变压器一般选择为三相Δ/Y型式,且容量较大,此时变压器的非线性和励磁电流对并网电流波形的影响不容忽视,否则会引起并网电流波形的明显畸变和三相电流不平衡。

2.电磁噪声由于是三相桥式逆变结构,受IGBT功率模块的开关频率限制及考虑系统的效率指标,系统的电流脉动要远高于中小功率系统,对电流的滤波和噪声控制需要特别注意,此时对系统的滤波电路设计和并网电流PWM控制方式的研究至关重要。

100kW并网光伏电站设计方案

100kW并网光伏电站设计方案

100kW光伏电站设计方案一、系统原理太阳能电池发电系统是利用光生伏打效应原理制成的,它是将太阳辐射能量直接转换成电能的发电系统。

它主要由太阳能电池方阵、逆变器等部分组成。

并网发电原理图二、系统设计100KW的并网型光伏系统采用威海蓝星玻璃公司生产的非晶硅薄膜型电池组件和全球第二大光伏逆变器生产商德国KACO公司研发的Powador4501xi 并网逆变器等知名配件。

采用结合型安装方式。

100KW共计2506块电池组件分成20个子方阵,计划分别安装在屋顶上。

综合考虑客户屋顶类型特点和系统最大出力的要求,电池组件安装在镀锌防锈的钢支架上,倾斜角度初步安排在25度左右。

(一)总体规划:光伏系统分为20个5.04KW子系统,汇流接入交流汇线箱后,并入总配电箱。

系统为三相输出(400V/50Hz)。

预计总占用面积:4000平方米,总重量32吨以上。

(二)安装方式:光伏与建筑的结合有两种方式:建筑与光伏系统相结合;建筑与光伏器件相结合。

本方案综合考虑客户自身建筑要求特点,将采用直接在屋顶上安装光伏组件。

示意图:(三)材料及报价三、主要配件简介:1 、非晶硅薄膜型太阳能电池板,其主要参数如下:非晶硅电池特点 (1)更低的成本组件成本在光伏系统中占有很高的比例,组件价格直接影响系统造价,进而影响到光伏发电的成本。

按目前的组件售价计算,同样的资金,购买非晶硅产品,可以多获得接近20%的组件功率。

(2)更多的电力对于同样功率的太阳电池阵列,非晶硅太阳电池比单晶硅、多晶硅电池发电要多约10%。

已经得到美国的Uni-Solar System LLC 、Energy Photovoltaic Corp.、日本的Kaneka Corp.、荷兰能源研究所等权威机构证实。

产品描述:1.电性能参数是在STC ( AM1.5,1000W/平方米,电池温度为25摄氏度)标准测试条件下测试。

2.在最初几个月的使用中,组件输出电性能高于额定值,输出功率可能高出15%,输出电压可能高出6%,输出电流可能高出9% 。

100KW分布式光伏电站方案与对策

100KW分布式光伏电站方案与对策

.100KWp光伏并网发电系统技术方案目录一、总体设计方案 (2)二、系统组成 (3)三、相关规范和标准 (3)四、设计过程 (4)4.1并网逆变器 (4)4.1.1性能特点简介 (4)4.1.2电路结构 (5)4.1.3技术指标 (5)4.1.4 LCD液晶显示及菜单简介 (6)4.1.5并网逆变器图片 (16)4.2光伏电池组件 (17)4.3光伏阵列防雷汇流箱 (17)4.4交直流防雷配电柜 (18)4.5系统接入电网 (19)4.6系统监控装置 (19)4.7环境监测仪 (22)4.8系统防雷接地装置 (22)五、系统主要设备配置清单 (23)六、系统电气原理框图 (25)一、总体设计方案针对100KWp光伏并网发电系统项目,我公司建议采用分块发电、集中并网方案,元,通过1台SG1OOK3(100KW)并网逆变器接入0.4KV交流电网,实现并网发电功能。

