正态分布ppt精品课件

合集下载

正态分布 课件

正态分布   课件
在气象中,某地每年七月份的平均气温、平均湿度 以及降雨量等,水文中的水位;
总之,正态分布广泛存在于自然界、生产及科学技术的许多领域中。
正态分布在概率和统计中占有重要地位。
4、正态曲线的性质
(1)曲线在x轴的上方,与x轴不相交.
(μ-σ,μ+σ]
0.6826
(μ-2σ,μ+2σ]
0.9544
(μ-3σ,μ+3σ]
0.9974
(2)曲线是单峰的,它关于直线x=μ对称.
(4)曲线与x轴之间的面积为1.
(3)曲线在x=μ处达到峰值(最高点)
(5)若 固定, 随 值的变化而沿x轴平移, 故 称为位置参数
(6)当μ一定时,曲线的形状由σ确定 .σ越大,曲线越“矮胖”,表示总体的分布越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中.
5、特殊区间的概率:
m-a
m+a
x=μ
若X~N ,则对于任何实数a>0,概率 为如图中的阴影部分的面积,对于固定的 和 而言,该面积随着 的减少而变大。这说明 越小, 落在区间 的概率越大,即X集中在 周围概率越大。
4
0.04
[0.5,1)
8
0.08
[1,1.5)
15
0.15
[1.5,2)
22
0.22
[2,2.5)
25
0.25
[2.5,3)
14
0.14
[3,3.5)
6
0.06
[3.5,4)
4
0.04
[4,4.5)
2
0.02
11
高尔顿钉板实验的 频率分布直方图
这条曲线具有 “中间高,两头低” 的特征,像这种类型的曲线, 就是(或近似地是)以下函数的图像:

正态分布完整ppt课件

正态分布完整ppt课件
正态性检验
使用如Shapiro-Wilk检验、Kolmogorov-Smirnov检验等方法,对 误差项进行正态性检验,以验证其是否符合正态分布。
方差分析中F分布应用
01 02
F分布的定义
F分布是一种连续型概率分布,常用于方差分析中的假设检验。在方差 分析中,通过比较不同组间的方差与组内方差,判断各因素对结果的影 响是否显著。
筛选方法
包括单变量分析和多变量分析等,结合临床 意义和统计学显著性进行生物标志物的筛选 。
社会科学调查数据分析
社会科学调查数据特点
大量、复杂、多维度的数据,往往需要进行统计分析和数据挖掘。
正态分布在社会科学调查数据分析中的应用
通过对调查数据进行正态性检验,选择合适的数据处理和分析方法,如参数检验、回归分析等。
有对称性和单峰性。
性质
对称性:正态分布曲线关于均值对称 。
单峰性:正态分布曲线只有一个峰值 ,位于均值处。
均值、中位数和众数相等。
概率密度函数在均值两侧呈指数下降 。
正态曲线特点
01
02
03
04
形状
钟形曲线,中间高,两边低。
对称性
关于均值对称,即左右两侧形 状相同。
峰值
位于均值处,且峰值高度由标 准差决定。
05
正态分布在金融学领域应用
风险评估及资产组合优化
风险评估
正态分布用于描述金融资产的收益和风险分布,通过计算均值和标准差来评估投资组合 的风险水平。
资产组合优化
基于正态分布假设,利用马科维茨投资组合理论等方法,构建最优资产组合以降低风险 并提高收益。
VaR(Value at Risk)计算
正态分布用于计算投资组合在一定置信水平下的最大可能损失(VaR),以衡量潜在风 险。

