元法概念意义与应用

合集下载

有限元法

有限元法

李中秋20111323 热能一班第一章有限元法简介有限元法是求取复杂微分方程近似解的一种非常有效的工具,是现代数字化科技的一种重要基础性原理。

将它用于在科学研究中,可成为探究物质客观规律的先进手段。

将它应用于工程技术中,可成为工程设计和分析的可靠工具。

1.1 有限元法发展简史早在1870年,英国科学家Rayleigh就采用假想的“试函数”来求解复杂的微分方程,1909年Ritz将其发展成为完善的数值近似方法,为现代有限元方法打下坚实基础。

20世纪40年代,由于航空事业的飞速发展,设计师需要对飞机结构进行精确的设计和计算,便逐渐在工程中产生了的矩阵力学分析方法;1943年,Courant 发表了第一篇使用三角形区域的多项式函数来求解扭转问题的论文;1956年波音公司的Turner,Clough,Martin和Topp在分析飞机结构时系统研究了离散杆、梁、三角形的单元刚度表达式;1960年Clough在处理平面弹性问题,第一次提出并使用“有限元方法”(finite element met hod)的名称;1955年德国的Argyris出版了第一本关于结构分析中的能量原理和矩阵方法的书,为后续的有限元研究奠定了重要的基础,1967年Zienkiewicz和Cheung出版了第一本有关有限元分析的专著;1970年以后,有限元方法开始应用于处理非线性和大变形问题;我国的一些学者也在有限元领域做出了重要的贡献,如胡海昌于1954提出了广义变分原理[8],钱伟长最先研究了拉格朗日乘子法与广义变分原理之间关系,钱令希在20世纪五十年代就研究了力学分析的余能原理,冯康在20世纪六十年代就独立地、并先于西方奠定了有限元分析收敛性的理论基础。

1.2基本概念1.2.1 有限单元数值计算的思路是将复杂问题简单化,求近似解。

即将复杂的结构分解成若干相对简单的构件或部件,分别分析,然后求解。

而且这种近似解可以收敛于问题的精确解。

二元函数求极限的积分换元法综述

二元函数求极限的积分换元法综述

二元函数求极限的积分换元法综述在高等数学中,求二元函数的极限是一个非常重要的概念。

对于一些复杂的函数,直接求解其极限可能会比较困难。

而积分换元法是一种常用的有效方法,可以简化二元函数极限的求解过程。

本文将对积分换元法在求解二元函数的极限中的应用进行综述。

一、积分换元法简介积分换元法是一种常用的积分求解技巧,它通过引入新的变量替代原变量,从而将原积分转化为更加简单的形式。

在二元函数求极限中,我们可以借鉴积分换元法的思想,将原二元函数转化为与之等价的更容易求解的函数形式。

二、二元函数求极限的积分换元法步骤1. 确定变量替换对于给定的二元函数,我们首先需要确定合适的变量替换。

通常情况下,我们选择将二元函数中的一个自变量表示为另一个自变量的函数形式。

2. 进行变量替换根据确定的变量替换,我们将原二元函数中的自变量进行对应的替换。

这样可以将原二元函数转化为只含有一个变量的函数。

3. 求解极限通过变量替换,我们得到了一个只含有一个变量的函数。

接下来,我们可以使用常规的一元函数求极限的方法,对这个函数进行求解。

4. 还原变量在求解极限后,我们需要将之前引入的新变量还原为原二元函数的自变量。

这样可以得到最终的极限结果。

三、实例分析以求解二元函数 f(x,y) = sin(x^2 + y^2) / (x^2 + y^2) 在点 (0,0) 处的极限为例,综合使用积分换元法进行求解。

1. 确定变量替换我们可以将 x^2 + y^2 表示为 r^2,其中 r 表示点 (x, y) 到原点的距离。

2. 进行变量替换根据变量替换 r^2 = x^2 + y^2,我们将原二元函数中的自变量进行替换。

这样可以得到性质更简单的新的函数 f(r) = sin(r^2) / r^2。

3. 求解极限通过变量替换,我们将二元函数的极限转化为一元函数的极限。

对新函数 f(r) 使用一元函数求极限的方法,我们得到lim(r→0) f(r) = 1。

偏微分方程的有限元法

偏微分方程的有限元法
第3页/共106页
第五章 偏微分方程的有限元法
有限元法特点有限元法的物理意义直观明确,理论完整可靠。 因为变分原理描述了支配物理现象的物理学中的最小作用原理(如力学中的最小势能原理)。 优异的解题能力。有限元法对边界几何形状复杂以及媒质物理性质变异等复杂物理问题求解上,有突出优点: ① 不受几何形状和媒质分布的复杂程度限制。 ②不必单独处理第二、三类边界条件。 ③ 离散点配置比较随意,通过控制有限单元剖分密度和单元插值函数的选取,可以充分保证所需的数值计算精度。
有限元法于上世纪50年代首先在力学领域-----飞机结构的静、动态特性分析中得到应用,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。有限元法主要用于求解拉普拉斯方程和泊松方程所描述的各类物理场中。
第1页/共106页
第五章 偏微分方程的有限元法
有限元法---变分原理
第4页/共106页
5.1 泛函与变分原理
数学上,通常自变量与因变量间的关系称为函数,而泛函则是函数集合的函数,也就是函数的函数,即自变量为函数,而不是变量。
5.1.1 泛函的定义 泛函通常是指一种定义域为函数,而值域为实数的“函数”。 设C是函数的集合,B是实数集合。如果对C中的任一元素y(x),在B中都有一个元素J与之对应,则称J为y(x)的泛函,记为J[y(x)]。
5.1.3 泛函的变分
定义最简泛函
F(x,y,y’)称为泛函的“核函数”
泛函的变分
最简泛函: 核函数只包含自变量 x、未知函数y(x)以及导数y’(x)
第9页/共106页
5.1 泛函与变分原理
利用二元函数的泰勒展开
第10页/共106页
5.1 泛函与变分原理
其中
分别称为泛函的一阶变分和二阶变分。