系统的电池组件可选用180Wp(35V)单晶硅光伏电池组件,其工作电压约为35V,开路电压约为45V。

根据SG100K3并网逆变器的MPPT工作电压范围(450V~820V),每个电池串列按照16块电池组件串联进行设计,100KW的并网单元需配置35个电池串列,共560块电池组件,其功率为100.8KWp。

为了减少光伏电池组件到逆变器之间的连接线,以及方便维护操作,建议直流侧采用分段连接,逐级汇流的方式连接,即通过光伏阵列防雷汇流箱(简称“汇流箱”)和配电柜将光伏阵列进行汇流。

汇流箱的防护等级为IP65,可在户外安装在电池支架上,每个汇流箱可接入6路电池串列,每100KW并网单元需配置6台汇流箱,整个100KWp的并网系统需配置6台汇流箱。

并网发电系统配置1台交直流防雷配电柜,该配电柜包含了直流防雷配电单元和交流防雷配电单元。

其中:直流防雷配电单元是将6台汇流箱进行配电汇流,接入SG100K3逆变器;交流防雷配电单元提供一台SG100K3逆变器的三相AC380V,50Hz交流并网接口,并经三相计量表后接入电网。

100KW分布式光伏电站系统设计(毕业设计)

100KW分布式光伏电站系统设计(毕业设计)

100KW分布式光伏电站系统设计(毕业设计)摘要随着人类工业的发展,化石能源的利用不断给环境带来各方面的压力,世界各国加快了对清洁新能源的开发利用,太阳能光伏也成为当今分布式新能源发电的热点。

截止2011年底,用户侧光伏发电已达到60万千瓦,呈现出发展速度快、项目容量大、建设周期短、投资商类型多样、运营模式复杂和接入电压等级低等特点。

目前,用户侧光伏发电相关政策主要包括光电建筑项目和金太阳示范项目政策,基本为补贴初始投资的50%,补贴资金由财政部直接拨付,不占用开再生能源电力附加。

本文以衢州100KW分布式光伏电站建设分析,光伏电站建设的可行性。

关键词:光伏电站的建设;光伏电站建设生产过程;光伏电站建设分析目录摘要 (I)第一章工程概况........................................................................................................................... - 2 -1.1项目名称........................................................................................................................... - 2 -1.2项目所在地理位置........................................................................................................... - 2 -1.3总平面图........................................................................................................................... - 3 -1.4建筑面积........................................................................................................................... - 3 -1.5用途................................................................................................................................... - 3 -1.6总装机容量....................................................................................................................... - 3 -第二章光电建筑示范项目标及主要内容.. (4)2.1光伏电站建设目标 (4)2.2光伏电站建设内容 (4)第三章技术方案 (5)3.1建筑围护结构体系 (5)3.2光电系统技术设计方案 (5)3.2.1光伏建筑一体化设计73.2.2并网系统设计83.2.3主要产品、部件及性能参数113.2.4系统能效计算分析153.2.5技术经济分析153.4检测预留方案 (17)3.5运行维护方案 (18)3.6运行维护方案 (19)3.7效益及风险分析 (20)3.8技术支持 (21)3.9证明材料 (21)结论 (22)参考文献 (23)第一章工程概况1.1项目名称衢州职业技术学院屋顶100KW太阳能光电建筑应用示范项目。

