(经典)高考立体几何题型与方法全归纳文科(精典配套练习)
文科立体几何题型与方法
文科何体题型与方法总结考点一证明空间线面平行与垂直1、如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,点D是AB的中点,(I)求证:AC⊥BC1;(II)求证:AC 1//平面CDB1;2、如图所示,四棱锥P—ABCD中,AB⊥AD,CD⊥AD,PA⊥底面ABCD,PA=AD=CD=2AB=2,M为PC的中点。
(1)求证:BM∥平面PAD;(2)在侧面PAD内找一点N,使MN⊥平面PBD;3.【2012高考山东文19】 (本小题满分12分)如图,几何体E ABCD -是四棱锥,△ABD 为正三角形,,CB CD EC BD =⊥. (Ⅰ)求证:BE DE =;(Ⅱ)若∠120BCD =︒,M 为线段AE 的中点, 求证:DM ∥平面BEC .4、(2012年高考(江苏))如图,在直三棱柱111ABC A B C -中,1111A B AC =,D E ,分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点. 求证:(1)平面ADE ⊥平面11BCC B ;(2)直线1//A F 平面ADE .考点二 求空间图形中距离与体积5、(安徽理17)如图,ABCDEFG 为多面体,平面ABED 与平面AGFD 垂直,点O 在线段AD 上,1,2,OA OD ==△OAB ,,△OAC ,△ODE ,△ODF 都是正三角形。
(Ⅰ)证明直线BC ∥EF ;(II )求棱锥F —OBED 的体积。
6.(四川09) 如图,在直三棱柱ABC-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D 是棱CC1上的一P 是AD 的延长线与A1C1的延长线的交点,且PB1∥平面BDA . (I )求证:CD=C1D :(Ⅱ)求点C 到平面B1DP 的距离.7.【2012高考湖南文19】(本小题满分12分)如图6,在四棱锥P-ABCD 中,PA ⊥平面ABCD ,底面ABCD 是等腰梯形,AD ∥BC ,AC ⊥BD. (Ⅰ)证明:BD ⊥PC ;(Ⅱ)若AD=4,BC=2,直线PD 与平面PAC 所成的角为30°,求四棱锥P-ABCD 的体积.8.【2012高考广东文18】本小题满分13分)如图5所示,在四棱锥P ABCD -中,AB ⊥平面PAD ,//AB CD ,PD AD =,E 是PB 的中点,F 是CD 上的点且12DF AB =,PH 为△PAD 中AD 边上的高. (1)证明:PH ⊥平面ABCD ;(2)若1PH =,AD =,1FC =,求三棱锥E BCF -的体积;(3)证明:EF ⊥平面PAB .9.【2012高考陕西文18】(本小题满分12分) 直三棱柱ABC- A 1B 1C 1中,AB=A A 1 ,CAB ∠=2π(Ⅰ)证明11B A C B ⊥;(Ⅱ)已知AB=2,11C A AB - 的体积10.【2012高考辽宁文18】(本小题满分12分)如图,直三棱柱///ABC A B C -,90BAC ∠=,AB AC ==AA ′=1,点M ,N 分别为/A B 和//B C 的中点。
文科数学高考立体几何考点总结学习资料
【例 8】 [2013·安徽卷理]如图,圆锥顶点为 P ,底面圆心为 O ,其母线与底面所成的角为 22.5 。 AB 和 CD 是底面圆 O 上的两条平行的弦,轴 OP 与平面 PCD 所成的角为 60 。
(Ⅰ)证明:平面 PAB 与平面 PCD 的交线平行于底面; (Ⅱ)求 cos COD 。
C
B
D
A
【例 7】如图所示的多面体是由底面为 ABCD 的长方体被截面 AEC1F 所截面而得到的,其
中 AB 4, BC 2,CC1 3, BE 1. (Ⅰ)求 BF 的长; (Ⅱ)求点 C 到平面 AEC1F 的距离.
F D
A
C1
C E B
【例 8】 P ABCD中,ABC BAD 90 ,BC 2AD, PAB与PAD 都是边长为 2 等边三角
【例 5】如图,在多面体 ABCDEF 中,已知平面 ABCD 是边长为 3 的正方形,EF // AB ,
EF 3 ,且 EF 与平面 ABCD 的距离为 2 ,则该多面体的体积为(
)
2
A. 9 B. 5 C. 6 D. 15
2
2
E
D A
F
C B
【例 6】在三棱锥 A-BCD 中,AB=CD=6,AC=BD=AD=BC=5,则该三棱锥的外接球 的表面积为________.
E
A
D
B
C
2、 探究线面垂直与面面垂直: 【例 1】如图,在四棱锥 S -ABCD 中,平面 SAD⊥平面 ABCD,四边形 ABCD 为正方形,且 P 为 AD 的中点,Q 为 SB 的中点,M 为 BC 的中 点. (1)求证:CD⊥平面 SAD; (2)求证:PQ∥平面 SCD; (3)若 SA=SD,在棱 SC 上是否存在点 N,使得平面 DMN⊥平面 ABCD?并证明你的结论.
高三高考数学总复习《立体几何》题型归纳与汇总
(3)当 PA// 平面 BDE 时, PA 平面 PAC ,且平面 PAC 平面 BDE DE ,可得 PA//DE .由 D 是 AC 边的中 点知, E 为 PC 边的中点.故而 ED 1 PA 1, ED∥PA ,因为 PA 平面 ABC ,所以 ED 平面 BDC .
2
由 AB BC 2 ,AB BC ,D 为 AC 边中点知,BD CD 2. 又 BD AC ,有 BD DC ,即 BDC 90.
