对称、平移、旋转知识点

合集下载

平移旋转与对称

平移旋转与对称

平移旋转与对称平移、旋转和对称是几何学中常见的变换形式,在数学中有着重要的应用和研究价值。

本文将介绍平移、旋转和对称的基本概念、性质以及它们之间的关系。

一、平移平移是指将一个图形在平面上沿着某个方向移动一定的距离,移动后的图形与原来的图形形状完全相同。

我们可以通过向量来描述平移。

设有平面上的一点A,平移的向量为v,则A点平移后得到的点A'可表示为A + v。

简单来说,平移是保持形状不变的移动。

平移的性质:1. 平移不改变图形的形状和大小,只改变图形的位置。

2. 平移保持图形上的任意两点之间的距离和夹角不变。

3. 平移具有可逆性,即可以通过反向平移将图形移回原来的位置。

二、旋转旋转是指将一个图形绕着某个点或某条线旋转一定的角度,使得旋转后的图形在形状上与原来的图形相似。

我们可以通过旋转矩阵来描述旋转变换。

设有平面上的一点A,绕O点逆时针旋转θ度后得到的点A'可表示为:[x' y'] = [cosθ -sinθ] [x - x0] + [x0][y - y0]其中(x0, y0)为旋转中心坐标。

旋转的性质:1. 旋转不改变图形的大小,只改变图形的位置和方向。

2. 绕同一个点旋转的图形之间的大小和形状相似。

3. 旋转保持图形上的任意两点之间的距离和夹角不变。

4. 旋转也具有可逆性,即可以通过逆时针旋转将图形旋转回原来的位置。

三、对称对称是指将一个图形中的点绕着一个轴进行翻转,使得翻转后的图形与原来的图形完全重合。

我们可以通过对称轴来描述对称变换。

设有平面上的一点A,关于对称轴l对称后得到的点A'可表示为A' = 2l - A。

简单来说,对称是保持形状不变的镜像变换。

对称的性质:1. 对称不改变图形的大小和方向,只改变图形的位置。

2. 关于直线对称的图形之间的大小和形状完全相同。

3. 对称保持图形上的任意两点关于对称轴的距离不变。

4. 对称具有可逆性,即可以通过再次对称将图形还原到原来的位置。

了解简单的平移旋转和对称操作

了解简单的平移旋转和对称操作

了解简单的平移旋转和对称操作平移、旋转和对称是数学中常见的几何变换操作。

它们在几何学、物理学以及计算机图形学等领域都有广泛的应用。

本文将详细介绍平移、旋转和对称的概念、性质和运算方法。

一、平移操作平移是指将一个对象沿着某个方向移动一定的距离,保持其形状和大小不变。

在平面几何中,我们通常使用坐标系来描述平移操作。

对于二维平面上的点P(x,y),进行平移操作时,可以将点P的横坐标和纵坐标分别增加或减少一个常数来得到新的点P'。

具体而言,如果平移向量为(a,b),则点P(x,y)经过平移操作后的坐标为P'(x+a, y+b)。

平移向量可以是任意的实数或整数。

二、旋转操作旋转是指将一个对象围绕着某个点或某条线旋转一定的角度。

同样地,在平面几何中,我们使用坐标系来描述旋转操作。

为了方便起见,我们通常将旋转中心设为原点(0,0)。

对于二维平面上的点P(x,y),将其逆时针旋转θ角度后的新坐标可以通过以下公式计算得到:x' = x*cosθ - y*sinθy' = x*sinθ + y*cosθ其中,θ为旋转角度,cosθ和sinθ分别为角度θ的余弦和正弦值。

这个公式可以推广到三维空间中的点和向量的旋转。

三、对称操作对称是指将一个对象关于某个点、某条线或某个平面进行镜像反转。

常见的对称方式有关于原点对称、关于x轴对称、关于y轴对称等。

对于二维平面上的点P(x,y),进行关于原点的对称操作后,新的点P'的坐标可以通过以下公式计算得到:x' = -xy' = -y同样地,对称操作也可以推广到三维空间中。

