2021年高考数学一轮复习题型归纳与高效训练试题:4.5 正弦定理和余弦定理(原卷版)文
2021届高三高考数学文科一轮复习知识点专题4-6 正弦定理和余弦定理【含答案】
2021届高三高考数学文科一轮复习知识点专题4.6 正弦定理和余弦定理【考情分析】1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.【重点知识梳理】知识点一正弦定理和余弦定理1.在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则定理正弦定理余弦定理公式asin A=bsin B=csin C=2Ra2=b2+c2-2bc cos A;b2=c2+a2-2ca cos B;c2=a2+b2-2ab cos C常见变形(1)a=2R sin A,b=2R sin B,c=2R sin C;(2)sin A=a2R,sin B=b2R,sin C=c2R;(3)a∶b∶c=sin A∶sin B∶sin C;(4)a sin B=b sin A,b sin C=c sin B,a sin C=c sin Acos A=b2+c2-a22bc;cos B=c2+a2-b22ac;cos C=a2+b2-c22ab2.S△ABC=12ab sin C=12bc sin A=12ac sin B=abc4R=12(a+b+c)·r(r是三角形内切圆的半径),并可由此计算R,r.3.在△ABC中,已知a,b和A时,解的情况如下:A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b a≤b 解的个数一解两解一解一解无解知识点二三角函数关系和射影定理1.三角形中的三角函数关系(1)sin(A+B)=sin C;(2)cos(A+B)=-cos C;(3)sin A +B 2=cos C 2;(4)cos A +B 2=sin C 2.2.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 3.在△ABC 中,两边之和大于第三边,两边之差小于第三边,A >B ⇔a >b ⇔sin A > sin B ⇔cos A <cos B . 【典型题分析】高频考点一 利用正、余弦定理解三角形【例1】【2020·江苏卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,2,45a c B ===︒. (1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.【解析】(1)在ABC △中,因为3,2,45a c B ===︒,由余弦定理2222cos b a c ac B =+-,得2922325b =+-⨯︒=, 所以5b =在ABC △中,由正弦定理sin sin b cB C=, 52, 所以5sin C =(2)在ADC △中,因为4cos 5ADC ∠=-,所以ADC ∠为钝角,而180ADC C CAD ∠+∠+∠=︒,所以C ∠为锐角. 故225cos 1sin C C =-则sin 1tan cos 2C C C ==. 因为4cos 5ADC ∠=-,所以23sin 1cos 5ADC ADC ∠=-∠=,sin 3tan cos 4ADC ADC ADC ∠∠==-∠.从而31tan()242tan tan(180)tan()===311tan tan 111()42ADC C ADC ADC C ADC C ADC C -+∠+∠∠=︒-∠-∠=-∠+∠---∠⨯∠--⨯. 【举一反三】(1)(2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc=( )A .6B .5C .4D .3【答案】A 【解析】∵a sin A -b sin B =4c sin C , ∴由正弦定理得a 2-b 2=4c 2,即a 2=4c 2+b 2.由余弦定理得cos A =b 2+c 2-a 22bc =b 2+c 2-(4c 2+b 2)2bc =-3c 22bc =-14,∴bc =6.故选A 。
2021年高考数学总复习:正弦定理、余弦定理
A.等腰三角形
B.直角三角形
C.等腰直角三角形
D.等腰三角形或直角三角形
D[由已知 = = = ,所以 = 或 =0,即C=90°或 = .当C=90°时,△ABC为直角三角形.当 = 时,由正弦定理,得 = ,所以 = ,即sinCcosC=sinBcosB,即sin 2C=sin 2B.因为B,C均为△ABC的内角,所以2C腰三角形或直角三角形,故选D.]
则acosC+ccosA=b.
所以a+c= b,即2(a+c)=3b.
(2)因为cosB= ,所以sinB= .
因为S= acsinB= ac= ,
所以ac=8.
又b2=a2+c2-2accosB=(a+c)2-2ac(1+cosB),2(a+c)=3b,
所以b2= -16×(1+ ),所以b=4.
二、填空题
6.在锐角△ABC中,角A,B所对的边分别为a,b,若2asinB= b,则角A=________.
[因为2asinB= b,所以2sinAsinB= sinB,得sinA= ,所以A= 或A= .因为△ABC为锐角三角形,所以A= .]
7.△ABC的内角A,B,C的对边分别为a,b,c,若cosA= ,cosC= ,a=1,则b=________.
故△ABC的周长为3+ .
1.在△ABC中,内角A,B,C所对的边分别为a,b,c,且acosB-c- =0,a2= bc,b>c,则 =()
A. B.2 C.3 D.
B[由余弦定理b2=a2+c2-2accosB可得acosB= ,又acosB-c- =0,a2= bc,所以c+ = ,即2b2-5bc+2c2=0,所以有(b-2c)·(2b-c)=0.所以b=2c或c=2b,又b>c,所以 =2.故选B.]
专题4.5正弦定理和余弦定理的应用(2021年高考数学一轮复习专题)
专题 正弦定理和余弦定理的应用一、题型全归纳题型一 利用正弦、余弦定理解三角形【题型要点】(1)正、余弦定理的选用①利用正弦定理可解决两类三角形问题:一是已知两角和一角的对边,求其他边或角;二是已知两边和一边的对角,求其他边或角;①利用余弦定理可解决两类三角形问题:一是已知两边和它们的夹角,求其他边或角;二是已知三边求角.由于这两种情形下的三角形是唯一确定的,所以其解也是唯一的. (2)三角形解的个数的判断已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.【例1】 (2020·广西五市联考)在①ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =1,b =3,A =30°,B 为锐角,那么A ①B ①C 为( ) A .1①1①3 B .1①2①3 C .1①3①2D .1①4①1【解析】:法一:由正弦定理a sin A =b sin B ,得sin B =b sin A a =32.因为B 为锐角,所以B =60°,则C =90°,故A ①B ①C =1①2①3,选B.法二:由a 2=b 2+c 2-2bc cos A ,得c 2-3c +2=0,解得c =1或c =2.当c =1时,①ABC 为等腰三角形,B =120°,与已知矛盾,当c =2时,a <b <c ,则A <B <C ,排除选项A ,C ,D ,故选B.【例2】(2019·高考全国卷Ⅰ)①ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a sin A -b sin B =4c sin C ,cos A =-14,则bc =( )A .6B .5C .4D .3【解析】选A.由题意及正弦定理得,b 2-a 2=-4c 2,所以由余弦定理得,cos A =b 2+c 2-a 22bc =-3c 22bc =-14,得bc=6.故选A. 【例3】(2020·济南市学习质量评估)已知①ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2c +a =2b cos A . ①求角B 的大小;①若a =5,c =3,边AC 的中点为D ,求BD 的长.【解析】 (1)选A.由题意及正弦定理得,b 2-a 2=-4c 2,所以由余弦定理得,cos A =b 2+c 2-a 22bc =-3c 22bc=-14,得bc=6.故选A. (2)①由2c +a =2b cos A 及正弦定理,得2sin C +sin A =2sin B cos A , 又sin C =sin(A +B )=sin A cos B +cos A sin B ,所以2sin A cos B +sin A =0, 因为sin A ≠0,所以cos B =-12,因为0<B <π,所以B =2π3.①由余弦定理得b 2=a 2+c 2-2a ·c cos①ABC =52+32+5×3=49,所以b =7,所以AD =72.因为cos①BAC =b 2+c 2-a 22bc =49+9-252×7×3=1114,所以BD 2=AB 2+AD 2-2·AB ·AD cos①BAC =9+494-2×3×72×1114=194,所以BD =192.题型二 判断三角形的形状【题型要点】判定三角形形状的两种常用途径【易错提醒】“角化边”后要注意用因式分解、配方等方法得出边的相应关系;“边化角”后要注意用三角恒等变换公式、三角形内角和定理及诱导公式推出角的关系.【例1】(2020·蓉城名校第一次联考)设①ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B=a sin A ,则①ABC 的形状为( ) A .直角三角形 B .锐角三角形 C .钝角三角形D .不确定【解析】 (1)法一:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a sin A =a 即sin A =1,故A =π2,因此①ABC 是直角三角形.法二:因为b cos C +c cos B =a sin A ,所以sin B cos C +sin C cos B =sin 2 A ,即sin(B +C )=sin 2 A ,所以sin A =sin 2 A ,故sin A =1,即A =π2,因此①ABC 是直角三角形.【例2】在①ABC 中,若c -a cos B =(2a -b )cos A ,则①ABC 的形状为 .【解析】因为c -a cos B =(2a -b )cos A ,所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B cos A , 所以sin(A +B )-sin A cos B =2sin A cos A -sin B cos A ,故cos A (sin B -sin A )=0, 所以cos A =0或sin A =sin B ,A =π2或A =B ,故①ABC 为等腰或直角三角形.题型三 与三角形面积有关的问题命题角度一 计算三角形的面积【题型要点】1.①ABC 的面积公式(1)S ①ABC =12a ·h (h 表示边a 上的高).(2)S ①ABC =12ab sin C =12ac sin B =12bc sin A .(3)S ①ABC =12r (a +b +c )(r 为内切圆半径).2.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积;(2)若已知三角形的三边,可先求其中一个角的余弦值,再求其正弦值,代入公式求面积,总之,结合图形恰当选择面积公式是解题的关键.