选修2-2 2.3.1数学归纳法教案

合集下载

数学归纳法-北师大版选修2-2教案

数学归纳法-北师大版选修2-2教案

数学归纳法-北师大版选修2-2教案一、教学目标1.了解数学归纳法的概念与特点;2.能够使用数学归纳法证明简单的命题;3.能够理解和应用数学归纳法解决实际问题。

二、教学内容1.数学归纳法的概念与特点;2.数学归纳法的推广和严密化;3.数学归纳法的应用。

三、教学重点1.数学归纳法的概念与特点;2.能够使用数学归纳法证明简单的命题。

四、教学难点1.数学归纳法的推广和严密化;2.数学归纳法的应用。

五、教学方法1.观察与讨论法:通过生动的例子,引导学生认识和理解数学归纳法的基本概念和特点;2.讲授与演示法:通过讲授和演示归纳法的具体步骤,使学生掌握如何运用归纳法证明命题;3.练习与探究法:通过练习和探究,让学生掌握数学归纳法的应用技巧。

第一步:引入1.引入数学归纳法的基本概念;2.通过实际例子,引导学生理解数学归纳法的重要性。

第二步:讲解1.讲解数学归纳法基本的步骤;2.分析数学归纳法的特点,包括归纳假设、基本步骤、归纳证明、结论;第三步:演示1.带领学生完成归纳法的几个简单例子,让学生深入掌握归纳法的基本操作;2.带领学生完成一道较为复杂的归纳证明练习,让学生掌握归纳法的应用技巧。

第四步:练习1.让学生分组自主练习归纳法的应用;2.教师辅助解答学生的问题。

第五步:总结1.对本节课所学的内容进行总结;2.强调数学归纳法在理解和应用中的重要性。

七、教学评价1.课堂参与度(20%):检测学生是否认真听讲、积极互动,师生互动是否频繁;2.练习与应用(40%):检测学生掌握归纳法的技巧和应用能力;3.课堂表现(40%):检测学生是否能够在课上正确展现自己的学习成果。

通过本节课的教学,我发现学生对于数学归纳法的概念和特点有了更加深入的理解和认识。

同时,在练习中也发现了一些问题,比如有些学生在归纳证明中容易犯错,需要加强指导和训练。

因此,在教学中需要更加强化实践,多引入真实案例来加强学生对归纳法的认识和理解,同时通过练习和探究来让学生得到更好的应用和提高。

高中数学新人教版B版精品教案《人教版B高中数学选修2-2 2.3.1 数学归纳法》0

高中数学新人教版B版精品教案《人教版B高中数学选修2-2 2.3.1 数学归纳法》0

2.3 数学归纳法(学案)学习目标:1、知识目标:理解数学归纳法原理,掌握用数学归纳法在证明与正整数n 有关的数学命题的方法和步骤。

2、能力目标:培养学生归纳、推理的能力;培养学生大胆猜想,小心求证的辩证思维素质。

3、情感态度价值观:培养学生对于数学内在美的感悟能力和勇于探索的科学精神。

学习重点:了解数学归纳法的基本思想,掌握它的基本步骤,运用它证明一些与正整数有关的数学命题。

学习难点:对数学归纳法原理的理解及在“归纳递推”的步骤中发现具体问题的递推关系。

学法指导:1.先精读一遍教材,用红色笔进行勾画;再针对预习案二次阅读并回答;2.若预习完可对预习自测部分认真审题,做不完的正课时再做;3.找出自己的疑惑和需要讨论的问题准备课上讨论质疑。

【探究案】探究一:归纳法分为完全归纳法和不完全归纳法,这两者如何区分?问题 1:大球中有5个小球,如何证明它们都是绿色的?{}?,,,,,1,2432111===++n a a n n a a a a a a a n n 由此归纳通项公式求:已知数列问题完全归纳法:不完全归纳法:探究二:多米诺骨牌游戏跟踪练习1 用数学归纳法证明:.{}都成立。

n 对一切.1)d (n 那么d,为是一个等差数列,公差如 1.N a a a 1n n +∈-+=果证明:2)127531.2n n =-++++(证明:()1114.313.211.21.3++=++++n n n n证明:121.+k A 221.+k B 221121.+++k k C 221121.+-+k k D2.已知f(n)=n 1+ 11+n +21+n +…+21n ,则下列说法正确的是 .①f(n)中共有n 项,当n=2时,f(2)=21+31②f(n)中共有n+1项,当n=2时,f(2)= 21+31+41 ③f(n)中共有n 2-n 项,当n=2时,f(2)=21+31 ④f(n)中共有n 2-n+1项,当n=2时,f(2)=21+31+41,左端增加的项数是到第二步证明从且用数学归纳法证明:"1"),1(12131211.3+>∈<-+⋅⋅⋅++++k k n N n n n 12.-k A k B 2. 12.-k C 12.+k D4、用数学归纳法证明:12)12)(12(1751531311+=+-++⨯+⨯+⨯n n n n 5. 用数学归纳法证明:整除。

2.3.数学归纳法-人教B版选修2-2教案

2.3.数学归纳法-人教B版选修2-2教案

2.3 数学归纳法-人教B版选修2-2教案一、教学目标1.了解数学归纳法的基本思路和定义;2.掌握使用数学归纳法解决具体问题的方法;3.能够对于一些有规律的数列进行归纳总结,并利用数学归纳法进行验证。

二、教学重难点1.理解数学归纳法的基本思路及其应用;2.掌握数学归纳法的应用方法。

三、教学内容及安排时间内容教学活动学生活动教学方法5 min 课程介绍介绍本课程的学习内容、学习目标和教学重难点聆听讲授10 min 数学归纳法的定义与原理讲解数学归纳法的基本定义和思路聆听、记录讲授20 min 基本的数列归纳通过例题讲解数学归纳法的应用方法讨论、记录讲授、互动10 min 数学归纳法在证明中的应用教师通过具体例子讲解数学归纳法应用于证明中的方法及步骤讨论、记录讲授、互动15 min 练习题演练通过具体例子让学生练习数学归纳法的应用方法做题、记录讲授、互动5 min课后作业布置课后作业并提醒学生预习下一节课内容接受、记录讲授四、教学方法本节课采用讲授和互动相结合的方法,教师通过讲解基本定义和思路让学生理解数学归纳法的基本思路,通过具体例子让学生掌握数学归纳法的应用方法,同时也鼓励学生互相讨论和思考问题,培养其独立思考和解决问题的能力。

五、教学评估通过练习题演练和课堂互动等方式对学生进行评估,观察学生掌握数学归纳法的程度,是否能够应用数学归纳法解决具体问题,以评价本节课的教学效果,同时也为下一节课的教学准备奠定基础。

六、教学反思数学归纳法作为一种重要的数学证明方法,在教学中应当注重培养学生的独立思考、解决问题的能力,通过具体例子引导其理解基本思路和应用方法,并鼓励学生积极参与课堂互动,达到高效学习的效果。

选修2-2数学归纳法教案

选修2-2数学归纳法教案

高中选修2-2 2.3《数学归纳法》教学设计一、教材分析数学归纳法是一种重要的数学证明方法, 在高中数学内容中占有重要的地位, 其中体现的数学思想方法对学生进一步学习数学、领悟数学思想至关重要.数学归纳法的证明过程中展现的推理和逻辑思维让学生体会到数学的严谨和规范.学习数学归纳法后学生对等差等比数列、数列求和、二项式定理、整除问题等问题的解决有了新的方法.首先, 我们需要初步掌握了由有限多个特殊事例得出一般结论的推理方法, 即不完全归纳法, 这是研究数学问题, 猜想或发现数学规律的重要手段.但是, 由有限多个特殊事例得出的结论不一定正确, 这种推理方法不能作为一种论证方法.因此, 在不完全归纳法的基础上, 必须进一步学习严谨的科学的论证方法——数学归纳法, 这是促进思维从有限性发展到无限性的一个重要环节, 掌握数学归纳法的证明过程是培养严密的推理能力、训练抽象思维能力、体验数学内在美的好素材.二、教学目标1. 知识目标(1)了解由有限多个特殊事例得出的一般结论不一定正确, 初步理解数学归纳法原理.(2)能以递推思想为指导, 理解数学归纳法证明数学命题的两个步骤一个结论.(3)初步会用数学归纳法证明一些与正整数相关的简单的恒等式.2.能力目标(1)通过对数学归纳法的学习, 使学生初步掌握观察、归纳、猜想、分析能力和严密的逻辑推理能力.(2)进一步发展学生的抽象思维能力和创新能力, 让学生经历知识的构建过程, 体会类比的数学思想.(3)在学习中培养学生大胆猜想, 小心求证的辨证思维素质以及发现问题、提出问题的意识和数学交流的能力.3.情感目标(1)通过对数学归纳法原理的探究, 亲历知识的构建过程, 领悟其中所蕴含的数学思想和辨正唯物主义观点.(2)体验探索中挫折的艰辛和成功的快乐, 感悟数学的内在美, 激发学生学习热情, 使学生喜欢数学.(3)学生通过置疑与探究, 初步形成正确的数学观, 创新意识和严谨的科学精神.三、教学重点与难点1. 教学重点借助具体实例了解数学归纳法的基本思想, 掌握它的基本步骤, 运用它证明一些与正整数有关的简单恒等式, 特别要注意递推步骤中归纳假设的运用和恒等变换的运用.2. 教学难点(1 如何理解数学归纳法证题的严密性和有效性.(2)递推步骤中如何利用归纳假设, 即如何利用假设证明当时结论正确.四、教学方法本节课采用类比启发探究式教学方法, 以学生及其发展为本, 一切从学生出发.在教师组织启发下, 通过创设问题情境, 激发学习欲望.师生之间、学生之间共同探究多米诺骨牌倒下的原理, 并类比多米诺骨牌倒下的原理, 探究数学归纳法的原理、步骤;培养学生归纳、类比推理的能力, 进而应用数学归纳法, 证明一些与正整数有关的简单数学命题;提高学生的应用能力, 分析问题、解决问题的能力.既强调独立思考, 又提倡团结合作;既重视教师的组织引导, 又强调学生的主体性、主动性、平等性、交流性、开放性和合作性.五、教学过程(一)创设情境, 提出问题情景一: 明朝刘元卿编的《应谐录》中有一个笑话: 财主的儿子学写字.这则笑话中财主的儿子得出“四就是四横、五就是五横……”的结论, 用的就是“归纳法”, 不过, 这个归纳推出的结论显然是错误的.情境二:平面内三角形内角和是, 四边形内角和是, 五边形内角和是, 于是得出:凸边形内角和是 .情境三: 数列的通项公式为可以求得于是猜想出数列的通项公式为.情景四:粉笔盒中有10支白色粉笔, 怎么证明它们是白色的呢?结论: 情景一到情景三都是由殊事例得出的一般性结论, 即不完全归纳法不一定正确.因此,它不能作为一种论证方法, 情景四是完全归纳法, 结论可靠但要一一核对,工作量大.提出问题: 如何寻找一个科学有效的方法证明结论的正确性呢?我们本节课要学习的数学归纳法就是解决这一问题的方法之一.(二)实验演示, 探索解决问题的方法① 1. 几何画板演示动画多米诺骨牌游戏, 师生共同探讨: 要让这些骨牌全部倒②下, 必须具备哪些条件呢③第一块骨牌必须倒下.两块连续的骨牌, 当前一块倒下一定导致后一块倒下.可以看出, 条件②事实上给出了一个递推关系: 当第块倒下时, 相邻的第块也倒下.这样, 只要第1块倒下, 其他所有的就能够相继倒下.无论多少块, 只要①②成立, 那么所有的骨牌一定可以全部倒下.演示小节: 数学归纳法原理就如同多米诺骨牌一样.2. 数学归纳法原理证明一个与正整数 有关的命题, 可按下列步骤进行:(1) (归纳奠基) 当n 取第一个值0n (*0n ∈)时命题成立;(2) (归纳递推)假设当 时命题成立, 证明当 时命题也成立.只要完成这两个步骤, 就可以断定命题对从 开始的所有正整数 都成立. 上述证明方法称为数学归纳法.主要有两个步骤、一个结论: 其中第一步是递推的基础, 解决了特殊性;第二步是递推的依据, 解决了从有限到无限的过渡.这两步缺一不可.只有第一步, 属不完全归纳法;只有第二步, 假设就失去了基础.(注:数学归纳法是证明与自然数有关的数学命题的重要方法.在用数学归纳法证题时注意以下三句话“递推基础不可少, 归纳假设要用到, 结论写明莫忘掉.”)(三)迁移应用, 理解升华例1 用数学归纳法证明:如果 是一个等差数列, 那么 对于一切 都成立.证明: (1)当1n = 时,左边1,a = 右边()1111,a d a =+-=结论成立(2)假设当 时结论成立, 即则当1n k =+ 1k k a a d +=+ ()11a k d d =+-+ ()1[11]a k d =++-当 时, 结论也成立.由(1)和(2)知,等式对于任何*n ∈都成立.例2 已知数列{}n a 其通项公式为21,n a n =-试猜想该数列的前n 项和公式,n S 并用数学归纳法证明你的结论. 用假设凑结论解: (1)323459S S a =+=+= 4349716S S a =+=+=(2) 猜想2,n S n =问题转化为证明213521.n n ++++-=证明:(1) 当1n =时,左边=1,右边=1,等式是成立的.(2) 假设当 时等式成立, 即有()213521k k ++++-= 则当1n k =+,有()()()()22213521[211][211]211k k k k k k k ++++-++-=++-=++=+因此, 当 时, 等式也成立由(1)和(2)知,等式对于任何*n ∈都成立.(四)反馈练习, 巩固提高课堂练习:课本第95页练习1, 2(五)课堂小结: 让学生归纳本节课所学内容, 不足的老师补充.1.归纳法是一种由特殊到一般的推理方法2.数学归纳法作为一种证明方法,它的基本思想是递推思想,证明程序为,两 个步骤一个结论.3数学归纳法的科学性: 基础正确, 可传递.用有限的步骤证明无限的结论.(六)布置作业课本第96页习题 2.3 A 组1.2.。