综上所述,平移、旋转和对称是几何学中常见的基本变换操作。

通过这些操作,我们可以改变对象的位置、方向和形状,从而满足不同的应用需求。

在实际应用中,如计算机图形学、机器人运动规划等领域,平移、旋转和对称操作有重要的意义,并且与其他几何变换操作相互结合使用,构建复杂的模型和算法。

平移旋转与对称

平移旋转与对称

平移旋转与对称平移、旋转与对称一、引言平移、旋转与对称是几何学中常见且重要的概念,它们在数学、物理学、计算机图形学等领域中具有广泛的应用。

本文将从数学的角度介绍平移、旋转与对称的基本概念、性质和应用。

二、平移1. 平移的定义平移是指在平面上将一个图形沿着某个方向移动一段距离,而不改变其形状、大小和方向。

形式化地说,平移是通过一个向量来描述的,该向量表示了平移的方向和距离。

2. 平移的性质- 平移不改变图形的面积和内角和。

- 平移保持图形的等边性,即等边图形在平移后仍然是等边图形。

- 平移保持图形的平行性,即平行线在平移后仍然是平行线。

3. 平移的应用- 平移在几何学中常用于构造等边多边形、拼图等问题。

- 平移在计算机图形学中广泛应用于图形的移动和动画效果的实现。

- 平移在物理学中用于描述质点在空间中的位移。

三、旋转1. 旋转的定义旋转是指在平面上围绕某个中心点将一个图形按照一定的角度转动,而不改变其形状、大小和面积。

旋转可以通过一个角度和一个旋转中心来完全描述。

2. 旋转的性质- 旋转不改变图形的面积和内角和。

- 旋转保持图形的对称性,即旋转图形的对称轴仍然是旋转后图形的对称轴。

- 旋转保持图形的相似性,即相似图形在旋转后仍然是相似图形。

3. 旋转的应用- 旋转在几何学中用于构造正多边形、旋转体等问题。

- 旋转在计算机图形学中广泛应用于图形的旋转变换和特效的实现。

- 旋转在物理学和力学中用于描述刚体的转动和角速度问题。

四、对称1. 对称的定义对称是指在平面上沿着某条线、点或面将一个图形折叠,使得折叠前后的图形完全重合,或者称为对称轴或对称中心。

根据对称的方式可以分为线对称和点对称。

2. 对称的性质- 对称不改变图形的面积和内角和。

- 线对称保持图形的形状和大小不变,点对称既保持形状和大小也保持方向不变。

- 对称保持图形的对称性,即对称图形的对称轴或对称中心仍然是对称后图形的对称轴或对称中心。

3. 对称的应用- 对称在几何学中用于构造对称多边形、折纸等问题。

三年级数学上册---平移、旋转及轴对称( 知识梳理+例题精讲+易错专练)

三年级数学上册---平移、旋转及轴对称( 知识梳理+例题精讲+易错专练)

第6讲平移、旋转及轴对称一、思维导图二、知识点梳理知识点一:平移在同一平面内,物体或图形沿着某一直线方向运动的现象叫做平移。

平移时物体或图形的形状、大小和方向没有变化,只是位置改变了。

知识点二:旋转物体或图形绕一个点或一个轴运动的现象叫做旋转。

旋转时物体或图形的形状和大小不变,其自身的运动方向发生了变化。

注意:旋转分为顺时针旋转和逆时针旋转。

知识点三:轴对称图形一个图形沿着一条直线对折后,折痕两边的部分能够完全重合的图形就是轴对称图形。

轴对称图形沿对称轴对折后,两边能够完全重合,即对称的点、对称的线段都能够完全重合,对称点到对称轴的距离相等。

三、例题精讲考点一:平移和旋转1.能够通过下图平移得到的图形是()。

A.B.C.D.2.在括号中填“平移”或“旋转”。

(1)小明进教室开门时,门的运动是()。

(2)小丽拧开纯净水瓶盖,瓶盖的运动是()。

(3)小红拉开窗帘,窗帘的运动是()。

(4)老师将课桌拖到最后一排,桌子的运动是()。

3.观察下面的图形,然后填空。

(1)小汽车向()平移了()格。

(2)小船向()平移了()格。

(3)飞机向()平移了()格。

4.如图所示。

(1)小狗先向左走4格,再向下走6格,它能吃到肉骨头吗?如果能,请你把小狗的行走过程在方格中画出来;如果不能,请你帮小狗设计一个正确的行走方案。

(2)小狗吃完肉骨头后接着想去吃大鸡腿,它应该怎么走?考点二:轴对称图形5.图形是从()对折的纸上剪下来的。

A.B.C.D.6.如图,一个大正方形被分成16个大小相同的小正方形,其中四个小正方形已涂成阴影,若再将一个小正方形涂成阴影,使所有阴影区域构成轴对称图形,则这个小正方形的编号为()。