课件12:§2.4 正态分布

课件12:§2.4 正态分布

题型一 正态曲线的图象和性质 例 1 如图是一个正态曲线.试根据图象写出其正态分 布的概率密度函数的解析式,并求出总体随机变量的均 值和方差.
解:从正态曲线的图象可知,该正态 曲线关于直线 x=20 对称,最大值为21π, 所以 μ=20, 21πσ=21π, 解得 σ= 2.
于是概率密度函数的解析式为
3.在某项测量中,测量结果 X 服从正态分布 N(1,σ2) (σ>0).若 X 在(0,1)内取值的概率为 0.4,则 X 在(0,2) 内取值的概率为________. 【解析】∵X 服从正态分布(1,σ2), ∴X 在(0,1)与(1,2)内取值的概率相同,均为 0.4. ∴X 在(0,2)内取值的概率为 0.4+0.4=0.8. 【答案】0.8
题型二 正态分布中的概率计算
例 2 设随机变量 X~N(1,22),试求: (1)P(-1<X≤3); (2)P(3<X≤5).
解:(1)P(-1<X≤3)=P(1-2<X≤1+2)=0.682 6. (2)P(3<X≤5)=P(-3<X≤-1) =12[P(-3<X≤5)-P(-1<X≤3)] =12[P(1-4<X≤1+4)-P(1-2<X≤1+2)] =12(0.954 4-0.682 6)=0.135 9.
完全确定了正态分布,参数 μ 就是随机变量 X 的均 值,它可以用样本的均值去估计;参数 σ 就是随机 变量 X 的标准差,它可以用样本的标准差去估计.把 μ=0,σ=1 的正态分布叫做标准正态分布.
知识点二 正态曲线的特点及 3σ 原则
导入新知
1.正态曲线的特点
正态曲线 φμ,σ(x)=
1 -( 2πσe
5.设随机变量 X~N(0,1),求 P(X≤0),P(-2<X<2).

正态分布ppt课件

正态分布ppt课件

1.已知某地区中学生的身高 X 近似服从正态分布 N 164, 2 ,若 P X 170 0.3 ,
则 P158 X 1706
D.0.8
解析: P158 X 170 2P164 X 170 2 0.5 P X 170 0.4 .
2. 已 知 随 机 变 量 X 服 从 正 态 分 布 N 1, 2 , 若 P(X 0) P(X 3) 11 , 则 10 P(2 X 3) ( )
A.0.1
B.0.2
C.0.3
D.0.4
解析:因为随机变量 X 服从正态分布 N 1, 2 ,
所以随机变量 X 的均值 1 ,
所以随机变量 X 的密度曲线关于 x 1 对称, 所以 P(X 0) P(X 2) , 又 P(X 0) P(X 3) 11 ,
10
所以 P(X 2) P X 2 P(2 X 3) 11 ,
为“可用产品”,则在这批产品中任取 1 件,抽到“可用产品”的概率约为 _____________.
参考数据:若 X N , 2 ,则 P X 0.6827 ,
P 2 X 2 0.9545, P 3 X 3 0.9973
解析:由题意知,该产品服从 X N(25,0.16) ,则 25, 0.4 ,
10
因为 P(X 2) P X 2 1,所以 P(2 X 3) 0.1
3.已知随机变量 X ~ N , 2 ,Y ~ B6, p ,且 P X 3 1 , E X E Y ,则 2
p ( )
1
1
1
1
A. 6
B. 4
C. 3
D. 2
解析:由于 X 服从正态分布 N , 2 ,且 P X 3 1 ,故其均值 E X 3 . 2