高中数学选修2-2学案:2.3.1 数学归纳法

高中数学选修2-2学案:2.3.1 数学归纳法

2.3.1数学归纳法明目标、知重点 1.了解数学归纳法的原理.2.能用数学归纳法证明一些简单的数学命题.1.数学归纳法一个与自然数相关的命题,如果(1)当n取第一个值n0时命题成立;(2)在假设当n=k(k∈N+,且k≥n0)时命题成立的前提下,推出当n=k+1时命题也成立,那么可以断定,这个命题对n取第一个值后面的所有正整数成立.2.应用数学归纳法时特别注意(1)用数学归纳法证明的对象是与自然数相关的命题.(2)在用数学归纳法证明中,两个基本步骤缺一不可.[情境导学]多米诺骨牌游戏是一种用木制、骨制或塑料制成的长方形骨牌,玩时将骨牌按一定间距排列成行,保证任意两相邻的两块骨牌,若前一块骨牌倒下,则一定导致后一块骨牌倒下.只要推倒第一块骨牌,就必然导致第二块骨牌倒下;而第二块骨牌倒下,就必然导致第三块骨牌倒下…,最后不论有多少块骨牌都能全部倒下.请同学们思考所有的骨牌都一一倒下蕴涵怎样的原理?探究点一数学归纳法的原理思考1多米诺骨牌游戏给你什么启示?你认为一个骨牌链能够被成功推倒,靠的是什么?答(1)第一张牌被推倒;(2)任意相邻两块骨牌,前一块倒下一定导致后一块倒下.结论:多米诺骨牌会全部倒下.所有的骨牌都倒下,条件(2)给出了一个递推关系,条件(1)给出了骨牌倒下的基础. 思考2 用数学归纳法证明问题的一般步骤分几步?答 一般地,证明一个与自然数n 有关的命题P (n ),可按下列步骤进行:(1)(归纳奠基)证明当n 取第一个值n 0(n 0∈N +)时命题成立;(2)(递推是关键)假设当n =k (k ≥n 0,k ∈N +)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.其中,利用假设是证题的核心.思考3 用数学归纳法证明1+3+5+…+(2n -1)=n 2,如采用下面的证法,对吗?若不对请改正.证明:(1)n =1时,左边=1,右边=12=1,等式成立.(2)假设n =k 时等式成立,即1+3+5+…+(2k -1)=k 2,则当n =k +1时,1+3+5+…+(2k +1)=(k +1)×[1+(2k +1)]2=(k +1)2等式也成立. 由(1)和(2)可知对任何n ∈N +等式都成立.答 证明方法不是数学归纳法,因为第二步证明时,未用到归纳假设.从形式上看这种证法,用的是数学归纳法,实质上不是,因为证明n =k +1正确时,未用到归纳假设,而用的是等差数列求和公式.探究点二 用数学归纳法证明等式例1 用数学归纳法证明12+22+…+n 2=n (n +1)(2n +1)6(n ∈N +). 证明 (1)当n =1时,左边=12=1,右边=1×(1+1)×(2×1+1)6=1, 等式成立.(2)假设当n =k (k ∈N +)时等式成立,即12+22+…+k 2=k (k +1)(2k +1)6, 那么,12+22+…+k 2+(k +1)2=k (k +1)(2k +1)6+(k +1)2 =k (k +1)(2k +1)+6(k +1)26=(k +1)(2k 2+7k +6)6=(k +1)(k +2)(2k +3)6=(k +1)[(k +1)+1][2(k +1)+1]6, 即当n =k +1时等式也成立.根据(1)和(2),可知等式对任何n ∈N +都成立.反思与感悟 用数学归纳法证明与正整数有关的一些等式命题,关键在于“先看项”,弄清等式两边的构成规律,等式的两边各有多少项,项的多少与n 的取值是否有关.由n =k 到n =k +1时,等式的两边会增加多少项,增加怎样的项.跟踪训练1 求证:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n (n ∈N +). 证明 当n =1时,左边=1-12=12,右边=12, 所以等式成立.假设n =k (k ∈N +)时,1-12+13-14+…+12k -1-12k=1k +1+1k +2+…+12k 成立. 那么当n =k +1时,1-12+13-14+…+12k -1-12k +12(k +1)-1-12(k +1)=1k +1+1k +2+…+12k +12k +1-12(k +1) =1k +2+1k +3+…+12k +12k +1+[1k +1-12(k +1)] =1(k +1)+1+1(k +1)+2+…+1(k +1)+k +12(k +1), 所以n =k +1时,等式也成立.综上所述,对于任何n ∈N +,等式都成立.探究点三 用数学归纳法证明数列问题例2 已知数列11×4,14×7,17×10,…,1(3n -2)(3n +1),…,计算S 1,S 2,S 3,S 4,根据计算结果,猜想S n 的表达式,并用数学归纳法进行证明.解 S 1=11×4=14; S 2=14+14×7=27; S 3=27+17×10=310; S 4=310+110×13=413. 可以看出,上面表示四个结果的分数中,分子与项数n 一致,分母可用项数n 表示为3n +1.于是可以猜想S n =n 3n +1. 下面我们用数学归纳法证明这个猜想.(1)当n =1时,左边=S 1=14, 右边=n 3n +1=13×1+1=14, 猜想成立.(2)假设当n =k (k ∈N +)时猜想成立,即11×4+14×7+17×10+…+1(3k -2)(3k +1)=k 3k +1, 那么,当n =k +1时,11×4+14×7+17×10+…+1(3k -2)(3k +1)+1[3(k +1)-2][3(k +1)+1]=k 3k +1+1(3k +1)(3k +4)=3k 2+4k +1(3k +1)(3k +4)=(3k +1)(k +1)(3k +1)(3k +4)=k +13(k +1)+1, 所以,当n =k +1时猜想也成立.根据(1)和(2),可知猜想对任何n ∈N +都成立.反思与感悟 归纳法分为不完全归纳法和完全归纳法,数学归纳法是“完全归纳”的一种科学方法,对于无穷尽的事例,常用不完全归纳法去发现规律,得出结论,并设法给予证明,这就是“归纳——猜想——证明”的基本思想.跟踪训练2 数列{a n }满足S n =2n -a n (S n 为数列{a n }的前n 项和),先计算数列的前4项,再猜想a n ,并证明.解 由a 1=2-a 1,得a 1=1;由a 1+a 2=2×2-a 2,得a 2=32; 由a 1+a 2+a 3=2×3-a 3,得a 3=74; 由a 1+a 2+a 3+a 4=2×4-a 4,得a 4=158. 猜想a n =2n -12n -1. 下面证明猜想正确:(1)当n =1时,由上面的计算可知猜想成立.(2)假设当n =k 时猜想成立,则有a k =2k -12k -1, 当n =k +1时,S k +a k +1=2(k +1)-a k +1,∴a k +1=12[2(k +1)-S k ]=k +1-12(2k -2k -12k -1) =2k +1-12(k +1)-1, 所以,当n =k +1时,等式也成立.由(1)和(2)可知,a n =2n -12n -1对任意正整数n 都成立.1.若命题A (n )(n ∈N +)在n =k (k ∈N +)时命题成立,则有n =k +1时命题成立.现知命题对n =n 0(n 0∈N +)时命题成立,则有( )A .命题对所有正整数都成立B .命题对小于n 0的正整数不成立,对大于或等于n 0的正整数都成立C .命题对小于n 0的正整数成立与否不能确定,对大于或等于n 0的正整数都成立D .以上说法都不正确答案 C解析 由已知得n =n 0(n 0∈N +)时命题成立,则有n =n 0+1时命题成立;在n =n 0+1时命题成立的前提下,又可推得n =(n 0+1)+1时命题也成立,依此类推,可知选C.2.用数学归纳法证明“1+a +a 2+…+a2n +1=1-a 2n +21-a (a ≠1)”.在验证n =1时,左端计算所得项为( )A .1+aB .1+a +a 2C .1+a +a 2+a 3D .1+a +a 2+a 3+a 4答案 C解析 将n =1代入a 2n +1得a 3,故选C.3.用数学归纳法证明1+2+22+…+2n -1=2n -1(n ∈N +)的过程如下: (1)当n =1时,左边=1,右边=21-1=1,等式成立.(2)假设当n =k (k ∈N +)时等式成立,即1+2+22+…+2k -1=2k -1,则当n =k +1时,1+2+22+…+2k -1+2k=1-2k +11-2=2k +1-1.所以当n =k +1时等式也成立.由此可知对于任何n ∈N +,等式都成立.上述证明的错误是________.答案 未用归纳假设解析 本题在由n =k 成立,证n =k +1成立时,应用了等比数列的求和公式,而未用上假设条件,这与数学归纳法的要求不符.4.用数学归纳法证明1+n 2≤1+12+13+…+12n ≤12+n (n ∈N +) 证明 (1)当n =1时,左式=1+12,右式=12+1, 所以32≤1+12≤32,命题成立. (2)假设当n =k (k ∈N +)时,命题成立,即1+k 2≤1+12+13+…+12k ≤12+k , 则当n =k +1时,1+12+13+…+12k +12k +1+12k +2+…+12k +2k >1+k 2+2k ·12k +1=1+k +12. 又1+12+13+…+12k +12k +1+12k +2+…+12k +2k <12+k +2k ·12k =12+(k +1), 即当n =k +1时,命题成立.由(1)和(2)可知,命题对所有的n ∈N +都成立.[呈重点、现规律]在应用数学归纳法证题时应注意以下几点:(1)验证是基础:找准起点,奠基要稳,有些问题中验证的初始值不一定为1;(2)递推是关键:正确分析由n =k 到n =k +1时式子项数的变化是应用数学归纳法成功证明问题的保障;(3)利用假设是核心:在第二步证明中一定要利用归纳假设,这是数学归纳法证明的核心环节,否则这样的证明就不是数学归纳法证明.。