【例1】(2019·高考全国卷Ⅰ)①ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b =6,a =2c ,B =π3,则①ABC的面积为 .【解析】 (1)法一:因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以①ABC 的面积S =12ac sin B =12×43×23×sin π3=6 3.法二:因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以a 2=b 2+c 2,所以A =π2,所以①ABC 的面积S =12×23×6=6 3.【例2】(2020·福建五校第二次联考)在①ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,已知a 2+b 2-c 2=3ab ,且ac sin B =23sin C ,则①ABC 的面积为 .【解析】因为a 2+b 2-c 2=3ab ,所以由余弦定理得cos C =a 2+b 2-c 22ab =3ab 2ab =32,又0<C <π,所以C =π6.因为ac sin B =23sin C ,所以结合正弦定理可得abc =23c ,所以ab =2 3.故S ①ABC =12ab sin C=12×23sin π6=32. 命题角度二 已知三角形的面积解三角形【题型要点】已知三角形面积求边、角的方法(1)若求角,就寻求这个角的两边的关系,利用面积公式列方程求解; (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解.【提示】正弦定理、余弦定理与三角函数性质的综合应用中,要注意三角函数公式的工具性作用. 【例3】(2020·湖南五市十校共同体联考改编)已知a ,b ,c 分别为①ABC 的内角A ,B ,C 的对边,(3b -a )cos C =c cos A ,c 是a ,b 的等比中项,且①ABC 的面积为32,则ab = ,a +b = . 【解析】 因为(3b -a )cos C =c cos A ,所以利用正弦定理可得3sin B cos C =sin A cos C +sin C cos A =sin(A +C )=sinB .又因为sin B ≠0,所以cos C =13,则C 为锐角,所以sin C =223.由①ABC 的面积为32,可得12ab sin C =32,所以ab =9.由c 是a ,b 的等比中项可得c 2=ab ,由余弦定理可得c 2=a 2+b 2-2ab cos C ,所以(a +b )2=113ab =33,所以a +b =33.【例4】(2020·长沙市统一模拟考试)已知①ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a sin(A +B )=c sin B +C2.(1)求A ;(2)若①ABC 的面积为3,周长为8,求a .【解析】:(1)由题设得a sin C =c cos A 2,由正弦定理得sin A sin C =sin C cos A 2,所以sin A =cos A2,所以2sin A 2cos A 2=cos A 2,所以sin A 2=12,所以A =60°.(2)由题设得12bc sin A =3,从而bc =4.由余弦定理a 2=b 2+c 2-2bc cos A ,得a 2=(b +c )2-12.又a +b +c =8,所以a 2=(8-a )2-12,解得a =134.题型四 三角形面积或周长的最值(范围)问题【题型要点】求有关三角形面积或周长的最值(范围)问题在解决求有关三角形面积或周长的最值(范围)问题时,一般将其转化为一个角的一个三角函数,利用三角函数的有界性求解,或利用余弦定理转化为边的关系,再应用基本不等式求解.【例1】(2020·福州市质量检测)①ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若角A ,B ,C 成等差数列,且b =32. (1)求①ABC 外接圆的直径;(2)求a +c 的取值范围.【解析】:(1)因为角A ,B ,C 成等差数列,所以2B =A +C ,又因为A +B +C =π,所以B =π3.根据正弦定理得,①ABC 的外接圆直径2R =bsin B =32sin π3=1.(2)法一:由B =π3,知A +C =2π3,可得0<A <2π3.由(1)知①ABC 的外接圆直径为1,根据正弦定理得,a sin A =b sin B =c sin C=1, 所以a +c =sin A +sin C =sin A +sin ⎪⎭⎫⎝⎛A -32π=3⎪⎪⎭⎫ ⎝⎛+A A cos 21sin 23=3sin ⎪⎭⎫ ⎝⎛+6πA . 因为0<A <2π3,所以π6<A +π6<5π6.所以12<sin ⎪⎭⎫ ⎝⎛+6πA ≤1,从而32<3sin ⎪⎭⎫ ⎝⎛+6πA ≤3,所以a +c 的取值范围是⎥⎦⎤⎝⎛323, 法二:由(1)知,B =π3,b 2=a 2+c 2-2ac cos B =(a +c )2-3ac ≥(a +c )2-322⎪⎭⎫ ⎝⎛+c a =14(a +c )2(当且仅当a =c 时,取等号),因为b =32,所以(a +c )2≤3,即a +c ≤3,又三角形两边之和大于第三边,所以32<a +c ≤3, 所以a +c 的取值范围是⎥⎦⎤⎝⎛323, 题型五 解三角形与三角函数的综合应用【题型要点】标注条件,合理建模解决三角函数的应用问题,无论是实际应用问题还是三角函数与解三角形相结合的问题,关键是准确找出题中的条件并在三角形中进行准确标注,然后根据条件和所求建立相应的数学模型,转化为可利用正弦定理或余弦定理解决的问题.【例1】 (2020·湖南省五市十校联考)已知向量m =(cos x ,sin x ),n =(cos x ,3cos x ),x ①R ,设函数f (x )=m ·n +12.(1)求函数f (x )的解析式及单调递增区间;(2)设a ,b ,c 分别为①ABC 的内角A ,B ,C 的对边,若f (A )=2,b +c =22,①ABC 的面积为12,求a 的值.【解析】 (1)由题意知,f (x )=cos 2x +3sin x cos x +12=sin ⎪⎭⎫ ⎝⎛+62πx +1.令2x +π6①⎥⎦⎤⎢⎣⎡++ππππk k 22,22-,k ①Z ,解得x ①⎥⎦⎤⎢⎣⎡++ππππk k 6,3-,k ①Z ,所以函数f (x )的单调递增区间为⎥⎦⎤⎢⎣⎡++ππππk k 6,3-,k ①Z .(2)因为f (A )=sin ⎪⎭⎫⎝⎛+62πA +1=2,所以sin ⎪⎭⎫ ⎝⎛+62πA =1. 因为0<A <π,所以π6<2A +π6<13π6,所以2A +π6=π2,即A =π6.由①ABC 的面积S =12bc sin A =12,得bc =2,又b +c =22,所以a 2=b 2+c 2-2bc cos A =(b +c )2-2bc (1+cos A ),解得a =3-1. 【例2】①ABC 中的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2a -2c cos B . (1)求角C 的大小;(2)求3cos A +sin ⎪⎭⎫⎝⎛+3πB 的最大值,并求出取得最大值时角A ,B 的值. 【解析】:(1)法一:在①ABC 中,由正弦定理可知sin B =2sin A -2sin C cos B ,又A +B +C =π,则sin A =sin(π-(B +C ))=sin(B +C ),于是有sin B =2sin(B +C )-2sin C cos B =2sin B cos C +2cos B sin C -2sin C cos B ,整理得sin B =2sin B cos C ,又sin B ≠0,则cos C =12,因为0<C <π,则C =π3.法二:由题可得b =2a -2c ·a 2+c 2-b 22ac ,整理得a 2+b 2-c 2=ab ,即cos C =12,因为0<C <π,则C =π3.(2)由(1)知C =π3,则B +π3=π-A ,3cos A +sin ⎪⎭⎫⎝⎛+3πB =3cos A +sin(π-A )=3cos A +sin A =2sin ⎪⎭⎫⎝⎛+3πA , 因为A =2π3-B ,所以0<A <2π3,所以π3<A +π3<π,故当A =π6时,2sin ⎪⎭⎫ ⎝⎛+3πA 的最大值为2,此时B =π2.二、高效训练突破 一、选择题1.(2020·广西桂林阳朔三校调研)在①ABC 中,a ①b ①c =3①5①7,那么①ABC 是( ) A .直角三角形 B .钝角三角形 C .锐角三角形D .非钝角三角形【解析】:因为a ①b ①c =3①5①7,所以可设a =3t ,b =5t ,c =7t ,由余弦定理可得cos C =9t 2+25t 2-49t 22×3t ×5t =-12,所以C =120°,①ABC 是钝角三角形,故选B. 2.(2020·河北衡水中学三调)在①ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且b 2+c 2=a 2+bc ,若sin B sin C =sin 2A ,则①ABC 的形状是( ) A .等腰三角形 B .直角三角形 C .等边三角形D .等腰直角三角形【解析】:在①ABC 中,因为b 2+c 2=a 2+bc ,所以cos A =b 2+c 2-a 22bc =bc 2bc =12,因为A ①(0,π),所以A =π3,因为sin B sin C =sin 2A ,所以bc =a 2,代入b 2+c 2=a 2+bc ,得(b -c )2=0,解得b =c ,所以①ABC 的形状是等边三角形,故选C.3.(2020·河南南阳四校联考)在①ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b =8,c =3,A =60°,则此三角形外接圆的半径R =( ) A.823 B.1433 C.73D .733【解析】:因为b =8,c =3,A =60°,所以a 2=b 2+c 2-2bc cos A =64+9-2×8×3×12=49,所以a =7,所以此三角形外接圆的直径2R =a sin A =732=1433,所以R =733,故选D. 4.(2020·湖南省湘东六校联考)在①ABC 中,A ,B ,C 的对边分别为a ,b ,c ,其中b 2=ac ,且sin C =2sinB ,则其最小内角的余弦值为( )A .-24 B.24 C.528D .34【解析】:由sin C =2sin B 及正弦定理,得c =2b .又b 2=ac ,所以b =2a ,所以c =2a ,所以A 为①ABC 的最小内角.由余弦定理,知cos A =b 2+c 2-a 22bc =(2a )2+(2a )2-a 22·2a ·2a=528,故选C.5.(2020·长春市质量监测(一))在①ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若b =a cos C +12c ,则角A 等于( ) A .60°B .120°C .45°D .135°【解析】:法一:由b =a cos C +12c 及正弦定理,可得sin B =sin A cos C +12sin C ,即sin(A +C )=sin A cos C+12sin C ,即sin A cos C +cos A sin C =sin A cos C +12sin C ,所以cos A sin C =12sin C ,又在①ABC 中,sin C ≠0,所以cos A =12,所以A =60°,故选A.