5.2齐次马尔可夫链.pptx
随机过程课件-马尔可夫链
本课件将介绍随机过程中一种重要的模型——马尔可夫链。探讨马尔可夫链 的定义、特性、应用及改进方法,展望其未来发展。
什么是随机过程?
随机过程是一种数学模型,用于描述随机变量在时间上的演化。根据性质和分类不同,随机过程可分为多种类 型。
马尔可夫链的概念
定义
马尔可夫链是一种随机过程,具有马尔可夫性质,即未来状态仅与当前状态相关。
马尔可夫链的局限性和优缺点
马尔可夫链具有简单、易于实现的优点,但在某些情况下存在局限性。
马尔可夫链的未来发展方向
未来,马尔可夫链有望结合更多机器学习、深度学习技术,在更多领域得到应用和改进。
马尔可夫链的改进
局限性
马尔可夫链模型在某些情况下存 在局限性,如长期依赖性和大状 态空间问题。
改进方法
针对马尔可夫链的局限性,研究 者提出了多种改进方法,如隐马 尔可夫模型和条件随机场。
马尔可夫决策过程
马尔可夫决策过程是对马尔可夫 链进行扩展,引入了决策和奖励 机制,用于解决决策问题。
总结与展望
马尔可夫链的平稳分布
平稳分布是马尔可夫链在长期 运行后,状态分布稳定的概率 分布。
马尔可夫链的应用
1
模拟系统
2
马尔可夫链在模拟系统中用于模拟随机
事件和状态转移,如队列模型和流程模
3
型。
自然语言处理
马尔可夫链在自然语言处理中用于语言 模型、文本生成和机器翻译等。
金融领域
马尔可夫链在金融领域中用于风险评估、 投资组合优化和市场分析等。
特性
马尔可夫链具有无记忆性、状态空间有限、状态转移概率固定等特性。
状态转移图
马尔可夫链可用状态转移图表示,展示各状态之间的转移概率。
《马尔可夫链讲》课件
3 机器翻译
马尔可夫链可用于翻译模型,通过对应不同 语言的状态和转移概率进行翻译。
4 股票预测
马尔可夫链可以将历史股票价格转化为状态 转移概率,进而预测未来股票价格。
算法
马尔可夫模型
马尔可夫模型通过状态转移矩 阵和初始状态分布,预测未来 状态的概率分布。
蒙特卡罗方法
蒙特卡罗方法使用马尔可夫链 模拟大量随机样本,用于求解 复杂问题的数值近似解。
《马尔可夫链讲》PPT课件
欢迎大家来到《马尔可夫链讲》PPT课件!本课程将带您深入了解马尔可夫链 的概念、特征、应用、算法以及其优点、缺点和发展前景。让我们一起开始夫过程是一种具有马尔可夫性质的随机过程,其未来状态仅依赖于当前状态,与其历史状态无关。
当马尔可夫链接近无穷大时, 各个状态出现的概率会趋于一 个稳定的分布。
细致平衡方程
细致平衡方程描述了马尔可夫 链中每个状态出现的平衡条件。
应用
1 自然语言处理
2 推荐系统
马尔可夫链可用于语言模型和自动文本生成, 如基于上下文的单词预测。
马尔可夫链可用于个性化推荐算法,根据用 户的历史行为预测其可能感兴趣的项。
隐马尔可夫模型
隐马尔可夫模型是马尔可夫链 的扩展,增加了观测状态与隐 藏状态的关联,常用于序列标 注和语音识别。
总结
优点
马尔可夫链是一种简洁而强大的数学模型,能够捕捉到状态之间的概率转移关系。
缺点
马尔可夫链假设未来状态仅与当前状态相关,无法考虑其他因素的影响。
发展前景
随着大数据和机器学习的发展,马尔可夫链在各个领域的应用将越来越广泛。
马尔可夫链定义
马尔可夫链是一种离散时间马尔可夫过程,其所有可能状态和状态间的转移概率构成了一个有向图。
《马尔可夫链分析法》课件
马尔可夫链分析法具有无后效性 、离散性和随机性,适用于描述 大量随机现象,如股票价格、人 口迁移等。
马尔可夫链分析法的应用领域
金融领域
马尔可夫链分析法用于描述股票价格、汇率等金融市场的随机波 动,以及风险评估和投资组合优化。
自然领域
在生态学、气象学、地质学等领域,马尔可夫链分析法用于描述物 种分布、气候变化、地震等自然现象。
ABCD
云计算应用
利用云计算资源,实现大规模数据的快速处理和 分析。
跨学科合作