元法的讲解

元法的讲解

第四章求解导热问题的有限单元法第4.1节概述第4.2节泛函变分原理第4.3节有限单元法第4.1节概述粗略地讲:有限元法是获得微分方程近似解的一种方法,是一种适合计算机来求解的数值计算方法。

(元素特性方程和总体合成方程的建立可以采用直接法,变分法,加权余数法和能量平衡法等四种方法之一,所以粗略地说有限元法是获得微分方程近似解的一种方法也有道理)比较严格的定义:有限单元法是求解泛函变分问题的一种近似方法。

那么这两种说法有什么联系,或者说是共同之处呢?变分和微分是对未知函数的不同描述,同一连续介质问题往往都可以找到微分和变分的等价表达方式。

变分和微分几乎是同时发展起来的两个数学分支,其目的是相同的,都是求解未知函数,但是方法上有很大差别。

在已知边界条件的情况下,求微分方程的精确解析虽然已有完整的理论,但是真正能解出的只有极少数的几种简单情况,因为在很多情况下,微分方程并不存在初等函数解析解。

(对于各种各样的映射,初等函数的表达能力实在太有限了,初等函数包括:冥函数、指数函数、对数、三角函数,以及它们的四则运算等。

)由于寻求微分方程的初等函数解析解有困难,所以我们在前一章讲述了微分方程的近似解法,即差分法。

泛函变分原理虽然也可以用解析法(即积分)求得未知函数,但是因为有很多被积函数根本无法找到初等原函数,也就不能积分,尤其是对于二维和三维问题,解析法更加困难。

所以我们也要寻求泛函变分的近似解法。

泛函变分的近似解法包括里兹法和有限元法(里兹法是有限元法的前身),这两种方法的原理完全相同,即:构造一个近似的初等函数,用近似的初等函数去逼近未知函数。

因为任何未知函数都可以找到它的近似初等函数(如:包含待定系数的多项式或三角函数),所以从根本上克服了解析法(无法找到初等原函数)的局限性—牺牲极小的理论计算精度,却换回了对大量复杂二维和三维工程问题的适用性。

微分方程的近似解法:差分法泛函变分的近似解法:里兹法,有限元法第4.2节泛函变分原理一、泛函的概念(借助讲解)二、变分的概念借助普通函数微分的概念,用类比法讲解三、泛函的极值条件借助普通函数的极值条件,用类比法讲解四、里兹法(补充内容,但是很重要)泛函变分的近似解法一、泛函的概念通过教材§泛函的概念:函数的函数泛函与普通函数的区别就在于:函数的自变量是数;而泛函的自变量则是函数,泛函的定义域由具有一定条件的一组函数组成。

有限元法和应用总结课件

有限元法和应用总结课件

线弹性有限元
线弹性有限元是以理想弹性体为研究对象旳, 所考虑旳变形建立在小变形假设旳基础上。在 此类问题中,材料旳应力与应变呈线性关系, 满足广义胡克定律;应力与应变也是线性关系, 线弹性问题可归结为求解线性方程问题,所以 只需要较少旳计算时间。假如采用高效旳代数 方程组求解措施,也有利于降低有限元分析旳 时间。
平面单元划分原则
• 1.单元形状:常用单元形状有三角形单元、矩形单元和等 参数单元。他们旳特点是单元旳节点数越多,其计算精 度越高,三角形单元与等参数单元可适应任意边界。
• 2.划分原则: • 1)划分单元旳个数,视计算机要求旳精度和计算机容量
而定,单元分得越多,块越小其精度越高,但需要旳计 算机容量越大,所以,须根据实际情况而定。 • 2)划分单元旳大小,可根据部位不同有所不同,在位 移或应力变化大旳部位取得单元要小;在位移或应力变 化小旳部位取得单元要大,在边界比较平滑旳部位,单 元可大。
移,另一部分基本未知量为节点力。
*8.有限元法分析过程(续)
• 有限元位移法计算过程旳系统性、规律性强,尤 其合适于编程求解。一般除板壳问题旳有限元应 用一定量旳混正当外,其他全部采用有限元位移 法。所以,一般不做尤其申明,有限元法指旳是 有限元位移法。
• 有限元分析旳后处理主要涉及对计算成果旳加工 处理、编辑组织和图形表达三个方面。它能够把 有限元分析得到旳数据,进一步转换为设计人员 直接需要旳信息,如应力分布状态、构造变形状 态等,而且绘成直观旳图形,从而帮助设计人员 迅速旳评价和校核设计方案。
• 虚位移原理是平衡方程和力旳边界条件旳等效积 分旳“弱”形式;
• 虚应力原理是几何方程和位移边界条件旳等效积 分“弱”形式。
3.虚功原理(续)