法二:由b =a cos C +12c 及余弦定理,可得b =a ·b 2+a 2-c 22ab +12c ,即2b 2=b 2+a 2-c 2+bc ,整理得b 2+c 2-a 2=bc ,于是cos A =b 2+c 2-a 22bc =12,所以A =60°,故选A.6.(2020·河南三市联考)已知a ,b ,c 分别为①ABC 三个内角A ,B ,C 的对边,sin A ①sin B =1①3,c =2cos C =3,则①ABC 的周长为( ) A .3+3 3 B .23 C .3+2 3D .3+3【解析】:因为sin A ①sin B =1①3,所以b =3a , 由余弦定理得cos C =a 2+b 2-c 22ab =a 2+(3a )2-c 22a ×3a=32,又c =3,所以a =3,b =3,所以①ABC 的周长为3+23,故选C.7.(2020·湖南师大附中4月模拟)若①ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且b =2,c =5,①ABC的面积S =52cos A ,则a =( ) A .1 B.5 C.13D .17【解析】:因为b =2,c =5,S =52cos A =12bc sin A =5sin A ,所以sin A =12cos A . 所以sin 2A +cos 2A =14cos 2A +cos 2A =54cos 2A =1.易得cos A =255.所以a 2=b 2+c 2-2bc cos A =4+5-2×2×5×255=9-8=1,所以a =1.故选A. 8.(2020·开封市定位考试)已知①ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,①ABC 的面积为43,且2b cos A +a =2c ,a +c =8,则其周长为( ) A .10 B .12 C .8+ 3D .8+23【解析】:因为①ABC 的面积为43,所以12ac sin B =4 3.因为2b cos A +a =2c ,所以由正弦定理得2sin B cosA +sin A =2sin C ,又A +B +C =π,所以2sin B cos A +sin A =2sin A cos B +2cos A sin B ,所以sin A =2cos B ·sin A ,因为sin A ≠0,所以cos B =12,因为0<B <π,所以B =π3,所以ac =16,又a +c =8,所以a =c =4,所以①ABC 为正三角形,所以①ABC 的周长为3×4=12.故选B.9.(2020·昆明市诊断测试)在平面四边形ABCD 中,①D =90°,①BAD =120°,AD =1,AC =2,AB =3,则BC =( )A. 5B.6C.7D .22【解析】:如图,在①ACD 中,①D =90°,AD =1,AC =2,所以①CAD =60°.又①BAD =120°,所以①BAC =①BAD -①CAD =60°.在①ABC 中,由余弦定理得BC 2=AB 2+AC 2-2AB ·AC cos①BAC =7,所以BC =7.故选C.10.(2020·广州市调研测试)已知①ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,且sin 2A +sin 2B -sin 2Cc =sin A sin Ba cos B +b cos A ,若a +b =4,则c 的取值范围为( )A .(0,4)B .[2,4)C .[1,4)D .(2,4]【解析】:根据正弦定理可得sin 2A +sin 2B -sin 2C sin C =sin A sin Bsin A cos B +cos A sin B ,即sin 2A +sin 2B -sin 2C sin C =sin A sin Bsin (A +B ),由三角形内角和定理可得sin(A +B )=sin C ,所以sin 2A +sin 2B -sin 2C =sin A sin B ,再根据正弦定理可得a 2+b 2-c 2=ab .因为a +b =4,a +b ≥2ab ,所以ab ≤4,(a +b )2=16,得a 2+b 2=16-2ab ,所以16-2ab -c 2=ab ,所以16-c 2=3ab ,故16-c 2≤12,c 2≥4,c ≥2,故2≤c <4,故选B.二、填空题1.在①ABC 中,角A ,B ,C 满足sin A cos C -sin B cos C =0,则三角形的形状为 . 【解析】:由已知得cos C (sin A -sin B )=0,所以有cos C =0或sin A =sin B ,解得C =90°或A =B . 2.(2020·天津模拟)在①ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知b +c =2a ,3c sin B =4a sin C ,则cos B = .【解析】:在①ABC 中,由正弦定理b sin B =c sin C ,得b sin C =c sin B ,又由3c sin B =4a sin C ,得3b sin C =4a sinC ,即3b =4a .因为b +c =2a ,得到b =43a ,c =23a .由余弦定理可得cos B =a 2+c 2-b 22ac =a 2+49a 2-169a 22·a ·23a=-14.3.(2020·河南期末改编)在①ABC 中,B =π3,AC =3,且cos 2C -cos 2A -sin 2B =-2sin B sin C ,则C = ,BC = .【解析】:由cos 2C -cos 2A -sin 2B =-2sin B sin C ,可得1-sin 2C -(1-sin 2A )-sin 2B =-2sin B sin C ,即sin 2A -sin 2C -sin 2B =-2sin B sin C .结合正弦定理得BC 2-AB 2-AC 2=-2·AC ·AB ,所以cos A =22,A =π4,则C =π-A -B =5π12.由AC sin B =BC sin A,解得BC = 2.4.在①ABC 中,A =π4,b 2sin C =42sin B ,则①ABC 的面积为 .【解析】:因为b 2sin C =42sin B ,所以b 2c =42b ,所以bc =42,S ①ABC =12bc sin A =12×42×22=2.5.(2020·江西赣州五校协作体期中改编)在①ABC 中,A =π3,b =4,a =23,则B = ,①ABC 的面积等于 .【解析】:①ABC 中,由正弦定理得sin B =b sin A a =4×sinπ323=1.又B 为三角形的内角,所以B =π2,所以c =b 2-a 2=42-(23)2=2,所以S ①ABC =12×2×23=2 3.6.在①ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且B 为锐角,若sin A sin B =5c 2b ,sin B =74,S ①ABC =574,则b 的值为 .【解析】:由sin A sin B =5c 2b ①a b =5c 2b ①a =52c ,①由S ①ABC =12ac sin B =574且sin B =74得12ac =5,①联立①,①得a =5,且c =2.由sin B =74且B 为锐角知cos B =34, 由余弦定理知b 2=25+4-2×5×2×34=14,b =14.三 解答题1.(2020·兰州模拟)已知在①ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a sin B +b cos A =0. (1)求角A 的大小;(2)若a =25,b =2,求边c 的长.【解析】:(1)因为a sin B +b cos A =0,所以sin A sin B +sin B cos A =0,即sin B (sin A +cos A )=0,由于B 为三角形的内角,所以sin A +cos A =0,所以2sin ⎪⎭⎫⎝⎛+4πA =0,而A 为三角形的内角,所以A =3π4. (2)在①ABC 中,a 2=c 2+b 2-2cb cos A ,即20=c 2+4-4c ⎪⎪⎭⎫⎝⎛22-,解得c =-42(舍去)或c =2 2. 2.在①ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b =2,cos B =23,求c 的值;(2)若sin A a =cos B2b ,求cos B 的值.【解析】:(1)因为a =3c ,b =2,cos B =23,由余弦定理cos B =a 2+c 2-b 22ac ,得23=(3c )2+c 2-(2)22×3c ×c ,即c 2=13.所以c =33.(2)因为sin A a =cos B 2b ,由正弦定理a sin A =b sin B ,得cos B 2b =sin Bb ,所以cos B =2sin B .从而cos 2B =(2sin B )2,即cos 2B =4(1-cos 2B ),故cos 2B =45.因为sin B >0,所以cos B =2sin B >0,从而cos B =255.3.(2020·福建五校第二次联考)在①ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且3a cos C =(2b -3c )cos A . (1)求角A 的大小;(2)若a =2,求①ABC 面积的最大值.【解析】:(1)由正弦定理可得,3sin A cos C =2sin B cos A -3sin C cos A , 从而3sin(A +C )=2sin B cos A ,即3sin B =2sin B cos A .又B 为三角形的内角,所以sin B ≠0,于是cos A =32,又A 为三角形的内角,所以A =π6. (2)由余弦定理a 2=b 2+c 2-2bc cos A ,得4=b 2+c 2-2bc ×32≥2bc -3bc , 所以bc ≤4(2+3),所以S ①ABC =12bc sin A ≤2+3,故①ABC 面积的最大值为2+ 3.4.(2020·广东佛山顺德第二次质检)在①ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,2b sin C cos A +a sin A =2c sin B .(1)证明:①ABC 为等腰三角形;(2)若D 为BC 边上的点,BD =2DC ,且①ADB =2①ACD ,a =3,求b 的值.【解析】:(1)证明:因为2b sin C cos A +a sin A =2c sin B ,所以由正弦定理得2bc cos A +a 2=2cb ,由余弦定理得2bc ·b 2+c 2-a 22bc +a 2=2bc ,化简得b 2+c 2=2bc ,所以(b -c )2=0,即b =c .故①ABC 为等腰三角形.(2)法一:由已知得BD =2,DC =1,因为①ADB =2①ACD =①ACD +①DAC , 所以①ACD =①DAC ,所以AD =CD =1.又因为cos①ADB =-cos①ADC ,所以AD 2+BD 2-AB 22AD ·BD =-AD 2+CD 2-AC 22AD ·CD ,即12+22-c 22×1×2=-12+12-b 22×1×1,得2b 2+c 2=9,由(1)可知b =c ,得b = 3.法二:由已知可得CD =13a =1,由(1)知,AB =AC ,所以①B =①C ,又因为①DAC =①ADB -①C =2①C -①C =①C =①B , 所以①CAB ①①CDA ,所以CB CA =CA CD ,即3b =b1,所以b = 3.5.(2020·重庆市学业质量调研)①ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知①ABC 的面积为32ac cos B ,且sin A =3sin C .(1)求角B 的大小;(2)若c =2,AC 的中点为D ,求BD 的长.【解析】:(1)因为S ①ABC =12ac sin B =32ac cos B ,所以tan B = 3.又0<B <π,所以B =π3.(2)sin A =3sin C ,由正弦定理得,a =3c ,所以a =6.由余弦定理得,b 2=62+22-2×2×6×cos 60°=28,所以b =27. 所以cos A =b 2+c 2-a 22bc =(27)2+22-622×2×27=-714.因为D 是AC 的中点,所以AD =7.所以BD 2=AB 2+AD 2-2AB ·AD cos A =22+(7)2-2×2×7×⎪⎪⎭⎫⎝⎛147-=13.所以BD =13.。
