Nanomaterial-based electrochemical

合集下载

高密度阳极铝电解槽电

高密度阳极铝电解槽电

第 54 卷第 2 期2023 年 2 月中南大学学报(自然科学版)Journal of Central South University (Science and Technology)V ol.54 No.2Feb. 2023高密度阳极铝电解槽电−热场耦合仿真研究魏兴国1,廖成志1,侯文渊1, 2,段鹏1,李贺松1(1. 中南大学 能源科学与工程学院,湖南 长沙,410083;2. 中北大学 能源与动力工程学院,山西 太原,030051)摘要:在铝电解槽中,阳极炭块内存在的气孔会降低炭块的导电和导热性能,并且增加炭渣,降低电流效率,导致炭耗和直流电耗升高。

通过浸渍工艺得到的高密度阳极可以有效地降低炭块的气孔率。

为了探究高密度阳极铝电解槽的电−热场变化和影响,基于ANSYS 软件建立高密度阳极铝电解槽的电−热场耦合计算模型。

研究结果表明:铝电解槽高密度阳极炭块的平均温度上升8.73 ℃,热应力增加,但形变量减小;侧部槽壳的平均温度下降28.59 ℃,热应力和形变量均降低,有利于保持槽膛内形稳定;热场变化主要与阳极炭块物性改变有关;槽电压降低49.16 mV ,主要与炭块物性改变和电解质电阻率降低有关;高密度阳极电流全导通时间缩短3.39 h ,可有效减弱换极产生的负面影响,阳极使用寿命可延长4 d ,炭耗降低10.3 kg/t ;铝电解槽反应能耗占比增加0.62%,电流效率提高1.69%,直流电耗降低270 kW·h/t 。

关键词:铝电解槽;高密度阳极;电−热场;耦合仿真中图分类号:TF821 文献标志码:A 文章编号:1672-7207(2023)02-0744-10Simulation study of electric-thermal field coupling in high-densityanode aluminum electrolyzerWEI Xingguo 1, LIAO Chengzhi 1, HOU Wenyuan 1, 2, DUAN Peng 1, LI Hesong 1(1. School of Energy Science and Engineering, Central South University, Changsha 410083, China;2. School of Energy and Power Engineering, North University of China, Taiyuan 030051, China)Abstract: In aluminum electrolytic cells, porosity in anode carbon blocks can reduce the electrical and thermal conductivity of the blocks and increase carbon slag, reduce current efficiency and lead to higher carbon consumption and DC power consumption. High-density anodes obtained by impregnation process can effectively reduce the porosity of carbon blocks. In order to investigate the electric-thermal field variation and the causes of influence in the high-density anode aluminum electrolyzer, a coupled electric-thermal field calculation model of收稿日期: 2022 −07 −11; 修回日期: 2022 −08 −20基金项目(Foundation item):国家高技术研究发展项目(2010AA065201);中南大学研究生自主探索创新项目(2021zzts0668)(Project(2010AA065201) supported by the National High-Tech Research and Development Program of China; Project (2021zzts0668) supported by the Independent Exploration and Innovation of Graduate Students in Central South University)通信作者:李贺松,博士,教授,博士生导师,从事铝电解研究;E-mail:****************.cnDOI: 10.11817/j.issn.1672-7207.2023.02.032引用格式: 魏兴国, 廖成志, 侯文渊, 等. 高密度阳极铝电解槽电−热场耦合仿真研究[J]. 中南大学学报(自然科学版), 2023, 54(2): 744−753.Citation: WEI Xingguo, LIAO Chengzhi, HOU Wenyuan, et al. Simulation study of electric-thermal field coupling in high-density anode aluminum electrolyzer[J]. Journal of Central South University(Science and Technology), 2023, 54(2): 744−753.第 2 期魏兴国,等:高密度阳极铝电解槽电−热场耦合仿真研究the high-density anode aluminum electrolyzer was established based on ANSYS software. The results show that the average temperature of the anode carbon block increases by 8.73 ℃ when the high-density anode is put on the tank, and the thermal stress increases but the deformation variable decreases. The average temperature of the side shell decreases by 28.59 ℃, and the thermal stress and deformation variable both decrease,which helps to protect the inner shape of the tank chamber stable. The change of the thermal field is mainly related to the change of the physical properties of the anode carbon block. The cell voltage decreases by 49.16 mV which is mainly related to the change of carbon block physical ploperties and the decrease of electrolyte resistivity, respectively. The reduction of 3.39 h in the full conduction time of high-density anode current can effectively reduce the negative effects of electrode change, and the anode service life can be extended by 4 d. The carbon consumption is reduced by 10.3 kg/t. The reaction energy consumption of aluminum electrolyzer is increased by 0.62%, the current efficiency is increased by 1.69%, and the DC power consumption is reduced by 270 kW·h/t.Key words: aluminum electrolyzer; high-density anode; electric-thermal field; coupling simulation作为铝电解槽的核心部件,阳极炭块在反应过程中被不断消耗,其品质直接影响着各项经济技术指标[1]。

锂离子电池高镍三元正极材料LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)研究进展

锂离子电池高镍三元正极材料LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)研究进展
Li Yue-zhu1, Huang Xing-wen1, Liao Song-yi2, Liu Yi-dong1, Min Yong-gang1
(1. School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; 2. College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China)
钴酸锂 一般
一般
尚可
较高 热稳定性好
NCM811 最高
一般
一般
最高 易热分解
而富镍层状的镍钴锰酸锂(LiNixCoyMn1-x-yO2(简 称NCM,0 <x,y <1)三元材料虽然也存在缺陷,比如 稳定性较差、安全性能不高等,但因其其他方面性能 相对均衡,兼具有能量密度高、功率密度高、环境友 好等特点被建议作为具有前途的正极材料应用到下 一代锂离子电池中[20-24]。在三元材料中,只有镍和钴 具有电化学活性,锰的存在只是为了稳定晶体结构,
Key words: lithium-ion battery; high nickel ternary cathode material; LiNi0.8Co0.1Mn0 O .1 2 (NCM811); modification technology; conductive additive
由于全球气候变暖备受人们广泛关注,开发可 持续能源是急需的[1-5],在未来可持续再生能源将会
1.2 NCM811的合成方法 三元NCM811正极材料合成的关键技术在于其

冶金工程专业英语词汇

冶金工程专业英语词汇

冶金工程专业英语词汇1. 冶金学冶金学是冶金工程专业的核心课程,主要讲授钢铁冶金和有色金属冶金过程的基本原理、工艺及装备,包括炼铁、炼钢、精炼、连铸、铝冶金、铜冶金、稀土冶金等内容。

中文英文冶金学metallurgy钢铁冶金iron and steel metallurgy有色金属冶金nonferrous metal metallurgy炼铁ironmaking炼钢steelmaking精炼refining连铸continuous casting铝冶金aluminum metallurgy铜冶金copper metallurgy稀土冶金rare earth metallurgy高炉blast furnace转炉converter电炉electric furnace真空精炼vacuum refining钢包ladle结晶器crystallizer铝电解槽aluminum electrolytic cell铜闪速熔炼copper flash smelting稀土萃取分离rare earth extraction and separation熔盐电解法molten salt electrolysis method冶炼产品smelting products生铁pig iron钢水molten steel铝锭aluminum ingot铜阳极泥copper anode slime稀土氧化物rare earth oxides冶炼渣smelting slag炉渣性质slag properties脱硫desulfurization脱磷dephosphorization脱氧deoxidation合金化alloying溅渣护炉splashing slag lining protection终点控制endpoint control中文英文出钢操作tapping operation凝固传热机制solidification heat transfer mechanism凝固结构与缺陷solidification structure and defects氧化还原反应oxidation-reduction reaction造渣反应与造渣制度slagging reaction and slagging system2. 冶金物理化学冶金物理化学是冶金工程专业的基础理论课程,主要讲授冶金过程中涉及的物理化学原理和方法,包括平衡与相图、溶液理论、电化学、表面与胶体化学、传递现象等内容。