7.拿一张长纸条,将它一反一正折叠起来,并画出字母E。

用小刀把画出的字母E挖去,拉开就可以得到一条以字母E为图案的花边,如图。

观察整条花边,左起和右起的三个图案各为一组,这两组图案有什么关系?8.(1)下面五个图形中,是轴对称图形的有()。

对称平移旋转知识点

对称平移旋转知识点

对称平移旋转知识点一、对称对称是指在一些中心或条轴线上,图形的两个相互对应的点、线、面或者物体的位置互换,使其保持不变。

对称可以分为以下几种类型:1.轴对称:图形在条轴线上对称,比如正方形的对角线、长方形的中心对称轴等。

2.点对称:图形以一些点为中心对称,比如圆形的中心点。

3.旋转对称:图形以一些旋转中心旋转一定角度后与原图重合。

对称的性质:1.对称图形与原图形有相同的形状和大小;2.图形中任意两点关于对称轴对称的点的距离相等;3.以对称轴为界,若一个点在轴上的一侧,则与该点关于对称轴对称的点必在轴上的另一侧。

二、平移平移是指在几何空间中,通过将图形在同一平面内的各点按照相同且给定的方向和距离进行平移,使图形保持形状和大小不变。

平移可以基于以下要素进行操作:1.平移向量:平移向量是指从图形的每个点指向其平移后的对应位置的向量。

2.平移轴:平移轴是指平移向量的方向。

平移的性质:1.图形的每一点平移后仍在同一平面上;2.图形的平移前后点之间的距离保持不变;3.平移不改变图形的形状和大小。

三、旋转旋转是指在平面或者空间中按照一些中心或条轴线,将图形围绕旋转中心或轴线进行旋转,使图形在平面或者空间中绕旋转中心或轴线旋转一定角度。

旋转的参数:1.旋转角度:旋转的角度可以是顺时针或逆时针方向。

2.旋转中心:旋转中心是指旋转轴线上的一个点,图形按照该点为中心进行旋转。

旋转的性质:1.旋转不改变图形的形状和大小;2.旋转后图形中任意两点之间的距离保持不变;3.旋转后图形的对称性质可能会发生变化。

在实际应用中,对称、平移和旋转经常被用于图形的变换、模式识别、计算机图形学等各个领域。

比如,在计算机动画中,通过对图像进行平移和旋转操作,可以实现各种图形效果和动画效果;在建筑设计中,对称性和对称变换被广泛运用于设计美学和结构均衡等方面。

总之,对称、平移和旋转是几何学中的重要概念和操作,它们的理论和应用对于提高空间想象力、解决实际问题具有重要意义。

平移_旋转_轴对称_知识点总结

平移_旋转_轴对称_知识点总结
线,做其垂直平
线找其中点
分线。找两组
两组对应点连
对应点连线,过
线的交点
两条中点的直线
找关键点
找关键点
找关键点
找关犍点
过每个关键点
过每个关犍点做
连接关键点与旋
连接关键点与
做对称轴的垂线
平移方向的平行线
转中心,将这条线
对称中心,延长

截取与之相等的
截取与之相等的距
段按方向和角度旋
并截取相等的长
距离,标出对应
旋转.平移.轴对称、中心对称知识点总结
轴对称
平移
旋转
中心对称
全等
一个(两个)平
平面图形在它所在
一个平面图形绕一
一个图形旋转
能够完全重合的
面图形沿某条直
平面上的平行移动。
定点按一定的方向
180°能与自身
两个图形
线对折能够完全
决定要素:平移的方
旋转一定的角度的
重合
表示方法:

重合
向.平移的距离
运动。
AABC^ADEF
离,标出对应点
转.标出对应点
度.标出对应点

连接对应点。
连接对应点。
连接对应点。
连接对应点。
线段是轴对称
多次平移相当于
线段旋转90°
中心对称一定
一个图形经过
图形,对称轴是
一次平移
后与原來的位置垂
是旋转对称.旋
轴对称、平移或选
它的垂直平分
两条对称轴平行

转对称不一定是
转等变换得到的
线。
时,两次轴对称相当

轴对称
成轴对
中心对

平移、旋转、轴对称

平移、旋转、轴对称

---------------------------------------------------------------最新资料推荐------------------------------------------------------平移、旋转、轴对称什么是平移、旋转、轴对称?如何判断一个图形进行了平移、旋转或者是否为轴对称图形?如何确定平移的的方向什么是平移、旋转、轴对称?如何判断一个图形进行了平移、旋转或者是否为轴对称图形?如何确定平移的的方向和距离?如何确定旋转角度和旋转中心?(1)什么是平移、旋转、轴对称?平移:一个图形在平面内沿某个方向移动一定距离,这样的图形运动叫平移。

旋转:一个图形在平面内绕着一个固定点转动一定角度,这样的图形运动叫旋转,这个固定点称为旋转中心,转动的角度称为旋转角度。

轴对称:如果一个平面图形,沿着某一条直线对折,直线两边的部分能够完全重合,这个图形就叫做轴对称图形。

这条直线叫对称轴。

互相重合的点叫对称点。

(2)如何判断一个图形进行了平移、旋转或者是否为轴对称图形?在学习中,学生可能会问到摩天轮的运动、窗帘的拉动、门的转动、荡秋千、钟摆等生活现象算不算旋转。

回答这些具体的问题,教师首先需要理解轴对称、平移和旋转的概念在图形的变换中有一个非常重要的变换,就是全等变换,1 / 5也叫做合同变换。

如果图形经过变换后与原来的图形是重合的,也就是图形的形状、大小不发生变化,那么这个图形的变换就叫做全等变换,即原来的图形中,任意两点的距离假设是 l 的话,经过变换后的两点之间的距离仍是 l,所以全等变换是一个保距变换,而且由于距离保持不变,图形整体的形状、大小,都可以证明仍然是保持不变的。

全等变换有几种方式。

我们可以想象一下两个完全一样的图形,要由一个图形的运动得到另一个图形,可以作怎样的运动呢?可以是平移。

除此以外呢?比如两个三角形有一顶点重合,那么有两种情况:一种是这两个三角形的三个顶点顺序是一致的,这时其中一个经过旋转就能与另一个重合;还有一种是顶点的顺序相反,这时将其中一个反射(翻折)就能得到另一个。