加强与其他学科领域的合作,共同推动马尔可夫 链分析法的技术创新和应用拓展。
THANKS FOR WATCHING
感谢您的观看
CHAPTER 03
马尔可夫链分析法的基本步 骤
建立状态转移矩阵
确定系统的状态空间
首先需要确定系统可能的状态,并为其编号。
计算状态转移概率
根据历史数据或实验结果,计算从一个状态转移到另一个状态的 概率。
构建状态转移矩阵
将状态转移概率按照矩阵的形式排列,形成状态转移矩阵。
计算稳态概率
初始化概率向量
系统的长期行为
02
通过分析稳态概率,可以了解系统的长期行为和趋势,例如系
统的最终状态分布、系统的平衡点等。
预测未来状态
03
基于稳态概率,可以对系统未来的状态进行预测,从而为决策
提供依据。
CHAPTER 04
马尔可夫链分析法的应用实 例
人口迁移模型
描述人口迁移的动态过程
马尔可夫链分析法用于描述人口迁移的动态过程,通过分析人口在各个地区之间 的转移概率,预测未来人口分布情况。这种方法可以帮助政府和企业了解人口流 动趋势,制定相应的政策和计划。
《马尔可夫链讲》课件
在平稳分布下,系统的各个状态之间转移的次数趋于平衡,每个状态的平均逗留时 的 马尔可夫链,都存在至少一个平
稳分布。
存在性定理的证明基于遍历理论 ,即如果马尔可夫链是遍历的,
那么它必然存在平稳分布。
根据接受概率判断是否接受样本的技 术,可以提高样本的质量和效率。
接受-拒绝抽样技术
接受概率
根据目标分布和当前状态计算出的概率,用于判断是否接受当前状态 转移为下一个状态。
拒绝概率
根据当前状态和接受概率计算出的概率,用于判断是否拒绝当前状态 转移为下一个状态。
接受-拒绝抽样过程
根据当前状态和接受概率计算出接受该状态的概率,如果该概率大于 随机数,则接受该状态作为下一个状态,否则拒绝并重新抽样。
详细描述
马尔可夫链定义为一个随机过程,其 中每个状态只与前一个状态有关,当 前状态只依赖于前一时刻的状态,不 受到过去状态的影响。
马尔可夫链的应用场景
总结词
马尔可夫链在多个领域有广泛应用。
详细描述
在自然语言处理中,马尔可夫链可以用于生成文本、语言模型等;在金融领域 ,马尔可夫链可以用于股票价格预测、风险评估等;在物理学中,马尔可夫链 可以用于描述粒子运动、化学反应等。
模型训练与预测
模型选择
根据数据特点和业务需求选择合适的马尔可 夫链模型。
模型训练
使用历史数据训练马尔可夫链模型。
参数设置
根据经验和业务理解设置模型参数。
预测与推断
基于训练好的模型对未来或未知数据进行预 测和推断。
结果评估与优化
评估指标
选择合适的评估指标(如准确率、召回率、F1值等)对预测结果进行评估。
《马尔科夫链》课件
六、总结
优点与缺点
马尔科夫链具有简化模型、 易于计算的优点,但忽略了 过去信息和状态空间有限的 缺点。
应用前景
随着人工智能和数据科学的 发展,马尔科夫链在各个领 域的应用将得到更广泛的推 广。
发展趋势
未来马尔科夫链可能进一步 发展和改进,并与其他模型 和技术相结合,实现更强大 的应用。
《马尔科夫链》PPT课件
马尔科夫链是一种概率模型,常用于描述离散时间过程的转移规律。本课件 将详细介绍马尔科夫链的概述、基本概念、应用和常见问题,并通过实际案 例分析展示其重要性和应用前景。
一、概述
定义
马尔科夫链是一种离散时间、离散状态的随机过程,其未来状态仅依赖于当前状态。
特点
马尔科夫链具有无后效性、状态转移 Markov 性、齐次性和有限状态空间等特点。
1 自然语言处理
马尔科夫链可用于模拟语言模型、文本生成和自动翻译等。
2 计算机网络
马尔科夫链可以用来建立网络流量模型、分析网络性能和优化网络传输。
3 金融市场
马尔科夫链在金融市场中的应用包括股票价格预测、投资组合优化和风险管理。四、马尔科ຫໍສະໝຸດ 链的常见问题1收敛性
马尔科夫链是否会收敛到一个稳定状
长期行为
2
态?如何判断?