100KW并网发电系统方案

100KW并网发电系统方案
-20~+50 -25~+55 0~95%(不结露)
≤5000
D 组件阵列方案
峰值功率 250W
峰值电压 31.1V
开路电压
工作电流
37.4V
7.89
光伏组件参数
短路电流 8.65
每路 20 块,共 20 路,共计 400 块。峰值功率为 100000W。
三、其他部件介绍 1、并网监测单元
为用户提供一个远程监管供用电设备的在线系统,提供实时数据显示与处理、系统功能 分析,系统事故追忆、各种文档备份、用户级别选择、远程特定功能控制实现、新用户电源使 用学习,在线帮助等功能强大、界面友好、人机对话简单的管理软件
额定容量(KW)
50
允许最大电池阵列功率(KW)
56
最大开路电压(VDC) 可接入阵列串联数(推荐)
1000 20 串(推荐 35V 左右/块)
串联范围
15 串~20 串
MPPT范围(VDC) 额定交流输出功率(KW)
440~850 60
电网电压范围(VAC)
330~460
电网频率范围(Hz)
50±4.5 或者 60±4.5
8、建筑物(计算机机房和办公室区域)
建筑物的设计施工规范严格按照国家标准实施,计算机机房的防雷设计施工规范严格执行 国家标准《GB50174-1993》,办公室区域的防雷设计施工规范严格执行国家标准《GB50057-94》.
9、防雷及接地保护
9.1 光伏并网电站所有建筑物(计算机机房和办公室区域)的防雷措施应严格执行国家标准: 建筑物防雷设计规范:《GB50057-94》 计算机房设计规范:《GB50174-1993》
五、直 流 屏
直流屏采用母线并联方式,将所有的汇流箱的汇流输出统一接入直流屏,由直流屏进行集 中监控管理,使用操作维护方便。每台逆变器的直流输入均从直流屏母线上进行直流配电和直 流汇集。

100KW屋顶光伏发电系统设计(光伏发电技术课程设计)

100KW屋顶光伏发电系统设计(光伏发电技术课程设计)

《100KW屋顶光伏发电系统设计》(光伏发电技术课程设计)目录第1章光伏发电系统概述 (3)1.1 光伏发电系统概述 (3)1.2 光伏发电系统特点 (3)1.3屋顶光伏发电系统分类 (4)第二章屋顶光伏系统部件选择方案 (5)2.1光伏阵列选型 (5)2.2 光伏接线箱(汇流箱)选配 (5)2.3逆变器选配 (5)2.4直流线路选配 (6)第三章屋顶分布式光伏系统安全设计 (7)3.1 BIPV安全设计 (7)3.1.1结构安全 (7)3.2.2 附加型屋顶结构设计 (7)3.2 屋顶光伏发电系统组件类型 (8)第四章100KW屋顶光伏系统设计与配置 (10)4.1 整体设计方案 (10)4.1.1 光伏阵列方案 (10)4.1.2光伏逆变器及并网方案 (10)4.1.3监控装置 (10)4.2设计计算及设备选型 (10)4.2.1并网逆变器设计 (10)4.2.2光伏阵列设计 (11)4.2.3 光伏阵列汇流箱 (12)4.2.4 交流配电柜 (13)4.3 系统接入电网设计 (14)4.4 系统监控装置 (14)4.5 系统防雷接地装置 (14)第1章光伏发电系统概述1.1 光伏发电系统概述光伏发电系统按大类可分为离网光伏发电系统和并网光伏发电系统两大类。

其中,离网光伏发电系统容量主要由负载用电情况决定;并网光伏电站容量主要由系统占地面积、纬度、跟踪方式等因素决定。

并网光伏发电系统,可分为用户侧并网和发电侧并网两类。

前者并网点一般在低压侧(380/220V)或中压侧(10kV、35kV),以自发自用为主;通常是可逆流并网光伏系统,也有些系统要求设置逆功率保护(即不可逆流并网光伏系统)。

大型集中式并网光伏电站用户侧并网和发电侧并网两类都有,10MWp级及其以上功率的多为发电侧并网,采用“不可逆流”并网方式,电流是单向的,不是自发自用和“净电表计量”,只能给出上网电价。

通常接入35kV、110kV或220kV高压输出电能,其输出特性是跟随电网频率和电压变化的电流源,功率因数为1,不提供无功功率。

100kW光伏并网逆变器设计方案

100kW光伏并网逆变器设计方案

100kW光伏并网逆变器设计方案目录1. 百千瓦级光伏并网特点 (2)2 光伏并网逆变器原理 (3)3 光伏并网逆变器硬件设计 (3)3.1主电路 (6)3.2 主电路参数 (7)3.2.1 变压器设计............................................................................. 错误!未定义书签。

