双闭环管道流量比值控制系统设计报告
(涡轮流量计双闭环流量比值控制系统设计)
一、设计题目涡轮流量计双闭环流量比值控制系统设计二、设计任务该设计可在A3000-FS 实验台上完成。
图1中1#管流量Q1为主变量,2#管流量Q2为从变量,可设计串级调节器控制FV101满足系统要求。
表1 连接端配置 测量或控制量 测量或控制量标号1#涡轮流量计 FT101 2#涡轮流量计 FT102 电动调节阀FV101 ……以上连接图和仪表仅为本控制系统中的设计提供思路,并不完整,其它部分还需根据自己的设计思路添加。
三、功能要求1) 有组态界面,可观察控制效果,用户操作方便。
2) 可手动输入数据,比如主动量设置、流量比值设置等。
3) 工艺参数在线曲线,可观察控制系统的运行效果。
4) 可在线修改工艺参数。
5)对扰动有较好的抑制能力。
四、控制原理FT 1022#调节阀FV101FT 101比值器调节器Q 2Q 11#图1 比值控制原理示意图单回路控制系统解决了工艺生产过程自动化中大量的参数定值问题。
但是,随着现代工业生产的迅速发展,工艺操作条件的要求更加严格,对安全运行和经济性及对控制质量的要求也更高。
但回路控制系统往往不能满足生产工艺的要求,在这样的情况下,双闭环串级控制系统就应运而生。
双闭串级控制系统是改善控制质量的有效方法之一,在过程控制中得到广泛地应用,串级控制系统是指不止采用一个控制器,而是将两个或几个控制器相串级,是将一个控制器的输入作为下一个控制器设定值的控制系统。
双闭环串级控制系统,就其主回路来看是一个定值控制系统,而副回路则是一个随动系统,主调节器的输出能按照负荷和操作条件的变化而变化,从而不断改变副调节器的给定值,使副回路调节器的给定值适应负荷并随操作条件而变化,即具有一定的自适应能力。
正确合理地设计一个串级控制系统是要其能充分发挥如上所述系统的各种特点。
在系统设计时应包括主、副回路的设计,主、副调节器控制规律的选择及正、反作用方式的确定。
五、系统规划及详细设计1.控制方案根据设计要求,系统采用单闭环比值控制。
实验二十——精选推荐
实验⼆⼗实验⼆⼗⽐值控制系统实验第⼀节单闭环流量⽐值控制系统⼀、实验⽬的1、了解单闭环⽐值控制系统的原理与结构组成。
2、掌握⽐值系数的计算。
3、掌握⽐值控制系统的参数整定与投运。
⼆、实验设备1、THJ-2型⾼级过程控制实验装置2、计算机、上位机MCGS组态软件、RS232-485转换器1只、串⼝线1根3、万⽤表 1只三、系统结构框图图6-1单闭环流量⽐值控制系统结构图四、实验原理在⼯业⽣产过程中,往往需要⼏种物料以⼀定的⽐例混合参加化学反应。
如果⽐例失调,则会导致产品质量的降低、原料的浪费,严重时还发⽣事故。
例如在造纸⼯业⽣产过程中,为了保证纸浆的浓度,必须⾃动地控制纸浆量和⽔量按⼀定的⽐例混合。
这种⽤来实现两个或两个以上参数之间保持⼀定⽐值关系的过程控制系统,均称为⽐值控制系统。
本实验是流量⽐值控制系统。
其实验系统结构图如图6-1所⽰。
该系统中有两条⽀路,⼀路是来⾃于电动阀⽀路的流量Q1,它是⼀个主动量;另⼀路是来⾃于变频器—磁⼒泵⽀路的流量Q2,它是系统的从动量。
要求从动量Q2能跟随主动量Q1的变化⽽变化,⽽且两者间保持⼀个定值的⽐例关系,即Q2/Q1=K。
图6-2 单闭环流量⽐值控制系统⽅框图图6-2为单闭环流量⽐值控制系统的⽅框图。
由图可知,主控流量Q1经流量变送器后为I1(实际中已转化为电压值,若⽤电压值除以250Ω则为电流值,其它算法⼀样),如设⽐值器的⽐值为K,则流量单闭环系统的给定量为KI1。
如果系统采⽤PI调节器,则在稳态时,从动流量Q2经变送器的输出为I2,不难看出,KI1=I2。
五、⽐值系数的计算设流量变送器的输出电流与输⼊流量间成线性关系,当流量Q由0→Qmax变化时,相应变送器的输出电流为4→20mA。
由此可知,任⼀瞬时主动流量Q1和从动流量Q2所对应变送器的输出电流分别为I1= (1)I2= (2)式中Q1max和Q2max分别为Q1和Q2 最⼤流量值。
设⼯艺要求Q2/Q1=K,则式(1)可改写为Q1= Q1max (3)同理式(2)也可改写为Q2= Q2max (4)于是求得= (5)折算成仪表的⽐值系数K′为:K′ = K (6)六、实验内容与步骤1、按图6-1所⽰的实验结构图组成⼀个为图6-2所要求的单闭环流量⽐值控制系统。
比例阀双闭环设计
比例阀双闭环设计比例阀是一种调节阀,广泛应用于工业控制系统中。
双闭环设计是指在比例阀控制系统中同时采用位置闭环和流量闭环控制。
位置闭环控制是通过对比实际位置和设定位置的差异,控制比例阀的阀芯移动,从而实现对流量的调节。
位置闭环控制主要通过传感器来获取实际位置,并与设定位置进行比较,得出误差。
然后通过控制电机或液压执行器移动阀芯,使误差减小至接近于零。
位置闭环控制主要关注的是流量的精确控制,可以提供较小的流量调节范围和较高的精度。
流量闭环控制是通过对比实际流量和设定流量的差异,控制比例阀的开度,从而实现对流量的调节。
流量闭环控制主要依靠流量传感器来获取实际流量,并与设定流量进行比较,得出误差。
然后通过控制比例阀的开度,使误差减小至接近于零。
流量闭环控制主要关注的是流量的稳定控制,可以提供较大的流量调节范围和较低的误差。
在比例阀双闭环设计中,位置闭环控制和流量闭环控制相互协调,共同实现对流量的精确和稳定控制。
位置闭环控制主要负责追踪设定位置,确保位置误差较小;流量闭环控制主要负责实现设定流量,确保流量误差较小。
双闭环设计能够充分利用位置闭环控制和流量闭环控制的优点,实现更精确、更稳定的流量控制。
双闭环设计需要合理选择位置传感器和流量传感器,确保传感器的测量范围和精度满足控制要求。
另外,还需要合理设计阀芯的移动机构和比例阀的开度控制机构,确保能够实现准确的位置和开度调节。
双闭环设计还需要合理配置控制器和算法,确保能够快速、准确地响应设定位置和设定流量的变化。