2024年初中数学旋转平移对称知识点总结

2024年初中数学旋转平移对称知识点总结

一、旋转旋转是指将平面图形绕着一个确定的点旋转一定的角度,使原来的图形变为位置相对于原来的图形。

1.旋转的概念旋转是平面上一个点以另一个点为中心旋转一定角度所形成的点的运动。

2.旋转的主要要素旋转有三个主要要素:旋转中心、旋转方向和旋转角度。

3.旋转的性质(1)旋转是一个点分别以一个中心为圆心旋转,那么旋转时产生的点都在同一个圆上。

(2)旋转角度为360°时,即为一周。

4.旋转的表示方法以旋转中心为原点,建立直角坐标系,用点的坐标表示旋转的位置。

二、平移平移是指在平面上将一个图形全部向一个方向移动一定的距离,而不改变图形的形状和方向。

1.平移的概念平移是指一个图形的每一点都按照同一方向和距离进行移动。

2.平移的性质(1)平移前后的图形大小、形状和方向都是不变的。

(2)平移前后对应的两条线段是平行的。

(3)平移前后的两个点的距离保持不变。

3.平移的表示方法以平移向量作为平移的中心,以向量的始点为原点建立直角坐标系。

三、对称对称是指由一个物体通过中心对称轴或面对称面对折后,两侧对应点重合。

1.对称的概念对称是指图形按照其中一种规律以其中一线为中心分割成两个相同的部分。

2.对称图形的基本要素对称图形有三个基本要素:对称中心、对称轴和对称面。

3.对称的性质(1)对称图形的对称中心、对称轴或对称面所分割的部分是完全相同的。

(2)两个对称点的连线与对称轴或对称面垂直。

4.对称图形的表示方法对称图形可以通过对称中心、对称轴或对称面分析得出对称点的位置。

以上是对2024年初中数学中旋转、平移、对称知识点的总结。

这些知识点在初中数学中是非常重要和常见的,对于理解几何图形的变化和性质有很大帮助。

通过掌握这些知识点,可以更好地解决与旋转、平移和对称相关的数学问题。

图形的轴对称、平移与旋转的知识点

图形的轴对称、平移与旋转的知识点

图形的轴对称、平移与旋转一、轴对称图形与轴对称如果一个图形沿着某条直线对折如果两个图形对折后,这两个图形1.常见的轴对称图形: 等腰三角形、矩形、菱形、正方形、圆.2.折叠的性质:折叠的实质是轴对称,折叠前后的两图形全等,对应边和对应角相等.【注意】凡是在几何图形中出现“折叠”这个字眼时,第一反应即存在一组全等图形,其次找出与要求几何量相关的条件量.解决折叠问题时,首先清楚折叠和轴对称能够提供我们隐含的且可利用的条件,分析角之间、线段之间的关系,借助勾股定理建立关系式求出答案,所求问题具有不确定性时,常常采用分类讨论的数学思想方法.3.作某点关于某直线的对称点的一般步骤1)过已知点作已知直线(对称轴)的垂线,标出垂足;2)在这条直线另一侧从垂足除法截取与已知点到垂足的距离相等的线段,那么截点就是这点关于该直线的对称点.4.作已知图形关于某直线的对称图形的一般步骤1)作出图形的关键点关于这条直线的对称点;2)把这些对称点顺次连接起来,就形成了一个符合条件的对称图形.二、图形的平移1.定义:在平面内,一个图形由一个位置沿某个方向移动到另一个位置,这样的图形运动叫做平移.平移不改变图形的形状和大小.2.三大要素:一是平移的起点,二是平移的方向,三是平移的距离.3.性质:1)平移前后,对应线段平行且相等、对应角相等;2)各对应点所连接的线段平行(或在同一条直线上)且相等;3)平移前后的图形全等.4.作图步骤:1)根据题意,确定平移的方向和平移的距离;2)找出原图形的关键点;3)按平移方向和平移距离平移各个关键点,得到各关键点的对应点;4)按原图形依次连接对应点,得到平移后的图形.三、图形的旋转1.定义:在平面内,一个图形绕一个定点沿某个方向(顺时针或逆时针)转过一个角度,这样的图形运动叫旋转.这个定点叫做旋转中心,转过的这个角叫做旋转角.2.三大要素:旋转中心、旋转方向和旋转角度.3.性质:1)对应点到旋转中心的距离相等;2)每对对应点与旋转中心所连线段的夹角等于旋转角;3)旋转前后的图形全等.4.作图步骤:1)根据题意,确定旋转中心、旋转方向及旋转角;2)找出原图形的关键点;3)连接关键点与旋转中心,按旋转方向与旋转角将它们旋转,得到各关键点的对应点;4)按原图形依次连接对应点,得到旋转后的图形.【注意】旋转是一种全等变换,旋转改变的是图形的位置,图形的大小关系不发生改变,所以在解答有关旋转的问题时,要注意挖掘相等线段、角,因此特殊三角形性质的运用、锐角三角函数建立的边角关系起着关键的作用.四、中心对称图形与中心对称如果一个图形绕某一点旋转180°后能与如果一个图形绕某点旋转180°后与平行四边形、矩形、菱形、正方形、正六边形、圆等.注意:图形的“对称”“平移”“旋转”这些变化,是图形运动及延伸的重要途径,研究这些变换中的图形的“不变性”或“变化规律”.。