考点28正弦定理、余弦定理(3种核心题型)(学生版) 2025年高考数学大一轮复习核心题型(新高考版
考点28正弦定理、余弦定理(2种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】1.掌握正弦定理、余弦定理及其变形.2.理解三角形的面积公式并能应用.3.能利用正弦定理、余弦定理解决一些简单的三角形度量问题.【知识点】1.正弦定理、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则定理正弦定理余弦定理内容asin A= = =2Ra 2= ;b 2= ;c 2=变形(1)a =2R sin A ,b = ,c =;(2)sin A=a2R ,sin B=,sin C =;(3)a ∶b ∶c =____________cos A = ;cos B =;cos C =2.三角形解的判断A 为锐角A 为钝角或直角图形关系式a =b sin A b sin A < a <b a ≥b a >b 解的个数一解两解一解一解3.三角形中常用的面积公式(1)S =12ah a (h a 表示边a 上的高);(2)S = = = ;(3)S = (r 为三角形的内切圆半径).常用结论在△ABC 中,常有以下结论:(1)∠A +∠B +∠C =π.(2)任意两边之和大于第三边,任意两边之差小于第三边.(3)a >b ⇔A >B ⇔sin A >sin B ,cos A <cos B .(4)sin(A +B )=sin C ;cos(A +B )=-cos C ;tan(A +B )=-tan C ;sin A +B 2=cos C 2;cosA +B2=sin C2.(5)三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B .(6)三角形中的面积S p =12(a +b +c )).【核心题型】题型一 利用正弦定理、余弦定理解三角形(1)由y =sin ωx 的图象到y =sin(ωx +φ)的图象的变换:向左平移φω(ω>0,φ>0)个单位长度而非φ个单位长度.(2)如果平移前后两个图象对应的函数的名称不一致,那么应先利用诱导公式化为同名函数,ω为负时应先变成正值【例题1】(2024·广东江门·二模)P 是ABC V 内一点,45,30ABP PBC PCB ACP Ð=°Ð=Ð=Ð=°,则tan BAP Ð=( )A .23B .25C .13D .12【变式1】(2024·河北沧州·模拟预测)记ABC V 的内角,,A B C 的对边分别为,,a b c ,若3cos cos cos b B a C c A =+,且34b c =,则C =.【变式2】(2024·山东日照·二模)ABC V 的内角,,A B C 的对边分别为,,a b c .分别以,,a b c 为边长的正三角形的面积依次为123,,S S S ,且123S S S --=.(1)求角A ;(2)若4BD CD =uuu r uuu r ,π6CAD Ð=,求sin ACB Ð.【变式3】(2024·辽宁沈阳·模拟预测)在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且222sin sin sin 1cos cos C C B B A -=-.(1)求角A 的大小;(2)若ABC V 为锐角三角形,点F 为ABC V 的垂心,6AF =,求CF BF +的取值范围.题型二 正弦定理、余弦定理的简单应用命题点1 三角形的形状判断判断三角形形状的两种思路(1)化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.(2)化角:通过三角恒等变换,得出内角的关系,从而判断三角形的形状.此时要注意应用A +B +C =π这个结论.【例题2】(2024·陕西渭南·三模)已知ABC V 中,角A ,B ,C 所对的边分别是a ,b ,c ,若cos cos b C c B b +=,且cos a c B =,则ABC V 是( )A .锐角三角形B .钝角三角形C .等边三角形D .等腰直角三角形【变式1】(2024·湖南衡阳·模拟预测)在ABC V 中,角,,A B C 的对边分别为,,a b c ,若sin 2sin 2A B =,则ABC V 的形状为 .【变式2】(2024·安徽淮北·二模)记ABC V 的内角,,A B C 的对边分别为,,a b c ,已知22sin 2Ac b c -=(1)试判断ABC V 的形状;(2)若1c =,求ABC V 周长的最大值.【变式3】(2024·内蒙古·三模)在ABC V 中,内角,,A B C 的对边分别为,,a b c ,且())cos cos a C c B A =-.(1)求ba的值;(2)若2B C =,证明:ABC V 为直角三角形.命题点2 三角形的面积三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.【例题3】(2024·云南昆明·三模)已知ABC V 中,3AB =,4BC =,AC =ABC V 的面积等于( )A .3B C .5D .【变式1】(2024·安徽·三模)在ABC V 中,a ,b ,c 分别为内角A ,B ,C 所对的边,且满足a =sin 1cos ()(sin sin )sin 3sin ,sin cos C Ca c A Cb Bc A B B-++=+=,则ABC V 的面积是.【变式2】(2024·浙江绍兴·二模)在三角形ABC 中,内角,,A B C 对应边分别为,,a b c 且cos sin 2b C B a c =+.(1)求B Ð的大小;(2)如图所示,D 为ABC V 外一点,DCB B Ð=Ð,CD =1BC =,30CAD Ð=o ,求sin BCA Ð及ABC V 的面积.【变式3】(2024·全国·模拟预测)在ABC V 中,已知()sin sin sin sin sin A B CA B B+=-.(1)求证:sin 2sin A B =;(2)若D 为AB 的中点,且AB =CD =ABC V 的面积.命题点3 与平面几何有关的问题在平面几何图形中研究或求与角有关的长度、角度、面积的最值、优化设计等问题时,通常是转化到三角形中,利用正、余弦定理通过运算的方法加以解决.在解决某些具体问题时,常先引入变量,如边长、角度等,然后把要解三角形的边或角用所设变量表示出来,再利用正、余弦定理列出方程,再解方程即可.若研究最值,常使用函数思想【例题4】(2024·山东聊城·二模)如图,在平面四边形ABCD 中,2,2120AB AD B D °==Ð=Ð=,记ABC V 与ACD V 的面积分别为12,S S ,则21S S -的值为( )A .2BC .1D【变式1】(22-23高三上·江苏扬州·期末)如图,在ABC V 中,1sin 3A =,AB =D 、E 分别在边BC 、AC 上,EC EB =,ED BC ^且1DE =.则cos C 值是 ;ABE V 的面积是.【变式2】(2024·广东梅州·二模)在ABC V 中,角A ,B ,C 所对应的边分别为a ,b ,c ,cos sin B b A -=,2c =,(1)求A 的大小:(2)点D 在BC 上,(Ⅰ)当AD AB ^,且1AD =时,求AC 的长;(Ⅱ)当2BD DC =,且1AD =时,求ABC V 的面积ABC S V .【变式3】(23-24高三下·山东·开学考试)如图所示,圆O 的半径为2,直线AM 与圆O 相切于点,4A AM =,圆O 上的点P 从点A 处逆时针转动到最高点B 处,记(],0,πAOP q q Ð=Î.(1)当2π3q =时,求APM △的面积;(2)试确定q 的值,使得APM △的面积等于AOP V 的面积的2倍.【课后强化】【基础保分练】一、单选题1.(2024·河南新乡·二模)在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,且7a =,3b =,5c =,则( )A .ABC V 为锐角三角形B .ABC V 为直角三角形C .ABC V 为钝角三角形D .ABC V 的形状无法确定2.(2024·三模)在ABC V 中,角,,A B C 的对边分别为,,a b c ,D 为AC 的中点,已知2c =,BD =cos cos 2cos a B b A c B +=-,则ABC V 的面积为( )A .BCD 3.(23-24高三下·河南·阶段练习)记ABC V 的内角A ,B ,C 的对边分别是a ,b ,c ,已知3a =,2239b c c =++,ABC Ð的平分线交边AC 于点D ,且2BD =,则b =( )A .B .C .6D .4.(2024·山东枣庄·模拟预测)在ABC V 中,1202ACB BC AC Ð=°=,,D 为ABC V 内一点,AD CD ^,120BDC Ð=°tan ACD Ð=( )A .BCD 二、多选题5.(2024·江西·二模)已知ABC V 中,1,4,60,AB AC BAC AE ==Ð=°为BAC Ð的角平分线,交BC 于点,E D 为AC 中点,下列结论正确的是( )A .BE =B .AE =C .ABE VD .P 在ABD △的外接圆上,则12PB PD +6.(2024·重庆·模拟预测)已知ABC V 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,则下列说法正确的有( )A .若a b >,则sin sin A B>B .若a b >,则cos cos A B>C .若222a b c +<,则ABC V 为钝角三角形D .若222a b c +>,则ABC V 为锐角三角形三、填空题7.(2024·北京昌平·二模)已知ABC V 中,34,2,cos 4a b c A ===-,则ABC S =V .8.(2024·江苏·二模)设钝角ABC V 三个内角A ,B ,C 所对应的边分别为a ,b ,c ,若2a =,sin b A =3c =,则b = .9.(2024·河南·三模)如图,在ABC V 中,角,,A B C 所对的边分别为,,a b c ,已知60,45,3B A c a ==-=o o ,B Ð的平分线BD 交边AC 于点,D AB 边上的高为,CF BC 边上的高为,AE BD CF P Ç=,,AE CF R BD AE Q Ç=Ç=,则PQR Ð= ;PQ = .四、解答题10.(2024·上海宝山·二模)在ABC V 中,角A 、B 、C 的对边分别为a 、b 、c ,已知222sin sin sin sin sin A C B A C +=+.