3 【解析】(1)∵ PA PD, N 为 AD 的中点,∴ PN AD, ∵底面 ABCD为菱形, BAD 60 ,∴ BN AD, ∵ PN BN N ,∴ AD 平面 PNB . (2)∵ PN PD AD 2 , ∴ PN NB 3 , ∵平面 PAD 平面 ABCD,平面 PAD 平面 ABCD AD , PN AD, ∴ PN 平面 ABCD, ∴ PN NB ,
【易错点】 外接球球心位置不好找 【思维点拨】 应用补形法找外接球球心的位置
题型四 立体几何的计算
例 1 如图,已知三棱锥的底面是直角三角形,直角 边边长分别为 3 和 4 ,过直角顶点的侧棱长为 4 ,且 垂直于底面,该三棱锥的主视图是 ( )
【答案】 B 【解析】显然由空间直角坐标系可知,该几何体在 xoy 面内的点保持不动,在 y 轴上的点在 xoy 面内的射影为坐标原 点,所以该几何体的主视图就是其在面 xoy 面的表面图形,即主视图应为高为 4 ,底面边长为 3 的直角三角形.故选 B.
以 PA BD . (2)因为 AB BC , AB BC , D 为线段 AC 的中点,所以在等腰 Rt△ABC 中, BD AC .又 由(1)可知, PA BD,PA AC A,所以 BD 平面 PAC .由 E 为线段 PC 上一点,则 DE 平面 PAC ,
高考文科数学立体几何题型与方法(文科)
高考文科数学立体几何题型与方法〔文科〕一、考点回顾 1.平面〔1〕平面的基本性质:掌握三个公理与推论,会说明共点、共线、共面问题。
〔2〕证明点共线的问题,一般转化为证明这些点是某两个平面的公共点〔依据:由点在线上,线在面内,推出点在面内〕,这样,可根据公理2证明这些点都在这两个平面的公共直线上。
〔3〕证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。
〔4〕证共面问题一般用落入法或重合法。
〔5〕经过不在同一条直线上的三点确定一个面. 2. 空间直线.〔1〕空间直线位置分三种:相交、平行、异面. 相交直线—共面有反且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内。
〔2〕异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.〔不在任何一个平面内的两条直线〕〔3〕平行公理:平行于同一条直线的两条直线互相平行.〔4〕等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,则这两个角相等推论:如果两条相交直线和另两条相交直线分别平行,则这两组直线所成锐角〔或直角〕相等.〔5〕两异面直线的距离:公垂线的长度.空间两条直线垂直的情况:相交〔共面〕垂直和异面垂直.21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. 〔l 1或l 2在这个做出的平面内不能叫l 1与l 2平行的平面〕3. 直线与平面平行、直线与平面垂直.〔1〕空间直线与平面位置分三种:相交、平行、在平面内.〔2〕直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,则这条直线和这个平面平行.〔"线线平行,线面平行"〕〔3〕直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,则这条直线和交线平行.〔"线面平行,线线平行"〕〔4〕直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直.PO A a4 若PA⊥α,a⊥AO,得a⊥PO〔三垂线定理〕,得不出α⊥PO. 因为a⊥PO,但PO不垂直OA.5 三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,则这两条直线垂直于这个平面.〔"线线垂直,线面垂直"〕直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,则另一条也垂直于这个平面.推论:如果两条直线同垂直于一个平面,则这两条直线平行.〔5〕a.垂线段和斜线段长定理:从平面外一点向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.[注]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.〔×〕]b.射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,则这点在平面内的射影在这个角的平分线上。
北京文科高考立体几何大题题型总结
立体几何复习一、点、直线、平面之间的关系 (一)、立体几何网络图:1.线线平行的判断:(1)、平行于同一直线的两直线平行。
(3)、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
(6)、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
(12)、垂直于同一平面的两直线平行。
【例题】(2016丰台一模17)已知在ABC ∆中,90=∠B ,D ,E 分别为边BC ,AC 的中点,将CDE ∆沿DE 翻折后,使之成为四棱锥ABDE C -'(如图) (Ⅱ)设l ABC DE C =''平面平面 ,求证:l AB //ABED C C'DEFBA(7)、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
(8)、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直。
(10)、若一直线垂直于一平面,这条直线垂直于平面内所有直线。
补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。
【例题】(2016西城一模17)如图,在四棱柱1111D C B A ABCD -中,BC AD ABCD BB //,1底面⊥, BD AC BAD ⊥=∠,90(Ⅱ)求证:D B AC 1⊥;【例题】(2016延庆一模17)如图,已知四棱锥ABCD S -,底面ABCD 是边长为2的菱形,60=∠ABC ,侧面SAD 为正三角形,侧面ABCD SAD 底面⊥,M 为侧棱SB 的中点,E 为线段AD 的中点 (Ⅱ)求证:AC SE ⊥(2)、如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。