有限元方法的发展及应用

有限元方法的发展及应用

有限元⽅法的发展及应⽤有限元⽅法的发展及应⽤摘要:有限元法是⼀种⾼效能、常⽤的计算⽅法。

有限元法在早期是以变分原理为基础发展起来的,所以它⼴泛地应⽤于以拉普拉斯⽅程和泊松⽅程所描述的各类物理场中。

⾃从1969年以来,某些学者在流体⼒学中应⽤加权余数法中的迦辽⾦法或最⼩⼆乘法等同样获得了有限元⽅程,因⽽有限元法可应⽤于以任何微分⽅程所描述的各类物理场中,⽽不再要求这类物理场和泛函的极值问题有所联系。

基本思想:由解给定的泊松⽅程化为求解泛函的极值问题。

1有限元法介绍1.1有限元法定义有限元法(FEA,Finite Element Analysis)的基本概念是⽤较简单的问题代替复杂问题后再求解。

它是起源于20世纪50年代末60年代初兴起的应⽤数学、现代⼒学及计算机科学相互渗透、综合利⽤的边缘科学。

有限元法的基本思想是将求解域看成是由许多称为有限元的⼩的互连⼦域组成,对每⼀单元假定⼀个合适的(较简单的)近似解,然后推导求解这个域总的满⾜条件(如结构的平衡条件),从⽽得到问题的解。

这个解不是准确解,⽽是近似解,因为实际问题被较简单的问题所代替。

由于⼤多数实际问题难以得到准确解,⽽有限元不仅计算精度⾼,⽽且能适应各种复杂形状,因⽽成为⾏之有效的⼯程分析⼿段。

有限元法最初应⽤在⼯程科学技术中,⽤于模拟并且解决⼯程⼒学、热学、电磁学等物理问题。

1.2有限元法优缺点有限元⽅法是⽬前解决科学和⼯程问题最有效的数值⽅法,与其它数值⽅法相⽐,它具有适⽤于任意⼏何形状和边界条件、材料和⼏何⾮线性问题、容易编程、成熟的⼤型商⽤软件较多等优点。

(1)概念浅显,容易掌握,可以在不同理论层⾯上建⽴起对有限元法的理解,既可以通过⾮常直观的物理解释来理解,也可以建⽴基于严格的数学理论分析。

(2)有很强的适⽤性,应⽤范围极其⼴泛。

它不仅能成功地处理线性弹性⼒学问题、费均质材料、各向异性材料、⾮线性应⽴-应变关系、⼤变形问题、动⼒学问题已及复杂⾮线性边界条件等问题,⽽且随着其基本理论和⽅法的逐步完善和改进,能成功地⽤来求解如热传导、流体⼒学、电磁场等领域的各类线性、⾮线性问题。

换元法后新方程和原方程

换元法后新方程和原方程

换元法后新方程和原方程【原创实用版】目录1.换元法的概念和作用2.换元法后新方程的生成3.新方程与原方程的关系4.换元法在实际问题中的应用正文一、换元法的概念和作用换元法是数学中一种常用的方法,它通过将一个复杂数学问题转换为另一个相对简单的问题,使得问题得以简化和解决。