(1)求角B 的大小;(2)若ABC V a c +的最小值,并判断此时ABC V 的形状.11.(2024·江西·ABC V 中,内角,,A B C 所对的边分别为,,a b c ,其外接圆的半径为cos sin b C a B =.(1)求角B ;(2)若B Ð的角平分线交AC 于点,D BD =E 在线段AC 上,2EC EA =,求BDE △的面积.【综合提升练】一、单选题1.(2024·浙江金华·三模)在ABC V 中,角,,A B C 的对边分别为a ,b ,c .若a =2b =,60A =°,则c 为( )A .1B .2C .3D .1或32.(2024·青海西宁·二模)在ABC V 中,内角,,A B C 的对边分别为,,a b c ,若b =,且cos 2cos 33A AC +=,则cos C 的值为( )A B C D 3.(2024·山东·模拟预测)在ABC V 中,角,,A B C 的对边分别是,,a b c ,且()()2sin 2sin 2sin a A b c B c b C =+++,则cos A =( )A .12-B .13C .12D .234.(2024·四川成都·模拟预测)在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c ,给出以下4个命题:(1)若a b >,则cos2cos2A B <;(2)若cos cos a B b A c -=,则ABC V 一定为直角三角形;(3)若4a =,5b =,6c =,则ABC V (4)若cos()cos()cos()1A B B C C A ---=,则ABC V 一定是等边三角形.则其中真命题的个数为( )A .1B .2C .3D .45.(2024·内蒙古赤峰·一模)已知ABC V 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,满足22cos a b c B +=,且sin sin 1A B +=,则ABC V 的形状为( )A .等边三角形B .顶角为120°的等腰三角形C .顶角为150°的等腰三角形D .等腰直角三角形6.(2024·吉林长春·模拟预测)ABC V 的内角A B C 、、所对的边分别为,1,2a b c a b A B ==、、,则c =( )A .2B C D .17.(2024·河北秦皇岛·三模)在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2B C =,b ,则( )A .ABC V 为直角三角形B .ABC V 为锐角三角形C .ABC V 为钝角三角形D .ABC V 的形状无法确定8.(2024·重庆·三模)若圆内接四边形ABCD 满足2AC =,30CAB CAD Ð=Ð=°,则四边形ABCD 的面积为( )A B C .3D .二、多选题9.(2024·全国·模拟预测)若ABC V 的三个内角为,, A B C ,则下列说法正确的有( )A .sin ,sin ,sin A B C 一定能构成三角形的三条边B .sin 2,sin 2,sin 2 A B C 一定能构成三角形的三条边C .222sin ,sin ,sin A B C 一定能构成三角形的三条边D 一定能构成三角形的三条边10.(2024·广东广州·二模)在梯形中,3//,1,3,cos 4AB CD AB CD DAC ACD ==Ð=Ð=,则( )A .AD =B .cos BAD Ð=C .34BA AD ×=-uuu r uuu r D .AC BD^11.(2024·浙江·三模)已知 ABC V 的内角,,A B C 的对边分别为,,a b c ,且2sin sin 2A C b A +×=×,下列结论正确的是( )A .π3B =B .若 45a = ,则 ABC V 有两解C .当a c -=时, ABC V 为直角三角形D .若 ABC V 为锐角三角形,则 cos cos A C + 的取值范围是三、填空题12.(2024·全国·模拟预测)已知在ABC V 中,点M 在线段BC 上,且π10,14,6,4AM AC MC ABC ===Ð=,则AB = .13.(2024·湖南长沙·二模)在ABC V 中,若2BC =,4tan 3A =-,4cos 5B =,则AC = .14.(2024·福建厦门·三模)记锐角ABC V 的内角A ,B ,C 的对边分别为a ,b ,c .若32cos b aC a b=-,则B 的取值范围是 .四、解答题15.(2024·陕西西安·模拟预测)设ABC V 的内角,,A B C 所对的边分别是,,,a b c 且向量(,),(,sin )m a b n A B ==u r r 满足//m n u r r .(1)求A ;(2)若3a b ==,求BC 边上的高h .16.(2024·陕西西安·模拟预测)如图,在平面四边形ABCD 中,//AB CD ,sin cos AD D ACD ×=×Ð,BAC Ð的角平分线与BC 相交于点E ,且1,AE AB ==(1)求ACD Ð的大小;(2)求BC 的值.17.(2023·黑龙江·模拟预测)某校高中“数学建模”实践小组欲测量某景区位于:“观光湖”内两处景点A ,C 之间的距离,如图,B 处为码头入口,D 处为码头,BD 为通往码头的栈道,且100m BD =,在B 处测得π6π4ABD CBD Ð=Ð=,在D 处测得2π3π34BDC ADC Ð=Ð=.(A ,B ,C ,D 均处于同一测量的水平面内)(1)求A ,C 两处景点之间的距离;(2)栈道BD 所在直线与A ,C 两处景点的连线是否垂直?请说明理由.18.(2024·湖南·模拟预测)在ABC V 中,内角,,A B C 的对边分别为,,a b c ,且()()3cos ,sin sin sin 3sin 5A a c A C bB c A =++=+.(1)证明:ABC V 是锐角三角形;(2)若2a =,求ABC V 的面积.19.(2023·辽宁鞍山·二模)请从①2sin cos cos cos a B B C B =;②()22sin sin sin sin sin A C B A C -=-;a =这三个条件中任选一个,补充在下面问题中,并加以解答(如未作出选择,则按照选择①评分.选择的编号请填写到答题卡对应位置上)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若___________,(1)求角B 的大小;(2)若△ABC 为锐角三角形,1c =,求22a b +的取值范围.【拓展冲刺练】一、单选题1.(2024·山东·二模)在ABC V 中,设内角,,A B C 的对边分别为,,a b c ,设甲:(cos cos )b c a C B -=-,设乙:ABC V 是直角三角形,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件2.(2024·安徽·模拟预测)在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a c =,且()22sin 21sin BB A=+,则B =( )A .π3B .2π3C .3π4D .5π63.(2024·陕西咸阳·三模)为了进一步提升城市形象,满足群众就近健身和休闲的需求,2023年某市政府在市区多地规划建设了“口袋公园”.如图,在扇形“口袋公园”O PQ 中,准备修一条三角形健身步道OAB ,已知扇形的半径3OP =,圆心角π3POQ Ð=,A 是扇形弧上的动点,B 是半径OQ 上的动点,//AB OP ,则OAB V 面积的最大值为( )A B .34C D .354.(2024·辽宁·模拟预测)三棱锥P ﹣ABC 所有棱长都等于2,动点M 在三棱锥P ﹣ABC 的外接球上,且0,||AM BM PM ×=uuuu r uuuu r uuuu r的最大值为s ,最小值为t ,则:s t =( )A .2BCD .3二、多选题5.(2024·湖北·模拟预测)在ABC V 中,,,A B C 所对的边为,,a b c ,设BC 边上的中点为M ,ABC V 的面积为S ,其中a =,2224b c +=,下列选项正确的是()A .若π3A =,则S =B .S 的最大值为C .3AM =D .角A 的最小值为π36.(23-24高一下·河北石家庄·阶段练习)已知ABC V 的内角A ,B ,C 所对的边分别为a ,b ,c ,下列说法中正确的是( )A .若cos cos a A bB =,则ABC V 一定是等腰三角形B .若cos()cos()1A B B C -×-=,则ABC V 一定是等边三角形C .若cosC cos a c A c +=,则ABC V 一定是等腰三角形D .若cos(2)cos 0B C C ++>,则ABC V 一定是钝角三角形三、填空题7.(2024·全国·三模)在ABC V 中,()cos ,sin AB q q =uuu r ,()3sin ,3cos BC q q =uuu r .若2AB BC ×=uuu r uuu r ,则ABC V 的面积为 .8.(2024·陕西铜川·三模)已知ABC V ,,A B C 所对的边分别是,,a b c ,点D 是AB 的中点.若22cos a b c B +=,且1,AC CD ==,则AB = .9.(2024·广西·模拟预测)在锐角ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,且ABC V 的面积(1cos )S bc A =-,则2a bc的取值范围为 .四、解答题10.(2024·河南·三模)已知P 是ABC V 内一点,π3π,,,44PB PC BAC BPC ABP ÐÐÐq ====.(1)若π,24BC q ==AC ;(2)若π3q =,求tan BAP Ð.11.(2024·黑龙江大庆·模拟预测)某公园计划改造一块四边形区域ABCD 铺设草坪,其中2AB =百米,1BC =百米,AD CD =,AD CD ^,草坪内需要规划4条人行道DM 、DN 、EM 、EN 以及两条排水沟AC 、BD ,其中M 、N 、E 分别为边BC 、AB 、AC 的中点.(1)若π2ABC Ð=,求排水沟BD 的长;(2)若ABC a Ð=,试用a 表示4条人行道的总长度.。
2021年新高考数学一轮复习题型归纳与达标检测:26 正弦定理和余弦定理(试题)(原卷版)
(1)求角 ;
(2)已知 ,且____,求 的值及 的面积.
[B组]—强基必备
1.(2020春•渝中区校级期末)已知非等腰 的内角 , , 的对边分别是 , , ,且 ,若 为最大边,则 的取值范围是
A. , B. , C. , D. ,
2.(2020春•静海区校级期中)在锐角三角形 中,若 ,且满足关系式 ,则 的取值范围是
A.12B.14C.16D.18
9.(2020春•沙坪坝区校级期末)在锐角 中,若 ,且 ,则 的取值范围是
A. , B. , C. , D. ,
10.(多选)(2020春•梅州期末)在 中,角 , , 所对的边分别是 , , ,下列说法正确的有
A. B.若 ,则
C.若 ,则 D.
11.(多选)(2020春•鼓楼区校级期末)对于 ,下列说法中正确的是
A.若 ,则 为等腰三角形
B.若 ,则 为直角三角形
C.若 ,则 为钝角三角形
D.若 , , ,则 的面积为 或
12.(2020春•马鞍山期末)在 中,角 , , 的对边分别为 , , ,已知 , , ,则 .
13.(2020春•重庆期末)已知 中,角 , , 的对边分别为 , , , ,则 .
14.(2019秋•密云区期末)在 中, , , 分别是角 , , 的对边,且 , , ,则 , .