(5)、两个平面平行,其中一个平面内的直线必平行于另一个平面。
判定定理:性质定理:★判断或证明线面平行的方法⑴ 利用定义(反证法):=αl α=∅,则l ∥α (用于判断); ⑵ 利用判定定理:线线平行线面平行 (用于证明); ⑶ 利用平面的平行:面面平行线面平行 (用于证明);⑷ 利用垂直于同一条直线的直线和平面平行(用于判断)。
高考文科数学__立体几何大题-知识点、考点及解题方法
立体几何大题题型及解题方法立体几何大题一般考以下五个方面:一、平行位置关系的证明1、证明线面平行(重点)解题方法:(1)线面平行判定定理;(2)面面平行的性质定理。
2、证明面面平行解题方法:(1)面面平行的判定定理;(2)面面平行判定定理的推论;(3)垂直于同一直线的两平面平行;(4)平行平面的传递性。
3、平行位置关系的探索(1)对命题条件的探索;(2)对命题结论的探索;(3)通过翻折来探索。
二、垂直位置关系的证明1、证明线线垂直解题方法:2、证明线面垂直(重点)解题方法:3、证明面面垂直4、垂直位置关系的探索(1)对命题条件的探索;(2)对命题结论的探索;(3)通过翻折来探索。
三、求空间距离1、点到平面的距离解题方法:2、空间线段长解题方法:(1)解三角形法;(2)列方程法。
四、求几何体体积五、求空间角1、异面直线所成的角2、直线与平面所成的角考点一:如何判断空间中点、线、面的位置关系(排除法)考点二:平行位置关系的证明证明题一般的解题步骤:一、根据题目的问题,确定要证明什么;根据题目的条件,确定用什么证明方法,如果无法确定,则要通过逆向思维来分析题目;二、看题目是否需要作辅助线(创造条件),证明平行位置问题一般作的辅助线是连等分点,特别是中点;三、根据确定的证明方法,看该方法需要多少个条件,然后看题目给的条件通过什么方式给,如果是间接条件则需要推理证明得出,如果是直接条件或隐含条件则直接罗列;四、准备好条件后,再次检查条件是否都满足,是否都罗列了,最后得出结论;五、规范书写答案过程:一般过程为1、作辅助线;2、准备间接条件;3、罗列直接条件或隐含条件;4、得出结论。
1、证明线面平行(重点)解题方法:2、证明面面平行解题方法:(1)面面平行的判定定理(最常用方法):(2)面面平行判定定理的推论:(3)垂直于同一直线的两平面平行;(4)3、平行位置关系的探索考点三、垂直位置关系的证明证明垂直的解题步骤:一、根据题目的问题,确定要证明什么;根据题目的条件,确定用什么证明方法,如果无法确定,则要通过逆向思维来分析题目;二、要注意先确定谁垂直于谁,如1、证明线线垂直时常考虑其中一条直线垂直于另一条直线所在的平面,究竟选择哪一条直线垂直于另一条直线所在的平面,需要通过对条件及图形结构做深入细致分析、尝试、判断。
立体几何常考题型练习(文科生用)
立体几何常考题型练习(毛艺瑾用)出题人:王春生概念选择题1、设,αβ是两个不同的平面,,l m 是两条不同的直线,以下命题正确的是 A .若//,//l ααβ,则//l β B .若,//l ααβ⊥,则l β⊥ C .若,l ααβ⊥⊥,则//l β D .若//,l ααβ⊥,则l β⊥2.已知直线m n ,与平面αβ,,下列命题中错误..的是 A 。
若 m n αα,⊥⊥,则m n // B.若 m n ββ,//⊥,则m n ⊥ C.若 m n αβαβ,,⊥⊥⊥,则m n ⊥D 。
若 m n n α//,⊂,则m α//3。
已知n m ,是两条不重合的直线,α,β是两个不重合的平面,给出下列四个命题:其中正确命题的个数是(1)若βαα⊥,//m ,则β⊥m ; (2)βαβα⊥⊥⊥⊥则且若,,,m n m n ; (3)若αβ⊥,m α⊄,m β⊥,则//m α;(4)若n m ,是异面直线,,//,,//,m m n n αββα⊂⊂则//αβ.A.1B.2 C 。
3 D.4三视图:1.某几何体的三视图如图所示,且该几何体的体积是3,则 正视图中的x 的值是A .2B .92C .32D .3第1题图正视图 侧视图x2.某几何体的三视图如图所示,则该几何体的体积为 A .83B .103C .4D .33.已知某几何体的三视图如图所示,三视图是边长为1的等腰直角三角形和边长为1的正方形,则该几何体的体积为A .16B .13C .12D .23外接球问题1、某四棱锥的三视图如图所示,则该四棱锥外接球的表面积是A .172π B .34πC .17342π D .1734π2、一个几何体的三视图如右图所示,则该几何体外接球的表面积为A .π3B .π2C .316πD .以上都不对1FAEC OBDM3、三棱锥P ABC -中,15AB BC ==,6AC =,PC ⊥平面ABC ,2PC =,则该三棱锥的外接球表面积为 A .253π B .252π C .833π D .832π几何证明计算题1.如图,AB 为圆O 的直径,点E 、F 在圆O 上,EF AB //,矩形ABCD 的边BC 垂直于圆O 所在的平面,且2=AB ,1==EF AD 。
文科立体几何知识点、方法总结材料高三复习
立体几何知识点整理(文科)一.直线和平面的三种位置关系: 1. 线面平行符号表示: 2. 线面相交 符号表示: 3. 线在面符号表示: 二.平行关系: 1. 线线平行:方法一:用线面平行实现。
m l m l l ////⇒⎪⎭⎪⎬⎫=⋂⊂βαβα方法二:用面面平行实现。
m l m l ////⇒⎪⎭⎪⎬⎫=⋂=⋂βγαγβα 方法三:用线面垂直实现。
若αα⊥⊥m l ,,则m l //。
方法四:用向量方法:若向量l 和向量m 共线且l 、m 不重合,则m l //。
2. 线面平行:方法一:用线线平行实现。
ααα////l l m m l ⇒⎪⎭⎪⎬⎫⊄⊂ 方法二:用面面平行实现。
αββα////l l ⇒⎭⎬⎫⊂ 方法三:用平面法向量实现。
若n 为平面α的一个法向量,l n ⊥且α⊄l ,则α//l 。
3. 面面平行:方法一:用线线平行实现。
βααβ//',','//'//⇒⎪⎪⎭⎪⎪⎬⎫⊂⊂且相交且相交m l m l m m l l 方法二:用线面平行实现。