高中数学教案选修2-2《2.3数学归纳法》

高中数学教案选修2-2《2.3数学归纳法》

教课目的:1.理解数学概括法的观点 ,掌握数学概括法的证明步骤.2.经过数学概括法的学习 ,领会用不完好概括法发现规律 ,用数学概括法证明规律的门路.教课要点:1.能用数学概括法证明一些简单的数学命题.2.难点:概括 →猜想 →证明.教课过程:一、预习1.思虑并证明:平面内有 n(n ≥2)条直线 ,此中任何两条不平行 ,任何三条可是同一点 ,证明交点的个数为 f(n)= n(n -1).22.小结:数学概括法是一种证明与正整数相关的数学命题的重要方法.主要有两个步骤、一个结论:( 1)证明当 n 取第一个值 n 0(如 n 0=1 或 2 等)时结论正确.( 2)假定 n =k 时,结论正确 ,证明 n = k + 1 时结论也正确(用上假定 ,递推才真).( 3)由( 1),(2)得出结论(结论写明 ,才算完好).此中第一步是递推的基础 ,解决了特别性;第二步是递推的依照 ,解决了从有限到无穷的过渡.这两步缺一不行.只有第一步 ,属不完好概括法;只有第二步 ,假定就失掉了基础.二、讲堂训练例 1 设 n ∈ N *,F(n)=5n+2×3n _ 1+1,( 1)当 n =1,2,3,4 时 ,计算 f(n)的值.( 2)你对 f(n)的值有何猜想?用数学概括法证明你的猜想.例 2 在平面上画 n 条直线 ,且任何两条直线都订交 ,此中任何三条直线不共点.问:这 n 条直线将平面分红多少个部分?1.用数学法明: 1+2+22+⋯+ 2n_1= 2n-1 (n∈N* ).2.下边是某同学用数学法明命 1 + 1++1=n的12 23n( n+1)n+1程,上 ,原命建立.3.求: (n+ 1)(n+2)⋯ (n+n)=2n·1·3·⋯·(2n- 1)( n∈N*).四、堂小① 法:由特别到一般,是数学的重要方法;②数学法的科学性:基正确;可;③数学法程序化步:两个步,一个;④数学法点:战胜了完好法的繁、不行行的弊端,又战胜了不完全法不行靠的不足,是一种科学方法 ,使我到事情由到繁、由特别到一般、由有限到无.五、作本 P94 第 6,7,8 .。

高中数学教案选修2-2《2.3 数学归纳法(1)》

高中数学教案选修2-2《2.3 数学归纳法(1)》

教学目标:1.理解数学归纳法的概念,掌握数学归纳法的证明步骤.2.通过数学归纳法的学习,体会用不完全归纳法发现规律,用数学归纳法证明规律的途径.掌握从特殊到一般是应用的一种主要思想方法.教学重点:掌握数学归纳法的原理及证明问题的方法.教学难点:能用数学归纳法证明一些简单的数学命题.教学过程:一、预习1.问题:很多同学小时候都玩过这样的游戏,(教具摆设)就是一种码放砖头的游戏,码放时保证任意相邻的两块砖头,若前一块砖头倒下,则一定导致后一块砖头也倒下,这样只要推倒第一块砖头就会导致全部砖头都倒下(这种游戏称为多米诺骨牌游戏).思考 这个游戏中,能使所有多米诺骨牌全部倒下的条件是什么?只要满足以下两个条件,所有的多米诺骨牌都能倒下:(1)__________________________________________________;(2)__________________________________________________.思考 你认为条件(2)的作用是什么? 思考 如果条件(1)不要,能不能保证全部的骨牌都倒下? 2.我们知道对于数列{a n },已知a 1=1,且(n =1,2,3…)通11nn na a a +=+过对n =1,2,3,4,前4项的归纳,我们可以猜想出其通项公式为,但1n a n=归纳推理得出的猜想不一定成立,必须通过严格的证明.要证明这个猜想,同学们自然就会从n =5开始一个个往下验证,当n 较小时可以逐个验证,但当n 较大时,逐个验证起来会很麻烦,特别是证明n 取所有正整数时,逐个验证是不可能的.能不能寻求一种方法,通过有限个步骤的推理,证明n 取所有正整数都成立.思考?你认为证明数学的通项公式是,这个猜想与上述多米诺骨牌游1n a n=戏有相似性吗?你能类比多米诺骨牌游戏解决这个问题吗?多米诺骨牌游戏原理通项公式的证明方法1n a n=(1)第一块骨牌倒下.(1)当n = 时,猜想成立(2)若第k 块倒下时,则相邻的第k +1块也倒下.(2)若当n = 时,猜想成立,即 ,则当n = 时,猜想也成立,即 .根据(1)和(2),可知不论有多少块骨牌,都能全部倒下.根据(1)和(2),可知对任意的正整数n ,猜想都成立.证明:(1) .(2)假设 ,3.小结.数学归纳法的定义:一般地,证明一个与正整数有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当n 取第一个值n 0时命题成立.(2)(归纳递推)假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立.只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数都成立.上述证明方法叫做数学归纳法.用框图表示为:注 这两个步骤缺一不可,只完成步骤(1)而缺少步骤(2),就做出判断可能得出不正确的结论,因为单靠步骤(1),无法递推下去,即n 取n 0以后的数时命题是否正确,我们无法判定.同样,只有步骤(2)而缺少步骤(1),也可能得出不正确的结论,缺少步骤(1)这个基础,假设就失去了成立的前提,步骤(2)也就没有意义了.二、课堂训练例1 证明等差数列通项公式a n =a 1+(n -1)d .例2 用数学归纳法证明:1+3+5+…+(2n -1)=.2n 例3 用数学归纳法证明 12+22+32+…+n 2=(n ∈N *).(1)(21)6n n n ++练习:用数学归纳法证明:-1+3-5+…+(-1)n (2n -1)=(-1)n n .三、巩固练习1.用数学归纳法证明:“”()2211111n n a a a a a na+N ++-++++=≠∈-L ,在验证n =1成立时,左边计算所得的结果是 .2.已知:,则等于 .111()1231f n n n n ⋅⋅⋅=++++++(1)f k +3.用数学归纳法证明:1×2+2×3+3×4+…+n (n +1)=.1(1)(2)3n n n ++4.用数学归纳法证明:.2222121(1)1234(1)(1)2n n n n n --+-+-++-=-L 四、小结重点:两个步骤、一个结论;注意:奠基基础不可少,归纳假设要用到,结论写明莫忘掉.五、作业课本P94第1,2,3题.。

2.数学归纳法-苏教版选修2-2教案

2.数学归纳法-苏教版选修2-2教案

2.数学归纳法-苏教版选修2-2教案一、知识概述1.1 数学归纳法的定义数学归纳法是一种重要的证明方法,是对一些基本等式或者命题在正整数的范围内依次递推证明的方法。

该方法的基本思想是从一些基本事实出发,递推地得出更一般的结论。

1.2 数学归纳法的应用数学归纳法在各个学科中具有广泛的应用,特别是在数学中。

例如,可以通过归纳证明某些重要的等式或命题,甚至是数学定理。

二、教学内容及教学方式2.1 教学内容本次教学的主要内容是数学归纳法,包括其定义、原理、常见的数学归纳法证明方法等。

通过学习,学生将掌握数学归纳法的基本思想和应用方法,以及数学归纳法证明的具体过程。

2.2 教学方式本次教学采用小组探究与讲解相结合的方式。

首先,由教师简要介绍数学归纳法的基本原理和应用;然后,分组让学生自己探究和总结数学归纳法的证明方法,并回答一些教师提出的问题;最后,教师进行总结和讲解,帮助学生全面掌握数学归纳法的相关知识和方法。

三、教学目标3.1 知识目标1.掌握数学归纳法的定义和原理;2.理解数学归纳法的基本思想和应用方法;3.学会使用数学归纳法证明数学等式和命题。

3.2 能力目标1.培养学生归纳思维和递推思维能力;2.提高学生解决问题的能力和方法;3.培养学生对证明过程的清晰和严谨的掌握和理解。

四、教学重点和难点4.1 教学重点1.掌握数学归纳法的定义和原理;2.学会使用数学归纳法证明数学等式和命题。

4.2 教学难点1.学生对数学归纳法的理解和应用方法;2.学生对数学归纳法证明过程的严谨和清晰的掌握和理解。

五、教学方法5.1 案例教学法通过引导学生找到数学归纳法应用的例子,同时解析归纳法的应用方法和具体证明过程。

5.2 小组讨论法将学生分成小组,让每组自己探究数学归纳法的证明方法,并通过小组讨论,帮助学生理解和掌握数学归纳法的相关知识和方法。

六、教学过程6.1 案例分析以斐波那契数列为例,通过归纳法证明其递推式至第 n 阶。

数学归纳法教案1

数学归纳法教案1

课题:数学归纳法【教材分析】1、教学内容:数学归纳法是人教社全日制普通高级中学教科书数学选修2-2第二章第3节的内容,根据课标要求,本书该节共2课时,这是第一课时,其主要内容是数学归纳法的原理及其应用。

2、地位作用:在已经学习了不完全归纳法的基础上,介绍了数学归纳法,它是一种用于关于正整数命题的直接证法。

教材通过剖析生活实例中蕴含的思维过程揭示数学思想方法,即借助“多米诺骨牌”的设计思想,揭示数学归纳法依据的两个条件及它们之间的关系。

【教学目标】1.了解归纳法,理解数学归纳法的原理与实质,掌握数学归纳法证题的两个步骤。

2.会证明简单的与正整数有关的命题。

3.努力创设课堂愉悦的情境,使学生处于积极思考,大胆质疑的氛围,提高学生学习兴趣和课堂效率,让学生经历知识的构建过程,体会类比的数学思想。

【教学重点】借助具体实例了解数学归纳法的基本思想,掌握它的基本步骤,运用它证明一些简单的与正整数n(n 取无限多个值)有关的数学命题。

【教学难点】1.学生不易理解数学归纳法的思想实质,具体表现在不了解第二个步骤作用,不易根据归纳假设作出证明。

2.运用数学归纳法时,在“归纳递推”的步骤中发现具体问题的递推关系。

n1、“多米诺骨牌”游戏动画演示:探究“多米诺骨牌”全部倒下的条件引导学生思考并分析“多米诺骨牌”全部倒下的两个条件;①第一块骨牌倒下;②任意相邻两块骨牌,前一块倒下一定导致后一块倒下。

强调条件②的作用:)211a ++=)2322a --(12k a +-+(2221k -+【板书设计】这节课的小结是以“提出问题”的方式进行的,我设计以下问题并和学生共同讨论回答。

22n n ++=I.数学归纳法是怎样运作的?(在验证命题n=n0正确的基础上,证明命题据有传递性,形成了逻辑推理链,以一次逻辑的推理代替了无限的验证过程.)II.数学归纳法适用于证明什么样的的命题?(数学归纳法适用于证明:和正整数有关的命题。