第26讲正弦定理和余弦定理(达标检测)
[A组]—应知应会
1.(2020春•南京期末)在 中, , , ,则角 等于
A. B. C. D. 或
2.(2020春•宜宾期末)在 中,若 , , ,则 的面积
A. B. C.6D.4
高考数学一轮复习---正弦定理和余弦定理(一)
高考数学一轮复习---正弦定理和余弦定理(一)一、基础知识1.正弦定理a sin A =b sin B =c sin C=2R (R 为△ABC 外接圆的半径).正弦定理的常见变形:(1)a =2R sin A ,b =2R sin B ,c =2R sin C ; (2)sin A =a 2R ,sin B =b 2R ,sin C =c 2R; (3)a ∶b ∶c =sin A ∶sin B ∶sin C ;(4)a +b +c sin A +sin B +sin C =a sin A . 2.余弦定理a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C .3.三角形的面积公式(1)S △ABC =12ah a (h a 为边a 上的高); (2)S △ABC =12ab sin C =12bc sin A =12ac sin B ; (3)S =12r (a +b +c )(r 为三角形的内切圆半径). 二、常用结论汇总1.三角形内角和定理在△ABC 中,A +B +C =π;变形:A +B 2=π2-C 2. 2.三角形中的三角函数关系(1)sin(A +B )=sin C ; (2)cos(A +B )=-cos C ;(3)sin A +B 2=cos C 2; (4)cos A +B 2=sin C 2. 3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B .4.用余弦定理判断三角形的形状在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,当b 2+c 2-a 2>0时,可知A 为锐角;当b 2+c 2-a 2=0时,可知A 为直角;当b 2+c 2-a 2<0时,可知A 为钝角.三、考点解析考点一 利用正、余弦定理解三角形考法(一) 正弦定理解三角形例.(1)在△ABC 中,a =3,b =2,A =30°,则cos B =________.(2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.考法(二) 余弦定理解三角形例.(1)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b cos A +a cos B =c 2,a =b =2,则△ABC 的周长为( )A .7.5B .7C .6D .5(2)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且c -b 2c -a =sin A sin B +sin C,则角B =________.跟踪训练1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( )A.24 B .-24 C.34 D .-34 2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( )A.π12B. π6C.π4D.π33.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2B +sin 2C =sin 2A +sin B sin C .(1)求角A 的大小;(2)若cos B =13,a =3,求c 的值. 考点二 判定三角形的形状例、(1)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =a c,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( )A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形变式练习1.(变条件)若本例(1)条件改为“a sin A +b sin B <c sin C ”,那么△ABC 的形状为________.2.(变条件)若本例(1)条件改为“c -a cos B =(2a -b )cos A ”,那么△ABC 的形状为________.3.(变条件)若本例(2)条件改为“cos A cos B =b a =2”,那么△ABC 的形状为________. 课后作业1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若sin A a =cos B b,则B 的大小为( ) A .30° B .45° C .60° D .90°2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知b =40,c =20,C =60°,则此三角形的解的情况是( )A .有一解B .有两解C .无解D .有解但解的个数不确定3.在△ABC 中,cos B =a c(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( ) A .直角三角形 B .等边三角形 C .等腰三角形 D .等腰三角形或直角三角形4.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3,cos B =23,则b =( ) A .14 B .6 C.14 D.65.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C +c sin B cos A =12b ,且a >b ,则B =( )A.π6B.π3C.2π3D.5π66.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2(b cos A +a cos B )=c 2,b =3,3cos A =1,则a =( ) A. 5 B .3 C.10 D .47.在△ABC 中,AB =6,A =75°,B =45°,则AC =________.8.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________. 9.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sin B =________,c =________.10.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,sin A ,sin B ,sin C 成等差数列,且a =2c ,则cos A =________.11.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且A =2B .(1)求证:a =2b cos B ;(2)若b =2,c =4,求B 的值.12.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.提高训练1.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若2c os 2A +B 2-cos 2C =1,4sin B =3sin A ,a -b =1,则c 的值为( ) A.13 B.7 C.37 D .62.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =3,2sin A a =t a n C c,若sin(A -B )+sin C =2sin 2B ,则a +b =________.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a cos C -c =2b .(1)求角A 的大小;(2)若c =2,角B 的平分线BD =3,求a .。
2021高考一轮复习 第十八讲 正弦定理、余弦定理及其应用
h
th
hcos
ht
× h × cos
因此ΔABC 得中线 h
cos ,则 △
是( )
A. 正三角形
B. 等腰三角形
C. 等腰直角三角形
D. 有一内角为 60°的直角三角形
【答案】 C
【考点】正弦定理,三角形的形状判断
5.在 △
中,角 t t 所对的边分别为 t t .若
t
t
° ,则 sin ( )
A.
B.
C.
D.
【答案】 C
【考点】正弦定理,余弦定理
6.△ABC 的三边长分别为 AB=7,BC=5,CA=6,则
两点之间的距离为 60m,则树的高度 h 为( )
A. a h t h t
B. a ht
t
【答案】 A
【考点】正弦定理的应用
C. a t h t
D. a t
t
2/6
14.在
中,角 , , 所对的边分别为 , , 满足 t
值范围是( )
t
,则 t 的取
A. a t
B. a t
C. a t
D. a t
D. -19
,则
tan tan
tan atan ttan
的值为( )
D. 2020
1/6
A. 一解
B. 两解
C. 一解或两解
D. 无解
【答案】 D
【考点】正弦定理
9.一船沿北偏西 方向航行,正东有两个灯塔 A,B,
h 海里,航行半小时后,看见一灯塔在船的
南偏东 h ,另一灯塔在船的南偏东 ,则这艘船的速度是每小时( )
A. 19
B. 14
【答案】 D
2021版新高考数学一轮复习讲义:第三章第六讲 正弦定理、余弦定理 (含解析)
第六讲正弦定理、余弦定理ZHI SHI SHU LI SHUANG JI ZI CE 知识梳理·双基自测知识梳理知识点一 正弦定理和余弦定理 定理正弦定理余弦定理内容__a sin__A =b sin__B =csin__C__=2R (其中R 是△ABC 外接圆的半径) a 2=__b 2+c 2-2bc cos A __ b 2=__a 2+c 2-2ac cos B __ c 2=__a 2+b 2-2ab cos C __常见 变形①a =__2R sin A __, b =__2R sin B __, c =__2R sin C __ ②sin A =__a2R__,sin B =__b2R __,sin C =__c2R__③a ︰b ︰c =__sin A ︰sin B ︰sin C __ ④a sin B =b sin A ,b sin C =c sin B ,a sin C=c sin Acos A =__b 2+c 2-a 22bc __cos B =__a 2+c 2-b 22ac __cos C =__a 2+b 2-c 22ab__解决解斜三角形的问题(1)已知两角和任一边,求另一角和其他两条边(2)已知两边和其中一边的对角,求另一边和其他两角(1)已知三边,求各角(2)已知两边和它们的夹角,求第三边和其他两个角A 为锐角A 为钝角或直角图形关系式 a <b sin A a =b sin A b sin A <a <ba ≥b a >b a ≤b 解的个数无解一解两解一解一解无解(1)S =12a ·h a (h a表示a 边上的高).(2)S =12ab sin C =12ac sin B =12bc sin A .(3)S =12r (a +b +c )(r 为内切圆半径).重要结论在△ABC 中,常有以下结论 1.∠A +∠B +∠C =π.2.在三角形中,大边对大角,大角对大边.3.任意两边之和大于第三边,任意两边之差小于第三边.4.sin (A +B )=sin C ;cos (A +B )=-cos C ;tan (A +B )=-tan C ;sin A +B 2=cos C2,cos A +B 2=sin C2. 5.tan A +tan B +tan C =tan A ·tan B ·tan C . 6.∠A >∠B ⇔a >b ⇔sin A >sin B ⇔cos A <cos B .7.三角形式的余弦定理sin 2A =sin 2B +sin 2C -2sin B sin C cos A , sin 2B =sin 2A +sin 2C -2sin A sin C cos B , sin 2C =sin 2A +sin 2B -2sin A sin B cos C .8.若A 为最大的角,则A ∈[π3,π);若A 为最小的角,则A ∈(0,π3];若A 、B 、C 成等差数列,则B =π3.双基自测题组一 走出误区1.(多选题)下列命题正确的是( ABC ) A .在△ABC 中,A >B 必有sin A >sin BB .在△ABC 中,角A 、B 、C 所对的边分别为a ,b ,c 且a =1,c =3,A =π6,则b =1或2C .若满足条件C =60°,AB =3,BC =a 的△ABC 有两个,则实数a 的取值范围是(3,2)D .在△ABC 中,若b cos B =a cos A ,则△ABC 是等腰三角形 题组二 走进教材2.(必修5P 10A 组T8改编)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a =5,c =2,cos A =23,则b =( D )A .2B .3C .2D .3[解析] 由余弦定理,得4+b 2-2×2b cos A =5,整理得3b 2-8b -3=0,解得b =3或b =-13(舍去),故选D .3.