βαβαα//,////⇒⎪⎭⎪⎬⎫⊂且相交m l m l 三.垂直关系: 1. 线面垂直:方法一:用线线垂直实现。
αα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊂=⋂⊥⊥l AB AC A AB AC AB l ACl ,方法二:用面面垂直实现。
αββαβα⊥⇒⎪⎭⎪⎬⎫⊂⊥=⋂⊥l l m l m ,2. 面面垂直:方法一:用线面垂直实现。
βαβα⊥⇒⎭⎬⎫⊂⊥l l方法二:计算所成二面角为直角。
3. 线线垂直:方法一:用线面垂直实现。
m l m l ⊥⇒⎭⎬⎫⊂⊥αα方法二:三垂线定理及其逆定理。
PO l OA l PA l αα⊥⎫⎪⊥⇒⊥⎬⎪⊂⎭方法三:用向量方法:若向量和向量的数量积为0,则m l ⊥。
三.夹角问题。
(一) 异面直线所成的角: (1) 围:]90,0(︒︒ (2)求法: 方法一:定义法。
步骤1:平移,使它们相交,找到夹角。
高考数学专题复习立体几何题型与方法(文科)
POAa高考数学专题复习 立体几何题型与方法(文科)一、 考点回顾1.平面(1)平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。
(2)证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内 ,推出点在面内), 这样,可根据公理2证明这些点都在这两个平面的公共直线上。
(3)证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。
(4)证共面问题一般用落入法或重合法。
(5)经过不在同一条直线上的三点确定一个面. 2. 空间直线.(1)空间直线位置分三种:相交、平行、异面. 相交直线—共面有反且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内。
(2)异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)(3)平行公理:平行于同一条直线的两条直线互相平行.(4)等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.(5)两异面直线的距离:公垂线的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (l 1或l 2在这个做出的平面内不能叫l 1与l 2平行的平面) 3. 直线与平面平行、直线与平面垂直.(1)空间直线与平面位置分三种:相交、平行、在平面内.(2)直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)(3)直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)(4)直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直. 若PA ⊥α,a ⊥AO ,得a ⊥PO (三垂线定理), 得不出α⊥PO . 因为a ⊥PO ,但PO 不垂直OA .三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直,线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.推论:如果两条直线同垂直于一个平面,那么这两条直线平行.(5)a.垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.[注]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)]b.射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上。
(完整)《立体几何》专题(文科)
(完整)《立体几何》专题(文科)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)《立体几何》专题(文科))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)《立体几何》专题(文科)的全部内容。
高三文科数学第二轮复习资料—-《立体几何》专题一、空间基本元素:直线与平面之间位置关系的小结.如下图:二、练习题:1.l 1∥l 2,a ,b 与l 1,l 2都垂直,则a ,b 的关系是A .平行B .相交C .异面D .平行、相交、异面都有可能2.三棱柱ABC-A 1B 1C 1的体积为V,P 、Q 分别为AA 1、CC 1上的点,且满足AP=C 1Q,则四棱锥B —APQC 的体积是A .B .C .D .3.设、、为平面, 、、为直线,则的一个充分条件是A .B .C .D . 4.如图1,在棱长为的正方体中, P 、Q 是对角 线,若的体积为 A . B . C . D .不确定5.圆台的轴截面面积是Q ,母线与下底面成60°角,则圆台的内切球的表面积是AB QC QD Q6.在正方体ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 分别为棱BC 、CC 1、C 1D 1、AA 1的中点,O 为AC 与BD的交点(如图),求证: (1)EG∥平面BB 1D 1D; (2)平面BDF∥平面B 1D 1H; (3)A 1O⊥平面BDF ; (4)平面BDF⊥平面AA 1C .7.如图,斜三棱柱ABC —A’B'C’中,底面是边长为a 的正三角形,侧棱长为 b,侧棱AA'与底面相邻两边AB 、AC 都成450角,求V 21V 31V 41V 32αβγm nlm β⊥,,l m l αβαβ⊥=⊥,,m αγαγβγ=⊥⊥,,m αγβγα⊥⊥⊥,,n n m αβα⊥⊥⊥a AB C D A B C D -1111A C 1aPQ =2P B D Q -a3336a3318a332412Q 232π23π此三棱柱的侧面积和体积.8.在三棱锥P —ABC 中,PC=16cm ,AB=18cm ,PA=PB=AC=BC=17cm ,求三棱锥的体积V P-ABC .9.如图6为某一几何体的展开图,其中是边长为6的正方形,SD=PD=6,CR=SC ,AQ=AP ,点S 、D 、A 、Q 及P 、D 、C 、R 共线。