钴、氮共掺杂碳纳米复合材料的制备及其在锂硫电池中的应用

钴、氮共掺杂碳纳米复合材料的制备及其在锂硫电池中的应用

第34卷第5期2020年10月 江苏科技大学学报(自然科学版)JournalofJiangsuUniversityofScienceandTechnology(NaturalScienceEdition) Vol 34No 5Oct.2020 DOI:10.11917/j.issn.1673-4807.2020.05.015钴、氮共掺杂碳纳米复合材料的制备及其在锂硫电池中的应用陈 磊,张春洋,宋锦波,袁爱华(江苏科技大学环境与化学工程学院,镇江212100)摘 要:随着能源短缺和环境污染等问题的日益严峻,寻找和开发创新型、高效、环保的电化学储能体系成为近年来的研究热点.与传统碳材料相比,钴基复合材料因具有优异的理论比容量、较好的导电性及稳定的机械特性,在储能领域得到了广泛应用.以Co,Zn-ZIF为前驱体,将SiO2均匀地包覆在Co,Zn-ZIF表面,合成了具有核壳结构的Co,Zn-ZIF@SiO2;在N2气氛下经高温碳化及后续刻蚀处理得到了钴、氮共掺杂碳纳米复合材料(Co-N-C).将其作为锂硫电池的正极材料,当载硫量为60%时,在电流密度为0 5C下,该电极材料充放电循环100圈后可以达到583 1mA·h·g-1的稳定容量,循环200圈后放电容量仍可维持在522 7mA·h·g-1.该复合材料较为突出的电化学性质可归因于高导电性的金属钴和氮原子的掺杂以及类似蛋黄壳的中空结构.关键词:钴基复合材料;金属有机骨架化合物;锂硫电池中图分类号:TB34 文献标志码:A 文章编号:1673-4807(2020)05-098-06收稿日期:2019-07-18 修回日期:2020-01-17基金项目:国家自然科学基金青年资助项目(21601070)作者简介:陈磊(1986—),男,副教授,研究方向为功能配合物的磁、电性能研究.E mail:chenlei@just.edu.cn 通信作者:袁爱华(1968—),女,教授,研究方向为纳米材料化学.E mail:aihua.yuan@just.edu.cn引文格式:陈磊,张春洋,宋锦波,等.钴、氮共掺杂碳纳米复合材料的制备及其在锂硫电池中的应用[J].江苏科技大学学报(自然科学版),2020,34(5):98-103.DOI:10.11917/j.issn.1673-4807.2020.05.015.Preparationofcobaltandnitrogenco dopedcarbonnanocompositesforlithium sulfurbatteryCEHNLei,ZHANGChunyang,SONGJinbo,YUANAihua(SchoolofEnvironmentalandChemicalEngineering,JiangsuUniversityofScienceandTechnology,Zhenjiang212100,China)Abstract:Withtheincreasinglysevereenergyshortageandenvironmentalpollution,thesearchanddevelopmentofinnovative,efficientandenvironmentallyfriendlyelectrochemicalenergystoragesystemshasbecomearesearchhotspotinrecentyears.Comparedwithtraditionalcarbonmaterials,cobalt basedcompositeshavebeenwidelyusedinenergystoragebecauseoftheirexcellenttheoreticalspecificcapacity,goodelectricalconductivityandstablemechanicalproperties.Inthispaper,usingCo,Zn-ZIFasprecursor,silicawasuniformlycoatedonCo,Zn-ZIFsurfacetosynthesizeCo,Zn-ZIF@SiO2withcore shellstructure,andthenafterhightemperaturecalcinationtreatmentinnitrogenatmosphereandetching,cobaltandnitrogenco dopedcarbonnanocomposites(Co-N-C)wereobtained.Whentheyareusedasthecathodematerialoflithium sulfurbatteries,ifthesulfurloadingis60%,thecurrentdensityis0.5C,thestablecapacityoftheelectrodematerialcanreach583 1mA·h·g-1after100cycles,andthedischargecapacitycanstillbemaintainedat522 7mA·h·g-1after200cycles.Theprominentelectrochemicalpropertiesofthecompositecanbeattributedtothedopingofcobaltandnitrogenatomswithhighconductivityandthehollowstructureofyolk shell.Keywords:cobalt basedcompositematerial,MOFs,lithium sulfurbattery 为了满足日益增长的能源需求和大型储能设备市场的应用,人们对长寿命、高能量密度的可充电锂离子电池(LIBs)提出了更高的要求.在各类可充电电池系统中,锂硫电池因其高理论容量(1675mA·h·g-1)和能量密度(2600W·h·kg-1)而备受关注[1].在锂电池材料中,硫正极材料的含量丰富、成本低廉和环保型使LIBs在商业上具有更大的竞争力.但是,锂硫电池具有低实际容量、快速的容量衰减和低库仑效率等缺点.另外,硫及其放电产物的绝缘性会限制了硫的电化学利用,而且生成的中间多硫化物容易扩散到电解液中,导致绝缘性差以及较低的硫的利用率,从而在充放电过程中产生穿梭效应[2].为了解决上述问题,国内外研究者采取了各种方法来减少穿梭效应,包括开发正极材料、电解质和保护阳极的思路,以提高锂电池的整体性能.目前最有前景的方法是将硫与各种多孔碳基质高效结合,包括微/介孔碳、多孔空心碳纳米球、碳纳米纤维/纳米管和石墨烯等.具有高表面积的多孔碳可以提供大的孔体积来封装硫和作为电子传输的导电网络将多硫化物中间产物困与孔内.文献[3]使用ZIF-8衍生的微孔碳多面体作为载硫基质,其初始容量高达1500mA·h·g-1.文献[4]通过在氧化石墨烯上原位生长ZIF-8和ZIF-67,在高温处理后形成氮掺杂多孔碳/石墨烯(NPC/G)混合物.高导电石墨烯不仅提供了一个相互连接的导电框架,以促进快速的电子传输,而且作为一个建筑单元以支撑金属有机骨架材料(MOF)衍生的碳.由于多孔碳具有丰富的孔结构和氮掺杂特性,使其对多硫化物具有物理限制和化学吸附两种性质.将其作为锂硫电池正极材料,循环超过300次仍能维持良好的稳定性,比容量高达1372mA·h·g-1,说明MOF衍生碳材料和石墨烯复合结构的设计可以提高锂硫电池的电性能.最近有报道称,导电金属具有高效的聚硫介质,能够影响表面聚硫穿梭过程,从而增强氧化还原化活性.因此当导电金属被用于锂硫电池时具有较好的循环稳定性.文献[5]合成了一种含有钴和氮掺杂石墨碳的ZIF-67衍生硫宿主,作为高效基质来截存多硫化物,在大电流下500圈循环后仍具有良好的循环稳定性.文献[6]通过回流法制备了新型双金属Zn,Co-MOF-5,将其碳化转化为具有较大表面积的钴@石墨碳多孔复合材料(Co@GC-PC).Co@GC-PC具有较大的表面积和足够的介孔,使其能够吸附多硫化物,而电子传导则来源于分布良好的钴和石墨碳.密度泛函理论计算也进一步表明,钴单质促进了硫化物的分解.当其作为硫的载体时,在0 2C(1C=1675mA·h·g-1)的电流密度下,经过220圈循环后仍能维持高可逆容量(790mA·h·g-1).文中利用Co,Zn-ZIF前驱体和二氧化硅保护煅烧策略合成了钴、氮共掺杂碳纳米复合材料(Co-N-C).在合成的过程中(图1),先将Co,Zn-ZIF前驱体表面包覆二氧化硅后再进行高温热解,在氮气氛围下高温(900℃)碳化处理,单质锌将随之挥发.同时,其包覆MOF的方法可以有效防止高温条件下产物的聚集.最后,通过氢氟酸刻蚀表面的二氧化硅和裸露在外面未被保护的钴单质,进而制备Co-N-C并将该材料作为硫的载体.S/Co-N-C的复合物在应用为锂硫电池的正极材料时,显示出优异的电化学性能.图1 基于SiO2保护煅烧策略的Co-N-C合成示意Fig.1 SyntheticprocedureoftheCo-N-CbytheSiO2-protectedcalcinationstrategy1 实验1 1 试剂硝酸钴,硝酸锌,2-甲基咪唑,无水甲醇,十六烷基三甲基溴化铵,硅酸四乙酯(上海萨恩化学技术有限公司,分析纯);氢氧化钠,氢氟酸,无水乙醇(国药集团有限公司,分析纯);聚偏氟乙烯(PVDF);双三氟甲基磺酸亚酰胺锂(LiTFSI);去离子水.1 2 材料制备1 2 1 Co,Zn-ZIF的合成将16mmol的Co(NO3)2·6H2O和16mmol的Zn(NO3)2·6H2O溶解在200mL的无水甲醇中,将128mmol的2-甲基咪唑溶解于200mL的无水甲醇中,分别搅拌30min.然后将金属盐溶液缓慢添加到2-甲基咪唑溶液中,室温搅拌4h.通过离心收集产物并用无水甲醇清洗.1 2 2 Co,Zn-ZIF@SiO2的合成将所得样品(300mg)超声分散在120mL的H2O中,搅拌30min后加入75mg的十六烷基三甲基溴化铵和30mg的氢氧化钠.然后继续搅拌30min,将0 6mL的硅酸四乙酯逐滴加入上述溶液中,反应1h后迅速离心.产物用水和无水乙醇99第5期 陈磊,等:钴、氮共掺杂碳纳米复合材料的制备及其在锂硫电池中的应用分别清洗3次.1 2 3 Co-N-C的合成将干燥好的样品置于管式炉中,在氮气氛围下,以1℃/min的加热速率缓慢升至900℃并维持4h.将所得到的黑色产物Co-N-C@SiO2超声分散在氢氟酸(5%)的水溶液中刻蚀6h,用来去除二氧化硅以及表面未被保护的钴单质.用大量的水和无水乙醇润洗Co-N-C,抽滤至中性,烘干待用.1 2 4 S/Co-N-C的合成将Co-N-C与硫单质按质量比4∶6进行混合,在玛瑙研钵中充分研磨30min使其混合均匀,然后转移至密闭的小瓶中155℃加热12h,获得S/Co-N-C.1 3 材料表征采用X射线衍射仪(XRD,Cu靶(λ=1 5418),U=40kV,I=30mA)测定产物的物质结构,扫描角度为10~80°之间,扫率为5°/min.用场发射扫描电子显微镜(SEM)和透射电子显微镜(TEM)分别观察表面形貌和微观结构.X射线光电子能谱(XPS)用来分析样品组成和价态结构.使用热重分析仪器(TG)分析产物的热分解行为,测试温度为室温~600℃之间,升温速度10℃/min,在氮气氛围下进行.1 4 电化学性能测试将S/Co-N-C样品与科琴黑和PVDF在8∶1∶1的质量比混合均匀,与N-甲基吡咯烷酮(NMP)为分散剂,混合成粘度适当的浆料.随后把浆料均匀的涂在铝箔上,并在真空干燥箱中55℃下干燥.利用打孔机将铝箔裁成圆片电极( =12mm),组装成纽扣式半电池,该半电池组装在充满氩气的手套箱中,水和氧浓度均低于1×10-6.以金属锂作为对电极,Celgard2400薄膜作为隔膜,电解液由1 0mol/LLiTFSI的乙二醇二甲醚(DME)和1,3-二氧戊环(DOL)溶液组成(体积比为1∶1,其中含有0 2%的添加剂LiNO3).将组装完的电池静置16h后待测,在1 7~2 8V(相对于Li/Li+)的电压范围内,通过蓝电测试系统(LANDCT-2001A)进行恒流充放电测试.所有的容量都是根据正极材料的硫质量来计算.2 结果与讨论2 1 Co-N-C和S/Co-N-C的物相与结构分析 图2为Co,Zn-ZIF和Co,Zn-ZIF@SiO2的XRD图谱.Co,Zn-ZIF的特征峰比较尖锐,表明成功合成了高结晶度的MOF,与文献[7]报道的图谱相吻合.经过正硅酸四乙酯在碱性条件下的水解缩合,由图可以看出包覆完二氧化硅后的XRD图仍呈现的是Co,Zn-ZIF的衍射峰,这主要是由于二氧化硅是无定型材料.图3为单质硫、Co-N-C以及S/Co-N-C的XRD图谱.Co-N-C的衍射峰在2θ=26°和45°处有两个明显的宽峰,对应于石墨碳的(002)和(100)晶面[8].S/Co-N-C和单质硫具有相同的物相,复合物中所有的衍射峰与单质硫粉的衍射峰相匹配.图2 Co,Zn-ZIF与Co,Zn-ZIF@SiO2的XRD图谱Fig.2 XRDpatternsofCo,Zn-ZIFandCo,Zn-ZIF@SiO2图3 单质硫粉、Co-N-C以及S/Co-N-C的XRD图谱Fig.3 XRDpatternsofsulfur,Co-N-CandS/Co-N-C图4为所制备样品的扫描电镜和透射电镜图片以及元素分析.图4 样品的扫描电镜和透射电镜图片以及元素分析Fig.4 SEMandTEMimagesofthesamplesandtheelementalmappingdistributionofS/Co-N-C如图4(a)中,Co,Zn-ZIF显示出均匀的菱形多面体形貌和光滑的颗粒表面.从透射图片(图4(b))可以看出其平均尺寸约为100nm.通过二氧001江苏科技大学学报(自然科学版)2020年化硅的包覆之后,Co,Zn-ZIF@SiO2没有发生结构的变化,仍然维持着原有的颗粒感,显示出核壳结构且表面趋于球形形貌,外壳的厚度约为10nm(图4(c)、(d)和(f)).随后在惰性气体下高温碳化和刻蚀后将Co,Zn-ZIF@SiO2转化为Co-N-C,由图4(e)的扫描图片可以看出前驱体经过煅烧处理以及除去二氧化硅后保持着较好的分散性且大小均一.从图4(f)的透射电镜图像可以看出Co-N-C仍保持完整的Co,Zn-ZIF骨架结构.值得注意的是该材料转化为类似蛋黄壳结构,这种中空结构更有利于较大的体积进行载硫,其平均粒径约为100nm.图4(g)是S/Co-N-C的元素分布图,从图中可以看出该样品均匀分布着C、Co、N、S4种元素,进一步证实成功制备了该复合材料.利用X射线光电子能谱(XPS)分析了S/Co-N-C的表面化学组成.从全谱图中(图5(a))表明主要元素为钴、氧、氮、碳、硫.钴的特征峰并不是很清晰,这是由于大部分钴都处于碳基体的内部且含量较少.Co2p的精细谱中位于780 8eV和795 9eV处的两个特征峰归因于金属钴[9],如图5(b).图5(c)中N1s的精细谱可分成3个组分,包括吡啶氮(398 5eV)、吡咯氮(400 0eV)、石墨化氮(400 7eV),其中吡咯型氮和吡啶型氮主要的作用来束缚多硫化锂来减小穿梭效应,进而提高锂硫电池的性能[10].S2p通过分峰拟合可以分成3个峰(图5(d)),S2p3/2和S2p1/2的组分与S-S物种的存在有关,它们的结合能分别为163 8eV和165 0eV.168 6eV处出现的宽峰与硫酸盐物种有关[11-12].图5 S/Co-N-C的XPS图谱Fig.5 XPSspectraoftheS/Co-N-C图6为S/Co-N-C复合材料在氮气氛围下,以10℃/min的加热速率下所测试的热重曲线.从图可以看出在150~280℃之间有着明显的质量损失,这主要归因于大孔和表面硫的蒸发.在280~400℃之间也有较小的质量损失平台,这主要是由于内部或者较小孔内硫分子的蒸发.数据结果进一步表明其载硫量为60%[13].图6 S/Co-N-C复合材料的热重曲线Fig.6 TGAcurveofS/Co-N-Ccomposites2 2 电化学性能分析将S/Co-N-C复合材料作为锂硫电池的正极材料,平均载硫量为1 2mg·cm-2,组装成纽扣式半电池对其进行相应的电化学性能测试,如图7.图7 S/Co-N-C复合材料的电化学性能Fig.7 ElectrochemicalpropertiesofthecompositesofS/Co-N-C101第5期 陈磊,等:钴、氮共掺杂碳纳米复合材料的制备及其在锂硫电池中的应用图7(a)为电压区间在1 7~2 8V,电流密度为0 5C(1C=1675mA·h·g-1)时,电极材料的循环性能图.结果表明,S/Co-N-C展现了优异的循环稳定性,当其载硫量为60%时,该正极材料可提供高达803 9mA·h@g-1的初始可逆容量,100圈充放电循环之后仍能维持583 1mA·h·g-1的稳定容量,循环200圈后放电比容量可以达到522 7mA·h·g-1.该正极材料的每圈容量衰减在0 17%左右,可逆容量不可避免的衰减主要是由于穿梭效应.为了进一步评估该电极材料的电化学性能,也对其在不同电流密度下进行了倍率性能的测试(图7(b)).S/Co-N-C在0 1C的电流密度下可提供高达1265 7mA·h·g-1的放电比容量,第二圈略有下降至1072 5mA·h·g-1.在电流密度增加至0 2C、0 5C、1 0C、2 0C时,电极材料的可逆容量分别为804 2mA·h·g-1、693 5mA·h·g-1、601 5mA·h·g-1、525 5mA·h·g-1.当电流密度降至0 2C下,循环50圈后,其放电比容量可恢复至787 7mA·h·g-1.从结果可以发现该材料在不同电流密度下均表现出良好的电化学稳定性.图7(c)是电压窗口为1 7~2 8V,大电流密度为0 5C时,前三圈的充放电曲线图,用来分析该正极材料在充放电过程的电化学反应.首圈充放电时放电平台与后两圈的平台存在较大的差异,这是在第一次充放电过程中正极材料存在比较大的极化现象,之后的两圈充放电时极化反应减小,可以看到随后两圈的放电曲线也恢复至正常的平台.第二圈的放电曲线显示出典型的两个平台,分别处于2 3V和2 1V[14].在2 3V的电压平台与S8向可溶性长链多硫化物(Li2Sn,4≤n≤8)的转变有关,而在2 1V的电压平台则与可溶性长链Li2Sn进一步还原为不溶性短链多硫化物(Li2Sn,n<4)相对应[15-16].另外,第二圈充电曲线平台与上述相反的形式有关,代表着多硫化物向硫转变的过程[17].尽管在0 5C的大电流密度下,第二圈和第三圈的充放电曲线较好的重合且平台清晰可见,说明该材料的优异循环稳定性[18].锂硫电池中低的硫含量会展现出较高的放电比容量,然而极片的载硫量小于2mg/cm2会降低其实际能量密度[19].考虑到高面积容量对于锂硫电池实际应用的重要性,文中也探究了高载硫量电极的循环性能,如图8.将S/Co-N-C材料涂覆成厚膜电极(载硫量约2 4mg/cm2),在0 1C电流密度下循环100圈后其放电比容量为350 4mA·h·g-1,将电流密度增至0 2C再循环100圈后放电比容量仍能达到278 4mA·h·g-1.S/Co-N-C正极材料的优良电化学性能主要是由于其特殊的组分和结构.首先,嵌入的钴纳米粒子提供了吸附多硫化物的强相互作用,可大大提高多硫化物的氧化还原反应动力学.其次,类似蛋黄壳的中空结构对于硫的大装载率的包封和物理约束很有效.最后,氮掺杂碳具有高导电性,能够高效的束缚多硫化锂的溶出,减小穿梭效应,从而提高硫的利用率,进一步稳定锂硫电池的电化学循环性能和高比容量.图8 在0 1C和0 2C的电流密度下,载硫量为2 4mg/cm2的循环性能Fig.8 Cyclingperformanceof2 4mg/cm2sulfurloadingatcurrentdensitiesof0 1Cand0 2C3 结论以双金属Co,Zn-ZIF为前驱体,通过高温碳化和刻蚀工艺合成了类似蛋黄壳中空结构的Co-N-C复合材料.将其作为高性能锂硫电池载硫体,S/Co-N-C由于合理的纳米结构和组分,具有很高的可逆比容量,良好的倍率性能和超长的循环稳定性.值得注意的是,S/Co-N-C正极材料(高面积载硫量为2 4mg·cm-2)在200圈后仍显示出稳定的循环性能.在该工作中,金属源和氮掺杂的碳材料有利于提高复合材料的导电性,而中空的结构则有利于存储单质硫和缓冲体积的膨胀,为获得高性能锂硫电池提供了新的思路.参考文献(References)[1] LIZhen,ZHANGJintao,GUANBuyuan,etal.Asulfurhostbasedontitaniummonoxide@carbonhollowspheresforadvancedlithium sulfurbatteries[J].Na tureCommunications,2016(7):13065-13076.DOI:10.1038/ncomms13065.[2] BAOWZ,LIUL,WANGCY,etal.Facilesynthesisofcrumplednitrogen dopedmxenenanosheetsasanewsulfurhostforlithium sulfurbatteries[J].Ad201江苏科技大学学报(自然科学版)2020年vancedEnergyMaterials,2018,8(13):1702485.DOI:10.1002/aenm.201702485.[3] LIXX,ZHENGSS,JINL,etal.Metal organicframework derivedcarbonsforbatteryapplications[J].AdvancedEnergyMaterials,2018,8(23):1800716.DOI:10.1002/aenm.201800716.[4] CHENK,SUNZH,FANGRP,etal.Metal OrganicFrameworks(MOFs) derivednitrogen dopedporouscarbonanchoredongraphenewithmultifunctionaleffectsforlithium sulfurbatteries[J].AdvancedFunctionalMaterials,2018,28(38):1707592.DOI:10.1002/adfm.201707592.[5] LIYJ,FANJM,ZHENGMS,etal.Anovelsyner gisticcompositewithmulti functionaleffectsforhighperformanceLi-Sbatteries[J].Energy&EnvironmentalScience,2016,9(6):1998-2004.DOI:10.1039/C6EE00104A.[6] LUYQ,WUYJ,SHENGT,etal.NovelsulfurhostcomposedofcobaltandporousgraphiticcarbonderivedfromMOFsforthehigh performanceLi-Sbattery[J].ACSAppliedMaterials&Interfaces,2018,10(16):13499-13508.DOI:10.1021/acsami.8b00915.[7] SHANGL,YUHJ,HUANGX,etal.Well dispers edZIF derivedCo,N-Co-dopedcarbonnanoframesthroughmesoporous silica protectedcalcinationasefficientoxygenreductionelectrocatalysts[J].AdvancedMaterials,2016,28(8):1668-1674.DOI:10.1002/adma.201505045.[8] LIJ,CHENC,QINFR,etal.MesoporousCo-N-Ccompositeasasulfurhostforhigh capacityandlonglifelithium sulfurbatteries[J].JournalofMaterialsScience,2018,53(18):13143-13155.DOI:10.1007/s10853-018-2566-z.[9] BAIQ,SHENFC,LISL,etal.Cobalt@Nitrogen dopedporouscarbonfiberderivedfromtheelectrospunfiberofbimetal organicframeworkforhighlyactiveoxygenreduction[J].SmallMethods,2018,2(12):1800049.DOI:10.1002/smtd.201800049.[10] CHENGXL,LIDJ,LIUFF,etal.Bindingnanos izedcobaltchalcogenidesinB,N codopedgrapheneforenhancedsodiumstorage[J].SmallMethods,2018,3(4):1800170.DOI:10.1002/smtd.201800170.[11] ZHANGJH,HUANGM,XIBJ,etal.Systematicstudyofeffectonenhancingspecificcapacityandelectrochemicalbehaviorsoflithium sulfurbatteries[J].AdvancedEnergyMaterials,2018,8(2):1701330.DOI:10.1002/aenm.201701330.[12] CHENT,CHENGBR,ZHUGY,etal.Highlyeffi cientretentionofpolysulfidesin“seaurchin” likecarbonnanotube/nanopolyhedrasuperstructuresascathodematerialforultralong lifelithium sulfurbatteries[J].NanoLetters,2017,17(1):437-444.DOI:10.1021/acs.nanolett.6b04433.[13] YEC,ZHANGL,GUOCX,etal.A3Dhybridofchemicallycouplednickelsulfideandhollowcarbonspheresforhighperformancelithium sulfurbatteries[J].AdvancedFunctionalMaterials,2017,27(33):1702524.DOI:10.1002/adfm.201702524.[14] JIANGHQ,LIUXC,WUYS,etal.Metal OrganicFrameworksforhighcharge dischargeratesinlithiumsulfurbatteries[J].AngewandteChemieInternationalEdition,2018,57(15):3916-3921.DOI:10.1002/anie.201712872.[15] MANOJM,JASNAM,ANILKUMARKM,etal.Sulfur polyanilinecoatedmesoporouscarboncompositeincombinationwithcarbonnanotubesinterlayerasasuperiorcathodeassemblyforhighcapacitylithiumsulfurcells[J].AppliedSurfaceScience,2018,458:751-761.DOI:10.1016/j.apsusc.2018.07.113.[16] QUYH,ZHANGZA,WANGXW,etal.AsimpleSDS assistedself assemblymethodforthesynthesisofhollowcarbonnanospherestoencapsulatesulfurforadvancedlithium sulfurbatteries[J].JournalofMaterialsChemistryA,2013,1(45):14306-14310.DOI:10.1039/C3TA13306K.[17] ZHANGJT,LIZ,CHENY,etal.Nickel ironlay ereddoublehydroxidehollowpolyhedronsasasuperiorsulfurhostforlithium sulfurbatteries[J].AngewChemIntEdEngl,2018,57(34):10944-10948.DOI:10.1002/anie.201805972.[18] CHENT,ZHANGZW,CHENGBR,etal.Self templatedformationofinterlacedcarbonnanotubesthreadedhollowCo3S4nanoboxesforhigh rateandheat resistantlithium sulfurbatteries[J].JournaloftheAmericanChemicalSociety,2017,139(36):12710-12715.DOI:10.1021/jacs.7b06973.[19] HEJR,CHENYF,MANTHIRAMA.MOF derivedcobaltsulfidegrownon3Dgraphenefoamasanefficientsulfurhostforlong lifelithium sulfurbatteries[J].Science,2018,4:36-43.DOI:10.1016/j.isci.2018.05.005.(责任编辑:顾琳)301第5期 陈磊,等:钴、氮共掺杂碳纳米复合材料的制备及其在锂硫电池中的应用。