(必修5P 10A 组T3改编)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =( B )A .45°B .75°C .105°D .60°[解析] 由题意:b sin B =c sin C ,即sin B =b sin Cc =6×323=22,结合b <c 可得B =45°,则A =180°-B -C =75°.4.(必修5P 18T1改编)在△ABC 中,A =60°,AC =4,BC =23,则△ABC 的面积等于__.[解析] 设△ABC 中,角A ,B ,C 对应的边分别为a ,b ,c . 由题意及余弦定理得cos A =b 2+c 2-a 22bc =c 2+16-122×4×c =12,解得c =2.所以S =12bc sin A =12×4×2×sin 60°=2 3.题组三 考题再现5.(2019·全国卷Ⅰ,5分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a sin A -b sin B =4c sin C ,cos A =-14,则bc=( A )A .6B .5C .4D .3[解析] 由题意及正弦定理得,b 2-a 2=-4c 2,所以由余弦定理得,cos A =b 2+c 2-a 22bc =-3c 22bc =-14,得bc=6.故选A . 6.(2019·全国卷Ⅱ,5分)在△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =__3π4__.[解析] 方法一:依题意与正弦定理得sin B sin A +sin A cos B =0,即sin B =-cos B ,则tan B =-1.又0<B <π,所以B =3π4.方法二:由正弦定理得b sin A =a sin B ,又b sin A +a cos B =0,所以a sin B +a cos B =0,即sin B =-cos B ,则tan B =-1.又0<B <π,所以B =3π4.方法三:依题意得b sin A =-a cos B >0,故cos B <0,B 为钝角.如图,过点C 作CE ⊥AB 交AB 的延长线于点E ,则CE =b sin ∠BAC ,BE =-a cos ∠ABC ,故BE =CE .又CE ⊥AB ,所以∠CBE =π4,∠ABC =3π4.7.(2019·全国卷Ⅱ,5分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若b =6,a =2c ,B =π3,则△ABC 的面积为__63__.[解析] 方法一:因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以△ABC 的面积S =12ac sin B =12×43×23×sin π3=6 3.方法二:因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以a 2=b 2+c 2,所以A =π2,所以△ABC 的面积S =12×23×6=6 3.KAO DIAN TU PO HU DONG TAN JIU 考点突破·互动探究考点一 利用正、余弦定理解三角形——自主练透考向1 正弦定理的应用例1 (1)(2020·东北师范大学附属中学模拟)在△ABC 中,a =1,A =π6,B =π4,则c =( A )A .6+22 B .6-22 C .62D .22(2)(2020·河南南阳期中)在△ABC 中,a =8,b =10,A =45°,则此三角形解的情况是( B )A .一解B .两解C .一解或两解D .无解[解析] (1)方法一:sin C =sin [π-(A +B )]=sin (A +B )=sin A cos B +cos A sin B =2+64,由正弦定理a sin A =c sin C 得c =a sin Csin A =1×2+6412=6+22,故选A . 方法二:由正弦定理a sin A =b sin B ,得b =a sin Bsin A =1×sinπ4sin π6=2,则cos C =-cos (A +B )=-(cos A cos B -sin A sin B )=-6-24.由余弦定理可得,c =a 2+b 2-2ab cos C =1+2+2×1×2×6-24=6+22.故选A .(2)因为b sin 45°=52<8<b =10,所以三角形有两解,故选B . 考向2 余弦定理的应用例2 (1)(2020·吉林模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a=13,b =3,A =60°,则边c =( C )A .1B .2C .4D .6(2)(2020·百校联盟第二次联考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若sin A =3sin B ,c =5,且cos C =56,则a =( B )A .22B .3C .32D .4(3)在△ABC 中,sin A ︰sin B ︰sin C =4︰5︰6,则2a cos Ac=__1__.[解析] (1)a 2=c 2+b 2-2cb cos A ⇒13=c 2+9-2c ×3×cos 60°,即c 2-3c -4=0,解得c =4或c =-1(舍去).故选C .(2)由正弦定理结合题意得a =3b ,不妨设b =m ,a =3m (m >0),结合余弦定理有:cos C =a 2+b 2-c 22ab =9m 2+m 2-56m 2=56,求解关于实数m 的方程可得m =1,则a =3m =3. (3)由正弦定理得sin A ︰sin B ︰sin C =a ︰b ︰c =4︰5︰6,设a =4,则b =5,c =6,又由余弦定理知cos A =b 2+c 2-a 22bc =25+36-162×5×6=34,所以2a cos A c =2sin A cos A sin C =2×sin A sin C ×cos A=2×46×34=1.名师点拨 ☞(1)在已知三角形两边及其中一边的对角,求该三角形的其他边角的问题时,首先必须判明是否有解,(例如在△ABC 中,已知a =1,b =2,A =60°,则sin B =ba sin A =3>1,问题就无解),如果有解,是一解,还是两解.(2)正、余弦定理可将三角形边的关系转化为角的关系,也可将角(三角函数)的关系转化为边的关系.(3)在三角形的判断中注意应用“大边对大角”.(4)已知边多优先考虑余弦定理,角多优先考虑正弦定理.考点二 利用正、余弦定理判定三角形的形状——师生共研例3 (1)(2020·长春调研)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2b cosC -2c cos B =a ,且B =2C ,则△ABC 的形状是( B )A .等腰直角三角形B .直角三角形C .等腰三角形D .等边三角形(2)(2020·开封调研)已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a 2+b 2)sin (A -B )=(a 2-b 2)sin (A +B ),则△ABC 的形状是( D )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形[解析] (1)因为2b cos C -2c cos B =a ,所以2sin B cos C -2sin C cos B =sin A =sin (B +C ),即sin B cos C =3cos B sin C ,所以tan B =3tan C ,又B =2C ,所以2tan C1-tan 2C =3tan C ,得tan C=33,C =π6,B =2C =π3,A =π2,故△ABC 为直角三角形.故选B . (2)解法一:已知等式可化为a 2[sin (A -B )-sin (A +B )]=b 2[-sin (A +B )-sin (A -B )], ∴2a 2cos A sin B =2b 2cos B sin A .由正弦定理知上式可化为sin 2A cos A sin B =sin 2B cos B sin A , ∴sin 2A =sin 2B ,由0<2A <2π,0<2B <2π, 得2A =2B 或2A =π-2B ,即A =B 或A =π2-B ,∴△ABC 为等腰三角形或直角三角形.故选D .解法二:同解法一可得 2a 2cos A sin B =2b 2sin A cos B . a 2b ·c 2+b 2-a 22bc =b 2a ·a 2+c 2-b 22ac ,∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2),即(a 2-b 2)(a 2+b 2-c 2)=0,∴a =b 或a 2+b 2=c 2, ∴△ABC 为等腰三角形或直角三角形.故选D . 名师点拨 ☞三角形形状的判定方法(1)通过正弦定理和余弦定理,化边为角(如a =2R sin A ,a 2+b 2-c 2=2ab cos C 等),利用三角变换得出三角形内角之间的关系进行判断.此时注意一些常见的三角等式所体现的内角关系,如sin A =sin B ⇔A =B ;sin (A -B )=0⇔A =B ;sin 2A =sin 2B ⇔A =B 或A +B =π2等.(2)利用正弦定理、余弦定理化角为边,如sin A =a2R ,cos A =b 2+c 2-a 22bc 等,通过代数恒等变换,求出三条边之间的关系进行判断.(3)注意无论是化边还是化角,在化简过程中出现公因式不要轻易约掉,否则会有漏掉一种形状的可能.〔变式训练1〕(1)(2020·济南一中检测)在△ABC 中,内角A ,B ,C 对边的边长分别为a ,b ,c ,A 为锐角,lg b +lg 1c=lg sin A =-lg 2,则△ABC 为( D )A .锐角三角形B .等边三角形C .钝角三角形D .等腰直角三角形(2)在△ABC 中,若c -a cos B =(2a -b )cos A ,则△ABC 的形状为__等腰或直角三角形__. [解析] (1)由lg b +lg 1c =lg b c =-lg 2=lg 22,得b c =22,即c =2b .由lgsin A =-lg 2,得sin A =22, 又A 为锐角,所以cos A =22. 由余弦定理:a 2=b 2+c 2-2bc cos A 得a =b , 故B =A =45°,因此C =90°.故选D .(2)因为c -a cos B =(2a -b )cos A ,所以由正弦定理得sin C-sin A cos B=2sin A cos A-sin B cos A,所以sin (A+B)-sin A cos B=2sin A cos A-sin B cos A,故cos A(sin B-sin A)=0,所以cos A=0或sin A=sin B,即A=π2或A=B,故△ABC为等腰或直角三角形.考点三与三角形面积有关的问题——师生共研例4(2019全国卷Ⅲ,12分)△ABC的内角A,B,C的对边分别为a,b,c.已知a sin A+C2=b sin A.(1)求B;(2)若△ABC为锐角三角形,且c=1,求△ABC面积的取值范围.[解析](1)由题设及正弦定理得sin A sinA+C2=sin B sin A.因为sin A≠0,所以sinA+C2=sin B.由A+B+C=180°,可得sinA+C2=cos B2,故cos B2=2sin B2cosB2.因为cos B2≠0,故sinB2=12,因此B=60°.(2)由题设及(1)知△ABC的面积S△ABC=34a.由正弦定理得a=c sin Asin C=sin (120°-C)sin C=32tan C+12.由于△ABC为锐角三角形,故0°<A<90°,0°<C<90°.由(1)知A+C=120°,所以30°<C<90°,故12<a<2,从而38<S△ABC<32.因此,△ABC面积的取值范围是(38,32).名师点拨☞三角形面积公式的应用原则1.对于面积公式S=12ab sin C=12ac sin B=12bc sin A,一般是已知哪一个角就使用哪一个公式.2.与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化. 〔变式训练2〕(2017·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin (A +C )=8sin 2B2.(1)求cos B ;(2)若a +c =6,△ABC 的面积为2,求b . [解析] (1)解法一:∵sin (A +C )=8sin 2B2,∴sin B =8sin 2B 2,即2sin B 2·cos B 2=8sin 2B2,∵sin B 2>0,∴cos B 2=4sin B2,∴cos 2B 2=1-sin 2B 2=16sin 2B 2,∴sin 2B 2=117∴cos B =1-2sin 2B 2=1517.解法二:由题设及A +B +C =π得sin B =8sin 2B2,故sin B =4(1-cos B ).上式两边平方,整理得17cos 2B -32cos B +15=0, 解得cos B =1(舍去),cos B =1517.(2)由cos B =1517得sin B =817,故S △ABC =12ac sin B =417ac .又S △ABC =2,则ac =172.由余弦定理及a +c =6得,b 2=a 2+c 2-2ac cos B =(a +c )2-2ac (1+cos B ) =36-17×3217=4,∴b =2.MING SHI JIANG TAN SU YANG TI SHENG 名师讲坛·素养提升三角形的最值问题例5 (2020·河南郑州检测)在△ABC 中,内角A ,B ,C 对应的三边长分别为a ,b ,c ,且满足c (a cos B -12b )=a 2-b 2.