)III.数学归纳法基本思想是什么?(在可靠的基础上利用命题本身具有传递性,运用“有限”的手段来解决“无限”的问题。

[精品]新人教A版选修2-2高中数学2.3数学归纳法优质课教案

[精品]新人教A版选修2-2高中数学2.3数学归纳法优质课教案

数学:2.3《数学归纳法》教案(新人教A 版选修2-2) 第一课时 2.3 数学归纳法(一)教学要求:了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤,能用数学归纳法证明一些简单的数学命题,并能严格按照数学归纳法证明问题的格式书写.教学重点:能用数学归纳法证明一些简单的数学命题.教学难点:数学归纳法中递推思想的理解.教学过程:一、复习准备:1. 问题1: 在数列{}n a 中,*111,,()1n n n a a a n N a +==∈+,先算出a 2,a 3,a 4的值,再推测通项a n 的公式. (过程:212a =,313a =,414a =,由此得到:*1,n a n N n=∈) 2. 问题2:2()41f n n n =++,当n ∈N 时,()f n 是否都为质数? 过程:(0)f =41,(1)f =43,(2)f =47,(3)f =53,(4)f =61,(5)f =71,(6)f =83,(7)f =97,(8)f =113,(9)f =131,(10)f =151,… (39)f =1 601.但是(40)f =1 681=412是合数3. 问题3:多米诺骨牌游戏. 成功的两个条件:(1)第一张牌被推倒;(2)骨牌的排列,保证前一张牌倒则后一张牌也必定倒.二、讲授新课:1. 教学数学归纳法概念:① 给出定义:归纳法:由一些特殊事例推出一般结论的推理方法. 特点:由特殊→一般.不完全归纳法:根据事物的部分(而不是全部)特例得出一般结论的推理方法叫不完全归纳法.完全归纳法:把研究对象一一都考查到了而推出结论的归纳法称为完全归纳法.② 讨论:问题1中,如果n =k 猜想成立,那么n =k +1是否成立?对所有的正整数n 是否成立?③ 提出数学归纳法两大步:(i )归纳奠基:证明当n 取第一个值n 0时命题成立;(ii )归纳递推:假设n =k (k ≥n 0, k ∈N *)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.原因:在基础和递推关系都成立时,可以递推出对所有不小于n 0的正整数n 0+1,n 0+2,…,命题都成立. 关键:从假设n =k 成立,证得n =k +1成立.2. 教学例题:① 出示例1:2222*(1)(21)123,6n n n n n N ++++++=∈. 分析:第1步如何写?n =k 的假设如何写? 待证的目标式是什么?如何从假设出发?小结:证n =k +1时,需从假设出发,对比目标,分析等式两边同增的项,朝目标进行变形.② 练习:求证:2*1427310(31)(1),n n n n n N ⨯+⨯+⨯+++=+∈. ③ 出示例2:设an +…n ∈N *),求证:a n <12(n +1)2.关键:a1k +<12(k +1)2+=12(k +1)2<12(k +1)2+(k +32)=12(k +2)2 小结:放缩法,对比目标发现放缩途径. 变式:求证a n >12n (n+1)3. 小结:书写时必须明确写出两个步骤与一个结论,注意“递推基础不可少,归纳假设要用到,结论写明莫忘掉”;从n =k 到n =k +1时,变形方法有乘法公式、因式分解、添拆项、配方等.三、巩固练习: 1. 练习:教材108 练习1、2题 2. 作业:教材108 B 组1、2、3题.第二课时 2.3 数学归纳法(二)教学要求:了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤,能用数学归纳法证明一些简单的数学命题,并能严格按照数学归纳法证明问题的格式书写.教学重点:能用数学归纳法证明一些简单的数学命题.教学难点:经历试值、猜想、归纳、证明的过程来解决问题. 教学过程:一、复习准备:1. 练习:已知()*()13521,f n n n N =++++-∈,猜想()f n 的表达式,并给出证明?过程:试值(1)1f =,(2)4f =,…,→ 猜想2()f n n = → 用数学归纳法证明.2. 提问:数学归纳法的基本步骤?二、讲授新课:1. 教学例题:① 出示例1:已知数列1111,,,,2558811(31)(32)n n ⋅⋅⋅⨯⨯⨯-⨯+,猜想n S 的表达式,并证明. 分析:如何进行猜想?(试值1234,,,S S S S →猜想n S ) → 学生练习用数学归纳法证明→ 讨论:如何直接求此题的n S ? (裂项相消法)小结:探索性问题的解决过程(试值→猜想、归纳→证明) ② 练习:是否存在常数a 、b 、c 使得等式132435......(2)n n ⨯+⨯+⨯+++=21()6n an bn c ++对一切自然数n 都成立,试证明你的结论.解题要点:试值n =1,2,3, → 猜想a 、b 、c → 数学归纳法证明2. 练习:① 已知 0(1,2,,)i a i n >=,考察111()1i a a ⋅≥;121211()()()4ii a a a a ++≥;123123111()()()9iii a a a a a a ++++≥之后,归纳出对12,,,n a a a 也成立的类似不等式,并证明你的结论.② (89年全国理科高考题)是否存在常数a 、b 、c ,使得等式 (答案:a =3,b =11,c =10) 12222(1)223.....(1)()12n n n n an bn c +⨯+⨯+++=++对一切自然数n 都成立?并证明你的结论3. 小结:探索性问题的解决模式为“一试验→二归纳→三猜想→四证明”.三、巩固练习:1. 平面内有n 个圆,任意两个圆都相交于两点,任何三个圆都不相交于同一点,求证这n 个圆将平面分成f (n )=n 2-n +2个部分.2. 是否存在正整数m ,使得f (n )=(2n +7)·3n +9对任意正整数n 都能被m 整除?若存在,求出最大的m 值,并证明你的结论;若不存在,请说明理由. (答案:m =36)3. 试证明面值为3分和5分的邮票可支付任何(7,)n n n N >∈的邮资.证明:(1)当8,9,10n =时,由835,9333,1055=+=++=+可知命题成立;(2)假设(7,)n k k k N =>∈时,命题成立. 则 当3n k =+时,由(1)及归纳假设,显然3n k =+时成立.根据(1)和(2),可知命题成立.小结:新的递推形式,即(1)验证00(),(1),,P n P n + 0(1)P n l +-成立()l N ∈;(2)假设()P k 成立,并在此基础上,推出()P k l +成立. 根据(1)和(2),对一切自然数0()n n ≥,命题()P n 都成立.2. 作业:。

高中数学新人教版B版精品教案《人教版B高中数学选修2-2 2.3.1 数学归纳法》8

高中数学新人教版B版精品教案《人教版B高中数学选修2-2 2.3.1 数学归纳法》8

数学归纳法教学设计人教版选修2-2第二章第三节古建能【教材分析】1、教学内容:数学归纳法是人教社全日制普通高级中学教科书数学选修2-2第二章第3节的内容,根据课标要求,本书该节共2课时,这是第一课时,其主要内容是数学归纳法的原理及其应用。

2、地位作用:在已经学习了不完全归纳法的基础上,介绍了数学归纳法,它是一种用于关于正整数命题的直接证法。

教材通过剖析生活实例中蕴含的思维过程揭示数学思想方法,即借助“多米诺骨牌”的设计思想,揭示数学归纳法依据的两个条件及它们之间的关系。

【学情分析】高二理科学生继学习完归纳与类比推理,证明方法中的综合法与分析法、反证法的基础上,在学生已具备归纳的思想,进一步学习证明方法的过程中学习本节知识的。

【教学目标】知识与技能:1 了解由归纳法得出的结论具有不可靠性, 理解数学归纳法的原理与本质;2 掌握数学归纳法证题的两个步骤及其简单应用;3 培养学生观察、探究、分析、论证的能力, 体会类比的数学思想.过程与方法:1创设情境,激发学生学习兴趣,让学生体验知识的发生与发展过程;2通过对数学归纳法的学习、应用,逐步体验观察、归纳、猜想、论证的过程,培养学生严谨的逻辑推理意识,并初步掌握论证方法;3通过发现问题、提出问题、分析问题、解决问题的过程,培养学生创新能力情感与价值观:1 通过对数学归纳法原理的探究,培养学生严谨的科学态度和勇于探索的精神;2通过对数学归纳法原理和本质的讨论,培养学生团结协作的精神;3通过置疑与探究,培养学生独立的人格与敢于创新的精神;【教学重点】(1)初步理解数学归纳法的原理.(2)明确用数学归纳法证明命题的两个步骤.(3)初步会用数学归纳法证明简单的与正整数有关数的恒等式. 【教学难点】(1)对数学归纳法原理的理解,即理解数学归纳法证题的严密性与有效性. (2)假设的利用,即如何利用假设证明当n=1时结论正确. 【教学方法】师生互动讨论、共同探究的方法【教学手段】aichoo 教学软件,平板电脑,多媒体辅助课堂教学 【教学过程】一、创设情境,提出问题问题 、数列{}(),1,1,*11N n a a a a a nn n n ∈+==+已知通过对4,3,2,1=n 前4项归纳,猜想出:n a n 1=,如何证明?为了寻求一种能够证明与正整数有关的数学问题的方法,从而引入本节课的新课内容一数学归纳法。

最新人教版高中数学选修2-2第二章《数学归纳法》示范教案(第1课时)

最新人教版高中数学选修2-2第二章《数学归纳法》示范教案(第1课时)