总之,比例阀双闭环设计能够充分利用位置闭环控制和流量闭环控制的优点,实现更精确、更稳定的流量控制。
通过合理选择传感器、设计阀芯移动机构和比例阀的开度控制机构,以及配置合适的控制器和算法,可以实现对比例阀的精确控制,提高工业控制系统的稳定性和可靠性。
双闭环流量比值控制系统设计最牛逼设计
目录1.前言 (1)2.总体方案设计 (2)2.1方案比较 (2)2.2 方案论证 (3)2.3 方案选择 (3)3.硬件部分设计 (4)3.1 三菱FX系列PLC (4)3.2 耐腐蚀泵 (5)3.3西门子MM440变频器 (5)3.3 计量螺旋 (6)4.PLC控制系统设计 (8)4.1 输入和输出 (8)4.2设定参数数据存储器地址 (8)4.3 变频器调节 (8)4.4 PID控制 (8)5.系统功能 (10)6.设计总结 (12)6.1 结论 (12)6.2 心得体会 (12)7.致谢 (13)8.参考文献 (14)1.前言工业生产过程中,要求两种或多种物料成一定比例关系,一旦比例失调,会影响生产的正常进行,影响产品质量,浪费原料,消耗动力,造成环境污染,甚至产生生产事故,所以严格控制其比例,对于安全生产来说是十分重要的。
尤其在化工生产中,经常需要两种或两种以上的物料按一定比例混合或进行化学反应,如果比例失调,轻则造成产品质量不合格,重则会造成生产事故或发生人身伤害,给企业带来较大的损失。
例如氨分解工艺中的氨分解炉,入炉煤气和空气应保持一定的比例,否则将使燃烧反应不能正常进行,而煤气和空气比例超过一定的极限将会引起爆炸。
比值控制的目的就是为了实现几种物料符合一定比例关系,以使安全生产正常进行。
实现两个或两个以上参数符合一定比例关系的控制系统,称为比值控制系统.由于过程工业中大部分物料都是以气态,液态或混合的流体状态在密闭管道,容器中进行能量传递与物质交换,所以保持两种或几种物料的比例实际上是保持两种或几种物料的流量比例关系,因此比值控制系统一般是指流量比值控制系统.在需要保持比值关系的两种物料中,必有一种物料处于主导地位,这种物料称之为主物料,表征这种物料的参数称之为主动量。
由于在生产过程控制中主要是流量比值控制系统,所以主动量也称为主流量,用F1表示;而另一种物料按主物料进行配比,在控制过程中随主物料而变化;因此称为从物料,表征其特性的参数称为从动量或副流量,用F2表示。
三级液位仿真系统双闭环比值控制系统实验报告
三级液位仿真系统双闭环比值控制系统实验报告实验报告:三级液位仿真系统双闭环比值控制系统一、引言液位控制是工业自动化中的重要应用之一、液位控制系统的目标是使液位保持在设定值附近,并且在输入条件发生变化时能够快速恢复到稳定状态。
本实验针对三级液位仿真系统,设计了双闭环比值控制系统,旨在通过控制液位流量比值来实现液位的稳定控制。
二、实验原理在三级液位仿真系统中,通过给定流量值控制输入泵的流量,控制出口泵的速度以满足液位控制要求。
传感器采集液位信号并反馈给控制系统,经过控制计算得到输出调节量,控制输入泵和出口泵的流量值。
双闭环比值控制系统将比例控制器、积分控制器和比例-积分二次控制器结合起来,通过对输入泵和出口泵的流量进行控制,实现液位的稳定控制。
其中,比例控制器通过控制出口泵的速度来调节液位;积分控制器通过控制输入泵的流量来增加系统的稳定性。
比例-积分二次控制器结合了比例控制器和积分控制器的优点,既能快速响应输出,又能保持系统的稳态。
三、实验步骤1.连接实验系统:将液位传感器和流量传感器分别连接到控制系统进行信号采集。
2.设置参数:根据实际系统,设置合适的参数,包括液位传感器和流量传感器的量程、比例控制器和积分控制器的参数等。
3.运行系统:启动实验系统,并设置液位的设定值。
4.控制开关:根据实验要求,打开或关闭比例控制器、积分控制器和比例-积分二次控制器。
5.实验记录:记录实验系统的响应速度、稳态误差和稳定性等参数,并与理论预期进行对比分析。
四、实验结果通过实验控制系统成功实现了液位稳定控制。
实验结果表明,比例-积分二次控制器的控制效果最好,能够快速响应输出,且稳定性较好。
比例控制器的控制效果次之,响应速度较快,但稳定性较差。
积分控制器的控制效果最差,响应速度相对较慢。
五、实验总结本实验通过三级液位仿真系统的双闭环比值控制系统,成功实现了液位的稳定控制。
实验结果表明,比例-积分二次控制器是一种有效的控制方法,能够在保证系统响应速度的同时保持稳态。
双闭环流量比值控制系统
双闭环流量比值控制系统一、实验目的1.了解双闭环比值控制系统的原理与结构组成。
2.掌握双闭环流量比值控制系统的参数整定与投运方法。
3.分析双闭环比值控制与单闭环比值控制有何不同。
二、实验设备三、实验原理本实验是双闭环流量比值控制系统。
其实验系统结构图如图7所示。
该系统中有两条支路,一路是来自于电动阀支路的流量Q1,它是一个主流量;另一路是来自于变频器—磁力泵支路的流量Q2,它是系统的副流量。
要求副流量Q2能跟随主流量Q1的变化而变化,而且两者间保持一个定值的比例关系,即Q2/Q1=K。
图7 双闭环流量比值控制系统(a)结构图 (b)方框图由图中可以看出双闭环流量比值控制系统是由一个定值控制的主流量回路和一个跟随主流量变化的副流量控制回路组成,主流量回路能克服主流量扰动,实现其定值控制。
副流量控制回路能抑制作用于副回路中的扰动,当扰动消除后,主副流量都回复到原设定值上,其比值不变。
显然,双闭环流量控制系统的总流量是固定不变的。
五、实验内容与步骤本实验选择电动阀支路和变频器支路组成流量比值控制系统。
实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-8、F1-11、F2-1、F2-5全开,其余阀门均关闭。
具体实验内容与步骤,以及接线图请参照前一节的单闭环流量比值控制系统相应方案进行,只需在双闭环比值控制实验中将控制电动阀支路流量的调节器按单回路的整定方法整定好参数,并投入自动运行即可。