换元法可以使问题中的变量和关系更加清晰,从而更容易找到问题的解决方案。

这种方法在微积分、代数和几何等领域都有广泛的应用。

二、换元法后新方程的生成在使用换元法时,我们通常会引入一个新的变量,用以表示原问题中的某个变量或关系的变化。

例如,如果我们有一个关于 x 的方程,我们可以通过引入一个新的变量 y 来表示 x 的平方,从而将原方程转化为一个关于 y 的新方程。

这个新方程通常会更容易求解,因为它表达了原问题中的变量和关系之间的关系。

三、新方程与原方程的关系新方程与原方程之间的关系是紧密相连的。

新方程的解通常可以转化为原方程的解,而原方程的解也可以通过新方程得到。

换元法实际上是将原方程转化为一个新方程,从而将问题转化为一个更容易解决的形式。

通过这种方式,我们可以更容易地找到问题的解决方案。

四、换元法在实际问题中的应用换元法在实际问题中有广泛的应用。

例如,在解决物理问题时,我们通常会使用换元法来简化问题。

通过引入新的变量,我们可以将复杂的物理问题转化为更容易解决的数学问题。

同样,在解决经济问题时,我们也会使用换元法来简化问题。

通过引入新的变量,我们可以更好地理解经济问题的本质,并找到问题的解决方案。

总的来说,换元法是一种非常有用的数学方法,它可以帮助我们简化复杂的问题,并更容易地找到问题的解决方案。

不定积分第二种换元法

不定积分第二种换元法
通过简单的积分问题,如 $int x^2 dx$,展示如何使用第二种换元法进行求解。解析过程中强调变量代 换和积分区间的调整。
复杂实例解析
总结词
复杂实例展示了方法的实际应用
详细描述
选取具有挑战性的不定积分问题,如 $int frac{e^x}{x} dx$,逐步展示如何通过第二种 换元法化简积分,并最终得出答案。
扩展微积分的应用范围
掌握第二种换元法后,学生可以在更广泛的 领域应用微积分知识,解决实际问题。
在其他数学领域的应用
在实变函数中的应用
实变函数是研究实数范围上的函数的数学分 支,第二种换元法在实变函数中也有广泛的 应用。
在复变函数中的应用
复变函数是研究复数范围内函数的数学分支, 其中许多问题可以通过第二种换元法得到解 决。
在第二种换元法中,首先需要选择一个适当的换元函数,通常是为了简化被积函数的形式。然后确定新变量的范 围,将原不定积分中的自变量替换为新变量。接着将被积函数转化为新变量的函数,最后根据新变量的范围计算 不定积分的结果。
04
第二种换元法实例解析
简单实例解析
总结词
简单实例有助于理解基本概念和方法
详细描述
THANKS
感谢观看
03
第二种换元法原理
第二种换元法的定义
总结词
不定积分的第二种换元法是通过引入新的变量来简化不定积分的过程。
详细描述
不定积分的第二种换元法是一种基于变量替换的方法,通过选择适当的换元函 数,将原不定积分转化为更易于计算的形式。
第二种换元法的适用范围
总结词
第二种换元法适用于被积函数难以直接积分的情况,尤其是含有根号或三角函数 的不定积分。
意义
不定积分第二种换元法的意义在于,它提供了一种有 效的工具来解决一些难以处理的不定积分问题。在实 际应用中,许多物理、工程和科学问题都需要解决不 定积分,而第二种换元法可以帮助我们更准确地计算 这些不定积分,从而为解决实际问题提供更可靠的数 学支持。此外,不定积分第二种换元法也是数学理论 体系的重要组成部分,它推动了数学的发展和进步。

有限元法的基本概念和特点

有限元法的基本概念和特点

边界条件和载荷对分析结果的影 响
边界条件和载荷的设置直接影响分析结果 的精度和可靠性,因此需要仔细考虑和验 证。
03 有限元法的特点
适应性
有限元法能够适应各种复杂形状和边 界条件,通过将连续的求解域离散化 为有限个小的单元,实现对复杂问题 的近似求解。
有限元法的适应性表现在其能够处理 不规则区域、断裂、孔洞等复杂结构 ,并且可以根据需要自由地组合和修 改单元,以适应不同的求解需求。
降低制造成本。
THANKS FOR WATCHING
感谢您的观看
通过将不同物理场(如结构、流体、电磁等)耦 合在一起,可以更准确地模拟复杂系统的行为。
多物理场耦合分析将为解决复杂工程问题提供更 全面的解决方案面具有重要作用。
通过先进的建模技术和优化 算法,可以更有效地设计出 高性能、轻量化的结构。
有限元法在结构优化方面的应 用将有助于提高产品的性能和
近似性
利用数学近似方法对每个单元体的行 为进行描述,通过求解代数方程组来 获得近似解。
通用性
适用于各种复杂的几何形状和边界条 件,可以处理多种物理场耦合的问题。
高效性
通过计算机实现,能够处理大规模问 题,提高计算效率和精度。
02 有限元法的基本概念
离散化
离散化
将连续的物理系统分割成有限个小的、相互连接的单元,每个单 元称为“有限元”。
随着计算机技术的发展,有限元法的精度不断提高,对于一些高精度要求的问题 ,有限元法已经成为一种重要的数值分析工具。
04 有限元法的应用领域
工程结构分析
01
02
03
结构强度分析
通过有限元法,可以对工 程结构进行强度分析,评 估其在各种载荷条件下的 稳定性。

有限单元法原理及应用简明教程ppt课件

有限单元法原理及应用简明教程ppt课件

(a) 瞬变结构
(b) 分离体分析
(c) 平衡状态分析
图2-32 瞬变结构
24
第二章 结构几何构造分析
(2) 两刚片规则 两刚片用三根既不完全平行也不交于同一点的链杆 相联,所得结构是几何不变结构。
(a) 铰与链杆连接两刚片 (b) 三链杆连接两刚片 图2-33 两刚片连接规则
25
第二章 结构几何构造分析

生刚体位移时,称之为几何不变结构或几何稳定结构,

反之则称为几何可变结构或几何不稳定结构。几何可
目 录
变结构不能承受和传递载荷。对结构进行几何构造分
析也是能够对工程结构作有限单元法分析的必要条件。
11
第二章 结构几何构造分析
(a) 结构本身可变 (b) 缺少必要的约束条件 (c) 约束汇交于一点 图2-1 几何可变结构

何不变结构上,由增加二元体而发展的结构,是一个

几何不变结构。铰接三角形是最简单的几何不变结构。

图2-31 铰接三角形
23
第二章 结构几何构造分析
结构的特征是:当它受载荷作用时会产生微小的 位移, 但位移一旦发生后, 即转变成一几何不变结 构,但结构的内力可能为无限大值或不定值,这样的 结构称为瞬变结构。显然,瞬变结构在工程结构设计 中应尽量避免。
(5) 约束处理,求解系统方程
(6) 其它参数计算
4
第一章 概述
图1-2 工程问题有限单元法分析流程
5
第一章 概述
1.3 工程实例
返 回 章 节 目 录
(a) 铲运机举升工况测试
(b) 铲运机工作装置插入工况有限元分析
图1-3 WJD-1.5型电动铲运机