高考立体几何知识点和例题(文科学生用)
高考立体几何知识点总结整体知识框架:一、空间几何体(一)空间几何体的类型1 多面体:由若干个平面多边形围成的几何体。
围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。
2 旋转体:把一个平面图形绕它所在的平面的一条定直线旋转形成了封闭几何体。
其中,这条直线称为旋转体的轴。
(二)几种空间几何体的结构特征1 、棱柱的结构特征1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2 棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等;Ⅱ、两底面是全等多边形且互相平行;Ⅲ、平行于底面的截面和底面全等;1.3棱柱的面积和体积公式chS=直棱柱侧(c是底周长,h是高)S直棱柱表面= c·h+ 2S底V棱柱= S底·h2 、棱锥的结构特征(1)棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。
2.2 正棱锥的结构特征Ⅰ、平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、正棱锥的各侧棱相等,各侧面是全等的等腰三角形;正棱锥侧面积:1'2S ch=正棱椎(c为底周长,'h为斜高)体积:13V Sh=棱椎(S为底面积,h为高)正四面体:对于棱长为a正四面体的问题可将它补成一个边长为a22的正方体问题。
对棱间的距离为a22(正方体的边长)正四面体的高a36(正方体体对角线l32=)正四面体的体积为3122a(正方体小三棱锥正方体VVV314=-)正四面体的中心到底面与顶点的距离之比为3:1(正方体体对角线正方体体对角线:ll2161=)棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形图1-1 棱柱A BCDPO H正四面体的外接球半径为a 46,外接球半径为a 126,外接球半径a 423 、棱台的结构特征定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台。
高三文科立体几何专题(典型)
1.如图,在四棱锥S ABCD -中,底面ABCD 是正方形,SA ⊥底面ABCD ,SA AB =, 点M 是SD 的中点,AN SC ⊥,且交SC 于点N . (I ) 求证: //SB 平面ACM ; (III )求证:平面SAC ⊥平面AMN . 解法一:(几何法)解法二:(空间向量法)2.如图,四棱锥ABCD P -中,底面ABCD 是边长为2的正方形,CD PD BC PB ⊥⊥,,且2=PA ,E 为PD 中点.(Ⅰ)求证:⊥PA 平面ABCD ; (Ⅱ)求证://PB 平面AEC解法二:(空间向量法)SNM D C B ASN M D C BAPA BCDEPADE4.如图,在正方体ABCD —A 1B 1C 1D 1中,E 为AB 的中点.(1)求直线B 1C 与DE 所成角的余弦值; (2)求证:平面EB 1D ⊥平面B 1CD ; (3)求EC 1与平面CD 1所成角的余弦值.5.如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,PC ⊥AD .底面ABCD 为梯形,//AB DC ,AB BC ⊥.PA AB BC ==,点E 在棱PB 上,且2PE EB =. (Ⅰ)求证:平面PAB ⊥平面PCB ;(Ⅱ)求证:PD ∥平面EAC ;6.在直三棱柱111ABC A B C -中,190,1ABC AB BC BB ∠=︒===,点D 是1A C 的中点.(I )求11A B 与AC 所成的角的大小; (II )求证:BD ⊥平面1AB C ;7.如图,在三棱锥P ABC -中,P A P B =, PA PB ⊥, 30AB BC BAC ⊥∠=︒,,平面PAB ⊥平面ABC . (Ⅰ)求证:PA PBC ⊥平面 ;A CB D D1A 1C1BD C B A P8.在直三棱柱ABC —A 1B 1C 1中,∠BAC =90°,AB =BB 1,直线B 1C 与平面ABC 成30°角. (I )求证:平面B 1AC ⊥平面ABB 1A 1;(II )求直线A 1C 与平面B 1AC 所成角的正弦值;9.如图,三棱锥P —ABC 中, PC ⊥平面ABC ,PC=AC=2,AB=BC ,D 是PB 上一点,且CD ⊥平面PAB . (I) 求证:AB ⊥平面PCB ;10.已知如图(1),正三角形ABC 的边长为2a ,CD 是AB 边上的高,E 、F 分别是AC 和BC 边上的点,且满足CE CF k CA CB ==,现将△ABC 沿CD 翻折成直二面角A -DC -B ,如图(2). (Ⅰ) 试判断翻折后直线AB 与平面DEF 的位置关系,并说明理由;图(1)图(2)D BAF ED C B AF EDCB A12.如图,在直三棱柱ABC —A 1B 1C 1中,∠ABC =90,AB =BC =AA 1=2,D 是AB 的中点. (I )求AC 1与平面B 1BCC 1所成角的正切值; (II )求证:AC 1∥平面B 1DC ; .13.如图,梯形ABCD 中,CD//AB ,AB 21CB DC AD ===,E 是AB 的中点,将ADE ∆沿DE 折起,使点A 折到点P 的位置,且二面角C DE P --的大小为120°。
(经典)高考立体几何题型与方法全归纳文科(精典配套练习)
2019高考立体几何题型与方法全归纳文科配套练习1、四棱锥中,⊥底面,,.(Ⅰ)求证:⊥平面;(Ⅱ)若侧棱上的点满足,求三棱锥的体积。
【答案】(Ⅰ)证明:因为BC=CD ,即BCD ∆为等腰三角形,又ACD ACB ∠=∠,故AC BD ⊥.因为⊥PA 底面ABCD ,所以BD PA ⊥,从而BD 与平面PAC 内两条相交直线AC PA ,都垂直, 故⊥平面。