中国科技论文参考文献范例

中国科技论文参考文献范例

中国科技论文参考文献一、中国科技论文期刊参考文献[1].走向繁荣的中国科技期刊研究——庆祝《中国科技期刊研究》创刊25周年.《中国科技期刊研究》.被中信所《中国科技期刊引证报告》收录ISTIC.被北京大学《中文核心期刊要目总览》收录PKU.被南京大学《核心期刊目录》收录CSSCI.2015年10期.刘雪立.[2].《中国科技期刊研究》创刊25周年感悟.《中国科技期刊研究》.被中信所《中国科技期刊引证报告》收录ISTIC.被北京大学《中文核心期刊要目总览》收录PKU.被南京大学《核心期刊目录》收录CSSCI.2015年10期.马智.[3].《中国科技期刊研究》论文被WebofScience数据库引用分析.《中国科技期刊研究》.被中信所《中国科技期刊引证报告》收录ISTIC.被北京大学《中文核心期刊要目总览》收录PKU.被南京大学《核心期刊目录》收录CSSCI.2014年9期.鲍国海.[7].《新疆医科大学学报》被“中国科技核心期刊”收录的启示.《中国科技期刊研究》.被中信所《中国科技期刊引证报告》收录ISTIC.被北京大学《中文核心期刊要目总览》收录PKU.被南京大学《核心期刊目录》收录CSSCI.2013年4期.周芳.[8].中国科技核心期刊网站建设现状.《中国科技期刊研究》.被中信所《中国科技期刊引证报告》收录ISTIC.被北京大学《中文核心期刊要目总览》收录PKU.被南京大学《核心期刊目录》收录CSSCI.2011年5期.程维红.任胜利.路文如.严谨.王应宽.方梅.[9].《电力系统自动化》和《高电压技术》入选“第2届中国精品科技期刊”.《电力系统自动化》.被中信所《中国科技期刊引证报告》收录ISTIC.被EI收录EI.被北京大学《中文核心期刊要目总览》收录PKU.2011年24期.[10].中国科技服务业区域非均衡发展及影响因素研究.《科技管理研究》.被中信所《中国科技期刊引证报告》收录ISTIC.被北京大学《中文核心期刊要目总览》收录PKU.被南京大学《核心期刊目录》收录CSSCI.2016年1期.张清正.魏文栋.孙瑜康.二、中国科技论文参考文献学位论文类[1].中国科技创新政策与WTO规则一致性研究.作者:李晓雪.世界经济对外经济贸易大学2013(学位年度)[2].中国科技安全问题研究.被引次数:2作者:商健霞.国际政治电子科技大学2006(学位年度)[3].中国科技市场成熟度研究.作者:吴腾宇.政治经济学中国政法大学2013(学位年度)[4].杨振宁的中国科技发展观.作者:叶俊.科学技术哲学广西大学2007(学位年度)[5].中国科技证券公司变革管理研究.作者:吴洪伟.工业工程重庆大学2005(学位年度)[6].中国科技期刊发展的问题与对策研究.被引次数:7作者:王丽莲.公共管理上海交通大学2009(学位年度)[7].全球化时代的科技外交:理论与实践.被引次数:2作者:李萌.国际关系上海交通大学2009(学位年度)[8].“中国科技梦”的历史形成及实现路径研究.作者:尹雯.科技哲学合肥工业大学2015(学位年度)[9].新时期中国科技人才政策评析.被引次数:6作者:李明.科技哲学东北大学2008(学位年度)[10].清代中期中国科技形象变迁的知识建构论分析.作者:梁俊娜.科学技术哲学广西大学2010(学位年度)三、相关中国科技论文外文参考文献[1]4350WquasicontinuouswaveoperationofadiodefacepumpedceramicNd:Y AGslablaser. JunchiChenJiangLiJialinXuWenbinLiuYongBoXiqiFengYitingXuDongliangJian gZhongzhengChenYubaiPanYadingGuoBiaoYanChangGuoLeiYuanHongtaoYuanYany ongLinYunshengXiaoQinjunPengWenqiangLeiDafuCuiZuyanXu《Optics&amp;LaserTechnology》,被EI收录EI.被SCI收录SCI.2014[2]FoundingoftheChineseAcademyofSciences''InstituteofComputingTec hnology.ZhangJiuchunZhangBaichun《IEEEannalsofthehistoryofcomputing》,被EI收录EI.被SCI收录SCI.20071[3]Expressionofthe1Ax1transgeneinaneliteChinesewheatvarietyandits effectonfunctionalproperties.Wang,YueshengLi,YinZhang,LiGao,XuanMiao,YingjieWang,ChengYang,Guangxi aoShewry,PeterR.He,Guangyuan 《JournaloftheScienceofFoodandAgriculture》,被EI收录EI.被SCI收录SCI.20101[4]Measuringsciencetechnologyinteractionsusingpatentcitationsanda uthorinventorlinks:AnexplorationanalysisfromChinesenanotechnology. Wang,G.Guan,J.《Journalofnanoparticleresearch:Aninterdisciplinaryforumfornanoscales cienceandtechnology》,被EI收录EI.被SCI收录SCI.201112[5]Simultaneoussaccharificationandfermentationofbrokenrice:anenzy maticextrusionliquefactionpretreatmentforChinesericewineproduction. HongyanLiAiquanJiaoXuemingXuChunsenWuBenxiWeiXiutingHuZhengyuJinYaoqi Tian《Bioprocessandbiosystemsengineering》,被EI收录EI.被SCI收录SCI.20138[6]Extractionofshikimicacidfromchinesestaraniseusingflashcolumnch romatographyonamolecularlyimprintedpolymercolumn.Xue,M.Wang,Y.Meng,Z.Zhang,W.Wu,Y.Jiang,S.《Journalofliquidchromatographyandrelatedtechnologies》,被EI收录EI.被SCI收录SCI.201317/20[7]Multinanomaterialelectrochemicalbiosensorbasedonlabelfreegraph enefordetectingcancerbiomarkers. BingJinPingWangHongjuMaoBingHuHonglianZhangZuleChengZhenhuaWuXiaojunB ianChunpingJiaFengxiangJingQinghuiJinJianlongZhao《Biosensors&amp;Bioelectronics:TheInternationalJournalfortheProfessi onalInvolvedwithResearch,TechnologyandApplicationsofBiosensersandRela tedDevices》,被EI收录EI.被SCI收录SCI.2014[8]Largescalecollectionandannotationofgenemodelsfordatepalm(Phoen ixdactylifera,L.).Zhang,G.Pan,L.Yin,Y.Liu,W.Huang,D.Zhang,T.Wang,L.Xin,C.Lin,Q.Sun,G.Ba Abdullah,M.M.Zhang,X.Hu,S.AlMssallem,I.S.Yu,J.《PlantMolecularBiology》,被EI收录EI.被SCI收录SCI.20126[9]EctopicexpressionofwheatTaCIPK14,encodingacalcineurinBlikeprot eininteractingproteinkinase,conferssalinityandcoldtoleranceintobacco. Deng,XiaominZhou,ShiyiHu,WeiFeng,JialuZhang,FanChen,LihongHuang,ChaoL uo,QingchenHe,YanzhenYang,GuangxiaoHe,Guangyuan 《Physiologiaplantarum》,被EI收录EI.被SCI收录SCI.20133[10]Highlysensitiveenumerationofcirculatingtumorcellsinlungcancer patientsusingasizebasedfiltrationmicrofluidicchip.Huang,T.Jia,C.P.JunYangbSun,W.J.Wang,W.T.Zhang,H.L.Cong,H.Jing,F.X.Ma o,H.J.Jin,Q.H.Zhang,Z.Chen,Y.J.Li,G.Mao,G.X.Zhao,J.L.《Biosensors&amp;Bioelectronics:TheInternationalJournalfortheProfessi onalInvolvedwithResearch,TechnologyandApplicationsofBiosensersandRela tedDevices》,被EI收录EI.被SCI收录SCI.2014四、中国科技论文专著参考文献[1]传承城市记忆,今昔和谐共生中国科技会堂改扩建工程的思考.窦志,2012建筑创作方法与实践论坛暨2012年中国建筑学会建筑师分会学术年会[2]《中国科技期刊研究》2009年部分退稿的原因分析及对策.王经武,2009中国科学院自然科学期刊编辑研究会第19次学术研讨会[3]解析中国科技新闻传播在塑造国际科技形象中面临的问题.张晶,2008第六届亚太地区媒体与科技和社会发展研讨会[4]2012版中国科技期刊引证报告[9]创新驱动数字转型追求卓越服务科技第九届中国科技期刊发展论坛大会报告主要创新观点综述.田甜.俞志华,2014第十二届(2014)全国核心期刊与期刊国际化、网络化研讨会[10]守住生存底线——中国科技报发展的远景思考.傅爱军,2002中国科技新闻学会第七次学术年会暨第五届全国科技传播研讨会。

用于锂离子电池的石墨烯材料——储能特性及前景展望

用于锂离子电池的石墨烯材料——储能特性及前景展望

用于锂离子电池的石墨烯材料——储能特性及前景展望智林杰;方岩;康飞宇【摘要】石墨烯具有独特的二维结构、优异的性能和各种潜在的应用价值,是当前材料科学领域研究的热点.通过简要评述石墨烯作为锂离子电池负极材料的结构与性能的关系,讨论了作为电极材料的石墨烯结构与功能调控的重要性,指出石墨烯基纳米材料是一种很有吸引力的锂离子电池电极材料,尤其针对高能量密度与高功率密度电池.%Graphene is a rapidly rising star in materials science because of its two-dimensional structure , superior properties, and promising applications. Recent progress on graphene-based electrode materials for high performance lithium ion batteries ( LIBs) has been highlighted. The relationship between the graphene structure , its electrochemical performance and strategies for tuning its functions are discussed. Graphene-based nanomaterial is believed to be an attractive electrode material in LIBs, particularly for the development of batteries with high-energy density and high-power density.【期刊名称】《新型炭材料》【年(卷),期】2011(026)001【总页数】4页(P5-8)【关键词】石墨烯;钾离子电池;能量密度;功率密度【作者】智林杰;方岩;康飞宇【作者单位】国家纳米科学中心,北京100190;国家纳米科学中心,北京100190;清华大学材料科学与工程系先进材料实验室,北京100084;清华大学材料科学与工程系先进材料实验室,北京100084【正文语种】中文【中图分类】TQ127.1+11 前言当今世界,全球气候变暖、化石能源逐渐枯竭、环境污染日趋严重等一系列的能源与环境问题严重威胁着人类的生存与发展,寻找替代化石能源的可再生绿色能源成为目前亟需解决的问题,而高效利用风能和太阳能是解决该问题的有效途径。

ZnCo-MOF纳米添加剂对PEO基钠离子固体电解质离子导电性的影响

ZnCo-MOF纳米添加剂对PEO基钠离子固体电解质离子导电性的影响

第 54 卷第 8 期2023 年 8 月中南大学学报(自然科学版)Journal of Central South University (Science and Technology)V ol.54 No.8Aug. 2023ZnCo-MOF 纳米添加剂对PEO 基钠离子固体电解质离子导电性的影响葛治,李劼,刘晋(中南大学 冶金与环境学院,湖南 长沙,410083)摘要:以复合金属有机框架纳米材料(ZnCo-MOF)为添加剂改善聚氧化乙烯−双(三氟甲基磺酰基)亚胺钠钠离子固体电解质(PEO-NaTFSI)的电化学性能。

采用Zeta 电位法研究ZnCo-MOF 的表面电性,并将PEO-NaTFSI-ZnCo-MOF 应用于全固态钠硫电池中。

研究结果表明:当ZnCo-MOF 加入量为8%(质量分数)时,改性后的固体电解质PEO-NaTFSI-ZnCo-MOF 在60 ℃的离子电导率达到3.29×10−4 S/cm 。

同时,钠离子迁移数也有显著提高,从原来的0.18增加至0.53。

ZnCo-MOF 表面带正电,呈路易斯酸性。

ZnCo-MOF 与PEO-NaTFSI 相互作用促进了钠盐的解离,提高了固体电解质的离子传导能力。

全固态钠硫电池的初始放电容量达到1 030.5 mA·h/g ,循环80圈后放电容量仍有352.4 mA·h/g ,说明该固体电解质在低成本全固态钠硫电池上具有应用前景。