3.2.3 电抗器设计 (7)3.3 硬件框图 (10)3.3.1 DSP控制单元 (11)3.3.2 光纤驱动单元 (11)3.3.2键盘及液晶显示单元 (13)3 光伏并网逆变器软件 (13)1. 百千瓦级光伏并网特点2010年全球太阳能光伏发电系统装机容量将达到10000MWp(我国将达到400MWp),2010年以后还将呈进一步加速发展趋势。

百千瓦级大型光伏发电并网用逆变控制功率调节设备,成本低,效率高,容量大,被国内外光伏界公认为是适合大功率光伏发电并网用的最具技术含量、最有发展前景的新一代主流产品,直接影响到未来光伏发电的走向。

百千瓦级大功率光伏并网逆变电源其应用对象主要为大型光伏并网电站,从原理上讲,其并网控制技术与中小功率光伏并网系统的控制技术基本相同,但由于装置容量较大,在技术指标的实现达标和功能设计方面却有较大区别。

在技术指标上,主要会影响:1.并网电流畸变率在系统的额定容量达到一定数量级时,一些存在的技术问题将会逐步暴露并影响到系统的性能指标,其最重要的一点就是并网电流波形畸变率的控制和电流滤波方式。

该系统中的主变压器一般选择为三相Δ/Y型式,且容量较大,此时变压器的非线性和励磁电流对并网电流波形的影响不容忽视,否则会引起并网电流波形的明显畸变和三相电流不平衡。

2.电磁噪声由于是三相桥式逆变结构,受IGBT功率模块的开关频率限制及考虑系统的效率指标,系统的电流脉动要远高于中小功率系统,对电流的滤波和噪声控制需要特别注意,此时对系统的滤波电路设计和并网电流PWM控制方式的研究至关重要。

100KW屋顶光伏发电系统设计(光伏发电技术课程设计)

100KW屋顶光伏发电系统设计(光伏发电技术课程设计)

《100KW屋顶光伏发电系统设计》(光伏发电技术课程设计)目录第1章光伏发电系统概述 (3)1.1 光伏发电系统概述 (3)1.2 光伏发电系统特点 (3)1.3屋顶光伏发电系统分类 (4)第二章屋顶光伏系统部件选择方案 (5)2.1光伏阵列选型 (5)2.2 光伏接线箱(汇流箱)选配 (5)2.3逆变器选配 (5)2.4直流线路选配 (6)第三章屋顶分布式光伏系统安全设计 (7)3.1 BIPV安全设计 (7)3.1.1结构安全 (7)3.2.2 附加型屋顶结构设计 (7)3.2 屋顶光伏发电系统组件类型 (8)第四章100KW屋顶光伏系统设计与配置 (10)4.1 整体设计方案 (10)4.1.1 光伏阵列方案 (10)4.1.2光伏逆变器及并网方案 (10)4.1.3监控装置 (10)4.2设计计算及设备选型 (10)4.2.1并网逆变器设计 (10)4.2.2光伏阵列设计 (11)4.2.3 光伏阵列汇流箱 (12)4.2.4 交流配电柜 (13)4.3 系统接入电网设计 (14)4.4 系统监控装置 (14)4.5 系统防雷接地装置 (14)第1章光伏发电系统概述1.1 光伏发电系统概述光伏发电系统按大类可分为离网光伏发电系统和并网光伏发电系统两大类。

其中,离网光伏发电系统容量主要由负载用电情况决定;并网光伏电站容量主要由系统占地面积、纬度、跟踪方式等因素决定。

并网光伏发电系统,可分为用户侧并网和发电侧并网两类。

前者并网点一般在低压侧(380/220V)或中压侧(10kV、35kV),以自发自用为主;通常是可逆流并网光伏系统,也有些系统要求设置逆功率保护(即不可逆流并网光伏系统)。

大型集中式并网光伏电站用户侧并网和发电侧并网两类都有,10MWp级及其以上功率的多为发电侧并网,采用“不可逆流”并网方式,电流是单向的,不是自发自用和“净电表计量”,只能给出上网电价。