2.3数学归纳法整体设计教材分析本节课是人教A版选修2-2的第二章第三单元.“数学归纳法”是继学习分析法和综合法之后,进一步研究的另一种特殊的直接证明方法.它通过有限步骤的推理,证明n取无限多个正整数的情形.通过本节的学习,可以更好地理解数学证明的基本方法,感受逻辑证明在数学以及日常生活中的作用,养成言之有理,论证有据的习惯.课时分配2课时.第1课时教学目标1.知识与技能目标(1)理解“归纳法”和“数学归纳法”的含义和本质.(2)掌握数学归纳法证题的两个步骤和一个结论.(3)会用“数学归纳法”证明简单的恒等式.(4)初步掌握归纳与推理的方法.2.过程与方法目标培养学生观察、归纳、发现的能力,并能以递推的思想作指导,理解数学归纳法的操作步骤,使学生的抽象思维和概括能力得到进一步的提升.3.情感、态度与价值观通过对数学归纳法的学习,培养学生勇于探索、创新的个性品质,培养大胆猜想,小心求证的辩证思维素质,进一步培养学生数学思维的严密性,通过学生之间的交流和讨论,增强学生之间的团结合作意识,提高学生的语言交流能力.重点难点重点:借助具体实例了解数学归纳法的基本思想,掌握它的基本步骤,运用它证明一些与正整数n(n取无限多个值)有关的数学命题.难点:(1)学生不易理解数学归纳法的思想实质,具体表现在不了解第二个步骤的作用,不易根据归纳假设作出证明.(2)运用数学归纳法时,在“归纳递推”的步骤中发现具体问题的递推关系.教学过程引入新课提出问题:问题1:一个盒子里有十个乒乓球,如何证明里面的球全为橙色?问题2:你知道谚语“天下乌鸦一般黑”的由来吗?问题3:一个数列的通项公式是a n=(n2-5n+5)2,容易验证a1=1,a2=1,a3=1,a4=1.由此作出结论:对于一切n∈N ,a n=(n2-5n+5)2=1都成立.请问这个结论正确吗?问题4:对于数列{a n},已知a1=1,a n+1=a n1+a n,试写出a1,a2,a3,a4并由此作出猜想.请问这个结论正确吗?问题5:请说出以上4个问题的异同点.活动设计:先让学生独立思考,然后小组交流,教师巡视引导,并注意与学生交流.活动成果:教师板书“一一进行验证”(学生回答问题1的时候抓住关键词)“只能验证有限个”(学生在回答问题2的时候)“结论不一定正确”(学生在回答问题3、4的时候)“归纳法,完全归纳法,不完全归纳法”(学生在回答问题5的时候)同时说明:归纳法是指由一系列有限的特殊事例得出一般结论的推理方法.归纳法分为完全归纳法和不完全归纳法.点明不完全归纳法的缺憾之处:仅根据一系列有限的特殊事例得出一般结论是要冒很大风险的,因为有可能产生不正确的结论.学情预测:对于问题1及问题2估计学生会比较感兴趣,这两个问题有利于活跃课堂气氛,拉近师生之间的距离,让学生的思维过渡到课堂的思考中来.问题3大部分学生应该能判断准确.对于问题4最初可能会有一部分学生认为正确,但是由问题3的引导也会对问题4的正确性产生怀疑.设计意图让学生体会“数学来源于生活”,创造和谐积极的学习气氛.在学生已有认知基础上给出问题,从生活问题自然过渡到数学问题.由问题3的不正确引导,学生对问题4的正确性产生怀疑,从而使学生对学过的知识进行及时的反思,在不断反思中得到提高(教师可以在学生回答完问题4后顺便提问学生以前学过的结论中哪些用到了不完全归纳法).通过问题的设计使学生了解归纳法的分类,让学生自然领悟到不完全归纳法的缺憾,使学生对本节课的知识产生期待,从而引出本节课的课题“数学归纳法”.探究新知实例:播放多米诺骨牌录像,思考以下问题:提出问题:你认为一个骨牌链能够被成功推倒,靠的是什么?活动设计:学生讨论交流,各抒己见.活动成果:根据学生的发言板书以下内容(1)第一张牌被推倒;(2)任意相邻两块骨牌,前一块倒下一定导致后一块倒下.结论:多米诺骨牌会全部倒下.(板书时注意格式,为数学归纳法的步骤提供类比依据.)可以再举几则生活事例:推倒自行车,早操排队对齐等.学情预测:大部分学生在电脑或电视节目中或者小时候玩的玩具中都遇到过多米诺骨牌,通过讨论,教师再加以引导,学生对所提出的问题基本能解决.设计意图:通过直观具体的画面让“归纳递推”这一难点在学生的头脑中建立载体,便于帮助学生理解从有限到无限的过渡.提出问题:对于数列{a n },已知a 1=1,a n +1=a n 1+a n(n =1,2,3,4,…),求a 4,a 100. 活动设计:学生进行计算推理后,展示思考结果(学生板演).教师追问:问1:根据递推公式a n +1=a n 1+a n,可以由a 1出发,推出a 2,再由a 2推出a 3,由a 3推出a 4,说说你又是如何求得a 100的呢?学情预测:学生可能会回答:“由前四项归纳猜想a 100=1100”.问2:归纳猜想的结果并不可靠,你能对a 100=1100给出严格的证明吗? 针对学生的回答情况,教师可进行追问:问3:利用递推公式,命题可以由a 1推出a 2,由a 2推出a 3,由a 3推出a 4,…,由a 99推出a 100,这样要严格证明n =100时结论成立,需要进行多少个步骤的论证呢?(教师在刚才学生板演的基础之上板书以下推理过程,可以再多写出第六步,第七步,第八步直到学生开始有反应:嫌麻烦等情绪的出现)第一步,a 1=1,第二步,a 2=a 11+a 1=11+1=12,(由a 1推a 2) 第三步,a 3=a 21+a 2=121+12=13,(由a 2推a 3) 第四步,a 4=a 31+a 3=131+13=14,(由a 3推a 4) ……第99步,a 99=a 981+a 98=1981+198=199,(由a 98推a 99) 第100步,a 100=a 991+a 99=1991+199=1100.(由a 99推a 100) 学情预测:通过板书上的推理过程,学生可能窃窃私语“太麻烦”,出现畏难情绪.教师可以抓住这一契机继续追问:问4:你认为上述推理的麻烦之处在哪里?你能否对此过程进行优化?只用最少的步骤就能证明这个结论呢?学情预测:学生思考、讨论之后可能会总结出:推理麻烦之处在于除了第一步论证之外,其余99个步骤的证明实际上都是类似的.教师因势利导:后面99个步骤都可以概括成一个命题的证明,即转化为对以下命题的证明:若n 取某一个值时结论成立,则n 取其下一个值时结论也成立,即若a k =1k (k ≥1,k ∈N ),则a k +1=1k +1(*).(a k +1=a k 1+a k =1k 1+1k =1k +1) 问5:你能进一步说明命题(*)的证明对原命题的证明起到什么作用吗?问6:有了命题(*)的证明,你能肯定a 100=1100吗?你能肯定a 101=1101吗?你能肯定a 102=1102吗?甚至你能肯定a 1 000=11 000吗?…… 问7:给定a 1=1及命题(*),你能推出什么结论呢?学情预测:通过追问4、5、6、7,学生可能对“归纳递推”这一步骤有了清晰的认识,逐渐领悟了从有限到无限的飞跃,有了对数学问题解决过程的体验,对于问7部分学生有能力对这一模式的特征概括出“可以证明对任意的正整数n ,结论a n =1n(n ∈N )都成立”.(为了更直观可以用多媒体投出下列图示) 反思与总结:a n =1n(n ∈N *)?问8:已知数列{a n }:a 1=1,a n +1=a n 1+a n(n ∈N *),求证:a n =1n . 教师在上述板书的基础之上把后99步用彩笔圈起,在附近用同色彩笔写下下面的(2)中的推理过程,然后用板书完善数学归纳法的“两步一结论”.证明:(1)当n =1时,a 1=1=11,所以结论成立. (2)假设当n =k(k ∈N )时,结论成立,即a k =1k, 则当n =k +1时a k +1=a k 1+a k(已知) =1k 1+1k(代入假设) =1k k +1k(变形) =1k +1(目标), 即当n =k +1时,结论也成立.由(1)(2)可得,对任意的正整数n 都有a n =1n成立. 问9:你能否总结出这一证明方法的一般模式?活动成果:板书以下内容(注意与多米诺骨牌得到的结论写在一起便于之后的类比) 一般地,证明一个与正整数n 有关的命题P(n),可按下列步骤进行:(1)(归纳奠基)证明当n 取第一个值n 0(n 0∈N )时命题成立;(2)(归纳递推)假设当n =k(k ≥n 0,k ∈N )时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.上述证明方法叫做数学归纳法.证明命题P (n )(n ∈N *)说明:(1)是归纳基础,(2)是归纳递推,两者缺一不可.数学归纳法实质上是将对原问题的证明转化为对两个步骤的证明和判断.通过对a 4的求解,让学生体会到只需知道某一项,就可求出其下一项的值.通过对a 100的求解过程总结领悟到99步的证明“汇成一句话”:设计意图“若a k =1k (k ∈N ),则a k +1=1k +1(k ∈N )(*)”为学生理解从有限到无限提供了依托,再加之追问5、6、7使学生容易实现从有限到无限的思维“飞跃”,直观的框图式结构为刚才的思维过程加以“浓缩”使观点得以提炼,再加上问题(8)的趁热打铁可以说学生对“归纳递推”的认识也基本到位.至此从具体实例中概括出数学归纳法已经是水到渠成.提出问题:你认为证明数列的通项公式是a n =1n与多米诺骨牌游戏有相似性吗? 活动设计:首先学生独立思考,然后学生自由发言,最后教师总结并形成新知. 活动结果:设计意图通过类比让学生进一步理解数学归纳法的原理,增加对数学学习的兴趣,通过从不同的角度审视,更有利于学生全面地了解数学归纳法的本质.理解新知提出问题:用数学归纳法证明1+3+5+…+(2n -1)=n 2,如采用下面的证法,对吗?若不对请改正.证明:(1)n =1时,左边=1,右边=12=1,等式成立.(2)假设n =k 时等式成立,即1+3+5+…+(2k -1)=k 2,则当n =k +1时,1+3+5…+(2k +1)=(k +1)×[1+(2k +1)]2=(k +1)2等式也成立. 由(1)和(2)可知对任何n ∈N 等式都成立.活动设计:给学生充足的时间让学生对照黑板上板书的数学归纳法的步骤,积极思考、交流,不仅要明确数学归纳法的步骤,还要明确数学归纳法的实质.学情预测:生甲:证明是对的.生乙:证明方法不是数学归纳法,因为第二步证明时,未用到归纳假设.(指出错误,并分析出错原因,是澄清学生模糊认识的有效方法)从形式上看这种证法,用的是数学归纳法,实质上不是,因为证明n =k +1正确时,未用到归纳假设,而用的是等差数列求和公式.生丙:“则当n =k +1时1+3+5+…+(2k +1)=(k +1)×[1+(2k +1)]2=(k +1)2等式也成立.”应该改为“则当n =k +1时,1+3+5+…+(2k +1)=k 2+(2k +1)=(k +1)2”.活动成果:数学归纳法的核心是在验证n 取第一个值n 0正确的基础上,由P(k)正确证明P(k +1)正确,也就是说核心是证明命题具有递推性.因此,今后用数学归纳法证明时,第二步必须由归纳假设P(k)的正确性来推导出P(k +1)的正确性.可见,正确使用归纳假设,是用数学归纳法证明的关键.不能机械地套用两个步骤,而要深入理解其实质及两个步骤之间的内在联系.设计意图通过判断正误,使学生在一个看似完美的证明过程中发现问题,以加深对数学归纳法“核心技术”的理解而不是仅仅停留在数学归纳法的形式上,从而突出重点.生丙的改正错误实际上是重点练习了归纳假设的应用.提出问题:用数学归纳法证明命题的两个步骤中,仅有第一步验证而没有第二步递推性的证明是不行的,那么,没有第一步行吗?活动设计:生甲:第一步仅是验证当n 取第一个值n 0时结论正确,其实这是显然的,可以省略.生乙:第一步是第二步递推的基础,没有第一步是不行的.师:让我们举一个例子来看一下:试问等式2+4+6+…+2n =n 2+n +1成立吗? 设n =k 时成立,即2+4+6+…+2k =k 2+k +1,则2+4+6+…+2k +2(k +1)=(k 2+k +1)+2(k +1)=(k +1)2+(k +1)+1.这就是说,n =k +1时等式也成立,若仅由这一步就得出等式对任何n ∈N 都成立的结论,那就错了.事实上,当n =1时,左边=2,右边=3,左边≠右边,可能有的同学已经看出,该式左边总是偶数,而右边总是奇数,因此对任何n ∈N 该式都是不成立的.活动成果:数学归纳法证明命题的两个步骤,缺一不可.第一步是递推的基础,第二步是递推的依据.缺了第一步,递推失去基础,缺了第二步,递推失去依据,因此无法递推下去.设计意图通过具体的例子让学生体会到用数学归纳法证明命题的两个步骤,缺一不可.应当克服教师反复强调,而学生只知其一不知其二,仅停留在“了解、知道”的层面上的弊端.一个好的例子胜过千百次的强调.运用新知例1证明若{a n }是首项是a 1,公差是d 的等差数列,则a n =a 1+(n -1)d 对于一切n ∈N 都成立.思路分析:题目没有要求用什么方法证明,这就要分析可以用哪种方法去证明,这是一个与正整数有关的数学命题,故可以用数学归纳法进行证明.证明:(教师可以要求学生板演)(1)当n =1时,a 1=a 1+(1-1)d ,命题成立.(2)假设当n =k 时命题成立,即a k =a 1+(k -1)d ,则当n =k +1,a k +1=a k +d =a 1+(k -1)d +d =a 1+[(k +1)-1]d.所以当n =k +1时命题成立.由(1)(2)可知如果{a n }是一个等差数列,则a n =a 1+(n -1)d 对于一切n ∈N 都成立. 点评:通过证明学生学过的命题,体现了用数学归纳法在证明问题之前的选择与判断.此题由n =k 到n =k +1的变形比较简单,利用简单问题来突出证明步骤,防止复杂的变形冲淡数学归纳法的核心.变式练习用数学归纳法证明若{a n }为首项是a 1,公比是q(q ≠1)的等比数列,则其前n 项和公式是S n =a 1(1-q n )1-q. 证明:(1)当n =1时,S 1=a 1=a 1(1-q 1)1-q,结论成立. (2)假设当n =k 时命题成立,即S k =a 1(1-q k )1-q, 则当n =k +1时,S k +1=S k +a k +1=a 1(1-q k )1-q +a k +1=a 1(1-q k )1-q +a 1q k (1-q )1-q =a 1(1-q k +1)1-q .所以当n =k +1时命题成立.由(1)(2)知若等比数列{a n }的首项是a 1,公比是q(q ≠1),则其前n 项和公式是S n =a 1(1-q n )1-q. 变练演编1.用数学归纳法证明“2n >n 2+1对于n>n 0的正整数n 成立”时,第一步证明中的起始值n 应取( )A .1B .2C .3D .52.用数学归纳法证明不等式1+12+13+…+12n -1<n(n ∈N *)的过程中,由n =k 递推到n =k +1时,不等式左端增加的项数是( )A .1B .2k -1C .2kD .2k +1答案:1.D 2.C设计意图通过变练演编,使学生的认识不断加深,进一步巩固数学归纳法证明数学问题的两个步骤,培养学生思维的严谨性.达标检测用数学归纳法证明当n ∈N 时,11×3+13×5+15×7+…+1(2n -1)(2n +1)=n 2n +1.请分析下面的证法是否正确,若不正确请改正.证明:①n =1时,左边=11×3=13,右边=12+1=13,左边=右边,等式成立. ②假设n =k 时,等式成立,即11×3+13×5+15×7+…+1(2k -1)(2k +1)=k 2k +1, 那么当n =k +1时,有11×3+13×5+15×7+…+1(2k -1)(2k +1)+1(2k +1)(2k +3)=12[(1-13)+(13-15)+(15-17)+…+(12k -1-12k +1)+(12k +1-12k +3)] =12(1-12k +3)=12·2k +22k +3=k +12k +3=k +12(k +1)+1. 这就是说,当n =k +1时,等式亦成立.由①、②可知,对一切n ∈N 等式成立.解:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,是用裂项法推出来的,这样归纳假设没起到作用,不符合数学归纳法的要求.正确方法是:当n =k +1时左边=11×3+13×5+15×7+…+1(2k -1)(2k +1)+1(2k +1)(2k +3)=k 2k +1+1(2k +1)(2k +3)=2k 2+3k +1(2k +1)(2k +3)=(2k +1)(k +1)(2k +1)(2k +3)=k +12k +3=k +12(k +1)+1=右边. 这就说明,当n =k +1时,等式亦成立.课堂小结1.知识收获:学习数学归纳法应掌握下列几个要点:(1)数学归纳法证题的步骤:①(归纳奠基)证明当n 取第一个值n 0(n 0∈N )时命题成立;②(归纳递推)假设n =k(k ≥n 0,k ∈N )时命题成立,证明当n =k +1时命题也成立. 根据①②,可知命题对任何n ∈N 都成立.(2)数学归纳法的核心是在验证P(n 0)正确的基础上,证明P(n)(n ≥n 0)的正确具有递推性.第一步是递推的基础或起点,第二步是递推的依据,因此两步缺一不可,证明中,恰当地运用归纳假设是关键.(3)数学归纳法适用的范围是:一般用于证明某些与正整数n(n 取无限多个值)有关的数学命题,但是并不能简单的说,所有与正整数有关的数学命题都可以用数学归纳法证明,如果问题中存在可以利用的递推关系,数学归纳法才有用武之地,否则使用数学归纳法就有困难.(4)归纳法是一种推理方法,数学归纳法是一种证明方法,归纳法帮助我们提出猜想,而数学归纳法的作用是证明猜想.2.方法收获:类比方法、数形结合方法、特殊到一般、有限到无限方法.3.思维收获:递推思想、分类思想、归纳思想、辩证唯物主义思想.布置作业教材习题2.3 A 组第1题.补充练习基础练习1.在应用数学归纳法证明凸n 边形的对角线条数为12n(n -3)条时,第一步验证n 等于 ( )A .1B .2C .3D .02.用数学归纳法证明“当n 为正奇数时,x n +y n 能被x +y 整除”时,第2步归纳假设应写成( )A .假设n =2k +1(k ∈N *)时正确,再推证n =2k +3时正确B .假设n =2k -1(k ∈N *)时正确,再推证n =2k +1时正确C .假设n =k(k ≥1)时正确,再推证n =k +2时正确D .假设n ≤k(k ≥1)时正确,再推证n =k +2时正确3.若f(n)=1+12+13+…+12n +1(n ∈N *),则n =1时f(n)是( ) A .1 B.13C .1+12+13D .以上答案均不正确 4.已知f(n)=1+12+13+…+1n (n ∈N *),用数学归纳法证明不等式f(2n )>n 2时,f(2k +1)比f(2k )多出的项数是__________.答案:1.C 2.B 3.C 4.2k拓展练习5.已知数列{a n }满足:a 1=32,且a n =3na n -12a n -1+n -1(n ≥2,n ∈N *), (1)求数列{a n }的通项公式;(2)证明对于一切正整数n ,不等式a 1·a 2·a 3·…·a n <2·n !.(1)解:将条件变为:1-n a n =13(1-n -1a n -1),因此{1-n a n }为一个等比数列,其首项为1-1a 1=13,公比为13,从而1-n a n =13n ,据此得a n =n·3n3n -1(n ≥1).① (2)证明:据①得a 1·a 2·a 3·…·a n =n !(1-13)(1-132)…(1-13n ), 要证a 1·a 2·a 3·…·a n <2·n !,只要证n ∈N 时,有(1-13)(1-132)…(1-13n )>12.② 显然,左端每个因式都是正数,只需证明,对每个n ∈N ,有(1-13)(1-132)…(1-13n )≥1-(13+132+…+13n ).③ 用数学归纳法证明③式:(ⅰ)n =1时,③式显然成立,(ⅱ)假设n =k 时,③式成立,即(1-13)(1-132)…(1-13k )≥1-(13+132+…+13k ). 则当n =k +1时,(1-13)(1-132)…(1-13k )(1-13k +1)≥[1-(13+132+…+13k )]·(1-13k +1) =1-(13+132+…+13k )-13k +1+13k +1(13+132+…+13k ) ≥1-(13+132+…+13k +13k +1),即当n =k +1时,③式也成立. 故对一切n ∈N ,③式都成立.利用③得,(1-13)(1-132)…(1-13n )≥1-(13+132+…+13n )=1-13[1-(13)n ]1-13=1-12[1-(13)n ]=12+12(13)n >12.故②式成立,从而结论成立. 设计说明本节课是数学归纳法的第一课时,新课标要求不能仅以用数学归纳法解决一些简单问题为标准,只让学生通过各种题型的操练,学会第一步证什么,如何证;第二步证什么,如何证.这样训练出来的学生,能知道数学归纳法的步骤,也会套用数学归纳法证明一些数学命题,但不一定知道为什么要这样做,这样做可行的理由、依据是什么.这样的教学看似容易完成,但被动地训练使学生可能会增添的是:数学是机械的、枯糙的;一定会丢失的是:对数学以及数学方法、思想的进一步认识与理解.所以本节课的设计没有急于去进行大量的练习,而是把主要精力用在了由“假设P(k)(k∈N 且k≥n0)成立,推证P(k+1)成立”的突破上,从生活出发加强了数学与生活的联系,消除了学生的畏惧感,通过问题串将学生从有限逐步引领到无限的高峰.备课资料《归纳法的分类》(一)第一数学归纳法:一般地,证明一个与正整数n有关的命题,有如下步骤:(1)证明当n取第一个值n0时命题成立;(2)假设当n=k(k≥n0,k为自然数)时命题成立,证明当n=k+1时命题也成立.(二)第二数学归纳法:对于某个与自然数n有关的命题,(1)验证n=n0时P(n)成立;(2)假设n0<n≤k时P(n)成立,并在此基础上,推出P(k+1)成立.综合(1)(2)对一切正整数,命题P(n)都成立.(三)倒推归纳法(反向归纳法):(1)对于无穷多个自然数命题P(n)成立;(2)假设P(k+1)成立,并在此基础上推出P(k)成立,综合(1)(2),对一切自然数n(n>n0),命题P(n)都成立.(四)螺旋式归纳法:P(n),Q(n)为两个与自然数有关的命题,假如(1)P(n0)成立;(2)假设P(k)(k>n0)成立,能推出Q(k)成立,假设Q(k)成立,能推出P(k+1)成立,综合(1)(2),对于一切自然数n(n>n0),P(n),Q(n)都成立.(设计者:张建霞)。