元素法定积分的应用(面积)

元素法定积分的应用(面积)

面积的计算方法
直接计算法
对于规则图形,直接使用公式计 算其面积。
微元法
将不规则图形划分为若干个小的规 则图形,然后分别计算其面积,最 后求和得到总面积。
积分法
将不规则图形划分为若干个小的规 则图形,然后对每个小图形的面积 进行积分,最后求和得到总面积。
05
元素法在面积计算中的应用
面积计算的难点
元素法可以处理不规则和 复杂几何形状的面积计算, 使得计算更加灵活和实用。
高精度计算
通过将整体划分为多个小 部分,元素法可以获得更 高的计算精度。
适用范围广
元素法不仅适用于二维面 积计算,还可以扩展到三 维和其他更高维度的计算中的贡献
简化计算过程
应用广泛
元素法将复杂的积分或面积计算分解 为更小、更易于处理的部分,从而简 化了计算过程。
元素法的原理是将积分区间分成若干个小区间,每个小区间上的函数值可以近似为一个常数或已知函数,从而 将积分转化为求和问题。
元素法的应用范围
元素法适用于不规则区域和复杂几何形状的面积计算。通过将面积划分为若干个 小的矩形或平行四边形,我们可以近似计算出整个区域的面积。
除了面积计算,元素法还可以应用于体积计算、曲线长度计算等其他类型的积分 问题。
元素法的优势
元素法的优点在于其简单易行,能够将复杂 问题转化为简单问题,降低了解决问题的难 度。
元素法具有广泛的应用范围,可以用于解决 各种类型的积分问题,尤其是不规则区域和 复杂几何形状的面积和体积计算。
元素法还具有直观性和可操作性强的特点, 能够通过图形直观地展示计算过程和结果。
03
元素法在积分中的应用
背景介绍
在实际应用中,许多复杂图形的面积 无法直接计算,如不规则的多边形、 曲线围成的区域等。

有限元法_精品文档

有限元法_精品文档
这种方法要求能建立微分方程,并能给出边 界条件的数学表达式,因此,对于一些不规则的 几何形状和不规则的特殊边界条件难以应用。
12
一、有限元法的基本概念
1.什么是有限元法
我们实际要处理的对象都是连续体,在传统设 计思维和方法中,是通过一些理想化的假定后,建 立一组偏微分方程及其相应的边界条件,从而求出 在连续体上任一点上未知量的值。
25
4)具有灵活性和适用性,适应性强(它可以把形状 不同、性质不同的单元组集起来求解,故特别适 用于求解由不同构件组合的结构,应用范围极为 广泛。它不仅能成功地处理如应力分析中的非均 匀材料、各向异性材料、非线性应力应变以及复 杂的边界条件等问题,且随着其理论基础和方法 的逐步完善,还能成功地用来求解如热传导、流 体力学及电磁场领域的许多问题)
21
对于一个具体的工程结构,单元的划分越小, 求解的结果就越精确,同时,其计算工作量也就越 大。
梯子的有限元模型不到100个方程; 在ANSYS分析中,一个小的有限元模型可能有几 千个未知量,涉及到的单元刚度系数几百万个。 单元划分的精细程度,取决于工程实际对计算 结果精确性的要求。
22
4)有限元分析 有限元分析就是利用数学近似的方法对真实
5)在具体推导运算过程中,广泛采用了矩阵方法。
26
2.有限元法的作用 1)减少模型试验的数量(计算机模拟允许对大量
的假设情况进行快速而有效的试验); 2)模拟不适合在原型上试验的设计(例如:器官
移植、人造膝盖); 3)节省费用,降低设计与制造、开发的成本; 4)节省时间,缩短产品开发时间和周期; 5)创造出高可靠性、高品质的产品。
因为点是无限多的,存在无限自由度的问题, 很难直接求解这种偏微分方程用来解决实际工程问 题,因此需要采用近似方法来处理。