关键词:聚合物固体电解质;锌钴复合金属有机框架;离子电导率;全固态钠硫电池中图分类号:O646 文献标志码:A 文章编号:1672-7207(2023)08-2983-09Effects of ZnCo-MOF nano-additive on ionic conductivity of PEObased sodium ion solid electrolyteGE Zhi, LI Jie, LIU Jin(School of Metallurgy and Environment, Central South University, Changsha 410083, China)Abstract: Complex Zn 2+ and Co 2+ metal-organic framework(ZnCo-MOF) nanomaterial was used as an additive to modify electrochemical properties of a poly(ethylene oxide)-NaN(CF 3SO 2)2 sodium ion solid electrolyte(PEO-NaTFSI). The surface electrical properties of ZnCo-MOF were investigated using the Zeta potential method and PEO-NaTFSI-ZnCo-MOF was assembled into an all-solid-state sodium-sulfur battery. The results show that in the presence of 8% ZnCo-MOF, this ionic conductivity of the electrolyte(PEO-NaTFSI-ZnCo-MOF) is 3.29×10−4 S/cm at 60 ℃, and the sodium ion transference number is significantly increased to 0.53 from 0.18. By using the Zeta收稿日期: 2022 −05 −20; 修回日期: 2022 −09 −13基金项目(Foundation item):中南大学研究生科研创新项目(2017zzts120) (Project(2017zzts120) supported by the Innovation-drivenPlan in Central South University)通信作者:刘晋,博士,教授,从事固体电解质及全固态电池研究;E-mail :**************.cnDOI: 10.11817/j.issn.1672-7207.2023.08.003引用格式: 葛治, 李劼, 刘晋. ZnCo-MOF 纳米添加剂对PEO 基钠离子固体电解质离子导电性的影响[J]. 中南大学学报(自然科学版), 2023, 54(8): 2983−2991.Citation: GE Zhi, LI Jie, LIU Jin. Effects of ZnCo-MOF nano-additive on ionic conductivity of PEO based sodium ion solid electrolyte [J]. Journal of Central South University(Science and Technology), 2023, 54(8): 2983−2991.第 54 卷中南大学学报(自然科学版)potential method, the positive charges and the Lewis acidity are found on the surface of ZnCo-MOF. This interaction between ZnCo-MOF and PEO-NaTFSI helps the dissolution of NaTFSI and the increase of ionic conductivity. The all-solid-state sodium-sulfur battery delivers a discharge capacity of 1 030.5 mA·h/g at the initial cycle and 352.4 mA·h/g at the 80th cycle, which indicates that the electrolyte has application prospects in low-cost all-solid-state Na-S battery.Key words: solid polymer electrolyte; ZnCo-MOF; ionic conductivity; all-solid-state sodium-sulfur battery全固态聚合物钠硫电池具有高能量密度(1 230 kW/kg)、低材料成本和高安全性的优势,被认为是最具潜力的下一代电化学储能器件[1−5]。

K0.5Na0.5NbO3压电纳米纤维柔性发电元件的组装与性能研究

K0.5Na0.5NbO3压电纳米纤维柔性发电元件的组装与性能研究

K0.5Na0.5NbO3压电纳米纤维柔性发电元件的组装与性能研究王钊;何婧;潘绪敏;贺亚华;胡永明【摘要】采用静电纺丝技术在Si基衬底上制备无铅压电K0.5 Na0.5NbO3纳米纤维,退火后所得纳米纤维为多晶正交钙钛矿结构,直径约60~80 nm.通过柔性聚合物的包覆与剥离实现了纳米纤维向柔性基底的直接转移,采用磁控溅射在纳米纤维两侧沉积Au电极并引线封装后获得了不同尺寸的柔性压电发电元件.由于压电势和电极/纳米纤维界面肖特基势垒的耦合,该元件在受力弯曲时可产生脉冲的输出电压.随着电极间距的增大,输出电压随之增加.当间距达到10 mm时,输出电压峰峰值能够达到约12V.【期刊名称】《功能材料》【年(卷),期】2016(047)001【总页数】3页(P1053-1055)【关键词】压电;纳米纤维;柔性元件;静电纺丝;铌酸钾钠【作者】王钊;何婧;潘绪敏;贺亚华;胡永明【作者单位】湖北大学物理与电子科学学院,武汉430062;湖北大学物理与电子科学学院,武汉430062;湖北大学物理与电子科学学院,武汉430062;湖北大学物理与电子科学学院,武汉430062;湖北大学物理与电子科学学院,武汉430062【正文语种】中文【中图分类】TN712+.5近年来,电子器件如传感器、致动器等正在向微型化和集成化发展。

然而,供电系统尺寸大、寿命短且需要定期维护的问题成为了制约器件小型化和集成化的关键。

采用微纳尺度的能量转换单元,使其与微纳电子器件集成以获得自供电系统是解决上述问题的可行措施[1]。

机械能,是自然环境中分布最为广泛的一种能量形式。

采用微纳尺度的压电发电元件可将人体运动、气流和水流等多种形式的机械能转换成电能[2]。

因此,高性能微纳压电发电元件的制备与性能研究已经成为微纳器件领域研究的热点之一。

目前,大多数微纳尺度的压电发电元件采用了易于合成的ZnO纳米线阵列,但ZnO材料的压电常数有限,会制约器件的机电转换效率[3]。

纳米材料电催化还原CO_(2)研究进展

纳米材料电催化还原CO_(2)研究进展
溶剂热法是高温高压下,在溶剂(水、苯等有机溶 剂)中进行相关化学反应的总称。最常用到的方法有 水热法和有机溶液法。水热法是指在特制的密闭反应 器(一般是高压釜)中,以水或有机溶剂等作为反应物,
·1·
2021 年 1 月 第 48 卷第 1 期
云南化工 Yunnan Chemical Technology
Key words: Nanocatalyst; Electrocatalytic Reduction; CO2
随着 CO2 含量的不断上升,如何将其转化为可用 物质已成为研究者们讨论的热门话题。而电化学催化 还原是有效将 CO2 资源进行转化的方法之一。在化学 工业中,将纳米微粒用作催化剂是纳米材料大显身手 的又一方面。纳米微粒由于尺寸小,表面所占的体积 分数大,从而增加了化学反应的接触面,其表面原子 配位不全导致表面的活性位置增加,使催化活性大大 提高 [1]。在电催化还原 CO2 研究中,为提高产物的种 类和选择性,加快反应物的生成速率,将纳米金属材 料修饰到电极表面是近几年在研究电化学还原 CO2 阴 极材料的热点。纳米结构的金属电催化剂除具备过渡 金属良好的导电性能和配位催化能力外,其较高的比 表面积还提升了对气体的吸附性能且增加了活性催化 位点的分布 [2]。因此,纳米结构的金属电催化剂在电 催化 CO2 还原领域中展现出较高的催化活性,具有潜 在的工业化价值。
1.2 化学气相反应法 化学气相反应法制备纳米颗粒是利用具有挥发性
的金属化合物的蒸气,通过化学反应生成所需要的化
合物,在保护气体的环境下快速冷凝,从而制备各类
物质的纳米颗粒。这种方法也被称为化学气相沉淀法
(Chemical Vapor Deposition,CVD)。化学气相反应法 适合于制备各类金属、金属化合物以及非金属化合物 纳米颗粒 [6]。

纳米技术 纳米发电机 第1部分:术语-最新国标

纳米技术 纳米发电机 第1部分:术语-最新国标

目次范围 (1) 12 规范性引用文件 (1)3 纳米结构材料的基本术语 (1)4 描述纳米发电机的基本术语 (1)5 描述纳米发电机应用的术语 (4)6 描述摩擦纳米发电机模式的术语 (5)附录A(资料性)摩擦纳米发电机的基本结构模型 (7)纳米技术纳米发电机第1部分:术语1 范围本文件界定了纳米发电机相关的术语和定义。

本文件适用于纳米发电机的研究、开发及相关应用领域。

2 规范性引用文件下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。

其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB/T 2900.60-2002 电工术语电磁学GB/T 2900.93-2015 电工术语电物理学GB/T 30544.1-2014 纳米科技术语第1部分:核心术语3 纳米结构材料的基本术语3.1纳米尺度 nanoscale处于1 nm至100 nm之间的尺寸范围。

注1:本尺寸范围通常、但非专有地表现出不能由较大尺寸外推得到的特性。

对于这些特性来说,尺度上、下限值是近似的。

注2:本定义中引入下限(约1 nm)的目的是为了避免在不设定下限时,单个或一小簇原子被默认为是纳米物体或纳米结构单元。

[来源:GB/T 30544.1-2014,2.1]3.2纳米材料 nanomaterial任一外部维度、内部或表面结构处于纳米尺度的材料。

注1:本通用术语包括纳米物体和纳米结构材料。

注2:见工程化的纳米材料、人造纳米材料和伴生纳米材料。

[来源:GB/T 30544.1-2014,2.4]4 描述纳米发电机的基本术语4.1纳米发电机 Nanogenerator1一种通过纳米材料/纳米结构或通过纳米尺度接触利用压电效应、摩擦起电效应或热释电效应产生麦克斯韦位移电流作为驱动力将环境中的机械能/热能转化为电能的装置或器件,包括压电纳米发电机、摩擦纳米发电机、热释电纳米发电机、复合纳米发电机等。

Mn、N共掺杂高活性ORR催化剂的合成

Mn、N共掺杂高活性ORR催化剂的合成

30).通过热重分析可知,MnPc 分子在 480 ℃下脱 H 形成悬空键而产生的分子间键合作用使其生长为 Mn-N-C/G-30
催化剂.通过 SEM、TEM、XRD 的形貌表征,表明合成 Mn-N-C/G-30 催化剂结构与前驱体酞菁锰完全不同,是一
种新型叶片状纳米材料,且具单晶结构,其晶格间距为 0.315 nm.通过 Raman 和 XPS 的结构表征,证明合成 Mn-
第 54 卷 第 11/tdxbz202006072
天津大学学报(自然科学与工程技术版) Journal of Tianjin University(Science and Technology)
Vol. 54 No. 11 Nov. 2021
Mn、N 共掺杂高活性 ORR 催化剂的合成
N-C/G-30 催化剂结构中形成了不同于 MnPc 中 Mn-N4 配位结构的 Mn-N 活性位点.采用了三电极体系进行电化学
测试.线性伏安扫描测试结果表明,合成 Mn-N-C/G-30 催化剂在 25 ℃、0.1 mol/L 的 KOH 水溶液中的 ORR 起始电 位和在电位 0.88 V 条件下的电流密度分别为 0.97 V 和 1.4 mA/cm2,优于 MnPc(0.85 V 和 0.1 mA/cm2)和商业化 Pt/C 催化剂(0.94 V 和 1.3 mA/cm2)的性能(以上电位均相对于氢标电位).K-L 图的计算结果表明,合成 Mn-N-C/G-30 催
大量的研究表明,过渡金属-氮-碳(Metal-N-C, Metal=Fe、Co、Mn 等)催化剂通过降低氧还原过程 表面吸附的*OOH 和*OH 中间产物的结合能,表现出 高的 ORR 电催化活性[9-10].Anandhababu 等[11]通过 聚铁酞菁碳化制备的 Fe-N-C 催化剂,与 20% (质量 分数)的商业化 Pt/C 催化剂相比,具有更高的 ORR 催化活性.最近,Lü 等[12]研究了在聚对苯乙烯磺酸 钠改性石墨烯上生长的钴(Ⅱ)四硝基酞菁钴的 ORR 活性.这种催化剂在 0.1 mol/L 的 NaOH 溶液中显示 出高的 ORR 电催化活性及良好的性能稳定性.

电化学三章之间的联系

电化学三章之间的联系

电化学三章之间的联系电化学是研究电与化学之间相互转化关系的学科,它是化学与物理学的交叉领域。

电化学三章包括电化学反应的基本原理和理论、电化学电极过程和电化学方法及应用。

这三章之间密切相关,通过它们的联系可以帮助我们更好地理解电化学。

我们来探讨电化学反应的基本原理和理论。

电化学反应是指在电化学电池或电解槽中,由于电场的作用,使得化学反应发生,并引发电子和离子的转移。

电化学反应可以分为两类,即氧化还原反应和非氧化还原反应。

氧化还原反应涉及电子的转移,通过电子的流动产生电流;非氧化还原反应则涉及电荷离子的转移。

在电化学反应中,电极过程起着重要的作用。

电化学电池中,电极是电与化学之间的纽带,通过电位差驱动电子和离子的转移。

电极过程包括阳极和阴极的反应,它们之间通过电解质溶液中的离子转移来维持电流的平衡。

阳极是发生氧化反应的地方,而阴极则是发生还原反应的地方。

两者之间的反应通过离子传导的电解质溶液进行。

电化学方法及应用是电化学研究的核心内容之一。

电化学方法包括电位法、电流法、交流阻抗法等,它们通过测量电位、电流和电阻等参数,来研究电化学反应动力学和电极过程。

电化学方法广泛应用于腐蚀与防护、电镀、电解析、能源储存与转换等领域。

电化学方法的发展不仅推动了电化学学科的进展,也对其他领域的研究和应用产生了深远影响。

电化学三章之间的联系在于它们共同构成了电化学这一综合学科。

电化学反应的基本原理和理论为电化学方法及应用的研究提供了基础。

电极过程是电化学反应发生的具体地方,反过来也受到电化学方法的研究和应用的影响。

电化学三章之间的联系可以用一个简单的关系图来表示:电化学反应的基本原理和理论影响电极过程,而电极过程又直接影响电化学方法及应用。

个人观点上,电化学是一门极具应用前景和发展潜力的学科。

随着社会的进步和科技的发展,对能源和环境问题的关注日益增加。

电化学作为能源转换与存储、环境治理与监测等领域的重要技术手段,有望为解决这些问题提供可持续和有效的解决方案。

适配体功能化纳米材料传感器快速检测食源性致病菌

适配体功能化纳米材料传感器快速检测食源性致病菌

山 东 化 工 收稿日期:2020-11-26作者简介:李吉业(1995—),山东日照人,硕士研究生,主要从事食源性致病菌检测方法的研究。

适配体功能化纳米材料传感器快速检测食源性致病菌李吉业1,2,王宗萍1,2(1.中国科学院重庆绿色智能技术研究院,重庆 400714;2.中国科学院大学,北京 100049)摘要:食源性致病菌可以引起的严重的食品安全问题。

传统方法检测食源性致病菌存在一系列的问题(复杂、耗时、高成本等)。

基于适配体修饰纳米材料传感器有望替代传统的检测方法,实现对食源性致病菌实时、快速、灵敏检测。

本文简要介绍基于适配体纳米金比色传感器和基于适配体二硫化钼纳米片荧光传感器用于食源性致病菌的检测方法,并且介绍两种方法的局限性。

最后,对适配体修饰纳米材料传感器的发展趋势和应用前景提出展望。

关键词:适配体;纳米材料;食源性致病菌;检测中图分类号:TP212.3TB383 文献标识码:A 文章编号:1008-021X(2021)04-0184-01Aptamer-BasedNanomaterialSensorsforRapidDetectionofFoodbornePathogenicBacteria:AMiniReviewLiJiye1,2,WangZongping1,2(1.ChongqingInstituteofGreenandIntelligentTechnology,ChineseAcademyofSciences,Chongqing 400714,China;2.UniversityofChineseAcademyofSciences,Beijing 100049,China)Abstract:FoodbornePathogenicBacteriacancauseseriousfoodsafetyproblems.Traditionalmethodsfordetectingfoodbornepathogenicbacteriahaveaseriesofproblems(complex,high-cost,time-consuming,etc.).Theaptamer-basednanomaterialsensorsareexpectedtoreplacethetraditionaldetectionmethods,realizingthereal-time,rapid,andsensitivedetectionoffoodbornepathogenicbacteria.Inthisarticle,thedetectionoffoodbornepathogenicbacteriabasedonaptamer-basedgoldnanoparticlescolorimetricsensorandaptamer-basedmolybdenumdisulfidenanosheetsfluorescentsensorareintroduced.Furthermore,thelimitationsoftwomethodsareillustrated.Finally,thedevelopmenttrendandapplicationprospectofaptamer-basednanomaterialsensorsareprospected.Keywords:aptamers;nanomaterial;foodbornepathogenicbacteria;detection 食源性致病菌可导致严重疾病,在全世界范围内都是一个日益严重的公共卫生问题[1]。