平移旋转轴对称的总结归纳

平移旋转轴对称的总结归纳

平移旋转轴对称的总结归纳平移、旋转、轴对称是几何学中常见的变换操作,它们在图形的变换中起着重要的作用。

本文将对平移、旋转和轴对称进行总结归纳,以便加深对这些概念的理解。

一、平移平移是指沿着固定的方向和距离,将一个点或者图形在平面内移动。

平移不改变图形的大小、形状和方向,只是改变了图形的位置。

1. 平移的特点- 平移是一种向量运算,其运算结果仍然是一个向量。

- 平移过程中,所有点的位移矢量都相等。

- 平移可以用向量表示,平移向量的起点为原图形上的一个点,终点为其平移后的位置。

2. 平移的表示方法平移可以使用向量运算的方式进行表示,如设平移向量为AB,其中A为原图形上的一个点,B为其平移后的位置。

3. 平移的性质平移具有以下性质:- 平移不改变图形的大小、形状和方向。

- 平移保持图形之间的相对位置关系不变。

二、旋转旋转是指将一个点或者图形按照一定的角度围绕某一点旋转。

旋转可以改变图形的方向,但保持其大小和形状不变。

1. 旋转的特点- 旋转是一种变换运算,将一个点或者图形按照一定的角度绕固定点旋转。

- 旋转可以用角度来描述,旋转角度可以是正数或负数,正数表示逆时针旋转,负数表示顺时针旋转。

- 旋转中心可以是任意点,也可以是图形的某个顶点。

2. 旋转的表示方法旋转可以使用坐标变换的方式进行表示,如设旋转中心为O,旋转角度为θ,则旋转过程中,点P(x, y)绕点O旋转后的新坐标为P'(x', y')。

3. 旋转的性质旋转具有以下性质:- 旋转不改变图形的大小和形状。

- 旋转改变图形的方向。

- 旋转保持图形上的点与中心点之间的距离不变。

三、轴对称轴对称是指图形相对于某条直线对称。

对称轴可以是任意直线,轴对称的图形可以通过对称轴翻转得到自身。

1. 轴对称的特点- 轴对称是一种空间变换,将图形相对于某条直线进行翻转。

- 轴对称的图形具有镜像对称性,即沿对称轴折叠后,两侧图形完全一致。

2. 轴对称的表示方法轴对称可以使用对称关系进行表示,如设对称轴为l,点P关于l的对称点为P',则P'与P关于l对称。

二维形的平移旋转与对称知识点总结

二维形的平移旋转与对称知识点总结

二维形的平移旋转与对称知识点总结在几何学中,平移、旋转和对称是二维形的常见变换方式。

它们有着重要的理论和实际应用价值。

在本文中,我们将对平移、旋转和对称的概念、性质以及应用进行详细总结。

一、平移变换平移是指将一个图形在平面上沿着固定方向进行移动,移动的距离和方向保持不变。

平移变换可以通过向量表示。

设有向量v=(a,b),则平移变换Tv可以表示为:Tv: (x,y) → (x+a,y+b)其中,(x,y)是图形上的一个点,(x+a,y+b)是平移后该点的位置。

平移变换具有以下性质:1. 形状保持不变:平移变换不会改变图形的形状,只是将其移动到新的位置上。

2. 距离和角度保持不变:平移变换不会改变图形中点与点之间的距离和角度关系。

3. 平移向量可加性:若有两个平移变换Tv和Tu,对应的平移向量分别为v=(a,b)和u=(c,d),则它们的合成变换为:T(v+u) = Tv + Tu = (x+a+c,y+b+d)平移变换的应用广泛,如地图的平移、物体的移动等。

二、旋转变换旋转是指将一个图形绕固定点进行旋转,旋转的角度可以为正也可以为负。

旋转变换可以通过矩阵表示。

设有旋转角度θ,则旋转变换Rθ可以表示为:Rθ: (x,y) → (x′,y′) = (x*cosθ - y*sinθ, x*sinθ + y*cosθ)其中,(x,y)是图形上的一个点,(x′,y′)是旋转后该点的位置。