通常接入35kV、110kV或220kV高压输出电能,其输出特性是跟随电网频率和电压变化的电流源,功率因数为1,不提供无功功率。

100KW光伏并网方案

100KW光伏并网方案

家庭用户型太阳能光伏发电系统技术方案奔亚科技集团有限公司2017.3.10设计员:曹健一、公司简介奔亚科技集团有限公司成立于2010年10月,主要从事高性能太阳能产品和太阳能屋顶电站的设计、开发、生产和销售。

奔亚科技立足于专业化、规模化、国际化发展之路,引进具有国际先进水平的太阳能电池生产设备,聘请世界各地行业内的资深科学家和工程师实现我们战略性的目标。

一批拥有丰富经验的国际专业人才组成了奔亚管理团队,他们正积极推动公司进入全球平台,着力于在国际太阳能产业的长远发展,使奔亚产品广泛应用于世界范围。

奔亚科技在拥有两条专业高性能电池片生产线;产能超过50兆瓦,公司内部设有组件生产基地,组件产能超过200兆瓦,公司内部的光伏伏电池研究中心致力于开发新一代高效太阳能电池。

通过不懈的努力,目前已经研发出转换效率超过19%的电池片。

二、项目概述本项目的光伏电站系统为分布式并网光伏发电组合的光伏建筑一体化系统,其主要目的是发挥太阳能发电节能环保的特点,利用太阳能发电为该住宅提供部分电力,并提升该地区形象,为节能减排起到表率作用。

三、光伏建筑一体化的概念光伏建筑一体化就是将光伏发电系统和建筑幕墙、屋顶等围护结构系统有机的结合成一个整体结构,不但具有围护结构的功能,同时又产生电能,供建筑使用,光伏建筑一体化具有以下一些优势(1)建筑物能为光伏系统提供足够的面积,不需要另占土地,还能省去光伏系统的支撑结构;太阳电池是固态半导体器件,发电时无转动部件、无噪音,对环境不造成污染;(2)可就地发电、就地使用,减少电力输送过程的费用和能耗、省去输电费用;自发自用,有消峰的作用,带储能可以作为备用电源。

分散发电,避免传输和分电损失(5%-10%),降低输电和分电投资和维修成本;并使建筑物外观更有魅力;(3)因日照强时恰好是用电高峰期,光伏建筑一体化系统除可以保证自身建筑用电外,在一定条件下还能向电网供电,缓舒了高峰电力的需求,解决了电网的峰谷供需矛盾,具有极大的社会效益;(4)杜绝了由一般化石燃料发电带来的严重污染,这对于环保要求更高的今天和未来极为重要。

100KW分布式光伏电站设计方案

100KW分布式光伏电站设计方案

100KWp光伏并网发电系统技术方案目录一、总体设计方案 (2)二、系统组成 (3)三、相关规范和标准 (3)四、设计过程 (4)4.1并网逆变器 (4)4.1.1性能特点简介 (4)4.1.2电路结构 (5)4.1.3技术指标 (5)4.1.4 LCD液晶显示及菜单简介 (6)4.1.5并网逆变器图片 (16)4.2光伏电池组件 (17)4.3光伏阵列防雷汇流箱 (17)4.4交直流防雷配电柜 (18)4.5系统接入电网 (19)4.6系统监控装置 (19)4.7环境监测仪 (22)4.8系统防雷接地装置 (22)五、系统主要设备配置清单 (23)六、系统电气原理框图 (25)一、总体设计方案针对100KWp光伏并网发电系统项目,我公司建议采用分块发电、集中并网方案,元,通过1台SG1OOK3(100KW)并网逆变器接入0.4KV交流电网,实现并网发电功能。

系统的电池组件可选用180Wp(35V)单晶硅光伏电池组件,其工作电压约为35V,开路电压约为45V。

根据SG100K3并网逆变器的MPPT工作电压范围(450V~820V),每个电池串列按照16块电池组件串联进行设计,100KW的并网单元需配置35个电池串列,共560块电池组件,其功率为100.8KWp。