马尔科夫链在长期运行时会以何种形
式表现?
3
平稳分布
马尔科夫链是否存在一个平稳的状态 分布?如何计算?
五、马尔科夫链的实际案例分析
语音识别
马尔科夫链可用于语音识别系 统中,对语音信号进行建模和 识别。
股票涨跌预测
利用马尔科夫链分析历史股票 价格,预测未来股票价格的涨 跌趋势。
数学建模——马尔科夫链模型ppt课件
相应的转移矩阵 为:
0.4 0.4 0 0.2
M 0.1 0.3 0.6
0
0.7 0 0.2 0.1
0
0
0
1
且Sj+1=SjM
首先,任一转移矩阵的行向量均为概率向量,即有 (1)
(I , j=01,…P,ing )1
n
马氏链模型的性质完全由其转移矩 阵决定,故研究马氏链的数学工
(2) Pig 1 (i=1,…具,是n)线性代数中有关矩阵的理论。
1 1 0
1a0 2b0 1c0
.
即1ຫໍສະໝຸດ 11n 1
1
n1
x( n)
显然有 a0b0c01
(ii)第n代的分布与 第n-1代的分布之间的关系是通过表
5.2确定的。
(b)建模
根据假设(ii),先考虑第n代中的AA型。由于第n-1代的AA
型与AA型结合。后代全部是AA型;第n-1代的Aa型与AA型
结合,后代是AA型的可能性为 1/2,而 第n-1代的aa型与
AA型结合,后代不可能 是AA型。因此当n=1,2…时
j1
这样的矩阵被称为 随机矩阵。
.
常染色体遗传模型
在常染色体遗传中,后代从每个亲体的基因对中各继承一 个基因,形成自己的基因父时体,—基—因母对体也的称基为因基型因型。如果
我们所考虑的遗传特A征A是由AA两个AA基 因AaA和Aaa控制aa的,(A、
a为表示两类基因的符-号)-那么-就有三-种基-因对-,记为AA,
1 =1, 2 =1/2, 3 =0
.
因此 所以
1 0 0 1 1 1
D0 0
1
2 0
0,e10 0 0
马尔可夫链精品PPT课件
例2.1 (一维随机游动)
12345
设一随机游动的质点, 在如右上图所示的
直线点集I={1,2,3,4,5}作随机游动,并且仅仅在1秒,2秒
…等时刻发生游动.游动的概率规则是:如果Q现在位于点
i(1<i<5), 则下一时刻各以1/3的概率向左或向右移动
一格,或以1/3的概率留在原处; 如果Q现在位于点1(或5)
式.