(Ⅱ)解:332sin 2221sin 21=⨯⨯=∠∙∙=∆πBCD CD BC S BCD . 由⊥PA 底面ABCD 知23233131=⨯⨯=⨯⨯=∆-PA S V BCD BDC P . 由,7FC PF =得三棱锥BDC F -的高为PA 81, 故:4132813318131=⨯⨯⨯=⨯⨯=∆-PA S V BCD BDC F 47412=-=-=---BCD F BCD P BDF P V V V 2、如图,四棱锥P ABCD -中,四边形ABCD 为矩形,PAD ∆为等腰三角形,90APD ︒∠=,平面PAD ⊥平面ABCD ,且1,2AB AD ==,,E F 分别为PC 和BD 的中点.P ABCD -PA ABCD PA =2BC CD ==3ACB ACD π∠=∠=BD PAC PC F 7PF FC =P BDF -BD PAC(Ⅰ)证明:EF 平面PAD ;(Ⅱ)证明:平面PDC ⊥平面PAD ;(Ⅲ)求四棱锥P ABCD -的体积.【答案】(Ⅰ)证明:如图,连结AC .∵四边形ABCD 为矩形且F 是BD 的中点.∴F 也是AC 的中点.又E 是PC 的中点,EF AP∵EF ⊄平面PAD ,PA ⊂平面PAD ,所以EF 平面PAD ;(Ⅱ)证明:∵平面PAD ⊥ 平面ABCD ,CD AD ⊥,平面PAD 平面ABCD AD =,所以平面CD ⊥ 平面PAD ,又PA ⊂平面PAD ,所以PA CD ⊥又PA PD ⊥,,PD CD 是相交直线,所以PA ⊥面PCD又PA ⊂平面PAD ,平面PDC ⊥平面PAD ;(Ⅲ)取AD 中点为O .连结PO ,PAD ∆为等腰直角三角形,所以PO AD ⊥,因为面PAD ⊥面ABCD 且面PAD 面ABCD AD =,所以,PO ⊥面ABCD ,即PO 为四棱锥P ABCD -的高.由2AD =得1PO =.又1AB =.∴四棱锥P ABCD -的体积1233V PO AB AD =⋅⋅= 考点:空间中线面的位置关系、空间几何体的体积.3、如图,在四棱锥P ABCD -中,PD ABCD ⊥平面,CD PA ⊥, DB ADC ∠平分,E PC 为的中点,45DAC ∠=,AC =(Ⅰ)证明:PA ∥BDE 平面; (Ⅱ)若,22,2==BD PD 求四棱锥ABCD E -的体积【答案】(Ⅰ)设F BD AC =⋂,连接EF ,CD PD ABCD CD ABCD PD ⊥∴⊂⊥,平面,平面PAD PA PD P PA PD PA CD 平面,,,又⊂=⋂⊥AD CD PAD AD PAD CD ⊥∴⊂⊥∴平面,平面∵,45︒=∠DAC ∴,DC DA =∵DB 平分,ADC ∠F 为AC 中点,E 为PC 中点,∴EF 为CPA ∆的中位线.∵EF ∥,PA EF BDE ⊂平面,PA BDE ⊄平面∴PA ∥BDE 平面.(Ⅱ)底面四边形ABCD 的面积记为S ;ABC ADC S S S ∆∆+=222322122221=⨯⨯+⨯⨯=. 的中点,为线段点PC E111122232323E ABCD V S PD -∴=⋅=⨯⨯⨯=. 考点:1.线面平行的证明;2.空间几何体的体积计算.4、如图,在四棱锥中,底面为菱形,其中,,为的中点.P ABCD -ABCD 2PA PD AD ===60BAD ︒∠=Q AD(1) 求证:AD PQB⊥平面;(2) 若平面平面ABCD,且M为PC的中点,求四棱锥M ABCD-的体积.【答案】(1)PA PD=,Q为中点,AD PQ∴⊥连DB,在ADB∆中,AD AB=,,ABD∴∆为等边三角形,为的中点,AD BQ∴⊥,PQ BQ Q⋂=,PQ⊂平面PQB,BQ⊂平面PQB ,∴AD⊥平面PQB.(2)连接QC,作MH QC⊥于H.PQ AD⊥,PQ⊂平面PAD,平面PAD⋂平面ABCD AD=,平面平面ABCD,PQ ABCD∴⊥平面 , QC⊂ABCD平面 ,PQ QC∴⊥//PQ MH∴.∴MH ABCD⊥平面,PAD⊥60BAD︒∠=QADPAD⊥又12PM PC =,1122222MH PQ ∴==⨯=. 在菱形ABCD 中,2BD =,01sin 602ABD S AB AD Λ=⨯⨯⨯1=222⨯⨯∴2ABD ABCD S S ∆==菱形M ABCD V -13ABCD S MH =⨯⨯菱形13=⨯1=. 5、如图,是矩形中边上的点,为边的中点,,现将沿边折至位置,且平面平面.⑴ 求证:平面平面;⑵ 求四棱锥的体积.【答案】(1) 证明:由题可知, (2) ,则 .6、已知四棱锥中,是正方形,E 是的中点,E ABCD ADF CD 243AB AE AD ===ABE ∆BE PBE ∆PBE ⊥BCDE PBE ⊥PEF P BEFC-PB C D FE (1)(2)4545ED DF DEF DEF ED DF EF BE AE AB ABE AEB AE AB =⎫⎫∆⇒∠=︒⎬⎪⊥⎭⎪⇒⊥⎬=⎫⎪∆ ⇒∠=︒ ⎬⎪⊥⎭⎭中中ABE BCDEABE BCDE BE EF PBE PBE PEF EF BE EF PEF ⎫⊥⎫⎪⎪=⇒⊥⎬⎪⇒⊥⎬⎪⊥⎭⎪⎪ ⊂⎭平面平面平面平面平面平面平面平面116444221422BEFC ABCD ABE DEF S S S S =--=⨯-⨯⨯-⨯⨯=1114333BEFC V S h =⋅⋅=⨯⨯=P ABCD -,PD ABCD ABCD ⊥平面PA(1)若PD AD =,求 PC 与面AC 所成的角(2) 求证:平面(3) 求证:平面PBC ⊥平面PCD【答案】平面,是直线在平面ABCD 上的射影,是直线PC 和平面A B C D 所成的角。
(文科)立体几何题型与方法教师
转化转化空间几何体题型与方法归纳(文科版)考点一 证明空间线面平行与垂直1、如图, 在直三棱柱ABC-A 1B 1C 1中,AC =3,BC =4,AA 1=4,点D 是AB 的中点, (I )求证:AC ⊥BC 1;(II )求证:AC 1//平面CDB 1;解析:(1)证明线线垂直方法有两类:一是通过三垂线定理或逆定理证明,二是通过线面垂直来证明线线垂直;(2)证明线面平行也有两类:一是通过线线平行得到线面平行,二是通过面面平行得到线面平行.