为了减少光伏电池组件到逆变器之间的连接线,以及方便维护操作,建议直流侧采用分段连接,逐级汇流的方式连接,即通过光伏阵列防雷汇流箱(简称“汇流箱”)和配电柜将光伏阵列进行汇流。

汇流箱的防护等级为IP65,可在户外安装在电池支架上,每个汇流箱可接入6路电池串列,每100KW并网单元需配置6台汇流箱,整个100KWp的并网系统需配置6台汇流箱。

并网发电系统配置1台交直流防雷配电柜,该配电柜包含了直流防雷配电单元和交流防雷配电单元。

其中:直流防雷配电单元是将6台汇流箱进行配电汇流,接入SG100K3逆变器;交流防雷配电单元提供一台SG100K3逆变器的三相AC380V,50Hz交流并网接口,并经三相计量表后接入电网。

某100KW并网光伏发电系统设计方案

某100KW并网光伏发电系统设计方案

某100KW并网光伏发电系统设计方案1 .系统的主要构成100KW并网光伏发电系统的主要由电池组件方阵、电池方阵支架及基础、直流汇流箱及直流防雷配电箱、光伏并网逆变器、交流防雷配电系统(配电柜、配电室)、监控测量和计量系统、整个系统的连接线以及防雷接地装置等构成。

2 .系统的主要配置说明⑴电池组件系统选用功率为180W的电池组件,其峰值输出电压为34.5V z 开路电压为42V,共配置576块。

采用16块电池组件组串联为一个光伏方阵,共配置36个光伏方阵(要求方阵朝向一致),电池组件总功率为103.68kW0(2)光伏并网逆变器系统设计分成2个50kW并网发电单元,总设计功率IOW 选用合肥阳光电源有限公司SG50K3并网逆变器两台。

(3)直流汇流箱及直流防雷配电箱为了减少电池组件与逆变器之间连接线,以及日后的维护方便,在直流侧配直流汇流箱,该汇流箱为6进1出,即将6路光伏阵列汇流成1路直流输出,每个50kW逆变器需要配置汇流箱3台。

光伏阵列经过汇流箱汇流输出后通过电缆接至配电室,经直流防雷配电柜分别输入到SG50k3逆变器中,系统需要配置两台直流防雷配电柜,每个配电柜按照1个50kW直流配电系统进行设计,直流输出分别接至SG5OK3逆变器。

两台逆变器的交流输出再经交流开关配电柜接至电网,实现并网发电功能。

(4)监控测量和计量系统。

此外,该系统配置1套通信监控测量装置,通过RS485或Ethernet(以太网)通信接口可实时监测并网发电系统的工作状态和运行数据,内部保存的数据记录可供给专业技术人员进行系统的分析。

(5)防雷接地装置根据整个系统情况合理设计接地装置及防雷措施3 .系统设计说明Q)电池组件的串并联设计根据并网逆变器的MPPT电压范围,经过计算,逆变器的串并联数量设计如表所示。

逆变器每个电池串按照16块电池组件串联设计而成,如图所示。

(2)光伏并网系统电气设计框图光伏并网系统电气设计框图,如图8-13所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

100kW光伏并网发电系统典型案例解
100kW光伏并网发电系统典型案例解析
1、项目地点分析
本项目采用光伏并网发电系统设计方案,应用类别为村级光伏电站项目。

项目安装地为江西,江西位于位于中国的东南部,长江中下游南岸。

地处北纬24°29′-30°04′,东经113°34′-118°28′之间。

项目所在地坐标为北纬25°8′,东经114°9′。

根据查询到的经纬度在NASA上查询当地的峰值日照时间如下:
(以下数据来源于美国太空总署<NASA>数据库)
从上表可以看出,项目建设地江西在国内属于二三类太阳能资源地区,年平均太阳能辐射量峰值平均每天为3.41kWh/m2,年平均太阳能总辐射量峰值为:3.41kWh/m2*365=1244.65 kWh/m2。