高中数学新人教版B版精品教案《人教版B高中数学选修2-2 2.3.1 数学归纳法》05

高中数学新人教版B版精品教案《人教版B高中数学选修2-2 2.3.1 数学归纳法》05
2若第块倒下时,
则相邻的第1块也倒下
传递
(2)假设当 时,猜想成,即
那么,当 时,
所以当 时,猜想也成立
根据1和2,可知不论有
多少块骨牌,都能全部倒下
由(1)(2)可知 ,有 成立
1块也倒下。
尝试用多米诺骨牌游戏的原理证明上述猜想
这种一种严格的证明方法──数学归纳法
提炼原理,得出概念:
一般地,证明一个与自然数有关的命题,可按下列步骤进行:
则当n=1时,代入135…2n-1=n2
得135…2-1 2 1-1
所以当n=1时,等式成立。
根据(1)和(2)可知,等式对任意 ,等式成立。








例2求证:
证明:(1)当n=1时,左边= ,右边= 等式成立。
(2)假设当n=时,等式成立,即
则当n=1时,
所以当n=1时,等式成立
根据(1)和(2)可知,等式对任意 ,等式成立。








观看多米诺骨牌的相关视屏,
要保证这个游戏成功,必须满足什么条件?
(1)第一块骨牌倒下;(基础)
(2)任意相邻的两块骨牌,前一块倒下一定导致后一块倒下。(传递)
注:条件(2)事实上给出了一个递推关系:当第块倒下时,相邻的第
多米诺骨牌游戏的原理
尝试证明猜想成立
⑴第一块骨牌倒下
基础
(1)当n=1时猜想成立
《数学归纳法》教案




(1)理解数学归纳法的概念,掌握数学归纳法的证明步骤。
(2)通过学习数学归纳法,体会用不完全归纳法发现规律,用数学归纳法证明规律。

【教案】人教版高中《数学》选修2-2《数学归纳法》教学设计

【教案】人教版高中《数学》选修2-2《数学归纳法》教学设计

人教版高中《数学》选修2-2§2.3 数学归纳法(第一课时)一、教学目标:1、了解数学归纳法,理解数学归纳法的原理与实质,掌握归纳法证明的两个步骤;2、会证明简单的与正整数有关的命题。

二、教学重点、难点:1、重点:借助具体实例,了解数学归纳法的基本思想,掌握基本步骤,会用它证明一些与正整数n 有关的命题;2、难点:(1)学生不易理解数学归纳法的思想实质,具体表现在不了解第二步的作用,不易根据归纳假设作出证明;(2)运用数学归纳法时,在“归纳递推”的步骤中发现具体问题的递推关系。

三、教学手段:借助多媒体呈现多米诺骨牌等生活素材辅助课堂教学;四、教学过程:(一)创设情境,引入课题师:前面我们学习推理,并且知道由推理得到的结论是否正确,需要我们进一步验证。

我们来看这样的一道题目:已知数列{}n a 中,*111,()1n n na a a n N a +==∈+,试猜想数列的通项公式n a = 生:分别求出12341111,,,234a a a a ====,从而猜测1n a n=。

师:那么这个猜想是否正确?我们又该如何证明这个猜想?生:方法1:从n=5逐个验证?(由于n 为正整数,为无限个,所以可行性不高)方法2:通过构造新数列{}n b ,其中1n nb a =,先求出数列{}n b 的通项公式,从而得到{}n a 的通项公式;(技巧性较高,且有时新数列{}n b 不易构造)方法3:能否通过有限个步骤的推理,证明n 取所有正整数时,通项公式都成立? 师:带着这个问题,我们来观察一个关于多米诺骨牌游戏的视频。

(二)观看视频,动手实验观看多米诺骨牌游戏视频后,由学生来展示骨牌游戏:实验步骤:1、摆好骨牌,并由教师动手轻轻碰了第一块(并未推倒),发现实验不成功;2、由学生自己动手推倒骨牌,实验成功;3、再次摆好骨牌,教师调整最后3块的距离,发现并未全部倒下,实验失败。

师:我们一起来总结3次实验,那么要使游戏成功,所需条件有哪些?生:(1)第一块骨牌要倒下;(2)相邻的两块骨牌,前一块倒下一定导致后一块也倒下;师:若将每一块骨牌相应的看成数列的1234,,,a a a a ,那么这两个条件分别相当于:(1)首项1a 要符合n a 的通项公式;(2)假设n=k 时猜想成立,则必将导致n=k+1时猜想也成立;这样一来,就可以发现由n=1成立,就有n=2成立;n=2成立,就有n=3成立;n=3成立,就有n=4成立;n=4成立,就有n=5也成立……,所以对任意的正整数n ,猜想都成立。