正态分布分布ppt课件

正态分布分布ppt课件

通过样本数据可以估计总体的均值、方差等 参数,进而对总体进行推断和分析。
假设检验
质量控制
在假设检验中,通常需要比较样本数据与某 个理论分布的差异,中心极限定理提供了理 论依据。
在工业生产等领域中,可以利用中心极限定 理对产品质量进行监控和预测。
03
正态分布在各领域应用举例
自然科学领域应用
1 2
描述自然现象的概率分布 正态分布可以描述许多自然现象的概率分布情况, 如身高、体重、智商等的分布情况。
根据显著性水平和自由度 确定t分布的临界值,进 而确定拒绝域。
将计算得到的t统计量与 拒绝域进行比较,若t统 计量落在拒绝域内,则拒 绝原假设,否则接受原假 设。
配对样本t检验原理及步骤
01
02
03
04
05
原理:配对样本t检验是 提出假设:设立原假设 用于比较同一组受试者 (H0)和备择假设 在两个不同条件下的测 (H1),原假设通常为 量值是否存在显著差异 两个测量值的均值相等。 的统计方法。它基于正 态分布假设和配对设计, 通过计算t统计量来推断 两个测量值的差异是否 显著。
设立原假设(H0)和备择假 设(H1),原假设通常为样 本均值等于总体均值。
计算t统计量,公式为t=(样 本均值-总体均值)/标准误, 其中标准误=样本标准差/根 号n。
根据显著性水平和自由度确 定t分布的临界值,进而确 定拒绝域。
将计算得到的t统计量与拒 绝域进行比较,若t统计量 落在拒绝域内,则拒绝原假 设,否则接受原假设。
06
非参数检验在处理非正态数据 时应用
非参数检验方法简介
非参数检验的概念
非参数检验是一种基于数据秩次的统计推断方法,它不依赖于总 体分布的具体形式,因此适用于处理非正态数据。

正态分布-ppt课件

正态分布-ppt课件

(14)曲(3线) (的4)对称位置由μ确定,曲线的形状由σ确定,σ越大,曲线越“矮胖”,反之,曲线越“瘦高”.
布 N (0,1) , 已 知 p ( < - 1.96 ) =0.025 , 则 即2、考已试知成X绩~N在((08,10),1,00则)间X在的区概间率为0. 内取值的概率等于( )
(2)曲线对应的正态总体概率密度函数是偶函数;
(3)曲线在x= 处处于最高点,由这一点向左右两侧延
伸时,曲线逐渐降低;
(4)曲线的对称位置由μ确定,曲线的形状由σ确定, σ越大,曲线越“矮胖”,反之,曲线越“瘦高”.
上述叙述中,正确的有 (1) (3) (4) .
课堂练习
1. 右图是当 σ 分别取值 σ1,σ2,σ3 的三种正
(2)
1 , 2 1 (x1)2
(x) 新疆 王新敞 奎屯
e 8 ,x ( , )
22
说明:当0 , 1时,X 服从标准正态分布
记为X~N (0 , 1)
例2、下列函数是正态密度函数的是( B )
f(x) 1 e ,,(0)都 是 实 数 A. 说明:当m=0 , s =1时,X 服从标准正态分布 2 样本容量增大时频率分布直方图
随 着 重 复 次 数 ,这的个增频加率 直 方 图 的
会 越 来 越 像 一线 条图钟 2.4形 3曲 .
y
O
图2.43
x
这条曲线 (或就 近是 似 )下地 列函数:的图象
φμ,σx 1 ex 2 σ μ 22,x , ,
2π σ
其 中 μ 和 σ σ 实 0 为 数 .我 参φ 们 μ 数 ,σ x 的 称
1 即即(947)考考7曲2试 试线成成的D.绩绩对在在称((位8800置,,1100由00))μ间间确的的定概概,率率曲为为线00的.. 形状由σ确定,σ越(x大4,1)曲2线越“矮胖”,反之,曲线越“瘦高”.