2、光伏组件
2.1光伏组件的选择
本项目选用晶硅太阳能电池板,单块功率为260Wp。

下面是一组多晶硅的性能参数,组件尺寸为1650*990*35mm。

2.2光伏组件安装角度
根据项目所在地理位置坐标,项目所在地坐标为项目所在地坐标为北纬25°8′,东经114°9′,光伏组件安装最佳倾角为20°如下图所示:
2.3组件阵列间距及项目安装面积
采用260Wp的组件,组件尺寸为1650*990*35mm,共用400块太阳能电池板,
总功率104kWp。

根据下表公式可以计算出组件的前后排阵列间距为2.4m,单
块组件及其间距所占用面积为2.39㎡。

104kWp光伏组件组成的光伏并网发电系统占地面积为2.39*400=956㎡,考虑到安装间隙、周围围墙等可能的占地面积,大约需要1000㎡。

3、光伏支架
本项目为水平地面安装,采用自重式支架安装方式。

自重式解决方案适用于平屋顶及地面系统。

利用水泥块压住支架底部的铝制托盘,起到固定系统的作用。

4、光伏逆变器选型
本光伏发电工程是并网型光伏发电系统,逆变器采用组串式并网型光伏逆变器。

综合考虑建设场地分布情况、技术成熟程度、发电稳定性、与光伏组件匹配以及市场价格,选择三晶电气型号为Suntrio Plus 33K的33kW三相并网逆变器,整个光伏系统采用3台逆变器。

三晶电气型号为Suntrio Plus 33K的33kW并网逆变器外观图如下图所示:
5、线缆选型
直流侧线缆:选用光伏认证专用线缆,线径为1*4mm²。

多为户外铺设,需要防潮、防晒、防寒、防紫外线等。

交流侧线缆:线径选择4*16mm²+1*10mm²,主要用于逆变器交流侧至交流汇流箱或交流并网柜,不仅要需要防潮、防晒、防寒、防紫外线,还要考虑防火和防鼠防蚁等。

6 、交流汇流箱选型
配电箱的配置一般包含汇流排(标号1)、电流互感器(标号2)、防雷器(标号3)、空开(标号4)、电流/电压表(标号5)、断路器(标号6)组成。

型号一般选择逆变器最大交流输出电流的1.25倍,33kW三相逆变器的最大电流为50A,故选择额定电流为63A的断路器(空开)。

3个额定电流为63A小型断路器汇到总断路器,总断路器选用200A规格。

防雷选用二级浪涌保护器,具体规格为Uc:460V,Imax:40KA,In:20KA,Up≤1.8KV。

7、接入方案
7.1系统方案设计图
采用分布式并网设计方案,将100kW系统分成3个33kW的并网发电单元,通过3台Suntrio Plus 33k(33kW)并网逆变器接入交流电网,实现并网发电。

系统接入方案图如下:
7.2设备配置清单
表7-1 100kW光伏并网发电系统配置清单
8 、收益计算
8.1发电量估测
根据前面章节项目安装地江西的太阳能资源分析,可知江西的年峰值日照时间为1244.65小时。

由上表可以估算出104kW系统25年可以累积发电约226.6万度。

8.2 效益分析
假设成本按照8元/W来算,整个光伏系统需花费83.2万元。

每度电的收益按照0.98/度(国家度电补贴+省级和地方补贴+上网电价)得到下表的数据:
w .. . ..
经济效益分析:光伏系统前25年年均发电量约为226.6万度,前8年合计发电约76.9万度,按度电0.98元计算,前8年可产生经济效益75.4万元,前25年可产生经济效益222.1万元。

约九年时间可收回成本,25年总收益222.1万元,除去成本,纯收益可达约139万元。

(由于各地区年发电量、系统成本和补贴有差异,最后计算收益数据仅供参考。


. . . 资料. .。

相关文档
最新文档