答案:解法一:(I )直三棱柱ABC -A 1B 1C 1,底面三边长AC =3,BC =4AB =5,∴ AC ⊥BC ,且BC 1在平面ABC 内的射影为BC ,∴ AC ⊥BC 1;(II )设CB 1与C 1B 的交点为E ,连结DE ,∵ D 是AB 的中点,E 是BC 1的中点, ∴ DE//AC 1,∵ DE ⊂平面C D B 1,AC 1⊄平面C D B 1, ∴ AC 1//平面C D B 1;解法二:∵直三棱柱ABC -A 1B 1C 1底面三边长AC =3,BC =4,AB =5,∴AC 、BC 、C 1C 两两垂直,如图,以C 为坐标原点,直线CA 、CB 、C 1C 分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则C (0,0,0),A (3,0,0),C 1(0,0,4),B (0,4,0),B 1(0,4,4),D (23,2,0)(1)∵AC =(-3,0,0),1BC =(0,-4,0),∴AC •1BC =0,∴AC ⊥BC 1.(2)设CB 1与C 1B 的交战为E ,则E (0,2,2).∵DE =(-23,0,2),1AC =(-3,0,4),∴121AC DE =,∴DE ∥AC 1.点评:2.平行问题的转化: 面面平行线面平行线线平行;主要依据是有关的定义及判定定理和性质定理.2、如图所示,四棱锥P —ABCD 中,AB ⊥AD ,CD ⊥AD ,PA ⊥底面ABCD ,PA=AD=CD=2AB=2,M 为PC 的中点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019高考立体几何题型与方法全归纳文科配套练习1、四棱锥P ABCD -中,PA ⊥底面ABCD ,23PA =,2BC CD ==,3ACB ACD π∠=∠=.(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若侧棱PC 上的点F 满足7PF FC =,求三棱锥P BDF -的体积。
【答案】(Ⅰ)证明:因为BC=CD ,即BCD ∆为等腰三角形,又ACD ACB ∠=∠,故AC BD ⊥.因为⊥PA 底面ABCD ,所以BD PA ⊥,从而BD 与平面PAC 内两条相交直线AC PA ,都垂直, 故BD ⊥平面PAC 。
(Ⅱ)解:332sin 2221sin 21=⨯⨯=∠••=∆πBCD CD BC S BCD . 由⊥PA 底面ABCD 知23233131=⨯⨯=⨯⨯=∆-PA S V BCD BDC P . 由,7FC PF =得三棱锥BDC F -的高为PA 81,故:4132813318131=⨯⨯⨯=⨯⨯=∆-PA S V BCD BDC F 47412=-=-=---BCD F BCD P BDF P V V V 2、如图,四棱锥P ABCD -中,四边形ABCD 为矩形,PAD ∆为等腰三角形,90APD ︒∠=,平面PAD ⊥ 平面ABCD ,且1,2AB AD ==,,E F 分别为PC 和BD 的中点.(Ⅰ)证明:EF 平面PAD ;(Ⅱ)证明:平面PDC ⊥平面PAD ;(Ⅲ)求四棱锥P ABCD -的体积.【答案】(Ⅰ)证明:如图,连结AC .∵四边形ABCD 为矩形且F 是BD 的中点.∴F 也是AC 的中点.又E 是PC 的中点,EF AP∵EF ⊄平面PAD ,PA ⊂平面PAD ,所以EF 平面PAD ;(Ⅱ)证明:∵平面PAD ⊥ 平面ABCD ,CD AD ⊥,平面PAD 平面ABCD AD =,所以平面CD ⊥ 平面PAD ,又PA ⊂平面PAD ,所以PA CD ⊥又PA PD ⊥,,PD CD 是相交直线,所以PA ⊥面PCD又PA ⊂平面PAD ,平面PDC ⊥平面PAD ;(Ⅲ)取AD 中点为O .连结PO ,PAD ∆为等腰直角三角形,所以PO AD ⊥,因为面PAD ⊥面ABCD 且面PAD 面ABCD AD =,所以,PO ⊥面ABCD ,即PO 为四棱锥P ABCD -的高.由2AD =得1PO =.又1AB =.∴四棱锥P ABCD -的体积1233V PO AB AD =⋅⋅= 考点:空间中线面的位置关系、空间几何体的体积.3、如图,在四棱锥P ABCD -中,PD ABCD ⊥平面,CD PA ⊥, DB ADC ∠平分,E PC 为的中点,45DAC ∠=,AC =(Ⅰ)证明:PA ∥BDE 平面; (Ⅱ)若,22,2==BD PD 求四棱锥ABCD E -的体积【答案】(Ⅰ)设F BD AC =⋂,连接EF ,CD PD ABCD CD ABCD PD ⊥∴⊂⊥,平面,平面PAD PA PD P PA PD PA CD 平面,,,又⊂=⋂⊥AD CD PAD AD PAD CD ⊥∴⊂⊥∴平面,平面∵,45︒=∠DAC ∴,DC DA =∵DB 平分,ADC ∠F 为AC 中点,E 为PC 中点,∴EF 为CPA ∆的中位线.∵EF ∥,PA EF BDE ⊂平面,PA BDE ⊄平面∴PA ∥BDE 平面.(Ⅱ)底面四边形ABCD 的面积记为S ;ABC ADC S S S ∆∆+=222322122221=⨯⨯+⨯⨯=. 的中点,为线段点PC E111122232323E ABCD V S PD -∴=⋅=⨯⨯⨯=. 考点:1.线面平行的证明;2.空间几何体的体积计算.4、如图,在四棱锥P ABCD -中,底面ABCD 为菱形,其中2PA PD AD ===,60BAD ︒∠=,Q 为AD 的中点.(1) 求证:AD PQB ⊥平面;(2) 若平面PAD ⊥平面ABCD ,且M 为PC 的中点,求四棱锥M ABCD -的体积. 【答案】(1)PA PD =,Q 为中点,AD PQ ∴⊥连DB ,在ADB ∆中,AD AB =,60BAD ︒∠=,ABD ∴∆为等边三角形,Q 为AD 的中点,AD BQ ∴⊥,PQ BQ Q ⋂=,PQ ⊂平面PQB ,BQ ⊂平面PQB ,∴AD ⊥平面PQB .(2)连接QC ,作MH QC ⊥于H .HAB CD PMQ PQ AD ⊥,PQ ⊂平面PAD ,平面PAD ⋂平面ABCD AD =,平面PAD ⊥平面ABCD ,PQ ABCD ∴⊥平面 , QC ⊂ABCD 平面 ,PQ QC ∴⊥//PQ MH ∴.∴MH ABCD ⊥平面, 又12PM PC =,1122222MH PQ ∴==⨯=. 在菱形ABCD 中,2BD =,01sin 602ABD S AB AD Λ=⨯⨯⨯1=2222⨯⨯⨯∴2ABD ABCD S S ∆==菱形M ABCD V -13ABCD S MH =⨯⨯菱形132=⨯1=. 