碳纳米管海藻酸钠复合纳米纤维热稳定性研究

碳纳米管海藻酸钠复合纳米纤维热稳定性研究

碳纳米管海藻酸钠复合纳米纤维热稳定性研究赵卫,夏延致,杨东江(青岛大学化学化工与环境学院,山东青岛2660711)摘要:近年来,静电纺丝技术制备的纳米纤维得到广泛应用,被认为是最简单有效的制备纳米级纤维的方法之一。

本文采用加入碳纳米管的海藻酸钠溶液高压静电纺丝,成功制备掺杂碳纳米管的海藻酸钠纳米纤维(SA-CNTs-NF)。

通过SEM、FT-IR、TG进行表征,检测表明,碳纳米管可以很好的分散在海藻酸钠纤维中,得到的SA-CNTs-NF平均直径约为196nm,并对SA-CNTs-NF进行了热重分析,发现加入碳纳米管的海藻酸钠纤维热稳定性有明显的提高。

关键词:静电纺丝;海藻酸钠;碳纳米管;热稳定性The Thermostability of Sodium Alginate Nanofibers with Carbon NanotubesZhao Wei,Xia Yanzhi,Yang Dongjiang(College of Chemistry&Chemical and Environmental Engineering,Qingdao University,Qingdao266071,China)Abstract:Recently,electrospinning has been widely used and regarded as one of the most efficient methods of producing nanofibers.In this report,we fabricated a new kind of nanofibers which combined sodium alginate with carbon nanotubes.The production was tested by SEM,FT-IR,TG,and the results turned out that the average diameter of the sodium alginate nanofibers with carbon nanotubes was196nm and the carbon nanotubes showed a good dispersion in the nanofibers.Through the TG analyzing, we found that the thermostability of sodium alginate nanofibers was improved by the addition of carbon nanotubes.Keywords:electrospinning;sodium alginate;carbon nanotubes;thermostability海藻酸钠(SA)是一种从褐藻的细胞壁中提取出来的天然多糖,由α-L-古罗糖醛酸(G)和β-D-甘露糖醛酸(M)组成,因其无毒、生物相容性好、容易凝胶化等优点而被广泛应用于生物、化学、医药、环保食品领域[1,2]。

5-羟色胺在碳纳米管修饰电极上的电化学行为及检测

5-羟色胺在碳纳米管修饰电极上的电化学行为及检测

5-羟色胺在碳纳米管修饰电极上的电化学行为及检测刘华俊;刘慧宏【摘要】The electrochemical behavior of 5-hydroxytryptamine(5-HT) at carbon nanotube modified electrode was explored. In phosphate buffer solution (pH = 8. 0,0. 1 mol · L-1), the oxidation peak of 5-HT located at 0.23 V. The electrochemical process was surface-controlled, indicating 5-HT absorbed on the electrode surface. The parameters estimated indicated that the oxidation reaction involved four electrons and four protons transfer. The oxidation mechanism of 5-HT was also proposed. The oxidation peak current was proportional to the concentration of 5-HT at the range of 1. 36-16. 64 μmol · L-1. The limit of detection was estimated to be 0.23μmol · L-1.%研究了5-羟色胺在碳纳米管修饰电极上的电化学行为。

结果表明,在0.1 mol·L-1磷酸盐(pH=8.0)缓冲溶液中,5-羟色胺在碳纳米管修饰电极上的氧化峰峰电位为0.23 V;5-羟色胺吸附在电极表面,电化学反应由表面控制;根据5-羟色胺氧化过程中失去4个电子和4个质子,讨论了反应机理。

普鲁士蓝类钠离子正极材料的制备及改性研究进展

普鲁士蓝类钠离子正极材料的制备及改性研究进展

材料研究与应用 2024,18(2):195‐206Materials Research and ApplicationEmail :clyjyyy@http ://mra.ijournals.cn 普鲁士蓝类钠离子正极材料的制备及改性研究进展杨志豪1,李昌明1*,吴智谋1,钟华3,谈灵操2(1.五邑大学机械与自动化工程学院,广东 江门 529020; 2.五邑大学/江门市高分子材料智能制造重点实验室,广东 江门 529020; 3.广州云通锂电池股份有限公司,广东 广州 510800)摘要: 普鲁士蓝类似物(PBAs )具有较高理论比容量和开放式三维框架结构,被认为是最具应用前景的钠离子正极材料之一。

然而,大部分通过水溶液反应合成的PBAs ,普遍存在[Fe(CN)6]3−/[Fe(CN)6]4−空位,水分子不可避免进入PBAs 框架中形成配位水,占据了原本Na +的容纳点位,影响了Na +的正常传输,降低了PBAs 材料的比容量。

PBAs 晶体框架受空位影响,其离子导电性和循环稳定性在长时间循环下退化并变差,同时配位水与电解液发生副反应,进一步降低了电池的电化学性能。

为解决上述问题,提高钠离子电池中PBAs 基正极的比容量、循环稳定性、倍率性能和整体能量密度,重点介绍了PBAs 正极材料的制备及改性方法,并总结了各制备及改性方法的特点及效果。

PBAs 的制备方法包括水热法、共沉淀法和单一铁源自分解法。

改性方法包括制备工艺优化和材料复合改性,其中制备工艺优化包括螯合剂、脱水、提高前驱液Na +浓度和结构纳米化,材料复合改性包括元素掺杂、表面涂层、异质结构和复合材料。

研究表明,在富含Na +的前驱液中,采用螯合剂辅助共沉淀法,通过合成过程的水浴加热及样品制备后的真空干燥,可获得空位少、水分少的高结晶度PBAs 。

将制备的PBAs 样品与导电剂进行复合,可进一步改善其电子导电率及倍率性能,有望获得高容量、高循环特性及满足高倍率需求的正极材料 。

Nanomaterials for Electrochemical Energy Storage

Nanomaterials for Electrochemical Energy Storage

Nanomaterials for ElectrochemicalEnergy Storage在当今科技迅猛发展的时代,电化学储能技术逐渐受到越来越广泛的关注,原因在于其具有高能量、高功率密度、可逆性、长寿命等优势。

nanomaterials,也称为纳米材料,是一种具有纳米尺度特征(1-100nm)的材料。

由于其独特的物性和表面反应性质,nanomaterials已成为电化学储能材料的研究热点。

1. 为什么需要nanomaterials作为储能材料?以目前人类社会对能源需求的高速增长和短缺的能源资源为背景,必须寻找一种可再生、经济性高的能源储存方式。

而电化学储能是当今最被认为最有发展前途的方法之一。

同时电化学储能技术也需要具备高效率和高性能的材料作为储能体,这就是为什么nanomaterials作为储能材料尤为重要。

2. nanomaterials的优势纳米尺度的物理特性是nanomaterials成为电化学储能材料的首选原因之一。

nanomaterials的高比表面积、短扩散距离和高活性表面可促进更快、更均匀的电荷传递,有很好的能量转移能力。

在原料利用上,nanomaterials所需的原材料极少,制造成本低,影响环保极小,有更好的可持续性。

此外,nanomaterials的结构、成分、大小可通过温度、压力、表面活性剂等因素调控,具备可预测的性能和稳定性,可以按照要求进行定制。

3. nanomaterials在电化学储能方面的应用目前,nanomaterials已经广泛应用于锂离子电池、超级电容器、锂硫电池、重金属离子电池、液流电池、纳米电池等领域。

(1)锂离子电池锂离子电池是最常用于移动电子设备的电池之一。

常见的金属氧化物和金属磷酸盐作为阳极和阴极会优化电池性能,但这些纳米材料还需要提高电子和离子传输速率、透明度、稳定性、压力容忍度等特性的优化。

2019年有研究者通过改变不同纳米粒径的LiFePO4作为阴极材料能够显著提高其电性能。

纳米锰基普鲁士白的制备及电化学储钠性能

纳米锰基普鲁士白的制备及电化学储钠性能

第34 7期2018年7月无机化学学报CHINESE JOURNAL OF INORGANIC CHEMISTRYVol.34 No.71327-1332纳米锰基普鲁士白的制备及电化学储钠性能陈新1徐丽1沈志龙2刘双宇1李慧1王博1谢健!,2姜银珠2刘海镇1盛鹏1赵广耀1全球能源互联网研究院有限公司,先进输电技术国家重点实验室,北京1022117(2浙江大学材料科学与工程学院,杭州3100277摘要:采用高温共沉淀法制备锰基菱方相的普鲁士白正极材料,研究合成温度对产物微结构和电化学性能的影响。

研究发现,随着合成温度的提高,产物的结晶度、颗粒尺寸和嵌钠容量明显提高。

当合成温度为90 "时,产物在M m A j-1下首次充放电容量分别达到142和U A m A lv i-1。

在30和'O m A.g-1分别循环300和600次时,容量仍保持在111和SAm Ah.g-1。

关键词:钠离子电池(正极材料(普鲁士白(电化学性能中图分类号:TB34 文献标识码:A 文章编号!1001-4861(2018)07-1327-06DOI:10.11862/CJIC.2018.177Preparation and Electrochemical Performance of theNanostructure Mn-Based Prussian WhiteCHEN Xin1XU Li1SHEN Zhi-Long2LIU Shuang-Yu1LI Hui1WANG Bo1XIE Jian!,2JIANG Yin-Zhu2LIU Hai-Zhen1SHENG Peng1ZHAO Guang-Yao1(^State Key Laboratory of A dvanced Transmission Technology, Global Energy InterconnectionResearch Institute Co. Ltd” Beijing 102211, China)(^School of M aterials Science and Engineering, Zhejiang University, Hangzhou310027, China) Abstract:Rhombohedral phase Mn-based Prussian white materials were synthesized by high-temperature coprecipitation method and the effect of synthesis temperature on the microstructure and electrochemical performance of the products was investigated. It is found that the crystallinity,particle size and Na-insertion capacity increase obviously with the increasing synthesis temperature. At a synthesis temperature of 90 ",the first charge and discharge capacities of the product reach 142 and 139 mAh'g-1at 15 mA'g-1.After 300 cycles at 30 mA'g-1 and 600 cycles at 50 mA'g-1,the discharge capacities are kept at 111 and 89 mAh'g-1,respectively. Keywords:sodium-ion batteries; cathode materials; Prussian white; electrochemical performance0引言随着能源和的日重,开发清洁、可持续能已成为球的研究[16。

多元电化学免疫传感器_图文.

多元电化学免疫传感器_图文.