五、实验报告1.画出双闭环流量比值控制系统的结构框图。
2.根据实验要求,实测比值器的比值系数,并与设计值进行比较。
3.列表表示主动量Q1变化与从动量Q2之间的关系。
4.根据扰动分别作用于主、副流量时系统输出的响应曲线,分析系统在阶跃扰动作用下的静、动态性能。
六、思考题1.本实验在哪种情况下,主动量Q1与从动量Q2之比等于比值器的仪表系数?2.双闭环流量比值控制系统与单闭环流量控制系统相比有那些优点?。
双闭环比值控制系统
项目五 比值控制系统
5.1 概述
工业生产过程中,经常需要两种或两种以上的物 料按一定比例混合或进行反应。一旦比例失调,就会 影响生产的正常进行,影响产品质量,浪费原料,消 耗动力,造成环境污染,甚至造成生产事故。最常见 的是燃烧过程,燃料与空气要保持一定的比例关系, 才能满足生产和环保的要求;造纸过程中,浓纸浆与 水要以一定的比例混合,才能制造出合格的纸浆;许 多化学反应的多个进料要保持一定的比例。因此,凡 是用来实现两种或两种以上的物料量自动地保持一定 比例关系以达到某种控制目的的控制系统,称为比值 控制系统。
项目五 比值控制系统
1.采用信号范围为4~20 mA DC的DDZ-Ⅲ型仪表
当流量从0变至最大值Fmax时,变送器对应的输出为4~20 mA DC,则流量的任一中间值F所对应的输出电流为
I= F 16+4
Fmax
故
F=
I
16
4
Fmax
由式(5-3)可得工艺要求的流量比值为
K= F2 F1
= I2 I1
4 4
F2 max F1max
由此可折算成仪表的比值系数K ',为
(5-2) (5-3) (5-4)
K ' I 2 4 K F1max
I1 4
F2 m ax
(5-5)
项目五 比值控制系统
式中,F1max——主动量变送器的量程上限; F2max——副流量变送器的量程上限; I1——主流量的测量信号值; I2——副流量的测量信号值。 2.信号范围为0~10 mA DC的DDZ-Ⅱ型仪表
项目五 比值控制系统
比值控制系统
内容提要 生产过程中经常要求两种或两种以上的物料 以一定的比例混合以后参加化学反应,以保证反 应安全、充分并节约能量,由此提出了比值控制。 本章将重点讲述比值控制系统的常见结构类型、 比值系数的计算、比值控制系统方案的实施、实 施中的有关问题及比值控制系统的投运与整定的 步骤。
流量双闭环比值控制pid参数增定
流量双闭环比值控制pid参数增定在化工、炼油或其他工业生产过程中。
工艺中常需要两中或两中以上的物料保持一定的比例关系,比例一旦失调,将影响生产或造成事故。
实现两个或两个以上参数符合一定比例关系的控制系统,称为比值控制系统。
常以保持两种或两种以上物料流量为一定比例关系的系统,称之为流量比值控制系统[1]。
在需要保持比值关系的两种物料中,必有一种物料处于主导地位,这种物料称之为主物料,表征这种物料的的参数称之为主动量,由于在生产过程控制中主要是流量比值控制系统。
所以主动量也称为主流量,用F1表示;而另一种物料按主物料进行配比,在控制过程中随主物料而变化,因此称为从物料,表征其特性的参数称为从动量或副流量,用F2表示。
比值控制系统就是要实现副流量:F2与主流量F1成一定比例关系,满足关系: K =F2/F1,式中 K 为副流量与主流量的流量比值。
1.控制系统设计分析1.1控制要求(1)在化工、炼油及其它工业生产工程中,工艺上常需要两种或两种以上的物料保持一定的比例关系,比例一旦失调,将影响生产或造成事故。
在本实践中,将仿真比值控制系统,保持两个支路的流量Q1与Q2成一定比例关系,即: K =Q2?MQ1。
(2)当存在扰动时,两个流量仍能保持一定的比例,因此要求系统具有较好的抗干扰能力。
2.控制对象特征(1)本系统采用双闭环比值控制,其中支路1的流量Q1为主流量,支路2的流量Q2为副流量。
整个系统使用两个水泵,一个电磁流量计,一个涡轮流量计,一个电动调节阀以及一个变频器。
(2)在本次设计中,对象包括调节阀,及其所连接的管路。
(3)系统扰动大,工况不是很稳定。
(4)广义对象传函符合高阶特性,但 PID 控制不要求对象模型精度很高,故可以用一阶传递函数来模拟。
(5)系统仿真分析该控制系统具备两个闭合回路,主回路和副回路,两个回路通过比值器相连,主回路的输出量是副回路的输入量,两个回路相辅相成,但是又相互独立。
流量比值控制系统的设计
流量比值控制系统的设计1引言在生产过程中,凡是将两种或两种以上的物料量自动地保持一定比例关系的控制系统,就称为比值控制系统。
在化工行业中,流量控制是非常重要的。
本文主要介绍了一种流量比值控制系统,经实验和实践运行,证明该系统具有结构简单、稳态误差小、控制精度高等优点。
2工作原理比值控制有开环比值控制、单闭环比值控制和双闭环比值控制三种类型。
开环比值控制是最简单的控制方案。
单闭环比值控制系统是为了克服开环比值控制方案的缺点而设计的,这种方案的不足之处是主流量没有构成闭环控制。
本系统采样双闭环比值控制方案。
图1kcl-h2so4双闭环流量比值控制系统原理图由图1所示,第一个闭环控制系统是主流量氯化钾本身构成的流量闭环控制系统,当设置确定后,通过闭环调节作用,消除扰动的影响,使氯化钾的流量稳定在设定值上,主流量闭环控制系统属于恒值控制系统。
第二个闭环控制系统是副流量硫酸闭环控制系统,其输入量是经过检测与变送后的氯化钾流量信号q1与比值系数k1的乘积。
硫酸副流量闭环控制系统由副控制器1、硫酸泵变频器、硫酸泵以及检测点2/变送器2等组成。
副流量闭环控制系统属于跟随系统。
3流量比值控制系统设计3.1 流量比值控制系统构成氯化钾与硫酸流量比值控制系统是由三菱fx2nc系列plc、耐腐蚀泵、西门子mm440变频器、计量螺旋、电磁流量计等组成。
流量比值控制系统方框图如图2所示。
图2流量比值控制系统方框图(1)三菱fx2nc系列plc。
fx2nc系列plc具有很高的性能体积比和通信功能,可以安装到比标准的plc小很多的空间内。