利用积事件的概率及上述定义知: P{X0=i0,X1=i1,…,Xn=in} =P{Xn=in|X0=i0,X1=i1,…,Xn-1=in-1}P{X0=i0,X1=i1,…, Xn-1=in-1} =P{Xn=in|Xn-1=in-1}P{X0=i0,X1=i1,…,Xn-1=in-1} =… =P{Xn=in|Xn-1=in-1}P{Xn-1=in-1|Xn-2=in-2}…P{X1=i1| X0=i0}P{X0=i0}.
即马尔可夫链的统计特性完全由条件概率
P{Xn+1=in+1|Xn=in} 所决定. 如何确定这个条件概率,是马尔可夫链理论和应
用中的重要问题之一.
2.转移概率 条件概率P{Xn+1=j|Xn=i}的直观含义是:系统在时刻n处
于状态i的条件下,在时刻n+1系统处于状态j的概率.这相 当于随机游动的质点在时刻n处于状态i的条件下,下一步 转移到状态j的概率.
pij(n)为pij. 下面只讨论齐次马尔可夫链,并将齐次两字省略.
设I=P{为1,一2,步转移概率pij所组成的矩阵,状态空间
…},则 P=
p11 p12 … p1n … p21 p22 … p2n … … … … ……
pi1 pi2 … pin … …… … … …
5.2齐次马尔可夫链
第二节齐次马尔可夫链一、齐次马尔可夫链的概念一个随机过程{X n,n=0,1,2,…}就是一族随机变量,而X n能取的各个不同的值,则称为状态。
如果一个随机过程{X n,n=0,1,2,…},由一种状态转移到另一种状态的转移概率只与现在处于什么状态有关,而与在这时刻之前所处的状态完全无关,即如果过程{X n,n=0,1,2,…}中,X n+1的条件概率分布只依赖于X n的值,而与所有更前面的值相互独立,则该过程就是所谓马尔可夫(Markov)过程.马尔可夫链是指时间离散,状态也离散的马尔可夫过程.一个马尔可夫链,若从u时刻处于状态i,转移到t+u时刻处于状态j的转移概率与转移的起始时间u无关,则称之为齐次马尔可夫链,简称齐次马氏链。
如果把从状态i到状态j的一步转移概率记为p ij,则p ij=P{X n+1=j|X n=i},i,j=0,1,2,…,且有转移概率矩阵P,这样,一个齐次马氏链,可以由一个转移概率矩阵P以及在时刻零时状态x=0,1,2,…的概率分布列向量Q=(q(0),q(1),…)完全确定。
由齐次马氏链性质知道,第i状态的行向量A i与第i+1状态的行向量A i+1之间存在着关系式:A i+1=A i P。
二、齐次马氏链在评估教学质量中的应用教学过程是一个随机过程,也就是说,对于具有相同基础知识背景的学生(个体),在同时接受新知识时是随机的。
我们可以把一个班(群体)的学生划分为不同的等级(譬如:优、良、中、及格、不及格五个等级),近似地认为处于同一等级的学生具有相同的基础知识,用齐次马氏链,通过学生学习状态的转移概率矩阵,最终可以预测一个班学生学习成绩的稳定状态。
对教师而言,也就可用来评估、预测一个班的教学质量。
在教学效果指标的量化过程中,齐次马氏链评估法是将一个群体(如一个班或一个年级)的学生在某次考试中获得优(90分以上)、良(80~89分)、中(70~79分)、及格(60~69分)和不及格(59分以下)各等级学生人数占总人数之比,作为状态变量,并用向量表示之。
马尔科夫链模型及其应用PPT课件
n 时状态概率趋于稳定值,稳定值与初始状态无关
第9页/共27页
马尔科夫链:应用 保险公司
Xn=3为第三种状态 死亡
a1(n+1)=a1(n)p11+a2(n)p21+a3(n)p31 a2(n+1)=a1(n)p12+a2(n)p22+a3(n)p32 a3(n+1)=a1(n)p13+a2(n)p23+a3(n)p33
给定a(0),预测a(n), n=1,2…