旋转变换具有以下性质:1. 形状保持不变:旋转变换不会改变图形的形状,只是将其绕着某个点旋转一定角度。

2. 中心点不变:旋转变换不会改变旋转中心点的位置。

3. 旋转角度可叠加性:若有两个旋转变换Rθ和Rφ,对应的旋转角度分别为θ和φ,则它们的合成变换为:R(θ+φ) = Rθ ∘ Rφ = (x*cos(θ+φ) - y*sin(θ+φ), x*sin(θ+φ) +y*cos(θ+φ))旋转变换在计算机图形学、工程设计等领域中有着广泛应用。

平移旋转轴对称知识点总结

平移旋转轴对称知识点总结
中心对称一定是旋转对称,旋转对称不一定是中心对称。
任何通过中心对称图形的对称中心的直线都将这个图形分成面积相等的两部分。
两条对称轴互相垂直时,两次轴对称相当于一次中心对称
一个图形经过轴对称、平移或选转等变换得到的新图形一定与原图形全等
两个全等的图形总能经过轴对称、平移或旋转等
变换后重合。
旋转、平移、轴对称、中心对称知识点总结
轴对称
平移
旋转
中心对称
全等


一个(两个)平面图形沿某条直线对折能够完全
重合
平面图形在它所在平面上的平行移动。决定要素:平移的方向、平移的距离
一个平面图形绕一定点按一定的方向旋转一定的角度的运动。
一个图形旋转
180°能与自身重合
能够完全重合的两个图形表示方法:
△DEF
图形上每一点都绕同一点按相同的方向和角度旋转
对应点到旋转中心的距离相等对应边相等,对应角相等,图形的性状大小不改变
连结对应点的线段必然经过对称中心,并被对称中心平分成相等的两部分。
对应边相等,对应
角相等
判断方法
沿着某条直线对折看是否重合。
找平移的方向和距离:
找一组对应点,连线即是他平移的方向和距离
找旋转的方向和角度:
八、、
连接对应点。
找关键点
过每个关键点做平移方向的平行线截取与之相等的距离,标岀对应点连接对应点。
找关键点
连接关键点与旋转中心,将这条线段按方向和角度旋转,标岀对应点连接对应点。
找关键点
连接关键点与对称中心,延长并截取相等的长度,标岀对应点
连接对应点。

要结论
线段是轴对称图形,对称轴是它的垂直平分线。
轴对称

平移-旋转-轴对称-知识点总结

平移-旋转-轴对称-知识点总结
垂直平分线的性质:垂直平分线上任意一点到线段两端的距离相等。④角平分线的性质:角平分线上任意一点到叫两边的距离相等。⑤对称轴垂直平分对称点间的连线。
多次平移相当于一次平移
两条对称轴平行时,两次轴对称相当于一次平移
线段旋转90°后与原来的位置垂直
两条对称轴相交时,两次轴对称相当于一次旋转。
中心对称一定是旋转对称,旋转对称不一定是中心对称。
第一章知识点总结
轴对称
平移
旋转
中心对称
全等
定义
平行移动。
决定要素:平移的方向、平移的距离
一个平面图形绕一定点按一定的方向旋转一定的角度的运动。
一个图形旋转180°能与自身重合
能够完全重合的两个图形
表示方法:
ΔABC≌ΔDEF
轴对称图形
图形上每一点都绕同一点按相同的方向和角度旋转
对应点到旋转中心的距离相等
对应边相等,对应角相等,图形的性状大小不改变
连结对应点的线段必然经过对称中心,并被对称中心平分成相等的两部分。
对应边相等,对应角相等
判断方法
沿着某条直线对折看是否重合。
找平移的方向和距离:
找一组对应点,连线即是他平移的方向和距离
找旋转的方向和角度:
成轴对称
中心对称图形
成中心对称
全等多边形
全等三角形
对应边
对应角
一个图形;
不止一条对称轴
两个图形;
只有一条对称轴
旋转对称图形:一个图形绕内部某一点旋转一定的角度能与自身重合。
一个图形
两个图形
图形
特征
对应角相等,对应边相等
对应点间的连线平行且相等(或在同一条直线上)
对应边平行且相等(或在同一条直线上),对应角相等,图形的形状和大小不改变。