《正态分布曲线》课件

《正态分布曲线》课件
《正态分布曲线》ppt课件
CONTENTS
• 正态分布曲线的定义 • 正态分布曲线的性质 • 正态分布曲线的计算 • 正态分布曲线的应用 • 正态分布曲线的实例分析
01
正态分布曲线的定义
什么是正态分布
正态分布是一种概率分布,描述了许多自 然现象的概率分布形态。
它以均值为对称轴,呈现出钟形曲线状。
谢谢您的聆听
THANKS
在统计学中,许多随机变量的概率分布都 可以用正态分布来近似描述。
正态分布的特点
集中性
正态分布的曲线顶峰位于均值处,即概率 密度最大的点是均值。
对称性
正态分布曲线关于均值所在直线对称,即 从均值所在直线到曲线的距离相等。
均匀变动性
正态分布曲线在均值附近较为陡峭,远离 均值则逐渐平缓。
正态分布在现实生活中的应用
平均值
正态分布曲线的对称轴,所有数 据点的平均数。
标准差
衡量数据点离散程度的指标,决 定了正态分布曲线的宽度。
正态分布的概率密度函数
定义
描述正态分布曲线下各个点的概率分 布情况。
特点
在平均值处达到最大值,随着数据远 离平均值,概率密度逐渐减小。
正态分布的累积分布函数
定义
描述正态分布曲线下小于或等于某一数值的累积概率。
分数等。
05
正态分布曲线的实例分析
实例一:人类的身高分布
总结词
符合正态分布
详细描述
人类的身高分布呈现典型的正态分布特征,即大部分人的身高集中在平均值附近 ,极端的身高相对较少。这种分布形态有助于解释为什么大多数人的身高都在平 均值附近,而极端身高的人则相对较少。
实例二:考试分数的分布
总结词
符合正态分布

《正态分布》ppt课件

《正态分布》ppt课件
《正态分布》ppt课件
目录
CONTENTS
• 正态分布基本概念 • 正态分布在统计学中应用 • 正态分布在自然科学领域应用 • 正态分布在社会科学领域应用 • 正态分布计算方法及工具介绍 • 正态分布在实际问题中案例分析
01 正态分布基本概念
CHAPTER
定义与性质
定义
对称性
正态分布是一种连续型概率分布,描述了许 多自然现象的概率分布情况。在统计学中, 正态分布又被称为高斯分布。
系统误差与随机误差
正态分布可以帮助区分系统误差和随机误差。系统误差是由于实验装置或方法本身的缺陷引 起的,而随机误差则是由于各种不可控因素引起的。通过正态分布分析,可以对这两类误差 进行识别和纠正。
化学中浓度分布规律研究
01
溶液浓度的正态分布
在化学实验中,溶液的浓度分布往往符合正态分布。通过测量不同位置
利用SPSS的图形功能,可以绘制多种统计图表,包括频率分布直 方图、正态分布曲线图等。
SPSS提供了丰富的统计分析方法,如参数估计、假设检验、方差 分析等,可以根据研究需求选择合适的方法进行分析。
06 正态分布在实际问题中案例分析
CHAPTER
质量控制过程中产品合格率评估
质量控制图
利用正态分布原理,通过绘制质 量控制图,可以直观地展示产品 质量的波动情况,从而及时发现 并处理异常波动,确保产品合格
数据输入与整理
在Excel中输入数据,并进行必要的整理,如删除重复值、处理缺失 值等。
使用内置函数计算均值和标准差
Excel提供了丰富的内置函数,可以直接计算数据集的均值 (AVERAGE函数)和标准差(STDEV函数)。
绘制图表
利用Excel的图表功能,可以根据数据快速生成频率分布直方图和正 态分布曲线图。