ARTICLE IN PRESSG ModelBIOS-4708;No.of Pages 7Biosensors and Bioelectronics xxx (2011 xxx–xxxContents lists available at SciVerse ScienceDirectBiosensors andBioelectronicsj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /b i osCarbon nanotube-based ultrasensitive multiplexing electrochemical immunosensor for cancer biomarkersYing Wan a ,b ,Wangping Deng b ,Yan Su a ,∗,Xinhua Zhu a ,∗,Cheng Pengb ,Haiyan Hu b ,Hongzhen Peng b ,Shiping Song b ,∗,Chunhai Fan a ,ba School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing 210094,ChinabLaboratory of Physical Biology,Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,Chinaa r t i c l ei n f oArticle history:Received 13June 2011Received in revised form 25August 2011Accepted 25August 2011Available online xxxKeywords:Immunosensor arrayScreen-printed carbon electrode (SPCEMultiwalled carbon nanotube (MWNTUniversal nanoprobea b s t r a c tA multiplexing electrochemical immunosensor was developed for ultrasensitive detection of cancer related protein biomarkers.We employed disposable screen-printed carbon electrode (SPCEarray as the detection platform.A universal multi-labeled nanoprobe was developed by loading HRP and goat-anti-rabbit IgG (secondary antibody,Ab 2onto multiwalled carbon nanotube (MWNT.This universal nanoprobe was available for virtually any sandwich-based antigen detection and showed superior-ity in several areas.By using the SPCE array and the universal nanoprobe,we could detect as low as 5pg mL −1of prostate specific antigen (PSAand 8pg mL −1of Interleukin 8(IL-8with the electrochemical immunosensor.We also demonstrated simultaneous detection of two protein biomarkers with this plat-form.With these attracted features,our immunoassay system shows promising applications for in-field and point-of-care test in clinical diagnostics.© 2011 Elsevier B.V. All rights reserved.1.IntroductionEarly diagnosis of cancer is a challenge facing scientists from all over the world which is very important for cancer therapy.In early diagnosis of cancer,accurate detection of certain protein biomark-ers is critical but difficult as there is only trace protein biomarker in serum of early cancer patients (Kulasingam and Diamandis,2008;Ludwig and Weinstein,2005;Pepe et al.,2001;Welsh et al.,2003.Traditional assay methods such as enzyme-linked immunosorbent assay (ELISA(Butler,2000,radioimmunoassay (Bolton and Hunter,1973,fluorescence immunoassay (Goldman et al.,2002,electroph oretic immunoassay (Bao,1997,mass spec-trometric immunoassay (Diamandis and van der Merwe,2005,and immune-polymerase chain reaction (PCRassay (Widjojoatmodjo et al.,1992often have some disadvantages,resulting in the increas-ing demand for operationally simple,ultrasensitive and easily automated device.Considerable efforts have been made to develop rapid,sensitive and selective immunosensors (Akram etal.,2006;Chen et al.,2008;Dill et al.,2004;Mani et al.,2009;Tang et al.,2008;Wu etal.,2008.Electrochemical immunosensors,with the inher-ent advantages of high sensitivity,low cost,low power requirement∗Corresponding authors.E-mail addresses:suyan@ (Y.Su,zhuxinhua@(X.Zhu,spsong@ (S.Song.and potential of automation,have been applied for clinical diagno-sis (Ghindilis et al.,1998;Warsinke et al.,2000.With the aim of ultrahigh sensitive biosensors,various sig-nal amplification strategies using nanostructured materials have been developed (Cao,2008;Grodzinski et al.,2006;Song et al.,2010,such as gold nanoparticles (Nam et al.,2003;Wang etal.,2008;Yan et al.,2010;Zhang et al.,2006,quantum dots (Hu et al.,2009,magnetic nanoparticles (Yigit et al.,2008and car-bon nanotubes (Lin et al.,2005.In the area of ultrasensitive electrochemical immunosensing,nanomaterials can be directly used as electroactive labels (Das et al.,2006;Liu et al.,2004or used as carriers to load a large amount of electroactive labels (Mani et al.,2009;Tang et al.,ing nanomaterials as electroactive lab els,Ho’group has reported a novel electrochemi-calimmunosenor.Monoclonal capture antibody was adsorbed on polyethylene glycol-modified disposable screen-printed electrode as the detection platform,while polyclonal signal antibody and gold nanoparticle (AuNPconjugates were used as electrochem-ical signal probes (Ho et al.,2010.The electrochemical signal from the bound AuNP congregates was obtained after oxidizing them in 0.1M HCl at 1.2V for 120s,followed by the reduction of AuCl 4−in square wave voltammetry (ing nano-materials as carriers for signaling and biorecognition have also attracted attentions from scientists.Wang et al.reported carbon nanotubes (CNTscarrying numerous enzyme tracers for dramat-ically amplifying enzyme-linked electrical detection of proteins and DNA (Zhao et al.,2009.A novel strategy of electrochemical0956-5663/$–see front matter © 2011 Elsevier B.V. All rightsreserved.doi:10.1016/j.bios.2011.08.0332Y.Wan et al./Biosensors and Bioelectronics xxx (2011 xxx–xxxScheme 1.Schematic demonstration for the “sandwich”type strategy electrochemical immunosensor.A 16channel screen-printed carbon electrode (SPCEarray was employed as the detection platform,each containing a three electrode system:carbon working electrode,a carbon counter electrode and a silver pseudoreference electrode.The capture antibodies were immobilized on the working electrode by a three stepprotocol:electrochemical activation was first taken to generate carboxylic acid groups on the working electrode and then the EDC/NHS were used to activate the carboxylic acid groups which was then removed.After that,capture antibodies (PSA mAb or IL-8mAbwere immobilized by using the amine residues on the proteins.The target antigen (PSA or IL-8and the signal antibody (PSA pAb or IL-8pAbformed a “sandwich”type complex with the capture antibody,leading to the binding of the universal nanoprobe to the electrode that can be transuded to the catalytic amperometric readout.The process of the universal nanoprobe preparation was as following:the pristine MWNTs were first sonicated in the HNO 3and H 2SO 4to generate carboxylic acid groups which were thenactivated by EDC/NHS.After removal of free EDC/NHS,Ab 2/HRP mixture in an optimized ratio was added and the universal nanoprobe was achieved.immunoassays based on the utilization of encapsulated electro-chemical signal-generating microcrystals was reported (Mak et al.,2005.The electrochemical signal was achieved by the release of a large amount of ferrocene after sandwich immuno-bindin g.Rusling’s group has achieved greatly enhanced sensitivity using carbon nanotubes (CNTscarrying horseradish peroxidase (HRPlabels and antibodies for immunodetection of the prostate specific antigen (Jensen et al.,2009;Yu et al.,2006.The limit detection of this CNT amplified immunosensor was low to 4pg mL −1.Nano-materials have been demonstrated to be excellent carriers in the amplification strategies.Despite advances in nano-amplification technologies,there are still challenges faced by researchers such as complicated assembly process and stability of nanomaterials.Especially,different anti-bodies have different electrostatic properties so that the assembly conditions of different antibodies with same nanomaterials are variant very often.When encountering with simultaneous detec-tion of panels of tumor markers in clinical diagnosis of cancers (Liu et al.,2004;Wilson,2005,several different nanomaterial based bioconjugates were demanded.However,the processes were complicated.As a result,it is necessary to develop a sim-ple approach which can overcome these obstacles and give a total solution for this problem.Herein we proposed an electrochemical immunosenor using a disposable sixteen channel screen-printed carbon electrode (SPCEarray combined with a universal multilabel nanoprobe for the simultaneous detection of cancer biomarkers:prostate specific antigen (PSAand Interleukin 8(IL-8.The immo-bilization of capture antibodies on this SPCE was considerable simple,which was conducted by first electrochemical activating t he carbon working electrode.This process generated carboxylate groups to bind to the amine residues on capture antibodies.Thiscovalent binding was proved to be very efficient.A universal mul-tilabel nanoprobe was fabricated by consistent loading of HRP and goat-anti-rabbit IgG (secondary antibody,Ab 2on multiwalled car-bon nanotube (MWNT.As Ab 2can bind to rabbit antibodies for any antigen,this multilabel nanoprobe is available to the detec-tion of any target antigen by using unlabelled rabbit polyclonal antibody serving as a bridge.Then the universal nanoprobe can be attached to biosensing surface to generate electrochemical bining this universal nanoprobe with disposable SPCE array,we provide a promising future in clinical applications with simultaneous immunoassay of multiple protein biomarkers.2.Experimental2.1.MaterialsPSA antigen,mouse monoclonal anti-PSA antibody (PSA mAb,cloneno.M701042and rabbit polyclonal signal anti-PSA anti-bodies (PSA pAbwere purchased from Fitzgerald (U.S..IL-8antigen,mouse monoclonal anti-IL-8antibody (IL-8mAb,clone no.500-M08and rabbit polyclonal anti-IL-8antibodies (IL-8pAbwere purchased from Peprotech Canada.Inc.(Ottawa,ON,Canada.Multiwalled Carbon nanotube (MWNTwas purchased from Shenzhen Nanotech Port Co.Ltd (NTP,china.TMB substrate (TMB=3,3 ,5,5 tetramethylbenzidine;Neogen K-blue low activity substratewas purchased from Neogen (U.S..Ab 2,HRP (MW 44,000Da,HRP labeled Ab 2(Ab 2-HRP,lyophilized99%bovine serum albumin (BSA,and Tween-20were from Sigma Aldrich.The buffer solutions involved in this study are as fol-lows:immunoreagents were dissolved in pH 7.20.1M phosphate saline (PBSbuffer (0.01M phosphate,0.14M NaCl,2.7mM KCl.Y.Wan et al./Biosensors and Bioelectronics xxx (2011 xxx–xxx3The washing buffer was PBST(0.5%tween in0.1M PBS buffer. Enzyme diluent was0.1M PBS buffer with1%casein(pH7.2. The buffer for electrochemical measurement was TMB substrate. 1-(3-(dimethylamino-propyl-3-ethylcarbodiimidehydrochloride(EDCand N hydroxysulfosuccinimide(NHSwere dissolved in water immediately before use.All solutions were prepared with Milli-Q water(18M cm resistivityfrom a Millipore system.2.2.ApparatusElectrochemical measurements of the immunosensors were performed with an independent developed16-channel electro-chemical work station.Independent developed disposable16 channel SPCE array,each comprising a carbon working electrode, carbon counter electrode,and silver pseudoreference electrode, were employed all through the experiment(Scheme1.Unlabelled MWNTs and universal nanoprobes were imaged under a scanning electron microscopy(SEM,Hitachi S-2400.Absorbance values of ELISA were obtained with a Tecan GENios microplate reader at room temperature.2.3.Preparation of the universal nanoprobeMWNTs were functionalized following literatures(Yu et al., 2006and several details were optimized.In briefly,MWNTs were sonicated for6h at300W(Yingsum ultrasonic equipment Co.Ltd., Shanghai,Chinain3:1H2SO4/HNO3(70◦C.The resulting dis-persion was washed repeatedly with water andfiltered until pH was7.The resulting functionalized,shortened MWNTs were then dried under vacuum overnight.This procedure removes metallic and carbonaceous impurities and generates carboxylate groups on the shortened nanotubes.Multiple HRPs and Ab2s were bond to carboxylated MWNTs using an EDC/NHS amidization protocol with a reaction mixture of optimized Ab2/HRP ratio.Briefly,1mg of oxidized MWNTs in1mL of pH7.20.01M2-(N morpholinoethane-sulfonic acid buffer(MES bufferwere sonicated for1h to obtain a homogeneous dispersion.This dispersion was mixed with1mL of400mM EDCand100mM NHS in pH7.2PBS and vortexed for 15min,then centrifuged at15,000rpmfor5min,and the super-natant was discarded.The buffer wash was repeated2times to remove excessive EDC and NHS.To optimize the ratio of Ab2/HRP, reaction mixture ofdifferent ratio of Ab2and HRP were added to the activated MWNT and stirred in a small vial overnight at room temperature.The concentration of HRP was kept at1mg mL−1in all the experiments.BSA was added to thefinal conce ntration of1%to the reaction mixture after overnight stirring,which was to protect the bioconjugates from deposition or attachment to the wall of the tubule in the following centrifugation steps.Then the reaction mix-ture was centrifuged at5000rpm at4◦C fo r5min,the supernatant was taken out into another tubule for the continuing steps while the remaining precipitate was discarded.The new tubule was then centrifuged at15,000rpm at4◦C for10min,and the supernatant was discarded.Washing with0.1%BSA in PBST buffer was crucial to remove free Ab2and HRP and was repeated four times.A total of0.5mL of0.1%BSA in PBST buffer was added to the bioconjugate precipitate collected and vortexed to form a homogeneous disper-sion and stored in the refrigerator at4◦C.The prepar ed MWNT bioconjugate was diluted with PBS buffer containing1%BSA and 1%Casein immediately before use.2.4.Evaluation of the universal nanoprobe by ELISAPSA pAb was diluted with PBS to a concentration of2␮g mL−1 and immediately added to each ELISA plate well.PSA mAb was used as the control.After incubation overnight at4◦C,the plate was washed by PBS buffer and then incubated with block buffer(2%BSA in PBSat room temperature for1h.The universal nanoprobe was diluted with PBST buffer1%BSA and1%casein and added to the treated96plate well.After incubation30min at room temperature, the ELISA plate was washed and incubated with TMB substrate at room temperature for color development.The absorbance(OD520 was measured with a Tecan GENios microplate reader at room tem-perature.2.5.Fabrication of immunosensor arrayThe16channel disposable SPCE array was sonicated in Milli-Q water for1min before use.Electrochemical activation was per-formed on the SPCE array in a0.01M PB bufferby running10cycles of CV with potential r ange−0.3to0.6V.Electrochemical treatment of carbon electrodes was often performed by cyclic scanning over a wide potential range to obtain potentiostatic oxidizing at posi-tive potential(Li et al.,2004;Wang et al.,2001;Zhao et al.,2008, 2009.The goal of this step was to generate carboxylate groups on the working electrode.After rinsed with Milli-Q water,the SPCE array was blew-dry with nitrogen.For attachment of capture anti-body,10␮L of freshly prepared400mM EDC and100mM NHS in water were placed onto the working electrodes,and washed off after15min.This was immediately followed by1h incubation at 37◦C with5␮L of100␮g mL−1PSA mAb or IL-8mAb in pH7.2 PBS buffer.In the optimization experiment,signal antibody was immobilized on the working electrode instead.The electrode was then washed with0.1M PBS buffer.The treated SPCE array was then incubated for1h at37◦C with100␮Lof1%BSA in PBS buffer covering all the three electrodes area,followed by washing with PBS buffer.Washing steps used here and during the whole analysis were essential to block nonspecific binding(NSB,and omission of any of the washing steps deteriorated sensitivity.2.6.Immunosensor detection of PSA and IL-8Optimized steps in the assay procedure were as following: Firstly,the16channel SPCE array,prepared and preincubated with 1%BSA in PBS buffer as described above,was incubated at37◦C for 1h with a5␮L drop of antigen(PSA or IL-8in different concen-tration,followed by washing with PBST and then PBS buffer.Next, 5␮L dropof50␮g mL−1signal antibody(PSA pAb or IL-8pAbwas added to the sensor.After incubation at37◦C for1h,the sensor was washed as described above.The immunosensor was then incubated at37◦C for30min with a5␮L drop of the universal nanoprobe in 0.1M PBS buffer containing1%BSA and1%Casein.Washing steps should not be omitted.After that,electrochemical detection was performed in100␮L TMB substrate.Cyclic voltammetry(CVwas carried out at a scan rate of50mV/s,and the potential range was−0.3V to0.6V.Voltage of amperometric current versus time was fixed at−0.1V and theelectroreduction current was measured at 50s after the HRP redox reaction reached steady state.3.Results and discussion3.1.StrategyThe immunosensor herein employed a16channel SPCE array as a multiplexing assay platform,each comprising a carbon working electrode,a carbon counter electrode and a silver pseudoreference electrode(Scheme1.The immobilization of capture antibodies on this platform was considerably easy and robust,which involved an electrochemical activation of the carbon work ing electrode to generate carboxylate groups atfirst.And then capture antibody (PSA mAb or IL-8mAbwas attached to the working electrode with the amine residues on the proteins using the EDC/NHS protocol.4Y.Wan et al./Biosensors and Bioelectronics xxx (2011 xxx–xxxFig.1.Scanning electron microscopy (Adam et al.,2002images in different scale of MWNTs before (upper imagesand after (nether imagesthe attachment of Ab 2/HRP.This covalent attachment was simple,efficient and stable for weeks while stored at 4◦C.A “sandwich”configuration was used here,which involved capture antibodies and signal antibodies to form a “sandwich”type complex with the target antigen.After that,the universal nanoprobe which could bind to the signal antibodies was added to the platfrom.The universal nanoprobe containing multiple HRP labels and Ab 2on carbon nanotube was developed to enhance the sensitivity of immunosensor.HRP and Ab 2were attached to the MWNT following a literature (Yu et al.,2006and the pro-cess was optimized.The car boxylated MWNT were first activated by EDC/NHS which was then removed and reacted with Ab 2/HRP mixture of optimized ratio.This nanoprobe was to replace con-ventional Ab 2-HRP,and showed great promise of amplification forimmunoassay.To be noted,the universal nanoprobe here was not directly reacted with the target antigen and this strategy had several advantages which were illustrated by the following exper-iments.3.2.CharacterizationA series of experiments were carried out to confirm the attach-ment of Ab 2/HRP with MWNT.First of all,The MWNTs and bioconjugates (universal nanoprobewere imaged under a scan-ning electron microscopy (Adam et al.,2002.As was shown in Fig.1,nanotubes dispersed well in both conditions and the MWNT dimmer was obviously increased after the binding of Ab 2/HRP.The increased diameter was about 20nm which confirmed the con-jugation of Ab 2/HRP with the nanotubes.Of note,the increase of the dimmer here was higher than that the previous reported (Yu et al.,2006.The reason was that the amount of antibodies com-bined with MWNT was much higher in this work.The increased dimmer here should attribute to the loading of antibody on carbon nanotubes,while it was determined by the loading of HRP in the previous study.The size of antibody is much larger than that of HRP,so only the monolayer of antibodies was visible.HRP molecules were merged in the monolayer.Because the diameter of antibody (immunoglobulin Gis about 10nm,we observed a 20nm-increase in the diameter of MWNT.A simple method to test the activity of HRP after assembly on MWNT was mixing the universal nanoprobe with TMB substrate and observing color change.The supernatant in the last centrifuga-tion during the preparation of the universal nanoprobe was taken as the control.As was shown in Fig.2A,the supernatant was color-less and the universal nanoprobe was homogeneous blank solution.When the supernatant and the universal nanoprobe were added to TMB substrate respectively,color change was observed by naked eyes.The color of TMB mixed with the universal nanoprobe was sig-nificantly changed into dark blue while punychange was observed when mixed with the supernatant,which suggested that HRP was attached to the MWNT effectively and free HRP was removed clearly.Electrochemical detection was carried out to test the reaction activity of universal nanoprobe.PSA mAb and PSA pAb were immo-bilized onto SPCE respectively and then the universal nanoprobe was added (Fig.2B-3,4.As PSA pAb was from rabbit spice,the universal nanoprobe could be specifically attached to the electrode immobilized by PSA pAb while PSA mAb immobilized SPCE was employed as a negative control.Fig.2B-1revealed typical CV for the universal nanoprobe performance on this SPCE,which exhib-ited three pairs of characteristic redox peaks and differed from that on gold working electrode (Liu et al.,2008.This might because of the different surface prosperities of two different electrodes.Sig-nificant HRP-catalyzed reduction peaks could be seen when the universal nanoprobe was attached to the PSA pAb immobilizedSPCE.Amperometric (i–twas employed as quantitative measure-ment and the potential was hold at −0.1V according to the CV curve (Fig.2B-2.The steady state current for the universal nanoprobe reacted with PSA pAb was approximately 4␮A,wher eas the con-trol was only 0.2␮A.The difference between these currents not only revealed the binding of Ab 2on the MWNT,but also confirmed the HRP activity on this universal nanoprobe.3.3.OptimizationThere were several conditions to be optimized during the prepa-ration of the universal nanoprobe.Activity and stability were interrogated to evaluate the universal nanoprobe.To enhance the activity of the universal nanoprobe and achieve the betteramplification,optimization of Ab 2/HRP ratio was done.MWNTs load ing with different Ab 2/HRP ratio were prepared and then electrochemical performances were carried out to evaluate their capabilities.Amperometric responses for these nanoprobes were illustrated in Fig.3,the steady state current increased whenY.Wan et al./Biosensors and Bioelectronics xxx (2011 xxx–xxx5Fig.2.A:Visual detection of the color changes of the TMB substrate mixed with the supernatant in the last centrifugation during preparation of the universal nanoprobes and universal nanoprobes respectively.From the left,solutions were the supernatant,the supernatant mixed with TMB,the universal nanoprobe with TMB and the universal nanoprobe.B:Electrochemical activity detection of the uni-versal nanoprobe.Cyclic voltammograms (CV(B-1and amperometric curves (B-2for the activity detection of the universal nanoprobe reacted with PSA mAb (dashed lineand PSA pAb (solid lineimmobilized on SPCEs.Scan rate of CV:50mV/s.Poten-tial ofamperometry:−0.1V.Illustration of universal nanoprobe reacted with PSA pAb (B-3or with PSA mAb(B-4.Fig.3.Amperometric response for the MWNTs loaded with different weight ratio of Ab 2/HRP.After PSA pAb was immobilized on the SPCE,MWNTs labeled with different ratio of Ab 2/HRP were added.Purchased Ab 2-HRP was employed as the control.Data were collected from at least three independent sets of experiments.the ratio of Ab 2/HRP increased.The reason might be that the increased amount of Ab 2led to the reactive activity of the univer-sal nanoprobe with PSA pAb.When the ratio was higher than 1/20,however,MWNTs became unstable and deposited which might because of the electrostatic affection of the Ab 2(data not shown.Thus the 1/20was chosen as the optimal ratio.To be point out,amperometric responses for all the nanoprobes were higher than that for purchased Ab 2-HRP.To enhance the stability of the universal nanoprobe,several details should be paid attention to.First,a long time sonication of MWNTs was unnegligible before theEDC/NHS activation to ensure the dispersion of MWNTs.The better MWNT was dispersed,the more stable the universal nanoprobe was.Second,BSA was added to thereaction mixture after overnight incubation of MWNT with Ab 2/HRP in order to prevent the universal nanoprobe from deposi-tion or attachment to the wall of the vial.Third,the reaction mixture was centrifuged at 5000rpm at 4◦C for 5min and the precipitate was discarded.The reason was that some of MWNT attached to the wall of the vial would affect the stability of the universal nanoprobe if remained in the solution.ELISA was carried out to evaluate the stability of the universal nanoprobe.PSA pAb and PSA mAb were incubated in ELISA plate respectively,and then were exposed to the universal nanoprobes stored for different time.The absorbance to the reaction of PSA pAb decreased slowly as the time passed (Fig.1-s and only approx-imately 5%signal decrease was observed after 4weeks.To be pointed out,the signal of the universal nanoprobe stored for 4weeks was still higher than Ab 2-HRP,which demonstrated the sta-bility of the universal nanoprobe.The control experiment with PSA mAb showed the nonspecific binding (NSBof the universal nanoprobe was low and stable.Results from ELISA indicated that our attempts to enhance the stability were effective.3.4.Multiplexing biosensing16channel SPCE array was employed to perform simultaneous detection of PSA and IL-8using the universal nanoprobe ampli-fied immunoassay.PSA mAb and IL-8mAb were immobilized on the working electrode of SPCEs as capture antibodies and formed “sandwich”complex with antigen (PSA or IL-8and signal anti-bodies (PSA pAb or IL-8pAb.Thus the detection platform was available for the universal nanoprobe attachment and provided amperometric readout for immunosensing.We herein employed an independent developed 16-channel electrochemical work sta-tion for simultaneous detection of 16SPCE array.In the detection of PSA (Fig.4A,the steady state current increased with PSA concentration and was logarithmically related to the target concentration across the range of 5–4000pg mL −1.Of note,as the concentration increased over 4000pg mL −1,the signaldid not reach a steady state but increased sharper (Fig.4B.This phenomenon might be due to the long distance between universal nanoprobe and electrode surface,and thus the space resistance did not affect the attachment of the universal nanoprobe.As a result,the response region of our strategy was more than 4orders of mag-nitude and the limit of detection (LODwas lower than 5pg mL −1.The ultrahigh sensitivity reflected the signal amplification of the universal nanoprobe and the broad range of response region indi-cated the superiority of Ab 2labeled universal nanoprobe.The small error bars indicated the excellent reproducibility.Control experiments using purchased Ab 2-HRP were carried out to compare with the universal nanoprobe.The LOD of the electro-chemical detection using purchased Ab 2-HRP was approximately 60pg mL −1and dynamic range was 3orders of magnitude (Fig.4B.Standard ELISA protocol was also employed as another control experiment and the detection LOD was 40pg mL −1(Fig.2-s .About 10folds of amplification by using the universal nanoprobe can beG Model BIOS-4708; No. of Pages 7 6 ARTICLE IN PRESS Y. Wan et al. / Biosensors and Bioelectronics xxx (2011 xxx–xxx Fig. 4. A: The universal nanoprobe amplified SPCE immunoassay calibration curve for logarithmically concentration of PSA. B: Comparison of amperometric results on SPCE using the universal nanoprobe ( and purchased Ab2 -HRP ( . Data were collected from at least three independent sets of experiments. achieved. These results suggested that electrochemical detection using the universal nanoprobe were considerably better than that using purchased Ab2 -HRP. The universal nanoprobe was also employed for the detection of IL-8 (Fig. 5, The LOD was 8 pg mL−1 and dynamic range was 8–1000 pg mL−1 . As described above, our strategy for immunoassaying using SPCE array and a universal nanoprobe can accurately detect biomarker sample with very high sensitivity and broad dynamic range. Good reproducibility was illustrated by small error bar. By optimization of the universal nanoprobe, best sensitivity was achieved at the Ab2 /HRP weight ratio of 1/20 and good。