苏教版高中数学选修2-2 2.3 第1课时 数学归纳法 学案

苏教版高中数学选修2-2 2.3 第1课时 数学归纳法 学案

第1课时数学归纳法学习目标 1.了解数学归纳法的原理.2.能用数学归纳法证明一些简单的数学命题.知识点数学归纳法对于一个与正整数有关的等式n(n-1)(n-2)…(n-50)=0.思考1验证当n=1,n=2,…,n=50时等式成立吗?答案成立.思考2能否通过以上等式归纳出当n=51时等式也成立?为什么?答案不能,上面的等式只对n取1至50的正整数成立.梳理(1)数学归纳法的定义一般地,对于某些与正整数有关的数学命题,我们有数学归纳法公理:如果①当n取第一个值n0(例如n0=1,2等)时结论正确;②假设当n=k(k∈N*,且k≥n0)时结论正确,证明当n=k+1时结论也正确.那么,命题对于从n0开始的所有正整数n都成立.(2)数学归纳法的框图表示类型一从n=k到n=k+1左边增加的项例1 用数学归纳法证明(n +1)·(n +2)·…·(n +n )=2n ×1×3×…×(2n -1)(n ∈N *),“从k 到k +1”左端增乘的代数式为________.答案 2(2k +1)解析 令f (n )=(n +1)(n +2)…(n +n ),则f (k )=(k +1)(k +2)…(k +k ),f (k +1)=(k +2)(k +3)…(k +k )(2k +1)(2k +2),所以f (k +1)f (k )=(2k +1)(2k +2)k +1=2(2k +1). 反思与感悟 在书写f (k +1)时,一定要把包含f (k )的式子写出来,尤其是f (k +1)中的最后一项,除此之外,多了哪些项都要分析清楚.跟踪训练1 用数学归纳法证明不等式1n +1+1n +2+…+1n +n >1324(n ≥2,n ∈N *)的过程中,由n =k 推导n =k +1时,不等式的左边增加的式子是________.答案 1(2k +1)(2k +2)解析 当n =k +1时左边的代数式是1k +2+1k +3+…+12k +1+12k +2,增加了两项12k +1与12k +2,但是少了一项1k +1,故不等式的左边增加的式子是12k +1+12k +2-1k +1=1(2k +1)(2k +2). 类型二 用数学归纳法证明恒等式例2 用数学归纳法证明当n ∈N *时,1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n . 证明 ①当n =1时,左边=1-12=12,右边=12. 左边=右边,等式成立.②假设当n =k (k ∈N *,k ≥1)时,等式成立,即1-12+13-14+…+12k -1-12k =1k +1+1k +2+…+12k , 当n =k +1时,1-12+13-14+…+12k -1-12k +12k +1-12k +2=1k +1+1k +2+…+12k +12k +1-12k +2 =1k +2+1k +3+…+12k +1+(1k +1-12k +2) =1k +2+1k +3+…+12k +1+12k +2=1(k +1)+1+1(k +1)+2+…+12(k +1). ∴当n =k +1时,等式成立.由①②可知,对一切n ∈N *等式成立.反思与感悟 数学归纳法证题的三个关键点(1)验证是基础:找准起点,奠基要稳,有些问题中验证的初始值不一定是1.(2)递推是关键:数学归纳法的实质在于递推,所以从“k ”到“k +1”的过程中,要正确分析式子项数的变化.关键是弄清等式两边的构成规律,弄清由n =k 到n =k +1时,等式的两边会增加多少项、增加怎样的项.(3)利用假设是核心:在第二步证明n =k +1成立时,一定要利用归纳假设,即必须把归纳假设“n =k 时命题成立”作为条件来导出“n =k +1时命题成立”,这是数学归纳法的核心,不用归纳假设的证明就不是数学归纳法.跟踪训练2 用数学归纳法证明:1+3+5+…+(2n -3)+(2n -1)+(2n -3)+…+5+3+1=2n 2-2n +1.证明 ①当n =1时,左边=1,右边=2×12-2×1+1=1,等式成立.②假设当n =k (k ∈N *)时,等式成立,即1+3+5+…+(2k -3)+(2k -1)+(2k -3)+…+5+3+1=2k 2-2k +1,则当n =k +1时,左边=1+3+5+…+(2k -3)+(2k -1)+(2k +1)+(2k -1)+(2k -3)+…+5+3+1 =2k 2-2k +1+(2k -1)+(2k +1)=2k 2+2k +1=2(k +1)2-2(k +1)+1.即当n =k +1时,等式成立.由①②知,对任意n ∈N *,等式都成立.1.若f (n )=12+22+32+…+(2n )2,则f (k +1)与f (k )的递推关系式是_______________. 答案 f (k +1)=f (k )+(2k +1)2+(2k +2)2解析 ∵f (k )=12+22+…+(2k )2,f (k +1)=12+22+…+(2k )2+(2k +1)2+(2k +2)2,f (k +1)-f (k )=(2k +1)2+(2k +2)2,即f (k +1)=f (k )+(2k +1)2+(2k +2)2.2.用数学归纳法证明“1+a +a 2+…+a2n +1=1-a 2n +21-a (a ≠1)”.在验证n =1时,左端计算所得项为________.答案 1+a +a 2+a 3解析 将n =1代入a 2n +1得a 3.3.已知数列{a n }满足a 1=1,且4a n +1-a n a n +1+2a n =9,那么可以通过求a 2,a 3,a 4的值猜想出a n =________.答案 6n -52n -14.请观察以下三个式子:(1)1×3=1×2×96; (2)1×3+2×4=2×3×116; (3)1×3+2×4+3×5=3×4×136, 归纳出一般的结论,并用数学归纳法证明该结论.解 结论:1×3+2×4+3×5+…+n (n +2)=n (n +1)(2n +7)6. 证明:①当n =1时,左边=3,右边=3,所以命题成立.②假设当n =k (k ≥1,k ∈N *)时,命题成立,即1×3+2×4+3×5+…+k (k +2)=k (k +1)(2k +7)6, 则当n =k +1时,1×3+2×4+…+k (k +2)+(k +1)(k +3)=k (k +1)(2k +7)6+(k +1)(k +3) =k +16(2k 2+7k +6k +18) =k +16(2k 2+13k +18) =(k +1)(k +2)(2k +9)6 =(k +1)[(k +1)+1][2(k +1)+7]6, 所以当n =k +1时,命题成立.由①②知,命题成立.应用数学归纳法证题时的注意点(1)验证是基础:找准起点,奠基要稳,有些问题中验证的初始值不一定为1.(2)递推是关键:正确分析由n =k 到n =k +1时,式子项数的变化是应用数学归纳法成功证明问题的保障.(3)利用假设是核心:在第二步证明中一定要利用归纳假设,这是数学归纳法证明的核心环节,否则这样的证明就不是数学归纳法证明.课时作业一、填空题1.设n ∈N *,用数学归纳法证明2+4+6+…+2n =n 2+n 时,第一步应证明:左边=________. 答案 22.用数学归纳法证明3n ≥n 3(n ≥3,n ∈N *),n 所取的第一个值n 0为________.答案 3解析 由题意知,n 的最小值为3,所以第一步验证n =3是否成立.3.已知n 为正偶数,用数学归纳法证明1-12+13-14+…-1n =2(1n +2+1n +4+…+12n )时,若已假设n =k (k ≥2且k 为偶数)时命题为真,则还需要用归纳假设再证________.①n =k +1时等式成立②n =k +2时等式成立③n =2k +2时等式成立④n =2(k +2)时等式成立答案 ②解析 因为n 为正偶数,n =k 时等式成立,即n 为第k 个偶数时命题成立,所以需假设n 为下一个偶数,即n =k +2时等式成立.4.已知f (n )=1n +1n +1+1n +2+…+1n 2,则f (2)的表达式为________. 答案 f (2)=12+13+14解析 代入表达式可得.5.在数列{a n }中,a 1=2,a n +1=a n 3a n +1(n ∈N *),依次计算a 2,a 3,a 4,归纳得出a n 的通项表达式为________.答案 26n -5解析 由a 1=2,a 2=27,a 3=213,a 4=219,…,可推测a n =26n -5.6.用数学归纳法证明“1+2+22+…+2n -1=2n -1(n ∈N *)”的过程如下: ①当n =1时,左边=1,右边=21-1=1,等式成立;②假设当n =k 时,等式成立,即1+2+22+…+2k -1=2k -1; ③则当n =k +1时,1+2+22+…+2k -1+2k=1-2k +11-2=2k +1-1,即当n =k +1时等式成立.由此可知,对任意的n ∈N *,等式都成立.上述证明步骤错误的是________.(填序号)答案 ③解析 ③中没有用到归纳假设.7.用数学归纳法证明:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n ,第一步应验证的等式是________.答案 1-12=128.用数学归纳法证明关于n 的恒等式,当n =k 时,表达式为1×4+2×7+…+k (3k +1)=k (k +1)2,则当n =k +1时,表达式为_________________________________________. 答案 1×4+2×7+…+k (3k +1)+(k +1)(3k +4)=(k +1)(k +2)29.已知f (n )=1+12+13+…+1n ,n ∈N *,用数学归纳法证明f (2n )>n 2时,f (2n +1)-f (2n )=________________________________________________________________________. 答案 12n+1+12n +2+…+12n +1 10.证明:假设当n =k (k ∈N *)时等式成立,即2+4+…+2k =k 2+k ,则当n =k +1时,2+4+…+2k +2(k +1)=k 2+k +2(k +1)=(k +1)2+(k +1),即当n =k +1时,等式也成立.因此对于任何n ∈N *等式都成立.以上用数学归纳法证明“2+4+…+2n =n 2+n (n ∈N *)”的过程中的错误为____________________.答案 缺少步骤归纳奠基二、解答题11.用数学归纳法证明(1-14)(1-19)(1-116)·…·(1-1n 2)=n +12n(n ≥2,n ∈N *). 证明 ①当n =2时,左边=1-14=34,右边=2+12×2=34,所以左边=右边,所以当n =2时等式成立.②假设当n =k (k ≥2,k ∈N *)时等式成立,即(1-14)(1-19)(1-116)·…·(1-1k 2)=k +12k,那么当n =k +1时,(1-14)(1-19)(1-116)·…·(1-1k 2)[1-1(k +1)2]=k +12k [1-1(k +1)2]=k +12k ·k (k +2)(k +1)2=k +22(k +1)=(k +1)+12(k +1), 即当n =k +1时,等式成立.综合①②知,对任意n ≥2,n ∈N *,等式恒成立.12.用数学归纳法证明:对于任意正整数n ,(n 2-1)+2(n 2-22)+…+n (n 2-n 2)=n 2(n -1)(n +1)4. 证明 ①当n =1时,左边=12-1=0,右边=12×(1-1)×(1+1)4=0, 所以等式成立.②假设当n =k (k ∈N *)时等式成立,即(k 2-1)+2(k 2-22)+…+k (k 2-k 2)=k 2(k -1)(k +1)4. 那么当n =k +1时,有[(k +1)2-1]+2[(k +1)2-22]+…+k ·[(k +1)2-k 2]+(k +1)[(k +1)2-(k +1)2]=(k 2-1)+2(k 2-22)+…+k (k 2-k 2)+(2k +1)(1+2+…+k )=k 2(k -1)(k +1)4+(2k +1)k (k +1)2=14k (k +1)[k (k -1)+2(2k +1)] =14k (k +1)(k 2+3k +2) =(k +1)2[(k +1)-1][(k +1)+1]4. 所以当n =k +1时等式成立.由①②知,对任意n ∈N *等式成立.三、探究与拓展13.证明1+12+13+…+12n -1>n 2(n ∈N *),假设当n =k 时成立,当n =k +1时,左端增加的项数为________.答案 2k解析 当n =k +1时,1+12+13+…+12k -1+12k +12k +1+…+12k +1-1, 所以增加的项数为2k +1-1-(2k -1)=2k .14.已知数列{a n }的前n 项和S n 满足:S n =a n 2+1a n-1,且a n >0,n ∈N *. (1)求a 1,a 2,a 3,并猜想{a n }的通项公式;(2)证明通项公式的正确性.(1)解 当n =1时,由已知得a 1=a 12+1a 1-1,a 21+2a 1-2=0. ∴a 1=3-1(a n >0).当n =2时,由已知得a 1+a 2=a 22+1a 2-1, 将a 1=3-1代入并整理得a 22+23a 2-2=0. ∴a 2=5-3(a n >0).同理可得a 3=7- 5.猜想a n =2n +1-2n -1(n ∈N *).(2)证明 ①由(1)知,当n =1,2,3时,通项公式成立. ②假设当n =k (k ≥3,k ∈N *)时,通项公式成立, 即a k =2k +1-2k -1.由a k +1=S k +1-S k =a k +12+1a k +1-a k 2-1a k, 将a k =2k +1-2k -1代入上式并整理得 a 2k +1+22k +1a k +1-2=0,解得a k +1=2k +3-2k +1(a n >0).即当n =k +1时,通项公式也成立.由①和②可知,对所有n ∈N *,a n =2n +1-2n -1都成立.。

人教版高中数学选修(2-2)-2.3《数学归纳法(第1课时)》参考教案

人教版高中数学选修(2-2)-2.3《数学归纳法(第1课时)》参考教案

2.3 数学归纳法(1)【学习目标】1. 了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤;2. 能用数学归纳法证明一些简单的数学命题,并能严格按照数学归纳法证明问题的格式书写;3. 数学归纳法中递推思想的理解.【教学设计】一、导学新知1.在数列{}n a 中,*111,,()1n n na a a n N a +==∈+,先算出a 2,a 3,a 4的值,再推测通项a n 的公式.2.2()41f n n n =++,当n ∈N 时,()f n 是否都为质数?二、探究展示探究任务:数学归纳法问题:在多米诺骨牌游戏中,能使所有多米诺骨牌全部倒下的条件是什么?新知:数学归纳法两大步:(1)归纳奠基:证明当n 取第一个值n 0时命题成立;(2)归纳递推:假设n =k (k ≥n 0, k ∈N *)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.原因:在基础和递推关系都成立时,可以递推出对所有不小于n 0的正整数n 0+1,n 0+2,…,命题都成立.试试:你能证明数列的通项公式1n a n=这个猜想吗?反思:数学归纳法是一种特殊的证明方法,主要用于研究与正整数有关的数学问题.关键:从假设n =k 成立,证得n =k +1成立.三、精讲点拨例1 用数学归纳法证明2222*(1)(21)123,6n n n n n N ++++++=∈变式:用数学归纳法证明2*1427310(31)(1),n n n n n N ⨯+⨯+⨯+++=+∈小结:证n =k +1时,需从假设出发,对比目标,分析等式两边同增的项,朝目标进行变形.例2 用数学归纳法证明:首项是1a ,公差是d 的等差数列的通项公式是1(1)n a a n d =+-,前n 项和的公式是1(1)2n n n S na d -=+.。