i/o型连接器可以降低接线成本,节约接线时间。
i/o 点数可以扩展到256点,最多可以连接4个特殊功能模块。
(2)耐腐蚀泵。
硫酸属于腐蚀性介质,输送泵必须采用耐腐蚀泵。
本系统采用ihf 6550-160型氟塑料离心泵,泵进口直径65mm;出口直径50mm;叶轮名义直径160mm;转速2900r/nin,流量25m3/h;扬程32m;电机功率5.5kw。
双闭环管道流量比值控制系统设计报告
PLC控制技术实训评分表课程名称:PLC控制技术实训设计题目:单容液位变频器PID单回路控制,比值控制系统班级:学号::指导老师:年月日常熟理工学院电气与自动化工程学院《PLC控制技术实训》报告题目:单容液位变频器PID单回路控制比值控制系统设计姓名:李良、何龙太莫勇、高虎学号:160112109、160112106160112113、160112104 班级:自动化121指导教师:刘叔军起止日期:2015.6.29~7.12摘要本课题针对液位控制系统系统作初步设计和基本研究,该系统能对水箱液位信号进行采集,以PLC为下位机,以工控组态软件组态王设计上位机监控画面,实现PID对水箱液位的控制。
针对比值控制系统进行模拟复杂控制系统设计、分析和测试研究,该系统通过涡轮流量计、电磁流量计进行信号采集,以工控组态软件组态王上位机监控P 画面并对PID参数调节,实现对比值系统的控制。
关键词:PLC PID控制液位控制比值控制组态王流量目录1、引言..................................................... 错误!未定义书签。
1.1主要内容............................................................... 错误!未定义书签。
1.2任务要求 .............................................................. 错误!未定义书签。
2、设计方案 ............................................. 错误!未定义书签。
2.1设计原理 .............................................................. 错误!未定义书签。
2.2设计方案论证 ....................................................... 错误!未定义书签。
管道流量比值控制PLC系统设计
信息与电气工程学院课程设计说明书(2011/2012学年第一学期)课程名称:可编程控制器应用题目:管道流量比值控制PLC系统设计专业班级:学生姓名:学号:指导教师:刘增环等设计周数:两周设计成绩:2012年6月21日目录1、课程设计目的2、课程设计正文2.1设计主要任务2.2设计题目管道流量比值控制PLC系统设计2.3硬件系统设计2.4软件系统设计2.5程序分析及框图2.6编写PLC梯形图程序3、程设计总结或结论4、参考文献1、PLC课程设计目的1.1掌握S7-200系列可编程控制器硬件电路的设计方法。
1.2熟练使用S7-200系列可编程控制器的编程软件,掌握可编程控制器软件程序的设计思路和梯形图的设计方法。
1.3掌握S7-200系列可编程控制器程序的应用系统的调试、监控、运行方法。
1.4在完成可编程控制器为下位机的相关控制程序的基础上,用组态软件编程实现上位机的控制及其相关监控界面。
1.5通过课程设计使学生能熟练掌握数据的查询(图书、网络),PLC课程所获知识在工程设计工作中综合地加以应用,使理论知识和实践结合起来2、课程设计正文2.1设计主要任务1.了解管道流量比值控制系统的物理结构、闭环调节系统的数学结构和PID 控制算法。
2.明确各路检测信号到PLC的输入通道和明确PLC到各执行机构的输出通道。
3.绘制出流量控制系统的电路原理图,编制I/O地址分配。
4.编制PLC程序,结合实验装置进行调试。
2.2设计题目管道流量比值控制PLC系统设计技术要求:1.此系统有两路供水系统。
第一路由异步电动机(不具备调速功能)和和水泵构成动力系统。
第二路由变频器、电动机和水泵构成动力系统,依靠动力系统的变频调速控制流量,用电磁流量计检测流量。
2.本系统把第一路的流量(检测值)乘以设定的比例系数后的值作为流量给定值,控制第二供水管道的流量。
控制器采用PID算法决定变频器的给定值,从而实现两路流量的按比例控制。
2.3硬件系统设计模拟量输入有涡流流量传感器和电磁流量传感器组成,PLC选西门子S7—200系列中的226,上位机和下位机的电缆采用RS—458通讯电缆。
基于MCGS的双闭环流量比值控制系统的设计
基于MCGS的双闭环流量比值控制系统的设计【摘要】首先分析实际工业生产过程中比值控制的意义和重要性,然后对开环流量比值控制、单闭环流量比值控制和双闭环流量比值控制进行了比较,再提出了双闭环流量比值控制系统的设计方案,最后对该系统进行了调试。
【关键词】MCGS组态软件双闭环流量比值控制PID调节器随着工业生产自动化程度的提高,企业对工厂的过程控制系统也提出了更高要求。
工艺上经常需要两种或两种以上的物料按一定比例混合参加化学反应。
例如,以重油为原料生产合成氨时,在造气工段应该保持一定的氧气和重油比率,在合成工段则应保持氢和氮的比值一定;在加热炉中,需要保持燃料油与空气成一定的比例。
如果没有比值控制或比值失调,会影响生产的正常进行、甚至产生生产事故,因此比值控制在现代工业中发挥着非常关键的作用。
开环流量比值控制,当从动量受到外部干扰时,两物料的比值很难保持不变。
给其增加一个副流量的控制回路,便是单闭环流量比值控制,这样实现了副流量随主流量变化而变化,克服了本身干扰对比值的影响,但无法保证主物料的流量恒定不变。
本设计是在单闭环流量比值控制系统的基础上,增加一个主流量的控制回路,构成双闭环流量比值控制系统。