设投保 时健康
n
0
a1(n) 1
a2(n) 0
1
2
3
……
0.8 0.78 0.778 …… 7/9
0.2 0.22 0.222 …… 2/9
设投保 时疾病
n
0
a1(n) 1
a2(n) 0
1
2
3
……
0.7 0.77 0.777 …… 7/9
0.3 0.33 0.333 …… 2/9
第15页/共27页
隐马尔科夫模型
一个隐马尔可夫模型 HMM 可用一个5元组描述:λ= { N, M,π, A,B }
N = {H1,…,Hn} 隐藏状态的有限集合 M = {O1,…,Om} 可观测状态的有限集合,可以通过训练集获得 π={πi} 为初始状态概率, A={aij} 为隐藏状态的转移矩阵 B={bik} 表示某个时刻因隐藏状态而可观察的状态的概率,即混淆矩阵 在状态转移矩阵和混淆矩阵中的每个概率都是时间无关的,即当系统演化时, 这些矩阵并不随时间改变。
Kiss
0.6*0.5
Star t
0.4*0.1
H 0.3
*0.7*0.4=0.084
第5章 马尔可夫链 PPT
=P{Xn+1=j|Xn=i} =pij 则称 这样的随机过程称为马尔可夫链.并称由此式刻画的马尔
0000…q0p
0000…001
(n+1)×(n+1)
例5.6(带反射壁的随机游动)在例5.5中当A输光时将获得
赞助1让他继续赌下去, 就如同一个在直线上做随机游
动的球在到达左侧0点处就立即反弹回1一样,这就是一
个一侧带有反射壁的随机游动.此时
0100…000
P=
q0p0…000 0q0p…000
……… ………
如果这个参保人一年中有k次理赔要求的概率是对于表中表示的好坏系统参保人相继的状态的转移概率矩阵为52ckchapmankolmogorov方程上节讨论了一步转移概率pij本节首先来定义n步转移概率它是状态处于i的过程在n次转移后处于状态j的概率即称条件概率为markov链的n步转移概率相应地称pn步转移概率指的就是系统从状态i经过n步后转移到j的概率它对中间的n1步转移经过的状态无限制
那么明天下雨的概率为α; 若今天没下雨,明天下雨的概
率为β.
如果下雨,记过程在状态0;如果不下雨,记过程在状态1.
如此,本例是一个两状态{0,1}的马尔可夫链,其转移概率
矩阵是: P=(pij)=
pp01=00
p01 p11
α 1-α β 1-β
马尔可夫链
例5.2(一个通讯系统)
第七讲马尔可夫链精品PPT课件
由所有n步转移概率 p ij ( n ) 构成n步转移概率矩阵
p11(n) p12(n) p1N(n)
P(n) p21(n) p22(n) p2N(n)
pN1(n) pN2(n) pNN(n)
0pij(n)1
N
pij (n) 1
j 1
为了数学处理便利,通常规定
1i j
p i( jm ,m ) P { X m a j|X m a i} ij 0i j
中 k 1 则
pij(1 )pij(m ,m 1 )pij
称为一步转移概率。
由所有一步转移概率 p ij 构成的矩阵
p11
P
p21
p12 p1N
p22
p2N
ቤተ መጻሕፍቲ ባይዱ
p
N1
pN2
pNN
0 pij 1
N
p ij 1
j 1
称为一步转移概率矩阵,简称转移概率矩阵。
2020/10/21
《随机信号分析》教学组
设 {X(n),n0,1 ,2,}为一马氏链,其状态空间
E{0,1,2,}或为有限子集。
令 p i(0 ) P [X (0 ) i], i E,且对任意的 i E
均有
pi (0) 0
pi (0) 1
iE
则称 {pi(0),iE}为该马氏链的初始分布,也称初始 概率。初始概率是马氏链在初始时间 n0时处于状 态i的概率。
Ppp1000
pp1011qp
q p