平移_旋转_轴对称_知识点总结

平移_旋转_轴对称_知识点总结
图形上每一点都绕同一点按相同的方向和角度旋转
对应点到旋转中心的距离相等
对应边相等,对应角相等,图形的性状大小不改变
连结对应点的线段必然经过对称中心,并被对称中心平分成相等的两部分.
对应边相等,对应角相等




沿着某条直线对折看是否重合.
找平移的方向和距离:
找一组对应点,连线即是他平移的方向和距离
找旋转的方向和角度:
垂直平分线的性质:垂直平分线上任意一点到线段两端的距离相等。④角平分线的性质:角平分线上任意一点到叫两边的距离相等。⑤对称轴垂直平分对称点间的连线.
多次平移相当于一次平移
两条对称轴平行时,两次轴对称相当于一次平移
线段旋转90°后与原来的位置垂直
两条对称轴相交时,两次轴对称相当于一次旋转。
中心对称一定是旋转对称,旋转对称不一定是中心对称。
任何通过中心对称图形的对称中心的直线都将这个图形分成面积相等的两部分。
两条对称轴互相垂直时,两次轴对称相当于一次中心对称
一个图形经过轴对称、平移或选转等变换得到的新图形一定与原图形全等
两个全等的图形总能经过轴对称、平移或旋转等变换后重合。
轴对称图形
成轴对称
中心对称图形
成中心对称
全等多边形
全等三角形
对应边
对应角
一个图形;
不止一条对称轴
两个图形;
只有一条对称轴
旋转对称图形:一个图形绕内部某一点旋转一定的角度能与自身重合。
一个图形
两个图形




对应角相等,对应边相等
对应点间的连线平行且相等(或在同一条直线上)
对应边平行且相等(或在同一条直线上),对应角相等,图形的形状和大小不改变。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对称、平移、旋转知识点标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-
轴对称图形
1、将图形沿着一条直线对折,如果直线两侧的部分能够完全重合,这样的图形叫做轴对称图形。

折痕所在的直线叫做对称轴。

注意:对称轴是直线,既不是线段,也不是射线,画时不用实线,用虚线(虚线、尺子、露头)
2、轴对称图形性质:对称点到对称轴的距离相等。

3、对称点:轴对称图形沿对称轴对折后,互相重合的点叫做对称点。

4、在方格纸上补全轴对称图形关键:
找出所给图形的关键点的对称点,要按照顺序将对称点连接起来。

5、不同的轴对称图形,对称轴的数量也不同,轴对称图形至少有一条对称轴。

平移
1、物体在同一平面上沿直线运动,这种现象叫做平移。

注意:平移只是沿水平方向左右移动(×)
平移不仅仅局限于左右运动。

2、平移二要素:(1)平移方向;(2)平移距离。

将一个图形平移时,要先确定方向,再确定平移的距离,缺一不可。

3、平移的特征:物体或图形平移后,他们的形状、大小、方向都不改变,只是位置发生改变。

4、在方格纸上平移图形的方法:
(1)找出图形的关键点;
(2)以关键点为参照点,按指定方向数出平移的格数,描出平移后的点;(3)把各点按原图顺序连接,就得到平移后的图形。

注意:用箭头标明平移方向(→)
旋转
1、旋转:物体绕某一点或轴的转动。

2、旋转方向:与时针运动方向相同的是顺时针方向;
与时针运动方向相反的是逆时针方向;
3、旋转三要素:旋转点(旋转中心)、旋转方向、旋转角度。

4、图形旋转的特征:图形旋转后,形状、大小都没发生变化,只是位置和方向
变了。

5、图形旋转的性质:图形绕某一点旋转一定的角度,图形中的对应点、对应线
段都旋转相同的角度,对应点到旋转点的距离相等。

6、旋转的叙述方法:物体是绕哪个点向什么方向旋转了多少度。

7、简单图形旋转90°的画法:
(1)找出原图形的关键线段或关键点,借助三角板作关键线段的垂线,或者作关键点与旋转点所在线段的垂线;
(2)从旋转点开始,在所作的垂线上量出与原线段相等的长度取点,即所找的点是原图形关键点的对应点;
(3)参照原图形顺次连接所画的对应点。

关键线段:水平的、竖直的、过旋转点的线段。

相关文档
最新文档