正态分布ppt课件

正态分布ppt课件
收集数据
从实际问题中收集相关数据,如某产品的质量指 标数据。
数据拟合
使用正态分布函数对数据进行拟合,判断数据是 否符合正态分布特征。
参数估计
采用最大似然估计等方法,估计出正态分布的均 值和标准差等参数值。
案例分析:某产品质量指标服从正态分布检验
案例背景介绍
介绍某产品的质量指标数据及其背景信息。
正态性检验
选举结果预测 在政治学中,选举结果的预测也往往基于正态分布模型, 通过分析选民的支持率和投票行为来预测选举结果。
经济金融数据中正态分布检验
在金融市场中,股票价格的波动往往呈现出正态分布 的特点,即大部分价格波动都集中在平均值附近,而
极端波动出现的概率很小。
输入 收益标率题分布
在投资组合理论和风险管理中,收益率的分布也往往 假设为正态分布,以便进行风险度量和资产配置。
连续型随机变量及其性质
均匀分布
均匀分布是描述在某一区间内取值的随机变量,其取值具有等可能性。
指数分布
指数分布是描述无记忆性的随机变量的概率分布,常用于可靠性分析 和排队论中。
正态分布
正态分布是描述连续型随机变量的最重要的一种分布,具有对称性和 集中性等特点,广泛应用于自然科学和社会科学领域。
其他连续型随机变量
概率分布的概念
概率分布用于描述随机变量取不同值 的概率规律,包括离散型概率分布和 连续型概率分布。
离散型随机变量的概率分布
离散型随机变量取值为有限个或可数 个,其概率分布通常用分布列表示。
连续型随机变量的概率分布
连续型随机变量取值充满某个区间, 其概率分布用概率密度函数表示。
期望与方差
期望的概念
方差的概念
利用正态分布性质,识别 并处理回归模型中的异常 值。

75正态分布课件

75正态分布课件
回归分析
用于研究变量之间的相关关系,通过建立回归方程来描述自变量和因变量之间的数量关 系,并进行预测和控制。
正态分布在方差分析和回归分析中的应用
在方差分析中,正态分布假设是前提之一,用于判断实验结果的可靠性;在回归分析中, 正态分布假设用于建立回归模型并进行参数估计和假设检验。
04 正态分布在概率论中作用
检验统计量与拒绝域 根据样本数据计算检验统计量,并根据显著性水 平和检验统计量的分布确定拒绝域。
3
P值与决策 根据检验统计量的值和拒绝域计算P值,并根据P 值与显著性水平的比较做出决策。
方差分析与回归分析应用
方差分析
用于研究不同因素对实验结果的影响程度,通过比较不同组间的方差和组内方差来判断 因素对实验结果是否有显著影响。
定理意义
中心极限定理揭示了大量独立随机变量的和近似服从正态分布的规律,为统计学中 的许多推断方法提供了理论基础。
正态分布与其他分布关系
正态分布与t分布关系
当总体服从正态分布且样本量n较大时,t分布近似于标准正态分布。因此,在实际应用中, 当样本量足够大时,可以使用正态分布的方法对t分布进行近似处理。
关键知识点总结回顾
正态分布的定义和性质
01
正态分布是一种连续型概率分布,具有钟形曲线特点,其概率
密度函数由均值和标准差决定。
正态分布的参数估计
02
通过样本数据可以估计正态分布的均值和标准差,常用方法有
最大似然估计和矩估计。
正态分布的应用
03
正态分布在实际问题中广泛应用,如质量控制、假设检验、回
归分析等。
75正态分布课件
目 录
பைடு நூலகம்
• 正态分布基本概念 • 正态分布性质与定理 • 正态分布在统计学中应用 • 正态分布在概率论中作用 • 正态分布在实际问题中运用 • 正态分布课件总结回顾与拓展延伸