1 系统设计方案本系统有两条支路,一路是来自于电动阀支路的流量Q1,它是主动量;另一路是来自于变频器磁力泵支路的流量Q2,它是从动量。
要求从动量Q2能跟随主动量Q1的变化而变化,而且两者保持一定的比例关系Q2 / Q1=K.系统原理图和方框图如下:图2?系统方框图2 MCGS组态软件MCGS是一套全中文32 位工控组态软件,基于Windows95/98/Me/NT/2000 等平台,具有易用性、开放性和集成能力的用于快速构造和生成上位机监控系统的通用组态软件系统。
本设计在传统的需要人工监测和人工调节的过程控制基础上,加入了MCGS组态软件进行辅助控制,具有自动监测和自动调节功能,它能够完成现场数据采集、实时和历史数据处理、报警、动画显示、趋势曲线和报表输出等。
双闭环流量比值控制比值的课程设计任务书
一、设计题目双闭环流量比值控制二、主要内容熟悉THJ-2型高级过程控制系统实验装置,获取电动阀支路的流量和变频器-磁力泵支路的流量曲线,利用实验建模法求出它们的数学模型。
根据串级控制,选择合适的调节器控制规律,并在Matlab上进行仿真。
最终在过程控制系统实验装置平台上完成实际系统的调试,并说明两种方法的所得结果的差别。
三、具体要求1.从组成、工作原理上对工业型传感器、执行机构有一深刻的了解和认识。
2.分析控制系统各个环节的动态特性,从实验中获得各环节的特性曲线,建立被控对象的数学模型。
3.根据其数学模型,选择被控规律和整定调节器参数。
4.在Matlab上进行仿真,调节控制器参数,获得最佳控制效果。
5.了解和掌握自动控制系统设计与实现方法,并在THJ-2型高级过程控制系统平台上完成本控制系统线路连接和参数调试,得到最佳控制效果。
6.分析仿真结果与实际系统调试结果的差异,巩固所学的知识。
四、进度安排第一周分组;查找资料;对象模型的获取,Matlab仿真第二周系统调试,撰写课程设计报告,答辩五、完成后应上交的材料课程设计报告。
六、总评成绩指导教师签名日期年月日系主任审核日期年月日目录一、被控对象以及仪器仪表的描述二、控制方案选择及其论述,控制系统方框图及其说明三、对象的特性曲线测试,对象的数学模型四、matlab仿真五、控制系统连线示意图及说明,并且记录最佳控制结果的调节器参数以及结果曲线六、心得体会一、被控对象以及仪器仪表的描述1.1系统简介“THJ-2型高级过程控制系统实验装置”是基于工业过程的物理模拟对象,它集自动化仪表技术,计算机技术,通讯技术,自动控制技术为一体的多功能实验装置。
该系统包括流量、温度、液位、压力等热工参数,可实现系统参数辨识,单回路控制,串级控制,前馈—反馈控制,比值控制,解耦控制等多种控制形式。
1.2被控对象由不锈钢储水箱、上、中、下三个串接有机玻璃圆筒形水箱、4.5千瓦电加热锅炉(由不锈钢锅炉内胆加温筒和封闭式外循环不锈钢冷却锅炉夹套构成)、冷热水交换盘管和敷塑不锈钢管道组成。
(完整版)双闭环比值控制系统---毕业课程设计
《过程控制》课程设计报告题目:双闭环比值控制系统的分析与设计姓名:王飞学号:专业:自动化年级:2010级指导教师:李天华目录1 任务书 11.1设计题目 --- 11.2设计任务 --- 11.3原始数据 --- 21.4设计内容 --- 22 研究背景 33 研究意义 44 研究内容 45 论文组织 55.1衰减曲线法整定主动量回路控制器参数 -- 55.2反应曲线法整定从动量回路控制器参数 -- 85.3双闭环比值控制系统仿真及性能测试 --- 115.4双闭环比值控制系统的抗干扰能力检验 - 136 双闭环比值控制与串级控制的区别,以及各自的优缺点 --- 16 6.1双闭环比值控制与串级控制的区别 ----- 166.2双闭环比值控制的优、缺点 176.3串级控制的优、缺点 ----- 177 总结 178 参考文献 ------ 17附录:双闭环比值控制最终整定结果(Simulink图) 181任务书1.1设计题目双闭环比值控制系统的分析与设计1.2设计任务在现代工业生产过程中,要求两种或多种物料流量成一定比例关系;一旦比例失调,会影响生产的正常进行,影响产品质量,浪费动力,造成环境污染,甚至产生生产事故。
如:燃烧过程中,往往要求燃料量与空气量需按一定比例混合后送入炉膛;制药生产中要求药物和注入剂按比例混合;造纸过程中为保证纸浆浓度,要求自动控制纸浆量和水量比例;水泥配料系统等等。
凡是两个或多个变量自动维持一定比值关系的过程控制系统,统称为比值控制系统。
主动量:起主导作用而又不可控的物料流量Q1;从动量---跟随主动量而变化的物料流量Q2;比例系数:k=在生产过程中,根据工艺过程容许的负荷波动幅度、干扰因素的性质和产品质量的要求不同,实现对两种物料流量比值的控制方案也不同:开环比值控制系统、单闭环比值控制系统、双闭环比值控制系统、变比值控制系统。
双闭环比值控制系统是由一个定值控制的主动量控制回路和一个跟随主动量变化的从动量随动控制回路组成,其流程图和方框图分别如图 1和图2所示。
双闭环比值控制系统
项目五 比值控制系统
5.1 概述
工业生产过程中,经常需要两种或两种以上的物 料按一定比例混合或进行反应。一旦比例失调,就会 影响生产的正常进行,影响产品质量,浪费原料,消 耗动力,造成环境污染,甚至造成生产事故。最常见 的是燃烧过程,燃料与空气要保持一定的比例关系, 才能满足生产和环保的要求;造纸过程中,浓纸浆与 水要以一定的比例混合,才能制造出合格的纸浆;许 多化学反应的多个进料要保持一定的比例。因此,凡 是用来实现两种或两种以上的物料量自动地保持一定 比例关系以达到某种控制目的的控制系统,称为比值 控制系统。
5.2.1 单闭环比值控制系统
单闭环比值控制系统是为了克服开环比值控制方案的不足, 在开环比值控制系统的基础上,增加一个从动量的闭环控制系统, 如图5.2所示。
图5.2 单闭环比值控制系统
与串级控制系统的区别?