5、如图,E 是矩形ABCD 中AD 边上的点,F 为CD 边的中点,243AB AE AD ===,现将ABE ∆沿BE 边折至PBE ∆位置,且平面PBE ⊥平面BCDE . ⑴ 求证:平面PBE ⊥平面PEF ;⑵ 求四棱锥P BEFC -的体积.PB C D FE (1)(2)【答案】(1) 证明:由题可知,4545ED DF DEF DEF ED DF EF BE AE AB ABE AEB AE AB =⎫⎫∆⇒∠=︒⎬⎪⊥⎭⎪⇒⊥⎬=⎫⎪∆ ⇒∠=︒ ⎬⎪⊥⎭⎭中中 ABE BCDEABE BCDE BE EF PBE PBE PEF EF BE EF PEF ⎫⊥⎫⎪⎪=⇒⊥⎬⎪⇒⊥⎬⎪⊥⎭⎪⎪ ⊂⎭平面平面平面平面平面平面平面平面 (2) 116444221422BEFC ABCD ABE DEF S S S S =--=⨯-⨯⨯-⨯⨯=,则1114333BEFC V S h =⋅⋅=⨯⨯=6、已知四棱锥P ABCD -中,,PD ABCD ABCD ⊥平面是正方形,E 是PA 的中点,ED CBA P(1)若PD AD =,求 PC 与面AC 所成的角(2) 求证://PC 平面EBD(3) 求证:平面PBC ⊥平面PCD【答案】(1)PD ⊥平面ABCD ,DC ∴是直线PC 在平面ABCD 上的射影,PCD ∴∠是直线PC 和平面ABCD 所成的角。
又PD DA =,四边形ABCD 是正方形,,DA DC ∴=PD DC ∴=,045PCD ∴∠=;∴直线PC 和平面ABCD 所成的角为045(2)连接AC 交BD 与O,连接EO, ∵E 、O 分别为PA 、AC 的中点∴EO ∥PC ∵PC ⊄平面EBD,EO ⊂平面EBD ∴PC ∥平面EBD(3)∵PD 平面ABCD, BC ⊂平面ABCD ,∴PDBC , ∵ABCD 为正方形 ∴ BCCD , ∵PD ∩CD=D, PD ,CD ⊂平面PCD∴BC 平面PCD又∵ BC ⊂平面PBC∴平面PBC 平面PCD7、在边长为4cm 的正方形ABCD 中,E F 、分别为BC CD 、的中点,M N 、分别为AB CF 、的中点,现沿AE AF EF 、、折叠,使B C D 、、三点重合,重合后的点记为B ,构成一个三棱锥.(1)请判断MN 与平面AEF 的位置关系,并给出证明;(2)证明AB ⊥平面BEF ;(3)求四棱锥E AFNM -的体积.【答案】(1)MN 平行平面AEF证明:由题意可知点M N 、在折叠前后都分别是AB CF 、的中点(折叠后B C 、两点重合) 所以MN 平行AF因为MN AEF AF AEF MN AF ⊄⎧⎪⊂⎨⎪⎩面面平行,所以MN 平行平面AEF .(2)证明:由题意可知AB BE ⊥的关系在折叠前后都没有改变.因为在折叠前AD DF ⊥,由于折叠后AD AB 与重合,点D F 与重合,所以AB BF ⊥因为=AB BE AB BF BE BEF BF BEF BE BF B⊥⎧⎪⊥⎪⎪⊂⎨⎪⊂⎪⋂⎪⎩面面,所以AB ⊥平面BEF .(3)E AFNM E ABF E MBN V V V ---=-A BEF M BEN V V --=- 1133BEF BENS AB S MB ∆∆=⋅-⋅11112242123232=⨯⨯⨯⨯-⨯⨯⨯⨯ 2= .8、在如图所示的几何体中,四边形ABCD 是正方形,MA ⊥平面ABCD ,PD ∥MA ,E 、G 、F 分别为MB 、PB 、PC 的中点,且2AD PD MA ==.(1)求证:平面EFG ⊥平面PDC ;(2)求三棱锥P MAB -与四棱锥P ABCD -的体积之比.【答案】(1)证明:∵MA ⊥平面ABCD ,PD ∥MA ,∴PD ⊥平面ABCD ,又BC ⊂平面ABCD ,∴PD ⊥BC ,∵ABCD 为正方形,∴BC ⊥DC.∵PD DC D =,∴BC ⊥平面PDC .在PBC ∆中,因为G F 、分别为PB 、PC 的中点,∴GF ∥BC ,∴GF ⊥平面PDC .又GF ⊂平面EFG ,∴平面EFG ⊥平面PDC .(2)不妨设=1MA ,∵ABCD 为正方形,∴2PD AD ==,又∵PD ⊥平面ABCD ,所以P ABCD V -=13ABCD S PD ⋅正方形=83. 由于DA ⊥平面MAB ,且PD ∥MA ,所以DA 即为点P 到平面MAB 的距离,三棱锥P MAB V -=13×1122⎛⎫⨯⨯ ⎪⎝⎭×2=23. 所以14P MAB P ABCD V V --:=:. 9、如图,在底面是直角梯形的四棱锥S-ABCD 中,.21,1,90====⊥=∠AD BC AB SA ABCD SA ABC ,面SCA D B(1)求四棱锥S-ABCD 的体积;(2)求证:;SBC SAB 面面⊥(3)求SC 与底面ABCD 所成角的正切值。
【答案】(1)解: 111111()(1)11332624v Sh AD BC AB SA ==⨯⨯+⨯⨯=⨯+⨯⨯= (2)证明:BC SA ABCD BC ABCD SA ⊥∴⊂⊥,面,面 又,A AB SA BC AB =⊥ ,SAB BC 面⊥∴SAB BC 面⊂ SBC SAB 面面⊥∴(3)解:连结AC,则SCA ∠就是SC 与底面ABCD 所成的角。
在三角形SCA 中,SA=1,AC=21122=+,2221tan ===∠AC SA SCA 10、如图,DC ⊥平面ABC ,//EB DC ,22AC BC EB DC ====,120ACB ∠=,,P Q 分别为,AE AB 的中点.(I )证明://PQ 平面ACD ;(II )求AD与平面ABE 所成角的正弦值.【答案】(Ⅰ)证明:连接CQ DP ,, 在ABE ∆中,Q P ,分别是AB AE ,的中点,所以BE PQ 21//==, 又BE DC 21//==,所以DC PQ ==//,又⊄PQ 平面ACD ,DC ⊂平面ACD , 所以//PQ 平面ACD(Ⅱ)在ABC ∆中,BQ AQ BC AC ===,2,所以AB CQ ⊥ 而DC ⊥平面ABC ,DC EB //,所以⊥EB 平面ABC 而⊂EB 平面ABE , 所以平面ABE ⊥平面ABC , 所以⊥CQ 平面ABE 由(Ⅰ)知四边形DCQP 是平行四边形,所以CQ DP // 所以⊥DP 平面ABE , 所以直线AD 在平面ABE 内的射影是AP , 所以直线AD 与平面ABE 所成角是DAP ∠在APD Rt ∆中,5122222=+=+=DC AC AD ,1sin 2=∠==CAQ CQ DP 所以5551sin ===∠AD DP DAP。