正态分布ppt精品课件

正态分布ppt精品课件
结果解释
根据检验结果,解释两组数据 是否存在显著差异,并结合实
际背景进行讨论。
06
正态分布在生活中的应用举例
质量控制领域应用举例
01
产品规格设定
在制造业中,正态分布用于设定产品规格。通过对产品特性进行统计分
析,可以确定产品特性的均值和标准差,进而设定合理的上下规格限。
02 03
过程能力分析
正态分布也用于评估生产过程的能力。通过计算过程能力指数(如Cp 和Cpk),可以了解生产过程是否稳定,并确定是否需要采取改进措施 。
多元方差分析(MANOVA)与多元回归分析( Multiple Regression Analysis):当涉及多个自 变量或多个因变量时,可以使用多元方差分析或 多元回归分析来探究它们之间的关系。
回归分析(Regression Analysis):用于探究自 变量与因变量之间的线性或非线性关系,通过拟 合回归方程来预测因变量的取值。
概率密度函数性质 f(x)≥0,对于所有x∈R。
02
正态分布在统计学中应用
描述性统计量计算
均值(Mean):表示数据的“中心 ”或“平均”水平,计算方法是所有 数值之和除以数值个数。
偏度(Skewness):描述数据分布 形态的偏斜程度,正偏态表示数据向 右偏,负偏态表示数据向左偏。
标准差(Standard Deviation):衡 量数据分布的离散程度,即数据偏离 均值的程度,计算方法是方差的平方 根。
实例分析:两组数据是否存在显著差异
数据描述
给出两组数据的描述性统计量, 如均值、标准差等。
假设检验步骤
按照上述假设检验步骤,对两组 数据进行假设检验。
结果解释
根据检验结果,判断两组数据是 否存在显著差异,并给出相应的

第二节正态分布-PPT精选

第二节正态分布-PPT精选

正态曲线(normalcurve)
二、正态曲线( normal curve )
图形特点:
f(X)
1. 钟型
2. 中间高
3. 两头低
4. 左右对称
5. 最高处对应 于X轴的值
就是均数
X 6. 曲线下面积

为1
7. 标准差决定 曲线的形状
N(1,0.82)
0.6 f (X )
0.5
0.4 N(0,12 )