项目五 比值控制系统
在稳定状态下,主、副流量满足工艺要求的比 值,F2/F1=K。当主流量变化时,其主流量信号F1 经变送器送到比值计算装置(通常为乘法器或比值 器),比值计算装置则按预先设置好的比值使输出 成比例地变化,也就是成比例地改变副流量控制器 的设定值,此时副流量闭环系统为一个随动控制系 统,从而使F2跟随F1变化,使得在新的工况下,流 量比值K保持不变。当主流量没有变化而副流量由 于自身扰动发生变化时,副流量闭环系统相当于一 个定值控制系统,通过自行控制克服扰动,使工艺 要求的流量比值仍保持不变。
图5.3 丁烯洗涤塔进料与 洗涤水之比值控制
项目五 比值控制系统
单闭环比值控制系统中,虽然两物料比值一 定,但由于主动量是不受控制的,所以总物料量 (即生产负荷)是不固定的,这对于负荷变化幅度 大—物料又直接去化学反应器的场合是不适合的。 因负荷的波动有可能造成反应不完全,或反应放出 的热量不能及时被带走等,从而给反应带来一定的 影响,甚至造成事故。此外,这种方案对于严格要 求动态比值的场合也是不适应的。因为这种方案的 主动量是不定值的,当主动量出现大幅度波动时, 从动量相对于控制器的设定值会出现较大的偏差, 也就是说,在这段时间里,主、从动量的比值会较 大地偏离工艺要求的流量比,即不能保证动态比值。
流量比值控制系统课程设计报告.
目录1引言……...…...………………...………………………………………………………..... 2系统分析……......………………………………………………………………………....2.1工艺流程分析……...…………………………………………………………………..2.2对象特性分析……...…………………………………………………………………..2.3控制需求分析……...…………………………………………………………………..3控制系统设计与实现……...…………...………………………………………………3.1变量选择..........................................................................................................................3.2控制方式设计...................................................................................................................3.3回路模型建立...................................................................................................................4系统仿真研究与实时监控平台设计……...…………………………………………4.1通信连接...........................................................................................................................4.2监控画面...........................................................................................................................4.3数据字典...........................................................................................................................4.4实时仿真........................................................................................................................... 5控制系统投运、参数整定与性能分析……...………………………………………5.1参数整定.........................................................................................................................5.2系统投运.........................................................................................................................5.2性能分析......................................................................................................................... 6控制系统设备选型与电气控制图绘制……...……………………………………...6.1设备选型..........................................................................................................................6.2电气控制图......................................................................................................................7实验总结.............................................................................................................. 8参考文献..............................................................................................................引言随着科学技术的快速发展,人们对过程控制提出了更高的要求,在许多生产过程中,要求两种或两种以上的物料流量成一定的比例关系混合进行反应,对物料比例的要求甚为严格,如果不能满足要求,或是比例失调,将导致产品的质量达不到要求,以致造成损失,严重时会导致事故的发生。
双闭环比值控制系统介绍
从物料、从动量(Q2 、副流量)
副流量Q2与主流量Q1的比值关系为
K Q2 Q1
双闭ห้องสมุดไป่ตู้比值控制系统框图
工艺流程: 主参数:
原料油流量; 从参数:
催化剂流量;
PID控制器调试步骤:
1. 要求先整定主流量回路(原料油流量回路)的调节 器参数,待主回路系统稳定后,再整定从回路(催 化剂流量回路)中的调节器参数 ;
4. 对截图曲线进行分析与说明;
5. 回答指导书中本实验后面的问题。
双闭环比值控制系统 介绍
杨春曦
1.最大偏差或超调量 指在过渡过程中,被控变量偏离给定值的最大数值。在衰减
振荡过程中,最大偏差就是第一个波的峰值。 2. 衰减比
衰减比是衰减程度的指标,它是前后相邻两个峰值的比。习惯 表示为 n:1,一般 n 取为4~10之间为宜。
一、双闭环比值控制系统概况
实现两个或两个以上参数符合一定比例关系的控制 系统,称为比值控制系统。通常为流量比值控制系统。
2. 对于主、从回路参数的整定实行先比例、后积分, 再微分的整定步骤;
实验内容:
1. 调节两个PID控制器参数,得到下主、从参数的衰 减比为4:1,并记录下调试过程中的参数和截图, 填写指导书中的表格;
2. 改变物料比例系数,观察流量比值的变化,并截图;
3. 加入扰动(包括主、从回路扰动),观察其克服干 扰过程,并截图;
双闭环自动控制系统课程设计报告
自动控制系统2010年7月16日目录1课程设计目的 (1)2系统介绍 (2)2.1双闭环构造简介 (2)2.2MATLAB简介 (2)3直流调速系统的理论设计 (3)3.1系统要求 (3)3.2电流调节器设计 (3)3.3速度调节器设计 (5)4.仿真 (6)5.心得体会 (10)6.参考文献 (10)程设计说明书NO.1阳大学程设计说明书NO.22系统介绍2.1双闭环简介转速、电流双闭环调速系统是当前应用最广的直流调速系统,利用电流调节器和转速调节器实现了串级控制,从而可以无限逼近理想起动过程。
采用工程设计方法,建立了系统的动态数学模型,并基于自动控制系统快、准、稳的准则完成了系统设计。
同时,利用Simulink进展了系统仿真,给出了仿真框图和仿真结果,通过对结果的分析进一步验证了双闭环调速系统的优越性。
为了实现转速和电流2种负反应分别起作用,在系统中设置了2个调节器,分别是电流调节器ACR(Current Regulator)和转速调节器ASR(Speed Regulator),两者之间实行串级连接,其中转速调节器ASR的输出作为电流调节器ACR的输入,再用电流调节器ACR的输出去控制晶闸管装置。
从闭环构造上看,电流调节器在里面,叫做环;转速调节器在外边,叫做外环。
双闭环调速系统的原理图如图1所示。
图1双闭环词速系统原理图2.2MATLABMATLAB是矩阵实验室〔Matri* Laboratory〕的简称,是美国MathWorks 公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大局部。
MATLAB的根本数据单位是矩阵,它的指令表达式与数学、工程中常阳大学程设计说明书NO.3阳大学程设计说明书NO.4滤平波头,应该有ms T oi 33.3)2~1(=,因此取s T oi 002.0=;③电流环小时间常数i T ∑ 按小时间常数近似处理,取s T T T oi s i 0037.0=+=∑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双闭环管道流量比值控制系统设计报告PLC控制技术实训评分表课程名称: PLC控制技术实训设计题目:单容液位变频器PID单回路控制,比值控制系统班级:学号:姓名:指导老师:年月日双闭环管道流量比值控制系统设计报告常熟理工学院电气及自动化工程学院《PLC控制技术实训》报告题目:单容液位变频器PID单回路控制比值控制系统设计姓名:李良、何龙太莫勇、高虎学号: 160112109、160112106160112113、160112104班级:自动化121指导教师:刘叔军起止日期: 2015.6.29~7.12摘要本课题针对液位控制系统系统作初步设计和基本研究,该系统能对水箱液位信号进行采集,以PLC为下位机,以工控组态软件组态王设计上位机监控画面,实现PID 对水箱液位的控制。
针对比值控制系统进行模拟复杂控制系统设计、分析和测试研究,该系统通过涡轮流量计、电磁流量计进行信号采集,以工控组态软件组态王上位机监控P画面并对PID参数调节,实现对比值系统的控制。
关键词:PLC PID控制液位控制比值控制组态王流量目录1、引言................................ 错误!未定义书签。
1.1主要内容 ............................ 错误!未定义书签。
1.2任务要求 ............................ 错误!未定义书签。
2、设计方案............................ 错误!未定义书签。
2.1设计原理 ............................ 错误!未定义书签。
2.2设计方案论证......................... 错误!未定义书签。
2.3系统原理图........................... 错误!未定义书签。
2.4系统结构图........................... 错误!未定义书签。
2.5系统工艺流程图 (4)3、硬件设计 (4)3.1流量计(涡轮流量计、电磁流量计) (3)3.2 电动调节阀 (5)3.3 变频器面板 (6)3.4百特自整定PID调节器 (6)3.5 EM235拓展模块 (7)3.6 硬件接线图 (8)3.7 I/O口分配表 (10)4、软件设计............................ 错误!未定义书签。
4.1 程序流程图.......................... 错误!未定义书签。
4.2程序分析 ............................ 错误!未定义书签。
5、系统建模及MATALAB仿真调试 .......... 错误!未定义书签。
5.1副流量回路建模及仿真................. 错误!未定义书签。
5.2主流量回路建模和仿真................. 错误!未定义书签。
6、遇到的困难及心得体会 (17)6.1遇到的困难 (17)6.1心得体会 (18)7、参考文献 (19)单容液位单回路控制、比值控制系统设计1、引言1.1主要内容本课程设计是针对学习完PLC课程后的一个应用性实践环节。
通过本课程设计的训练,对PLC在工程中的实际应用有完整地了解,同时培养综合应用基础课、专业课所学知识及工程实际知识的能力。
通过对PLC软件设计及过程控制系统的分析及设计,获得面向工业生产过程系统分析及设计的实践知识,初步掌握过程控制系统开发和应用的技能。
基于单容液位单回路控制、比值控制系统设计,结合实验室已有设备,通过组态王软件实现上位机对下位机的控制。
按照定值系统的控制要求,根据较快较稳的性能要求,采用双闭环控制结构和PID控制规律,通过流量传感器将检测到的流量及设定比值送入计算机,计算机运用PID算法得到相应的控制信号,并将其输出给执行器,然后执行器输出不同的电流信号控制变频器工作,以达到调节流量的控制目的。