数学归纳法教案

数学归纳法教案

选修2-2 §2.3数学归纳法 (第一课时)教案时间:2014年4月班级:高二3班授课教师:文瑾一、教材分析1、教学内容数学归纳法是人教版《普通高中课程标准实验教科书数学选修2-2》第二章推理与证明第3节的内容,主要内容是了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.2、地位和作用数学归纳法的理论依据是皮亚诺公理,皮亚诺公理中第五条:设M是正整数的一个子集,且它具有下列性质:①1∈M;②若k∈M,则k+1∈M.那么M是全体正整数的集合,即M=N*)也叫做归纳公理。

不难看出归纳公理是数学归纳法的理论根据,数学归纳法的两个证明步骤恰是验证这条公理所说的两个性质。

数学归纳法是高中数学中的一个较难理解的概念,也是一种重要的数学方法。

证明一些与正整数n(n取无限多个值)有关的数学命题(例如:数列通项及前n项和等)。

数学归纳法的学习是学习数列知识的深化和拓展,也是归纳推理的具体应用.3、教学重点:借助具体实例了解数学归纳法的基本思想,掌握它的基本步骤,运用它证明一些与正整数n(n取无限多个值)有关的数学命题,对于数学归纳法意义的认识和数学归纳法产生过程的分析。

4、教学难点:(1)学生不易理解数学归纳法的思想实质,具体表现在不了解第二个步骤的作用,不易根据归纳假设作出证明;(2)运用数学归纳法时,在“归纳递推”的步骤中发现具体问题的递推关系。

用数学归纳法证明命题的关键在第二步,而第二步的关键在于合理利用归纳假设。

如果不会运用“假设当n=k,(k ≥n0,k∈N*)时,命题成立”这一条件,直接将n=k+1代入命题,便说命题成立,实质上是没有证明。

二、学情分析1、学生知识准备在进行本节课的教学时,学生已经在必修5中学习了不完全归纳法(推导等差、等比数列的通项公式);在本章的合情推理中已经学习了归纳推理,在演绎推理中学习了“三段论”。

这些内容的学习是学生理解推理思想和证明方法的重要基础。

2、能力储备学生具备一些的从特殊到一般的归纳能力,但对复杂的逻辑推理是模糊的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设计意图: 通过从不同的角度审视, 更有利于学生全面地了解数学归纳法的本质。 (四)方法的应用 例 1 用数学归纳法证明:如果{an}是一个等差数列,则 an=a1+(n-1)d 对于一切
n∈ N*都成立。(学生板书,教师在教室走动看同学们对数学归纳法的掌握情况 及做题规范)注:张老师建议将本例题换成 1²+2²+3²+.+n²=n(n+1)(2n+1)/6 证明: (1)当 n=1 时,左边=a1,右边=a1 +(1-1)d=a1,
五、教学方法
本节课采用类比启发探究式教学方法,以学生及其发展为本,一切从学生出 发。在教师组织启发下,通过创设问题情境,激发学习欲望。师生之间、学生之 间共同探究多米诺骨牌倒下的原理,并类比多米诺骨牌倒下的原理,探究数学归
纳法的原理、步骤;培养学生归纳、类比推理的能力,进而应用数学归纳法,证 明一些与正整数 n 有关的简单数学命题;提高学生的应用能力,分析问题、解决 问题的能力。既强调独立思考,又提倡团结合作;既重视教师的组织引导,又强 调学生的主体性、主动性、平等性、交流性、开放性和合作性。
在应用数学归纳法时,第一步中的起点 1 可以恰当偏移(如取 k=n0),那么由 第二步,就可证明命题对 n=n0 以后的每个正整数都成立;而第二步的递推方式也 可作灵活的变动, 如跳跃式前进等,但必须保证第一步中必须含有实现第二步递 推时的基础. 数学归纳法名为归纳法, 实质上与归纳法毫无逻辑联系.按波利亚的说法 “这 个名字是随便起的”.归纳法是一种以特殊化和类比为工具的推理方法,是重要 的探索发现的手段,是一种似真结构;而数学归纳法是一种严格的证明方法,一 种演绎法,它的实质是如庞加莱所说“把无穷的三段论纳入唯一的公式中”,它 得到的结论是真实可靠的.在皮亚诺提出“自然数公理”后,数学归纳法以归纳 公理为理论基础,得到了广泛的确认和应用.而自然数中的“最小数原理”,则 从反面进一步说明了数学归纳法证题的可靠性. 数学归纳法虽不是归纳法,但它与归纳法有着一定程度的关联.在数学结论 的发现过程中, 往往先通过对大量个别事实的观察, 通过归纳形成一般性的结论, 最终利用数学归纳法的证明解决问题.因此可以说论断是以试验性的方式发现的, 而论证就像是对归纳的一个数学补充,即“观察”+“归纳”+“证明”=“发现”.

第二步:
; 第三步,
(由




(由


第四步, 推 ) „„

(由
第 99 步,

(由


第 100 步, 问 2:我们能否只用最少的步骤就能证明这个结论呢?
. (由


预设:除了第一步论证之外,其余 99 个步骤的证明都可以概括成一个命题的证 明,即转化为对以下命题的证明: 若 n 取某一个值时结论成立,则 n 取其下一个值时结论也成立,即
二、学情分析
该阶段学生的认知基础: (1)对正整数的特点的感性认识; (2)对“无穷” 的概念有一定的认识和兴趣;(3)在数列的学习中对递推思想有一定的体会; (4)在生活经验中接触到一些具有递推性质的事实; 但数学归纳法作为一种证明的方法,且不论其方法的结构形式,运用技巧, 就是对其自身的可靠性, 学生都有一定的疑虑, 具体可能会体现在以下一些方面: (1) 为什么要引进数学归纳法?验证为何不可行? (2) 数学归纳法的两步骤中, 对第二步的认识往往难以到位.将解决由 P(k)到 P(k+1)的传递性问题, 误解为证 明 P(k+1)的真实性.由此造成对证明中何以用“假设”的不理解.(3)数学归纳 法的第二步中由 k 到 k+1 的递推性应保证 k 从第一个值时的任意一个整数都能成 立,由此只要第一个值成立,就能确保可以一直递推下去.(4)数学归纳法中的
������
f(40)=1 681=412 是合数.
问题 1、2、3、4 的设计意图:提出问题如何寻找一个科学有效的方法证明结论 的正确性呢?我们本节课要学习的数学归纳法就是解决这一问题的方法之一 (二)实验演示,探索解决问题的方法 多米诺骨牌:有若干块骨牌竖直摆放,若将它们全部推倒,有什么办法?一 般地,多米诺骨牌游戏的原理是什么? (1) 推倒第一块骨牌; (2) 前一块骨牌倒下时能碰倒后一块骨牌 (三) 方法的形成
P(k)真 P(k+1)真 „
著 《中学数
因此得到对于任何正整数 n,命题 p(n)都为真. 数学归纳法的两个步骤中,第一步是证明的奠基,第二步是递推的依据,即 验证由任意一个整数 n 过渡到下一个整数 n+1 时命题是否成立.这两个步骤都非 常重要, 缺一不可.第一步确定了 n=1 时命题成立, n=1 成为后面递推的出发点, 没有它递推成了无源之水;第二步确认了一种递推关系,借助它,命题成立的范 围就能从 1 开始, 向后面一个数一个数的无限传递到 1 以后的每一个正整数,从 而完成证明.因此递推是实现从有限到无限飞跃的关键,没有它我们就只能停留 在对有限情况的把握上.


),则
.
(*)

.)
问 3:你能进一步说明命题(*)的证明对原命题的证明起到什么作用吗?
问 4: 有了命题 (*) 的证明, 你能肯定
吗?你能肯定
吗?你能肯定
吗?甚至你能肯定
吗?„
问 5:给定
及命题(*),你能推出什么结论呢?
预设:通过步步递推,可以证明对任意的正整数 n,结论 成立.

问 6:试写出此命题的证明:(教师板书,一边板书一边做相应的强调说明)
数学选修 2-2
2.3.1 数学归纳法教案
北师大附中京西 江冬梅
注:本教案是在参考各种资料的基础上形成的,其中主要参考人教官网上浙江 省黄岩中学 李柏青老师关于数学归纳法的教学设计以及罗增儒 学课例分析》P246-275 课例 14“数学归纳法的教学设计” 一、教材内容解析 由于正整数无法穷尽的特点,有些关于正整数 n 的命题,难以对 n 进行一一 的验证, 从而需要寻求一种新的推理方法,以便能通过有限的推理来证明无限的 结论.这是数学归纳法产生的根源. 数学归纳法是数学上证明与自然数 N 有关的 命题的一种特殊方法, 它主要用来研究与正整数有关的数学问题,在高中数学中 常用来证明等式成立和数列通项公式成立。 (可以理解成数学归纳法是证明与自 然数相关的命题的方法, 但主要证明一些与正整数 n 有关的简单数学命题?看了 一些资料都有不同的表述,对此有些疑问) 数学归纳法是一种证明与正整数 n 有关的命题的重要方法。它的独到之处便 是运用有限个步骤就能证明无限多个对象, 而实现这一目的的工具就是递推思想。 设 p(n)表示与正整数 n 有关的命题,证明主要有两个步骤:(1)证明 p(1) 为真;(2)证明若 p(k)为真,则 p(k+1)为真;有了这两步的保证,就可实现以 下的无穷动态的递推过程: P(1)真 P(2)真 P(3)真„
∴ 当 n=1 时,结论成立 (2)假设当 n=k 时结论成立, 即 则当 n=k+1 时 ak+1= ak+d = a1+(k-1)d+d = a1+[(k+1)-1]d ∴当 n=k+1 时,结论也成立 由(1)和(2)知,等式对于任何 n∈N*都成立。 例 2: 已知数列{an},其通项公式为 an=2n-1,试猜想该数列的前 n 项和公式 Sn, 并用数学归纳法证明你的结论。 解:(1)S1=a1=1 S3= S2+a3=4+5=9 (2) 猜想 Sn=n2, S2= S1+a2=1+3=4 S4= S3+a4=9+7=16 ak=a1+(k-1)d
递推是一种无穷尽的动态过程, 学生对于不断反复地运用步骤二来进行推理的模 式缺乏清晰的认知.
三、教学目标
知识与技能:理解数学归纳的原理与实质.掌握两个步骤;会证明简单的与 自然数有关的命题.培养学生观察,分析,思考,论证的能力, 发展抽象思维能力 和创新能力.培养学生大胆猜想、小心求证的辨证思维素质以及发现问题、提出 问题的意识和数学交流的能力. 过程与方法:努力创设课堂愉悦情境,使学生处于积极思考、大胆质疑的氛 围, 提高学生学习的兴趣和课堂效率.让学生经历知识的构建过程, 体会类比的 数学思想. 情感态度价值观: 让学生领悟数学思想和辩证唯物主义观点; 体会研究数学 问题的一种方法, 激发学生的学习热情, 使学生初步形成做数学的意识和科学精 神.
������
问题:已知数列{an},a1=1,an+1=������ +2an,求 a4,a100 以及 an。 师生活动:学生进行计算推理后,展示思考结果.
教师追问: (1)根据递推公式 an+1=������ +2an,可以由 推出 ,说说你又是如何求得 呢?
������
出发,推出
,再由
推出
,由
预设:由前四项归纳猜想
.
(2)归纳猜想的结果并不可靠,你能否对 吗? 设计意图:学生通过对
给以严格的证明
的求解以及多米诺骨牌游戏所渗透的思想,体会到只
需知道某一项, 就可求出其下一项的值.针对学生的回答情况, 教师可进行追问: 问 1 :利用递推公式,命题中的 n 由 1 可以推出 2,由 2 可以推出 3,由 3 可以 推出 4,···,由 99 可以推出 100. 这样要严格证明 n=100 结论成立,需要进 行多少个步骤的论证呢? 第一步,
已知数列{an}:
,求证:
.
预设:证明:(1) 当 n=1 时,
,所以结论成立.
(2) 假设当 n=k(k∈N*)时,结论成立,即 则当 n=k+1 时

即当 n=k+1 时,结论也成立.
由(1)(2)可得,对任意的正整数 n 都有 问 7:你能否总结出这一证明方法的一般模式?
相关文档
最新文档