(
X )2 2 2
,
X
=3.14159,exp是以2.72818为底的自然对数指数
X ~ N(, 2),为X的总体均数,为总体标准差
f (X)称为概率密度函数p(robability densityfunction)
以f (X)为纵坐标,X为横坐标,绘制的曲就线是
分娩方式 顺产 助产 顺产 顺产 顺产
剖宫产 顺产
剖宫产 顺产 顺产
妊娠结局 足月 足月 足月 早产 足月 足月 死产 足月 足月 足月
按年龄(2岁一组)与职业整理
年龄 工人 管理人员 农民 商业服务 无 知识分子 总计
18
2
0
0
0
3
0
5
20
9
2
6
10
18
0
45
22 28
7
10
24
70
11
150
24 50
0.3
N(1,1.22)
μ决定曲线的位置,σ0.决2 定曲线的“胖瘦”
0.1
0
-4
-3
-2
-1
0
1
2
3
4
X
三、标准正态分布
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Copyrights © 2007 AUX Group
二、观察演示
高尔顿板
高尔顿板演示结果直方图
Copyrights © 2007 AUX Group
Copyrights © 2007 AUX Group
三、正态曲线
y
当重复次数增加时,曲线就是 (或近似是)下列函数的图像
O
x
, x
1
2
e
一、复习引入
1.若离散型随机变量X的分布列为
X
x1 x2 ... xi
... xn
P
p1 p2 ... pi
... pn
则称 EX x1 p1 x2 p2 xi pi xn pn
为随机变量X的均值或数学期望
n
DX xi EX 2 pi 为偏离程度的加权平均 i1
DX为随机变量X的方差
σ 2π
(4)曲线与x轴之间的面积为1
Copyrights © 2007 AUX Group
(5)当一定时,曲线随着的变化而沿x轴平移 (6)当一定时,曲线的形状由的确定.
越小,曲线越“瘦高”,表示总体的分布越集中; 越大,曲线越“矮胖”,表示总体的分布越分散.
Copyrights © 2007 AUX Group
x 2
2 2
,
x
,
其中实数和(>0)为参数.
,(x)的图像为正态分布密度曲线,简称正态曲线。
Copyrights © 2007 AUX Group
四、正态曲线对应区间概率的积分计算
用X表示落下的小球第1次与高尔顿板底部 接触时的坐标.X落在区间(a,b]的概率为
Pa X
b
b
a , x dx
Copyrights © 2007 AUX Group
五、正态分布
如果对于任何实数a<b,随机变量X满足
Pa X
b
b
a , x dx
则称X的分布为正态分布 记N , 2
X服从正态分布,则记 X ~ N , 2
是反映随机变量取值的平均水平的特征数, 可以用样本均值(数学期望)去估计;
0.137 0.113 0.084 0.053 0.027
①每一个小矩形的 高就是对应的频率
②适用范围 离散型总体
2 3 4 5 6 7 8 9 10 11 12 点数和
Copyrights © 2007 AUX Group
一、复习引入 5.频率分布表与频率分布直方图
25.39 25.36 25.34 25.42 25.45 25.38 25.39 25.42 25.47 25.35 25.41 25.43 25.44 25.48 25.45 25.43 25.46 25.40 25.51 25.45 25.40 25.39 25.41 25.36 25.38 25.31 25.56 25.43 25.40 25.38 25.37 25.44 25.33 25.46 25.40 25.49 25.34 25.42 25.50 25.37 25.35 25.32 25.45 25.40 25.27 25.43 25.54 25.39 25.45 25.43 25.40 25.43 25.44 25.41 25.53 25.37 25.38 25.24 25.44 25.40 25.36 25.42 25.39 25.46 25.38 25.35 25.31 25.34 25.40 25.36 25.41 25.32 25.38 25.42 25.40 25.33 25.37 25.41 25.49 25.35 25.47 25.34 25.30 25.39 25.36 25.46 25.29 25.40 25.37 25.33 25.40 25.35 25.41 25.37 25.47 25.39 25.42 25.47 25.38 25.39
一、复习引入
4.频率分布的条形图
点数和 2 3 4 5 6 7 8 9 10 11 12
频 数 203 407 591 805 994 1218 989 813 602 381 197
频 率 0.028 0.057 0.082 0.112 0.138 0.169
6 频率
36 5 36 4 36 3 36 2 36 1 36
X DX 为随机变量X的标准差
E(aX+b)=aEX+b D(aX+b)=a2DX
Copyrights © 2007 AUX Group
一、复习引入
2.若X服从两点分布,则 EX=p DX=p(1-p)
3.若X~B(n,p),则 EX=np DX=np(1-p)
Copyrights © 2007 AUX Group
七、正态曲线的特点
( x)
y
1
e
(
x )2 2 2
2 y
μ= -1
σ=0.5
μ=0
, x (, 0 1 2 x -3 -2 -1 0 1 2 3 x -3 -2 -1 0 1 2 3 4 x
(1)曲线在x轴的上方,与x轴不相交. (2)曲线是单峰的,它关于直线x=μ对称. (3)曲线在x=μ处达到峰值(最高点) 1
(2)f (x) 的值域为
(0,
1]
2
y
μ=0 σ=1
(3) f (x) 的图象关于 x =μ 对称. -3 -2 -1 0 1 2 3 x
(4)当x∈(-∞,μ] 时f (x)为增函数.
x 当 ∈(μ,+∞) 时f (x)为减函数. 标准正态曲线
Copyrights © 2007 AUX Group
Copyrights © 2007 AUX Group
Copyrights © 2007 AUX Group
频率分布折线 图无限接近于 一条光滑曲线.
总体密度曲线与 x轴围成的面积 为1.
Copyrights © 2007 AUX Group
任何一个总体的密度曲线虽然客观存在,但是很难象函数 图像一样被精确的画出来,我们只能用样本的频率分布对它 进行估计,一般来说,样本的容量越大,估计就越精确.
是衡量随机变量总体波动大小的特征数,可 以用样本标准差去估计.
若 ~ N (, 2 ), E , D 2
总体平均数
Copyrights © 2007 AUX Group
六、正态曲线动态演示 正态总体的函数表示式
f (x)
1
2
e
(x)2 2 2
x (,)
(1)当x = μ 时,函数值为最大.
相关文档
最新文档