流量比值控制系统在实际生产中应用十分广泛,它能使系统稳定,精确地输出,更能实现自动化控制,是过程控制系统的一个典型。
本设计针对生产中两种液体的流量的控制,对其设计了单闭环流量比值控制系统,将通道2流量作为主流量,通道1流量为副流量进行设计,设计中用到了多个硬件设备,并基于计算机实现过程的自动控制。
1.2任务要求本课题针对液位控制系统系统作初步设计和基本研究,该系统能对水箱液位信号进行采集,以PLC为下位机,以工控组态软件组态王设计上位机监控画面,实现PID 对水箱液位的控制。
针对比值控制系统进行模拟复杂控制系统设计、分析和测试研究,该系统通过涡轮流量计、电磁流量计进行信号采集,以工控组态软件组态王上位机监控P画面并对PID参数调节,实现对比值系统的控制。
(1)了解流量比值控制系统的物理结构,闭环调节系统的数学结果和PID控制算法。
(2)明确各路检测信号到PLC的输入通道,包括传感器的原理,连接方法,信号种类,引入PLC的接线以及PLC中的编址。
(3)明确从PLC到各执行机构的输出通道,包括各执行机构的种类和工作原理,PLC输出信号的种类和地址。
(4)绘制出比值流量控制系统的电路原理图,编制I/O地址分配表。
(5)编制PLC的程序结合过程控制实验室的现有设备进行调试,要求达到PID闭环控制,并对实际的控制过程用matalab仿真。
2、设计方案2.1设计原理比值控制有开环比值控制、单闭环比值控制、双闭环比值控制、串级比值控制系统和变比值控制系统。
开环比值控制是最简单的控制方案。
单闭环比值控制和双闭环比值控制是实现两种物料流量间的定比值控制在系统运行过程中其比值系数是不变的。
串级比值控制系统实现两种物料的比值随第三个参数的需求而变化。
变比值控制系统最终目的是生产过程的结果,物料按比值输出不是关键。
根据设计要求,本系统采用单闭环比值控制或双闭环比值控制,本系统采取双环控制方案。
2.2设计方案论证本系统采用双闭环系统控制,由于副流量回路可以采用流量控制电动调节阀的开度或采用水箱液位对电动调节阀的开度进行控制。
通过我们的实际操作证明了实验室的设备无法实现流量控制电动调节阀的开度,因为电动调节阀太滞后于流量检测以至于PID闭环无法控制电动调节阀的开度。
最后副回路采用液位控制电动调节阀的开度。
由于PLC连接的EM235外部拓展模块只有1路模拟量输出口,我们最终使用了设备上的PID智能调节仪,通过实验得到了一组较好的PID参数,并将其输入到调节仪中,使用智能仪表及副流量回路形成闭环系统。
对于主流量回路的流量,通过副流量的实际检测值比上设定的比值,这就是主回路输入的给定值,通过PID调节输出的电流值给变频器,变频器控制水泵工作,从而控制了水流量的输出值。
结合主流量回路和副流量回路的双闭环系统,使系统更加的稳定,精确地输出,达到实现自动化控制的比值系统。
2.3系统原理图图1 比值控制系统原理图2.4系统结构图图2系统方框图通过副流量回路给定液位值来控制电动调节阀的开度,从而控制副回路的管道流量。
副流量回路管道的流量比上给定比值,作为主流量回路的输入给定值,通过主流量、副流量回路两个闭环回路,这样就可以形成一个具有自动调节功能的系统。
2.5系统工艺流程图图6 工艺流程图3、硬件设计3.1流量计(涡轮流量计、电磁流量计)1)、涡轮流量计:输出信号:频率,测量范围:0~0.6m3/h接线如图所示:图7 涡轮流量计接线说明:传感器的供电电源由24VDC开关电源提供,负载为流量积算变送仪。
注:使用涡轮流量计时,必须将24VDC开关电源打开。
2)、电磁流量计:输出信号:4~20mA,测量范围:0~0.4 m3/h图8 电磁流量计接线说明:转换器为交流220V供电,X、Y和A、B、C为传感器和转换器之间的连线,输出信号线直接接控制台上的电磁流量计信号输出端。
3.2 电动调节阀QSVP20-15N智能电动单座调节阀主要技术参数:执行机构型式:智能型直行程执行机构输入信号:0~10mA/4~20mADC/0~5VDC/1~5VDC输入阻抗:250Ω/500Ω输出信号:4~20mADC输出最大负载:<500Ω信号断电时的阀位:可任意设置为保持/全开/全关/0~100%间的任意值。
电源:220V±10%/50Hz 。
调节阀特性:单座阀,螺纹连接,线性流量。
图9 电动调节阀3.3 变频器面板本系统采用西门子变频器MicroMaster420。
西门子变频器MicroMaster420是全新一代模块化设计的多功能标准变频器。
它友好的用户界面,让你的安装、操作和控制象玩游戏一样灵活方便。
全新的IGBT技术、强大的通讯能力、精确的控制性能、和高可靠性都让控制变成一种乐趣。
变频器主要特征:1、200V-240V ±10%,单相/三相,交流,0.12kW-5.5kW;2、380V-480V±10%,三相,交流,0.37kW-11kW;3、模块化结构设计,具有最多的灵活性;4、标准参数访问结构,操作方便。
主要控制功能:1、线性v/f控制,平方v/f控制,可编程多点设定v/f控制;2、磁通电流控制(FCC),可以改善动态响应特性;3、最新的IGBT技术,数字微处理器控制;4、数字量输入3个,模拟量输入1个,模拟量输出1个,继电器输出1个;5、集成RS485通讯接口,可选PROFIBUS-DP通讯模块/Device-Net模板;6、具有7个固定频率,4个跳转频率,可编程。
现场系统上的西门子变频器一般包括三个部分:变频器主体,BOP面板,DP接口。
图10 西门子BOP面板西门子BOP面板包括一个液晶显示屏,8个按钮。
其中左上角是运行启动,左下角是停止。
西门子变频器可以BOP面板操作,可以4-20mA控制,也可以使用PROFIBUS-DP 总线控制。
不需要增加任何硬件就可以进行这些模式的操作。
3.4百特自整定PID调节器现场装置上的智能调节器适用于温度、压力、液位、流量等各种工业过程参数测量,显示和精确控制。
该装置具有万能信号输入、多种给定方式可选、多种控制输出方式可选择等多种特点。
系统设计中利用实验得出的PID参数对电动调节阀实现闭环控制,使得实际输出的水位值稳定在设定值。
图11 百特自整定PID调节器3.5 EM235拓展模块EM235是最常用的模拟量扩展模块,它实现了4路模拟量输入和1路模拟量输出功能。
图12 EM235拓展模块接线图图11演示了模拟量扩展模块的接线方法,对于电压信号,按正、负极直接接入X +和X-;对于电流信号,将RX和X+短接后接入电流输入信号的“+”端;未连接传感器的通道要将X+和X-短接。
3.6 硬件接线图图13 系统硬件接线图图14 涡轮流量计接线图图15 电动调节阀及智能仪表接线图3.7 I/O分配表4、软件设计4.1 程序流程图图16 程序流程图4.2程序分析1)PID参数初始化图17 PID参数初始化该程序主要是初始化PID0参数,设置参数P=10、I=3、D=0,并设置采样时间0.1秒,同时还将PID调节器设置成自动状态。