定积分第一类换元法和第二类换元法

定积分第一类换元法和第二类换元法

定积分是微积分中的重要概念,通过定积分我们可以求解曲线与坐标轴之间的面积、体积以及质心等问题。

在求解定积分时,换元法是一种常用且有效的方法。

换元法分为第一类换元法和第二类换元法,它们在不同类型的积分计算中发挥着重要作用。

下面我们将分别介绍这两种换元法的原理和应用。

一、第一类换元法1.1 换元法简介第一类换元法,又称代换法或变量代换法,是对定积分中被积函数中的变量进行替换,将原来的积分变为更容易求解的积分。

其基本思想是通过引入适当的新变量,将被积函数中的复杂部分转化为简单的形式,从而便于积分计算。

1.2 换元法的步骤(1)寻找合适的变量替换:根据被积函数的形式和特点,选择适当的新变量代替原来的变量。

(2)计算新变量的微分:对新变量进行微分,求出新变量的微分表达式。

(3)将被积函数用新变量表示:将原来的积分中的被积函数用新变量表示出来,得到新的积分形式。

(4)进行积分计算:对新的积分形式进行计算,得出最终结果。

1.3 换元法的应用第一类换元法常用于代换型积分,如含有根式、三角函数等形式的积分。

通过合适的变量替换,可以将原积分化为简单的形式,从而便于求解。

二、第二类换元法2.1 换元法简介第二类换元法,又称参数代换法或极坐标代换法,是通过引入参数来替换被积函数中的自变量,从而实现对原积分的简化。

这种换元法常用于解决平面曲线和曲面的面积、弧长以及质心等问题。

2.2 换元法的步骤(1)引入参数:选择适当的参数替换自变量,通常选择直角坐标系下的参数形式或极坐标系下的参数形式。

(2)表达被积函数:将原来的被积函数用参数表示出来,并求出新的被积函数。

(3)进行积分计算:对新的被积函数进行积分计算,得出最终结果。

2.3 换元法的应用第二类换元法常用于参数型积分,如平面曲线、曲面以及柱面体的面积、弧长和质心的计算。

通过引入参数替换自变量,可以将原积分化为简单的形式,从而便于求解。

三、第一类换元法和第二类换元法的比较3.1 适用范围(1)第一类换元法适用于一般的代换型积分,如含有根式、三角函数等形式的积分;(2)第二类换元法适用于参数型积分,如平面曲线、曲面以及柱面体的面积、弧长和质心的计算。

生死单元法

生死单元法

生死单元法是一个哲学概念,涉及到生与死的关系,生命存在的本质,以及人的意义和目的等深层次的问题。

在回答这个问题之前,需要先明确一下问题的具体含义,以及相关背景和语境。

首先,生死单元法指的是将生命视为一个不可分割的整体,认为生命的过程和意义是由一系列相互关联的生死单元所构成的。

这种观点强调生命的连续性和整体性,认为生命是一个不断变化、不断发展的过程,其中每个阶段都有其特定的意义和价值。

从哲学角度来看,生死单元法的提出是为了解决一些关于生命本质的问题。

例如,生命的意义和目的是什么?生命的价值是什么?这些问题涉及到人类存在的意义和目的,以及生命的本质和价值。

生死单元法认为生命是一个整体,其中每个阶段都是一个生死单元,每个生死单元都有其特定的意义和价值。

因此,我们应该尊重生命的整体性,关注生命的每一个阶段,而不是仅仅关注某个特定的方面。

在现实生活中,生死单元法也有着广泛的应用。

例如,在医疗领域中,医生会关注患者的生命过程,从生到死、从死到生的一系列生死单元中寻找最佳的治疗方案。

在教育领域中,教师也会关注学生的成长过程,从出生到成熟、从成熟到衰老的一系列生死单元中寻找最佳的教育方式。

此外,在人际关系中,我们也需要尊重对方的生命过程,关注彼此之间的生死单元,建立良好的人际关系。

总之,生死单元法是一种哲学观点和方法论,它强调生命的整体性和连续性,认为每个生命阶段都有其特定的意义和价值。

在现实生活中,我们应该尊重生命的整体性,关注生命的每一个阶段,建立良好的人际关系。

同时,我们也需要反思自己的生命过程和价值观,寻找自己存在的意义和目的。

以上内容仅供参考,如果需要更多信息,建议咨询哲学方面的专家。

(计算物理学)第10章有限元方法

(计算物理学)第10章有限元方法
02
使用数值方法求解线性方程组,得到每个节点的物 理量值。
03
求解线性方程组是有限元方法的核心步骤,其结果 的精度和稳定性对整个计算过程至关重要。
04
有限元方法的实现与应用
有限元分析软件介绍
COMSOL Multiphysics
COMSOL是一款强大的有限元分析软件, 支持多物理场模拟,包括电磁场、流体动力 学、化学反应等。
求解方程
通过有限元方法求解微分方程, 得到每个有限元的位移、应力 等结果。
建立模型
根据实际问题建立数学模型, 包括几何形状、材料属性、边 界条件等。
施加载荷和约束
根据实际情况,对有限元施加 适当的载荷和约束条件。
结果后处理
对求解结果进行后处理,包括 绘制云图、生成动画等。
有限元方法的应用领域
01
02
案例二:机械零件的应力分析
总结词
机械零件的应力分布和最大承受载荷是设计 时必须考虑的重要因素,有限元方法能够精 确模拟零件在不同工况下的应力状态。
详细描述
利用有限元方法,可以建立机械零件的模型 并模拟其在工作过程中所承受的应力分布。 这种方法能够预测零件在不同工况下的最大 承受载荷,为设计优化提供依据,提高零件
03
结构分析
用于分析结构的应力、应 变、位移等,广泛应用于 航空航天、汽车、土木工 程等领域。
流体动力学
用于分析流体动力学问题, 如流体流动、传热等,广 泛应用于能源、环境等领 域。
ቤተ መጻሕፍቲ ባይዱ
电磁场分析
用于分析电磁场问题,如 电磁波传播、电磁感应等, 广泛应用于通信、雷达、 电子设备等领域。
05
有限元方法的优缺点与改进 方向
03