纳米氧化锌材料的制备方法及结构表征

纳米氧化锌材料的制备方法及结构表征
图 1 基 于 VLS机 制 催 化 反 应 生 长 法模 型
璃衬底上合成 了 c轴择优生长的氧化锌纳米棒 。 系 统 压 强 0.001—0.008MPa, 氩 气 流 速 140~ 150sccm,锌 源 和 玻 璃 衬 底 温 度 分 别 为 500 ̄C 、 370℃ ,反应 持续 时 问 lOmin,所得纳 米棒 分布 均匀 (图 5),每个纳米棒都 由头部 、体 、底部三部分组成 , 沿 【001】取向生长 ,直径约 240nm,高度 约 400nm。 分析 光致发 光谱 (PL),发 现纳 米棒 阵列在 3.3eV 有较强的紫外 一可见发射峰 (uV)和一个较宽的 绿光发射 ,有效促进紫外 一可见发射器的进一步 发展。同年 。Y.J.Xing等… 用 Zn/ZnO混合物 ,Si (5×20mm)作 衬 底 ,压 强 300tort,在 氩 保 护 气 (40seem)中,温度 700 ̄C下 ,有效合成了氧化锌纳 米管(图 6)。此纳米管的平均直径 60nm,长度几十 个微米,管壁厚约 4nm,呈规则的多面体结构,经 分析可能是在特殊条件下纳米管以 ZnO微晶体为 基底生长 ,即底部籽晶法 ,生长机理如图 7,初始形 成 富 zn的亚稳 定籽 晶后 (图 7(a)),在籽 晶表 面生 长出一层稳定的 ZnO鞘层 (图 7(b)),随着 ZnO鞘 的 生长 ,亚稳 定 的籽 晶慢 慢 消失 ,这样就 得 到 了 ZnO的纳米管结构 (图 7(c)),底部籽晶法有可能
中 图分 类 号 :TQ123.4 文献 标 识 码 :A 文章 编 号 :1812—1918(2006)02—0046—05
0 引言
自从 1991年 发 现碳 纳 米 管 (carbon nano— tubes)…以来 ,一维 纳米 材料 (纳 米线 、棒 、管 等 )由 于其 在基础 理论 研 究 和 潜在技 术 应用 上 的 双重 重 要 性 ,引起 了人们 极 大 的研 究 兴趣 。氧 化锌 (ZnO) 也 有多种 纳米 结构 ,如 氧化锌 纳米 管 (nanotubes)、 纳米棒 (nanorods)、纳米丝和纳米 同轴电缆、纳米 带 (nanobelts)、 纳 米 环 (nanorings)、 纳 米 笼 (f lanocages)、纳米 螺 旋 (nanohelices)及 其超 晶格结 构等 ,是纳米 材料 家族 中结构最 多样 的成员 之 一 。 ZnO晶体是一种具有发光 、压电 、电光、闪烁等 性 能的多 功能 半导 体 晶体材 料 。室 温下 ,它 的禁带
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Nanomaterial-based electrochemical biosensorsJoseph WangDOI:10.1039/b414248aThe unique properties of nanoscale materials offer excellent prospects forinterfacing biological recognition events with electronic signal transduction andfor designing a new generation of bioelectronic devices exhibiting novelfunctions.In this Highlight I address recent research that has led to powerful nanomaterial-based electrical biosensing devices and examine future prospectsand challenges.New nanoparticle-based signal amplification and codingstrategies for bioaffinity assays are discussed,along with carbon-nanotubemolecular wires for achieving efficient electrical communication with redoxenzyme and nanowire-based label-free DNA sensors.1.Why nanomaterials?The buzzword‘‘nanotechnology’’is now around us everywhere.Nanotechnology has recently become one of the most exciting forefront fields in analytical chemistry.Nanotechnology is defined as the creation of functional materials, devices and systems through control of matter at the1–100nm scale.A wide variety of nanoscale materials of differ-ent sizes,shapes and compositions are now available.1The huge interest in nanomaterials is driven by their many desirable properties.In particular,the ability to tailor the size and structure and hence the properties of nanomaterials offers excellent prospects for designing novel sensing systems and enhancing the performance of the bioanalytical assay. The goal of this article is to highlight recent advances in nanomaterials for such electrical sensing devices.2.Nanoparticles,nanowires and nanotubesResearch efforts on metal and metal semiconductor nanoparticles have flour-ished in recent years.2,3Metal nano-particles are generally defined as isolable particles between1and50nm in size,that are prevented from agglo-merating by protecting shells.Owing to their small size such nanoparticles have physical,electronic and chemical proper-ties that are different from those of bulk metals.Such properties strongly depend on the number and kind of atoms that make up the particle.Several reviewshave addressed the synthesis and proper-ties of nanoparticles.2,3Typically,suchparticles are prepared by chemical reduc-tion of the corresponding transitionmetal salts in the presence of a stabilizer(capping agent such as citrate or thiol)which binds to their surface to imparthigh stability and rich linking chemistryand provide the desired charge andsolubility properties.Designer particles,including colloidal gold or inorganicnanocrystals have found broad applica-tions in many forms of biological taggingschemes.For example,colloidal quan-tum dots have been widely used foroptical bioassays because their lightemitting properties can be broadlytuned through size variation.4Recentyears have witnessed the developmentof powerful electrochemical bioassaysbased on nanoparticle labels and ampli-fication platforms.One-dimensional(1-D)nanostruc-tures,such as carbon nanotubes(CNT)and semiconductor-or conducting-polymer nanowires,are particularlyattractive for bioelectronic detection.Because of the high surface-to-volumeratio and novel electron transport pro-perties of these nanostructures,their elec-tronic conductance is strongly influencedby minor surface perturbations(such asthose associated with the binding ofmacromolecules).Such1-D materialsthus offer the prospect of rapid(real-time)and sensitive label-free bioelectro-nic detection,and massive redundancyin nanosensor arrays.The extremesmallness of these nanomaterials wouldallow packing a huge number of sensingelements onto a small footprint of anarray device.Metal and conductingpolymer nanowires can be readilyprepared by a template-directed electro-chemical synthesis involving electro-deposition into the pores of amembrane template.5Carbon nanotubes(CNT)are particularly exciting1-Dnanomaterials that have generated aconsiderable interest owing to theirunique structure-dependent electronicand mechanical properties.6CNT canbe divided into single-wall carbon-nanotubes(SWCNT)and multi-wallcarbon-nanotubes(MWCNT).SWCNTpossess a cylindrical nanostructure(with a high aspect ratio),formed byrolling up a single graphite sheet into atube.SWCNT can thus be viewed asmolecular wires with every atom on thesurface.MWCNT comprise of an arrayof such nanotubes that are concentricallynested like rings of a tree trunk.Theremarkable properties of CNT suggestthe possibility of developing superiorelectrochemical sensing devices,rangingfrom amperometric enzyme electrodesto label-free DNA hybridization bio-sensors.7The tailored electronic con-ductivity of conducting polymers,coupled with their ease of processing/modification and rich chemistry,makethem extremely attractive as1-D sensingmaterials.Newly introduced CNT/conducting-polymer nanowire mate-rials,8based on incorporating oxidizedCNT as the charge-balancing dopantsi-SECTION:HIGHLIGHT /analyst|The Analystwithin electropolymerized wires,should further enhance the sensing capabilities of 1-D materials.In the following sections I will discuss how the unique properties of nano-particles,nanowires and nanotubes can enhance the performance of existing electrochemical sensors and can lead to the creation of a new generation of bioelectronic devices.3.Nanomaterial-derived electrochemical biosensorsElectrochemical sensors offer several distinct advantages.In particular,such devices offer elegant routes for interfac-ing,at the molecular level,biological recognition events and electronic signal-transduction processes.In addition,electrochemical devices are uniquely qualified for meeting the size,cost,low-volume,and power requirements of decentralized testing and indicate great promise for a wide range of biomedical or environmental applications.9,10Nano-materials can be used in a variety of electrochemical biosensing schemes and the present article is divided accordingly.The organization of nanomaterials intocontrolled surface architectures is essen-tial for the successful realization of these sensing protocols.Nanomaterial-based enzyme electrodesEnzyme electrodes have been widely used for monitoring a wide range of clinically or environmentally important substrates.An extremely important challenge in amperometric enzyme electrodes is the establishment of satisfactory electrical communication between the active site of the enzyme and the electrode sur-face.11The redox center of most oxido-reductases is electrically insulated by a protein shell.Because of this shell,the enzyme cannot be oxidized or reduced at an electrode at any potential.The possi-bility of direct electron-transfer between enzymes and electrode surfaces could pave the way for superior reagentless biosensing devices,as it obviates the need for co-substrates or mediators and allows efficient transduction of the biorecogni-tion event.‘‘Trees’’of aligned CNT in the nanoforest,prepared by self assem-bly,can act as molecular wires to allow electrical communication between the underlying electrode and redox proteins(covalently attached to the ends of the SWNT).12,13Willner’s group 14demon-strated that aligned reconstituted glucose oxidase (GOx)on the edge of SWCNT can be linked to an electrode surface (Fig.1).Such enzyme reconstitution on the end of CNT represents an extremely efficient approach for ‘plugging’an electrode into GOx.Electrons were thus transported along distances higher than 150nm with the length of the SWCNT controlling the rate of electron transport.An interfacial electron transfer rate con-stant of 42s 21was estimated for 50nm long SWCNT.The catalytic properties of metal nanoparticles have also facilitated the electrical contact of redox centers of proteins with electrode surfaces.For example,gold nanoparticles were shown to be extremely useful as electron relays (‘‘electrical nanoplugs’’)for the align-ment of glucose oxidase on conducting supports and wiring its redox center.15A wide range of enzyme electrodes based on dehydrogenase or oxidase enzymes rely on amperometric monitor-ing of the liberated NADH or hydrogen peroxide products.The anodic detection of these species at ordinary electrodes is often hampered by the large overvoltageFig.1Assembly of SWCNT electrically contacted glucose oxidase electrode:linking the reconstituted enzyme,on the edge of the FAD-functionalized SWCNT,to the electrode surface.(Based on ref.14with permission.)encountered for their oxidation.The greatly enhanced redox activity of hydrogen peroxide 16and NADH 17at CNT-modified electrodes addresses these overvoltage limitations and makes these nanomaterials extremely attractive for numerous oxidase-and dehydrogenase-based amperometric biosensors.The ability of CNT to promote electron transfer reactions is attributed to the presence of edge plane defects at their end caps.Carbon-nanotube-modified electrodes have also been shown to be extremely useful for circumventing surface fouling associated with the oxida-tion of the liberated NADH product.17The deposition of platinum nano-particles onto CNT has led to further improvements in the detection of the enzymatically-liberated peroxide spe-cies.18In addition to CNT films,it is possible to use CNT-based inks 19and pastes 20for designing screen-printed and biocomposite,respectively,ampero-metric biosensors.The excellent elec-trocatalytic properties of metal nanoparticles (compared to bulk metal electrodes)can also benefit amperometric enzyme electrodes.For example,Niwa and coworkers 21dispersed iridium nano-particles (2nm diameter)in graphite-like carbon and used the resulting transducer for improved amperometric biosensing of glutamate.Tao’s group 22described a conducting-polymer nanosensor for detecting glu-cose based on a pair of nanoelectrodes,separated with a small (20–60nm)gap connected by a polyanaline/glucose-oxidase film.The remarkable small dimensions of the new device,coupled with its very fast response and minimal oxygen consumption,makes it attractive for in-vivo monitoring of glucose.Another promising and controllable route for preparing conducting-polymernanowire enzyme sensors involves elec-trodeposition within the channel between electrodes.23Nanomaterial-based bioaffinity electrochemical sensorsThe development of electrical DNA hybridization biosensors has attracted considerable research efforts.24,25Such DNA sensing applications require high sensitivity through amplified trans-duction of the oligonucleotide interac-tion.Nanoparticle-based amplification schemes have led to improved sensitivity of bioelectronic assays by several orders of magnitude.In 2001both my group 26and that of Limoges 27reported on the use of colloidal gold tags for electronic detection of DNA hybridization.This protocol relies on capturing the nano-particles to the hybridized target,followed by highly sensitive anodic-stripping electrochemical measurement of the metal tracer.Analogous bio-electronic measurements of proteins based on sandwich immunoassays and gold nanoparticle tracers have also been reported.28Electronic DNA hybridiza-tion assays have been extended to other metal tracers,including silver 29or iron.30Commonly we rely on the coupling biorecognition element to surfaces of magnetic beads,as it offers an effective minimization of non-specific binding.The hybridization of probe-coated mag-netic beads with the metal-tagged targets results in three-dimensional network structures of magnetic beads,crossed-linked together through the DNA and gold nanoparticles.The ‘magnetic’collection of such magnetic-bead/DNA/metal-label assembly onto the electrode leads to direct contact of the metal label and the surface and enables solid-state (chronopotentiometric)measurementswithout dissolving the metal tag.31Thisroute could facilitate the creation of magnetically-addressable DNA arrays.Several amplification processes can be used for dramatically enhancing the sensitivity of particle-based bioelectronic assays.For example,the metal nano-particle tags can act as catalytic sites for the electroless deposition of other metals.Treatment of gold-linked DNA-hybrid assembly with silver ion in the presence of hydroquinone thus results in catalytic deposition of silver on the gold tracer (acting as catalyst),leading to a dramatic (.100fold)signal amplification.32Instead of enlarging spherical nano-particle tags,it is possible to enhance the sensitivity by using long nanorodtracers.33We also described a triple-amplification bioassay,coupling the carrier-sphere amplifying units (loaded with numerous gold nanoparticles tags)with the ‘built-in’preconcentration of the electrochemical stripping detection and a catalytic enlargement of the multi-ple gold-particle tags 34(Fig.2).The success of these and other nanoparticle-based amplification strategies depends on our ability to maintain a low back-ground response (through proper atten-tion to the surface-blocking chemistry and wash conditions).Inorganic nanocrystals offer an elec-trodiverse population of electrical tags as needed for designing electronic coding.We demonstrated the use of different inorganic-nanocrystal tracers for a multi-target electronic detection of DNA 35or proteins.36Three encoding nanoparticles (zinc sulfide,cadmium sulfide and lead sulfide)have thus been used to differentiate the signals of three protein targets in connection with a sandwich immunoassay and stripping voltammetry of the corresponding metals (Fig.3).Each binding thus yields aFig.2Amplified bioelectronic detection of DNA hybridization,using polymeric beads carrying multiple gold nanoparticle tracers,catalytic enlargement of the gold particles and a stripping voltammetric signal transduction.