于是,两级传输时的概率转移矩阵等效于两步转移概 率矩阵为
P (2 ) P 2 q pq p q pq p p 2 2 pq 2qp 2 2 pq 2q
2020/10/21
马尔科夫链的状态分类PPT课件
n1
第10页/共52页
2.首次到达分解式
定理2 对任意i, j I 及 n 1,有
n
p(n) ij
f p (m) (nm)
ij
jj
证
m1
设系统从状态i经n步转移到状态j,
那么首次到达 j 的时间Tij n 由条件概率及马氏性得
n
p(n) ij
P{Xn
j | X0
i}
P{
Tij
m, X n
说明
本定理表示 n 步转移概率pi(jn) 按首次到达时间Tij = m
( m =1,2,…,n) 的所有可能值进行分解,
建立了
f (m) ij
与pi(jn)
之间的关系公式
定理3 fij 0 的充要条件是i j
证
充分性
设i
j
则存在某n
1
,使
p(n) ij
0
由定理2得
n
p(n) ij
f p (m) (nm)
定理4 若 fii 1,则系统以概率 1 无穷次返回 i;
若 fii 1 ,则系统以概率 1 只有有穷次返回 i。
证 若 fii 1 则系统从状态i出发,经过有限次转移之后,
必定以概率1返回状态i。 再由马氏性 系统返回状态i要重复发生
第14页/共52页
这样,系统从状态i出发,又返回,再出发,再返 回,随着时间的无限推移,将无限次访问状态i。
证 记C为全体常返态所构成的集合,
N S C 为瞬时态全体 则由定理7知C为闭集
将C按互通关系分类:在 C 中任取一个状态i1 ,
凡是与 i1 互通的状态组成一个集合,记为 C1 ;
在组成C1
后,如果还有余下的状态,那么再从余下的状态 中任取一个状态 i2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如果把从状态i 到状态 j 的一步转移概率记为pij,则 pij=P{Xn+1=j| Xn=i},i,j=0,1,2,…,且有转移概率矩阵P,
3
第二次考试成绩分布状态
按照这个变化规律,第三次考试成绩分布状态
即在第三次考试后,学生中优等、良等的人数减少了,而中等的人数 和及格的人数却在增加。这样,就可以分析这组学生群体的变化状态。设 该过程的平稳状态分布列为X,由于
(E-P)TX=0,
4
从而可以断定,最终只有中等和及格两等级的学生,其人数分别占总 数的 56%和 44%。
三、齐次马氏链在评估解题状态中的应用
解决问题是数学教育的一项主要任务。如果能够把一个题目,按学生 解题的认知过程的发展,分解成几个不同层次的状态,那么就可以用齐次 马氏链去测量一个群体(如一个班或一个年级的学生)解决问题的能力与 状况。
首先,我们认为解决一个问题的过程是由分析S1、设计S2、探究S3、 实施S4 和验证S5 这样五个状态组成的,并且这五个状态存在如图 5-2 的 关系。分成了上面五个状态,我们可以认为解决问题的后一状态只与它的 前一个状态有关,而与它的更前面的状态无关。这就完全符合齐次马氏链 所要求的条件。
5
图 5-2 的关系流程图,存在一个状态转移概率矩阵
其中p23+p24=1,p31+p32=1。 如果图 5-2 的关系流程图第 i 阶段的行向量为
由于
Ai=(a1,a2,a3,a4,a5),
A0=(1,0,0,0,p23,p24,0),
A0=(1,0,0,0,0), A1=(0,1,0,0,0),
同样,其余各个等级的学生的考试成绩转移情况是
向量中nij(i,j=1,2,3,4,5)表示从状态 i 变成状态j 的人数。 这一转移情况用矩阵表示为
2
P 为转移概率矩阵,简称转概阵。
符合齐次马氏链学习状态转移概率矩阵的学生学习成绩最终必然趋 于平稳状态
即 X=X·P,