有限单元法

有限单元法
36
37
•从单纯的结构力学计算发展到求解许多物理场问题 有限元分析方法最早是从结构化矩阵分析发展而
来,逐步推广到板、壳和实体等连续体固体力学分析, 实践证明这是一种非常有效的数值分析方法。而且从 理论上也已经证明,只要用于离散求解对象的单元足 够小,所得的解就可足够逼近于精确值。所以近年来 有限元方法已发展到流体力学、温度场、电传导、磁 场、渗流和声场等问题的求解计算,最近又发展到求 解几个交叉学科的问题。
时计算模型的规模不能超过1万阶方程。Microsoft Windows操作
系统和32位的Intel Pentium 处理器的推出为将PC机用于有限元
分析提供了必需的软件和硬件支撑平台。因此当前国际上著名的
有限元程序研究和发展机构都纷纷将他们的软件移植到Wintel平
台上。
42
43
44
4.2 有限单元法的分析步骤
40
但是如果用手工方式来建立这个模型,然后再处 理大量的计算结果则需用几周的时间。可以毫不夸 张地说,工程师在分析计算一个工程问题时有80%以 上的精力都花在数据准备和结果分析上。
因此目前几乎所有的商业化有限元程序系统都 有功能很强的前置建模和后置数据处理模块。在强 调"可视化"的今天,很多程序都建立了对用户非常友 好的GUI(Graphics User Interface),使用户能以可 视图形方式直观快速地进行网格自动划分,生成有限 元分析所需数据,并按要求将大量的计算结果整理成 变形图、等值分布云图,便于极值搜索和所需数据的 列表输出。
53
54
55
56
平面应力
平面应变
57
58
59
60
61
62
63

有限元分析及应用

有限元分析及应用

应力边界条件
58
.
53
二维问题:应力边界条件
xlyxmX xylymY
59
.
54
圣维南原理(局部影响原理)
物体表面某一小面积上作用的外力,如果为一静力等
效的力系所代替,只能产生局部应力的改变,而在离
这一面积稍远处,其影响可以忽略不计。
60
.
55
61
.
56
62
.
57
均匀分布载荷作用 下的平板,应力分 布是均匀的。
工程领域中不断得到深入应用,现已遍及
宇航工业、核工业、机电、化工、建筑、
海洋等工业,是机械产品动、静、热特性
分析的重要手段。早在70年代初期就有人
给出结论:有限元法在产品结构设计中的
应用,使机电产品设计产生革命性的变化,
理论设计代替了经验类比设计。
5
.
5
有限元法的孕育过程及诞生和发展
牛顿(Newton)
-0 .0 2
-0 .0 0 1
-0 .0 4
-0 .0 0 2
-0 .0 6
-0 .0 0 3
0 .0 5 4
0 .0 5 6
0 .0 5 8
0 .0 6
X
-0 .0 8
-0 .1 0
0 .0 2
0 .0 4
0 .0 6
0 .0 8
0 .1
0 .1 2
X
29
.
27
30
.
28
受垂直载荷的托架
31
从M点到斜微分面abc的垂直距离dh(图中 未标出),是四面微分体的高。
56
.
51
设斜微分面的面积为dA,则其它三个微分

微元法及定积分的几何应用

微元法及定积分的几何应用

定积分的定义
定义
定积分是积分区间[a,b]上,由函数f(x)与x轴围成的曲边梯形的面积,记作 ∫baf(x)dx。
几何意义
定积分的值等于积分区间[a,b]上曲线y=f(x)与直线x=a、x=b以及x轴所围成的 平面图形的面积。
定积分的性质
线性性质
∫baf(x)dx+∫baf(x)dx=∫baf( x)+f(x)dx
微元法可以用于分析流体动力学 问题,例如计算流体流动的速度 场和压力场。
感谢您的观看
THANKS
微元法的计算方法
01
微元法的计算步骤包括:选取微元、确定微元的几何意义、建 立微元的数学模型、进行微元分析、求和得到整体解。
02
在选取微元时,需要保证微元的几何意义明确,数学模型简单,
便于分析和计算。
在进行微元分析时,可以采用积分的方法,将无穷多个微元的
03
值相加得到整体解。
02
定积分பைடு நூலகம்基本概念
定积分在微元法中的应用
解决实际问题
数学建模
定积分的应用范围非常广泛,可以用于解决 各种实际问题,如计算变速直线运动的位移、 求解变力做功等问题。
定积分在数学建模中也有广泛应用,如通过 定积分建立描述自然现象和社会现象的数学 模型。
05
微元法及定积分的实际应用
在物理学中的应用
计算曲线长度
在物理学中,微元法常用于计算曲线或曲面的长 度,例如行星轨道、磁场线等。
区间可加性
∫baf(x)dx=∫caf(x)dx+∫baf( x)dx,c∈(a,b)
积分中值定理
若f(x)在[a,b]上连续,则存在 一点ξ∈[a,b],使得 ∫baf(x)dx=f(ξ)(b-a)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

元法概念意义与应用 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-有限元法概论、意义与应用班级: 2013信息姓名:张正学号指导老师:曾伟梁摘要:有限元法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。