(Based on ref.34with permission.)distinct voltammetric peak,whose posi-tion and size reflect the identity and level,respectively,of the corresponding anti-gen.The concept can be scaled up and multiplexed by using a parallel high-throughput automated microwell opera-tion,with each microcavity capable of carrying out multiple measurements.Libraries of electrical codes have been created by encapsulating different pre-determined levels of multiple inorganic nanocrystals into polymeric carrier beads or depositing various metal tracers onto the pores of a host membrane.37The resulting voltammetric signatures reflect the predetermined proportions of the corresponding metals in such ‘identifica-tion’nanomaterials.Nanoparticle-induced changes in the conductivity across a microelectrode gap can also be exploited for highly sensitive and selective electronic detection ofDNA hybridization.38,39The capture of the nanoparticle-tagged DNA targets by probes confined to the gap between the two microelectrodes,and a subsequent silver enlargement,results in a conduc-tive metal layer across the gap,and leads to a measurable conductivity signal (Fig.4).Target DNA concentrations down to 500fmol can thus be detected with excellent point-mutation selectivity.This low-cost,simple scheme offers the potential of parallel readout of multiple electrode arrays.One-dimensional nano-wires can also be used for bridging two closely-spaced electrodes for label-free DNA detection.For example,a p-type silicon nanowire—functionalized with PNA probes—has been shown to be extremely useful for real-time label-free conductometric monitoring of the hybri-dization event.40This relies on the binding of the negatively-charged DNAtarget that leads to an increase in con-ductance,reflecting the increased surface charge.Similar improvements have been reported in connection to nanowires and CNT functionalized with other receptor molecules.For example,Patolsky et al.41reported recently on the use of nanowire devices for direct real-time electronic detection of single virus mole-cules.Measurements made with nano-wires modified with antibodies for influenza A showed distinct and rever-sible conductivity changes upon bind-ing and unbinding of single viruses.Conducting-polymer nanowire bio-sensors have also been shown to be attractive for label-free bioaffinity sensing.For example,Ramanathan et al.42demonstrated the real-time monitoring of nanomolar concentrations of biotin at an avidin-embedded poly-pyrrole nanowire.Similarly,non-covalent functionalization of CNT was shown to be useful for label-free con-ductivity measurements of antibodies associated with human autoimmune diseases.43Non-specific binding on the CNT was overcome by immobilizing polyethylene oxide chains.Carbon nanotubes can also lead to ultrasensitive bioelectronic detection of DNA hybridization.44–47For example,CNT can be used as carriers for several thousands enzyme tags and for accumu-lating the a -naphthol product of the enzymatic reaction (Fig.5).Such a CNT-derived double-step amplification pathway (of both the recognition and transduction events)allows the detection of DNA down to the 1.3zmol level and indicates great promise for PCR-free DNA analysis.The ability of CNT to facilitate the adsorptive accumulation of the guanine nucleobase can lead to a dramatic ampli-fication of label-free electrical detec-tion protocols,based on theintrinsicFig.3Multi-antigen sandwich immunoassay protocol based on different inorganic-colloid (quantum dots)nanocrystal tracers.(Based on ref.36withpermission.)Fig.4Conductivity detection of nanoparticle-based microelectrodes arrays.The capture of the nanoparticle-tagged DNA targets by probes confined to the gap,and a subsequent silver enlargement,electrically short the gap and lead to a measurable conductivity signal.(Based on ref.38with permission.)electroactivity of DNA.45The coupling of a CNT nanoelectrode array with the Ru(bpy)3+2-mediated guanine oxidation has facilitated the detection of subatt-moles of DNA targets.46,47Such a CNT array was also applied for label-free detection of DNA PCR amplicons,and offered the detection of less than 1000target amplicons.4.Conclusions and future prospectsThe emergence of nanotechnology is opening new horizons for electrochemi-cal biosensors.Recent years have wit-nessed the development of a variety of nanomaterial-based bioelectronic devices exhibiting novel functions.The use of nanomaterials in such sensing devices has taken off rapidly and will surely continue to expand.Nanoparticles,nanowires and nanotubes have already made a major impact on the field of electrochemical biosensors,ranging from glucose enzyme electrodes to genoelectronic sensors.What does the future hold for this technology?The unique properties of nanoscale materials suggest that future interdisciplinary research could lead to a new generation of electrochemical bio-sensors.We are currently exploring nanoparticle-based protocols for electro-nic detection of proteins.The use of nanoparticle tags for detecting and cod-ing proteins is in its infancy,but the lessons learned in DNA detection should provide useful starting points.The monitoring of protein and protein interactions presents a greater challengethan that of nucleic acids,owing to the absence of (PCR-like)amplification technologies,the complexity of proteins,and their stronger non-specific binding to solid supports.Nanoparticles com-prising of mixed (recognition/shielding)monolayers are desired to fully utilize the potential of protein-nanoparticle hybrids.Such addition of protein analy-sis to the arsenal of particle-based bio-assays represents an important step in the direction of making particle bio-electronics a universal biodetection plat-form.Multiple electrode protein and DNA arrays based on nanoparticle-amplification platforms are thus expected in the near future.One-dimensional nanostructures are extremely attractive for a wide range of bioelectronic sensing applications.The ability to modify nanowires and nano-tubes with biological recognition ele-ments imparts high selectivity onto devices based on 1-D nanomaterials.While several novel sensing concepts based on 1-D nanowires have been presented,incorporating these materials into routine functional devices remains a challenge.The successful bioelectronic utility of 1-D nanostructures requires new nanofabrication capabilities and proper attention to the interconnection challenge,involving reproducible posi-tioning of nanowires and nanotubes between closely-spaced microelectrodes.Such attention to the nanotechnology/microtechnology interface is essential for assembling nanosensors into functional integrated devices.Proper attention should be given also to the interface ofthese devices with the real world (i.e.,to sample delivery issues).Ultimately,such activity will lead to powerful sensor arrays for parallel real-time monitoring of multiple analytes.The creation of such biosensor arrays requires new methods for confining different biomolecules onto closely-spaced 1-D nanostructures.A wide range of newly introduced nanomaterials is expected to expand the realm of nanomaterial-based biosensors.Such nanomaterials-based electrochemi-cal devices are expected to have a major impact upon clinical diagnostics,environmental monitoring,security surveillance,or for ensuring our food safety.It is only a matter of time before such protocols are used for routine diagnostic applications.AcknowledgementsThis work was supported by the National Science Foundation (Grant CHE 0209707),the National Institutes of Health (Award Number R01A 1056047-01),and the EPA STAR Program.Joseph WangDepartments of Chemical and MaterialsEngineering and Chemistry and Biochemistry,Biodesign Institute,Arizona State University,Tempe,AZ 85287-5001,USA.E-mail:joseph.wang@;Tel:1-480-727-0399References1 C.P.Poole,Jr.and F.J.Owens,Intro-duction to Nanotechnology ,Wiley,2003.2H.Bonnemann and F.J.M.Richards,Eur.J.Inorg.Chem.,2001,2455.3 C.M.Niemeyer,Angew.Chem.Int.Ed.,2001,40,4129.4 A.M.Smith and S.Nie,Analyst ,2004,129,672.5 C.R.Martin,Acc.Chem.Res.,1995,28,61.6R.H.Baughma, C.Satishkumar,A.G o v i n d a r a j a n d M.N a t h ,ChemPhysChem ,2001,2,79.7J.Wang,Electroanalysis ,2005,in press.8J.Wang,J.Dai and T.Yarlagadda,Langmuir ,2005,21,9.9J.Wang,Trends Anal.Chem.,2002,21,226.10J.Wang,Acc.Chem.Res.,2002,35,811.11 A.Guindilis,P.Atanasov and E.Wilkins,Electroanalysis ,1997,9,661.12J.J.Gooding,R.Wibowo,J.Q.Liu,W.Yang, D.Losic,S.Orbons,F.J.Mearns,J.G.Shapter and D.B.Hibbert,J.Am.Chem.Soc.,2003,125,9006.Fig.5Ultrasensitive bioassays of proteins and nucleic acids based on the amplification features of carbon-nanotube carriers and modified electrodes.(Based on ref.44with permission.)13X.Yu, D.Chattopadhyay,I.Galeska,F.Papadimitrakopoulos and J.F.Rusling,mun.,2003,5,408.14 F.Patolsky,Y.Weizmann and I.Willner,Angew Chem.Int.Ed.,2004,43,2113.15Y.Xiao, F.Patolsky, E.Katz, J. F.Hainfeld and I.Willner,Science, 2003,299,1877.16J.Wang,M.Musameh and Y.Lin,J.Am.Chem.Soc.,2003,125,2408.17M.Musameh,J.Wang,A.Merkoci and Y.Lin,mun.,2002,4, 743.18S.Hrapovic,Y.Liu,K.Male and J.H.T.Luong,Anal.Chem.,2004,76, 1083.19J.Wang and M.Musameh,Analyst,2004, 129,1.20M. D.Rubianes and G. A.Rivas, mun.,2003,5,689.21T.Y.You,O.Niwa,R.Kurita,Y.Iwasaki, K.Hayashi,K.Suzuki and S.Hirono, Electroanalysis,2004,16,54.22 E.S.Forzani,H.Zhang,L.A.Nagahara,I.Amlani,R.Tsui and N.J.Tao,NanoLett,2004,4,1785.23K.Ramanathan,M.A.Bangar,M.Yun, W.C h e n, A.M u l c h a n d a n i a n d N.V.Myung,NanoLett,2004,4,1237.24 E.Palecek and M.Fojta,Anal.Chem.,2000,73,75A.25J.J.Gooding,Electroanalysis,2002,14,1149.26J.Wang, D.Xu, A.N.Kawde andR.Polsky,Anal.Chem.,2001,73,5576.27L.Authier,C.Grossiord,P.Brossier andB.Limoges,Anal.Chem.,2001,73,4450.28M.Dequaire,C.Degrand and B.Limoges,Anal.Chem.,2000,72,5521.29H.Cai,Y.Xu,N.Zhu,P.He and Y.Fang,Analyst,2002,127,803.30J.Wang,G.Liu and A.Merkoci,Anal.Chim.Acta,2003,482,149.31J.Wang,D.Xu and R.Polsky,J.Am.Chem.Soc.,2002,124,4208.32J.Wang,R.Polsky and X.Danke,Langmuir,2001,17,5739.33J.Wang,G.Liu and J.Zhou,Anal.Chem.,2003,75,6218.34 A.Kawde and J.Wang,Electroanalysis,2004,16,101.35J.Wang,G.Liu and A.Merkoc¸i,J.Am.Chem.Soc.,2003,125,3214.36G.Liu,J.Wang,J.Kim and M.R.Jan,Anal.Chem.,2004,76,7126.37J.Wang,G.Liu and G.Rivas,Anal.Chem.,2003,75,4661.38S.Park,T.A.Taton and C.A.Mirkin,Science,2002,295,1503.39R.Moller, A.Csaki,J.Kohler andW.Fritzsche,Langmuir,2001,17,5426.40J.Hahm and C.M.Lieber,NanoLett,2004,4,51.41 F.Patolsky,G.Zheng,O.Hayeden,kadamyali,X.Zhuang andC.Lieber,A,2004,101,14017.42K.Ramanathan,M.A.Bangar,M.Yun,W.C h e n,N.V.M y u n g a n dA.Mulchandani,J.Am.Chem.Soc.,2005,in press.43R.J.C h e n,S.B a n g s a r u n t i p,K. A.Drouvalakis,N.W.Shi Kam,M.Shim,Y.Li,W.Kim,P.J.Utz andH.Dai,A,2003,100,4984.44J.Wang,G.Liu and M.Jan,J.Am.Chem.Soc.,2004,126,3010.45J.Wang, A.Kawde and M.Mustafa,Analyst,2003,128,912.46J.Li,H.T.Ng, A.Cassell,W.Fan,H.Chen,Q.Ye,J.Koehne andM.Meyyappan,NanoLett,2003,3,597.47J. E.Koehne,H.Chen, A.M.Cassell,Q.Yi,J.Han,M.Meyyappan and J.Li,Clin.Chem.,2004,50,1886.。

相关文档
最新文档