X=(x1,x2,x3,x4,x5),
在教学效果指标的量化过程中,齐次马氏链评估法是将一个群体(如 一个班或一个年级)的学生在某次考试中获得优(90 分以上)、良(80~89 分)、中(70~79 分)、及格(60~69 分)和不及格(59 分以下)各等级学生 人数占总人数之比,作为状态变量,并用向量表示之。即
1
R(t)=(X1(t),X2(t),X3(t),X4(t),X5(t)),
这样,一个齐次马氏链,可以由一个转移概率矩阵 P 以及在时刻零时 状态x=0,1,2,…的概率分布列向量
Q=(q(0),q(1),…)
完全确定。由齐次马氏链性质知道,第 i 状态的行向量Ai 与第i+1 状态的行向量Ai+1 之间存在着关系式:Ai+1=AiP。
二、齐次马氏链在评估教学质量中的应用
教学过程是一个随机过程,也就是说,对于具有相同基础知识背景的 学生(个体),在同时接受新知识时是随机的。我们可以把一个班(群体) 的学生划分为不同的等级(譬如:优、良、中、及格、不及格五个等级), 近似地认为处于同一等级的学生具有相同的基础知识,用齐次马氏链,通 过学生学习状态的转移概率矩阵,最终可以预测一个班学生学习成绩的稳 定状态。对教师而言,也就可用来评估、预测一个班的教学质量。
第二节 齐次马尔可夫链
一、齐次马尔可夫链的概念
一个随机过程{Xn,n=0,1,2,…}就是一族随机变量,而 Xn 能取 的各个不同的值,则称为状态。如果一个随机过程{Xn,n=0,1,2,…}, 由一种状态转移到另一种状态的转移概率只与现在处于什么状态有关,而 与在这时刻之前所处的状态完全无关,即如果过程{Xn,n=0,1,2,… } 中,Xn+1的条件概率分布只依赖于Xn 的值,而与所有更前面的值相互独 立, 则该过程就是所谓马尔可夫(Markov)过程.
A3=A2P=(p31p23,p23p32,0,0,p24),
p24(P23P32+1)。
应用齐次马氏链的关键在于找到一个转移概率矩阵中的 pij,这就要从 两个方面去控制,一是通过具体题目的解题过程划分几个不同状态(这一 点相对来说是比较困难的),二是通过解题时间来控制解题过程,以分析 整个群体a 的解题状态。例如,要求 40 名学生在 10 分钟内完成一个题目: 求证:P1(2,3),P2(4,6),P3(66,9)三点共线。
由于齐次马氏链与t 时刻前的状态无关(呈无后效性),可以研究当 t 变化时,状态向量 R(t)的变化规律,从而对教学效果进行评估。
设经第一次考试,一个班n 个学生中,优、良、中、及格、不及格的 学生数分别为ni(i=1,2,3,4,5),则状态向量
称作初始向量。为考察教学效果,继续分析下一次考试时,上述学生 的等级变化。若经第二次考试后,原来获优等成绩的n1 名学生中,仍保 持优等的是n11 人,转化为“良”,“中”,“及格”,“不及格”的学 生分别有n12,n13,n14,n15人,于是,第一次考试成绩优等的学生考试成 绩转移情况是
也即 X(E-P)=0,
解此线性方程组,可得状态 R(t)时学生学习成绩的平稳分布 X。 下面,我们仍以第一节表 5-1 中的 15 名学生的成绩为例,分析这一 群体在两次考试中学生等级的变化。按优、良、中、及格、不及格五等划 分,分别是 2 人、4 人、4 人、5 人和 0 人,因此,
各个等级学生转移情况分别是
当然,对于这个题目,如何比较客观去分析解题状态,即究竟做到哪 一步才是从分析S1 到设计S2,哪一步才算是从设计S2 到实施S4,这是比 较困难的。但是,如果运用时间去控制解题状态,还是切实可行的。设 8 分钟以后,有 30 名学生圆满地证明了这个题目,剩下的 10 名学生中,经 过老师的适当提示,又有 6 名学生完成了该题。这样对照关系流