采用不同的权函数和插值函数形式,便构成不同的有限元方法。

关键词:有限元法;变分原理;加权余量法;函数。

Abstract:Finite element method is based on the variational principle and the weighted residual method, the basic idea is to solve the computational domain is divided into a finite number of non-overlapping units, each unit, select some appropriate function for solving the interpolation node points as , the differential variables rewritten or its derivative by the variable value of the selected node interpolation functions consisting of linear expressions, by means of variational principle or weighted residual method, the discrete differential equations to solve. Different forms of weight functions and interpolation functions, it constitutes a different finite element method.Keywords:Finite element method; variational principle; weighted residual method; function。

引言随着现代科学技术的发展,人们正在不断建造更为快速的交通工具、更大规模的建筑物、更大跨度的桥梁、更大功率的发电机组和更为精密的机械设备。

这一切都要求工程师在设计阶段就能精确地预测出产品和工程的技术性能,需要对结构的静、动力强度以及温度场、流场、电磁场和渗流等技术参数进行分析计算。

例如分析计算高层建筑和大跨度桥梁在地震时所受到的影响,看看是否会发生破坏性事故;分析计算核反应堆的温度场,确定传热和冷却系统是否合理;分析涡轮机叶片内的流体动力学参数,以提高其运转效率。

这些都可归结为求解物理问题的控制偏微分方程式往往是不可能的。

近年来在计算机技术和数值分析方法支持下发展起来的有限元分析(FEA,Finite Element Analysis)方法则为解决这些复杂的工程分析计算问题提供了有效的途径。

有限元法是一种高效能、常用的计算方法.有限元法在早期是以变分原理为基础发展起来的,所以它广泛地应用于以拉普拉斯方程和泊松方程所描述的各类物理场中(这类场与泛函的极值问题有着紧密的联系)。

自从1969年以来,某些学者在流体力学中应用加权余数法中的迦辽金法(Galerkin)或最小二乘法等同样获得了有限元方程,因而有限元法可应用于以任何微分方程所描述的各类物理场中,而不再要求这类物理场和泛函的极值问题有所联系.有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。

在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。

在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。

根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。

从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。

不同的组合同样构成不同的有限元计算格式。

对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。

令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。

插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。

有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。

单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。

常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。

在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。

对于二维三角形和四边形电源单元,常采用的插值函数为有Lagrange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。

一、有限元法的孕育过程及诞生和发展大约在300年前,牛顿和莱布尼茨发明了积分法,证明了该运算具有整体对局部的可加性。

虽然,积分运算与有限元技术对定义域的划分是不同的,前者进行无限划分而后者进行有限划分,但积分运算为实现有限元技术准备好了一个理论基础。

在牛顿之后约一百年,着名数学家高斯提出了加权余值法及线性代数方程组的解法。

这两项成果的前者被用来将微分方程改写为积分表达式,后者被用来求解有限元法所得出的代数方程组。

在18世纪,另一位数学家拉格郎日提出泛函分析。

泛函分析是将偏微分方程改写为积分表达式的另一途经。

在19世纪末及20世纪初,数学家瑞雷和里兹首先提出可对全定义域运用展开函数来表达其上的未知函数。

1915年,数学家伽辽金提出了选择展开函数中形函数的伽辽金法,该方法被广泛地用于有限元。

1943年,数学家库朗德第一次提出了可在定义域内分片地使用展开函数来表达其上的未知函数。

这实际上就是有限元的做法。

所以,到这时为止,实现有限元技术的第二个理论基础也已确立。

“有限单元”,这样的名词。

此后,这样的叫法被大家接受,有限元技术从此正式诞生。

1990年10月美国波音公司开始在计算机上对新型客机B-777进行“无纸设计”,仅用了三年半时间,于1994年4月第一架B-777就试飞成功,这是制造技术史上划时代的成就,其中在结构设计和评判中就大量采用有限元分析这一手段。

在有限元分析的发展初期,由于其基本思想和原理的“简单”和“朴素”,以至于许多学术权威都对其学术价值有所鄙视,国际着名刊物Journal of Applied Mechanics 许多年来都拒绝刊登有关于有限元分析的文章。

然而现在,有限元分析已经成为数值计算的主流,不但国际上存在如ANSYS等数种通用有限元分析软件,而且涉及到有限元分析的杂志也有几十种之多。

有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中。

20世纪60年代初首次提出结构力学计算有限元概念的克拉夫(Clough)教授形象地将其描绘为:“有限元法=Rayleigh Ritz法+分片函数”,即有限元法是Rayleigh Ritz法的一种局部化情况。

不同于求解(往往是困难的)满足整个定义域边界条件的允许函数的Rayleigh Ritz法,有限元法将函数定义在简单几何形状(如二维问题中的三角形或任意四边形)的单元域上(分片函数),且不考虑整个定义域的复杂边界条件,这是有限元法优于其他近似方法的原因之一。

有限元方法(FEM)的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。

采用不同的权函数和插值函数形式,便构成不同的有限元方法。

有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。

在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。

在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。

根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。

从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。

不同的组合同样构成不同的有限元计算格式。

对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。

令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。

插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。

有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。

单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。

常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。

相关文档
最新文档