(1)求角A ;(2)若a =3,求b +c 的取值范围. [分析] (1)“化边”用余弦定理求A ; (2)b +c =a sin A (sin B +sin C ),而a sin A已知,故可转化为求sin B +sin C 的取值范围,也可用余弦定理及均值不等式构造关于b +c 的不等关系求解.[解析] (1)∵c (a cos B -12b )=a 2-b 2,∴a 2+c 2-b 2-bc =2a 2-2b 2,a 2=b 2+c 2-bc , ∵a 2=b 2+c 2-2bc cos A ,∴cos A =12.又0<A <π,∴A =π3.(2)解法一:由正弦定理得b =a sin B sin A =3sin Bsin π3=2sin B ,c =a sin C sin A =3sin C sin π3=2sin C .∴b +c =2sin B +2sin C =2sin B +2sin (A +B ) =2sin B +2sin A cos B +2cos A sin B =3sin B +3cos B =23sin (B +π6) ,∵B ∈(0,2π3),∴B +π6∈(π6,5π6).sin (B +π6)∈(12,1],所以b +c ∈(3,23].解法二:∵a =3,∴a 2=b 2+c 2-2bc cos A , 3=b 2+c 2-bc =(b +c )2-3bc , ∵bc ≤(b +c 2)2,3≥(b +c )2-3(b +c2)2,(b +c )2≤12,即b +c ≤23, ∵b +c >a =3,b +c ∈(3,23].[引申] (1)在本例条件下:①cos B +cos C 的最大值为__1__;②若b +c =1,则a 的取值范围是__[12,1)__; ③b +c a的取值范围是__(1,2]__.(2)在本例(2)的条件下,①△ABC 面积的最大值为4; ②若△ABC 为锐角三角形,则△ABC 面积的取值范围是__(2,4]__.③若△ABC 的面积为23,则a 的最小值为[解析] (1)①cos B +cos C =cos B +cos (2π3-B ) =12cos B +32sin B =sin (B +π6), ∵0<B <2π3,∴π6<B +π6<5π6, ∴12<sin (B +π6)≤1,∴cos B +cos C 的最大值为1. ②由余弦定理知a 2=b 2+c 2-2bc cos A=(b +c )2-3bc ≥(b +c )24=14, ∴a ≥12,又a <b +c =1,∴12≤a <1. 另解:a 2=(b +c )2-3bc =1-3b (1-b )=3(b -12)2+14 又∵0<b <1,∴14≤a 2<1,即12≤a <1. ③b +c a =sin B +sin C sin A =23[sin B +sin (2π3-B )] =23(sin B +32cos B +12sin B )=3sin B +cos B =2sin (B +π6). ∵0<B <2π3,∴π6<B +π6<5π6, ∴12<sin (B +π6)≤1,∴1<2sin (B +π6)≤2, 即b +c a的取值范围是(1,2]. (2)①解法一:由余弦定理有a 2=b 2+c 2-2bc cos A ,即3=b 2+c 2-bc ,∴3≥2bc -bc =bc (当且仅当b =c 时取等号),∴S △ABC =12bc sin A ≤334, 即△ABC 面积的最大值为334. 解法二:由题意b =2sin B ,c =2sin C =2sin (2π3-B ), ∴bc =4sin B sin (2π3-B )=4sin B (32cos B +12sin B ) =3sin 2B -cos 2B +1=2sin (2B -π6)+1. ∵0<B <2π3,∴-π6<2B -π6<7π6, ∴sin (2B -π6)≤1(当且仅当B =π3时取等号)故bc ≤3. ∴S △ABC =12bc sin A ≤334, 即△ABC 面积的最大值为334. 注:由A =π3知A 的轨迹为弦BC 所对优弧,显然当A 在BC 中垂线上即AB =AC ,也就是△ABC 为正三角形时S △ABC 最大,又a =3,∴S △ABC 的最大值为334.换一角度理解,显然当S △ABC 取最大值时对b 、c 要求相同,因此必有b =c .②由①知S △ABC =12bc sin A =32sin (2B -π6)+34, ∵△ABC 为锐角三角形,∴0<B <π2且B +π3>π2, 即π6<B <π2,∴π6<2B -π6<5π6, ∴12<sin (2B -π6)≤1,∴32<S △ABC ≤334.注:根据上图显然当C =π2时,由tan π3=3b 得b =1,此时S △ABC =32.同理B =π2时,S △ABC =32,又由①知S △ABC ≤334,故结合图形可知32<S △ABC ≤334. ③∵S △ABC =12bc sin A =34bc =23,∴bc =8, 又a 2=b 2+c 2-2bc cos A =b 2+c 2-bc ≥bc =8,(当且仅当b =c 时取等号),∴a min =2 2.名师点拨 ☞三角函数中最值(或范围)问题△ABC 中,若已知角C 及其对边c .(1)可用“化角”的方法求形如a +b =c sin C(sin A +sin B )的式子的取值范围; (2)可用余弦定理得含有a +b 、ab 及a 2+b 2的等式,再利用均值定理化为以a +b 或ab 为变量的不等式求得a +b 或ab 的最值,从而可得三角形周长或面积的最值.〔变式训练3〕(1)(2020·甘肃天水一中学段考试)在△ABC 中,B =π4,若b =22,则△ABC 面积的最大值是( D ) A .4+42B .4C .42D .2+2 2 (2)(2018·北京,14)若△ABC 的面积为34(a 2+c 2-b 2),且∠C 为钝角,则∠B =__π3__;c a的取值范围是__(2,+∞)__.[解析] (1)由余弦定理有8=a 2+c 2-2ac cos π4, 即8=a 2+c 2-2ac ≥(2-2)ac ,(当且仅当a =c 时取等号),∴ac ≤82-2=4(2+2), ∴S △ABC =12ac sin π4≤2+22,故选D . (2)本题主要考查正弦、余弦定理,三角形面积公式,三角恒等变换.依题意有12ac sin B =34(a 2+c 2-b 2)=34×2ac cos B ,则tan B =3,∵0<∠B <π,∴∠B =π3.c a =sin C sin A =sin (2π3-A )sin A =12+3cos A 2sin A =12+32·1tan A, ∵∠C 为钝角,∴2π3-∠A >π2, 又∠A >0,∴0<∠A <π6,则0<tan A <33, ∴1tan A >3,故c a >12+32×3=2. 故c a的取值范围为(2,+∞).。
2021年高考数学一轮复习 第三章 第六节 正弦定理和余弦定理演练知能检测 文
第六节 正弦定理和余弦定理2021年高考数学一轮复习 第三章 第六节 正弦定理和余弦定理演练知能检测 文1.已知△ABC ,sin A ∶sin B ∶sin C =1∶1∶2,则此三角形的最大内角的度数是( )A .60°B .90°C .120°D .135°解析:选B 依题意和正弦定理知,a ∶b ∶c =1∶1∶2,且c 最大. 设a =k ,b =k ,c =2k (k >0),由余弦定理得,cos C =k 2+k 2-2k22k2=0, 又0°<C <180°,所以C =90°.2.(xx·山东高考)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若B =2A ,a =1,b =3,则c =( )A .2 3B .2 C. 2 D .1解析:选B 由已知及正弦定理得1sin A =3sin B =3sin 2A =32sin A cos A ,所以cos A=32,A =30°. 结合余弦定理得12=(3)2+c 2-2c ×3×32,整理得c 2-3c +2=0,解得c =1或c =2.当c =1时,△ABC 为等腰三角形,A =C =30°,B =2A =60°,不满足内角和定理,故c =2.3.(xx·沈阳模拟)在△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( )A.32B.332C.3+62D.3+394 解析:选B 由余弦定理得:(7)2=22+AB 2-2×2AB ·cos 60°,即AB 2-2AB -3=0,得AB =3,故BC 边上的高是AB sin 60°=332.4.在△ABC 中,若lg sin A -lg cos B -lg sin C =lg 2,则△ABC 的形状是( ) A .直角三角形 B .等腰直角三角形 C .等边三角形 D .等腰三角形解析:选D 由条件得sin Acos B sin C=2,即2cos B sin C =sin A .由正、余弦定理得,2·a 2+c 2-b 22ac·c =a ,整理得c =b ,故△ABC 为等腰三角形.5.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若角A ,B ,C 依次成等差数列,且a =1,b =3,则S △ABC 等于( )A. 2B. 3C.32D .2解析:选C ∵A ,B ,C 成等差数列, ∴A +C =2B ,∴B =60°. 又a =1,b =3,∴a sin A =bsin B, ∴sin A =a sin Bb =32×13=12, ∴A =30°,∴C =90°.∴S △ABC =12×1×3=32.6.在△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B ·sin C ,则A 的取值范围是( ) A.⎝ ⎛⎦⎥⎤0,π6 B.⎣⎢⎡⎭⎪⎫π6,πC.⎝ ⎛⎦⎥⎤0,π3D.⎣⎢⎡⎭⎪⎫π3,π解析:选C 由已知及正弦定理,有a 2≤b 2+c 2-bc .而由余弦定理可知,a 2=b 2+c 2-2bc cos A ,于是b 2+c 2-2bc cos A ≤b 2+c 2-bc ,可得cos A ≥12.注意到在△ABC 中,0<A <π,故A ∈⎝⎛⎦⎥⎤0,π3.7.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,且a sin A sin B +b cos 2A =2a ,则ba=________.解析:由正弦定理,得sin 2A sinB +sin B cos 2A =2sin A ,即sinB ·(sin 2A +cos 2A )=2sin A ,所以sin B =2sin A .所以b a =sin Bsin A= 2.答案: 28.(xx·深圳模拟)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos A =35,cosB =513,b =3,则c =________. 解析:由题意知sin A =45,sin B =1213,则sin C =sin(A +B )=sin A cos B +cos A sin B =5665,所以c =b sin C sin B =145.答案:1459.在△ABC 中,B =60°,AC =3,则△ABC 的周长的最大值为________.解析:由正弦定理得:BC sin A =AB sin C =AC sin B =3sin 60°,即BC sin A =ABsin C=2,则BC=2sin A ,AB =2sin C ,又△ABC 的周长l =BC +AB +AC =2sin A +2sin C +3=2sin(120°-C )+2sin C +3=2sin 120°cos C -2cos 120°sin C +2sin C +3=3cos C +sin C +2sin C +3=3cos C +3sin C +3=3(3sin C +cos C )+3=2332sin C +12cos C +3=23sin ⎝ ⎛⎭⎪⎫C +π6+ 3.故△ABC 的周长的最大值为3 3.答案:3 310.(xx·浙江高考)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2a sin B =3b .(1)求角A 的大小;(2)若a =6,b +c =8,求△ABC 的面积.解:(1)由2a sin B =3b 及正弦定理a sin A =bsin B ,得sin A =32.因为A 是锐角,所以A =π3. (2)由余弦定理a 2=b 2+c 2-2bc cos A ,得b 2+c 2-bc =36.又b +c =8,所以bc =283.由三角形面积公式S =12bc sin A ,得△ABC 的面积为733.11.(xx·杭州模拟)设函数f (x )=6cos 2x -3sin 2x (x ∈R ). (1)求f (x )的最大值及最小正周期;(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,锐角A 满足f (A )=3-23,B =π12,求a 2+b 2-c 2ab的值.解:(1)f (x )=23cos ⎝⎛⎭⎪⎫2x +π6+3. 故f (x )的最大值为23+3,最小正周期T =π.(2)由f (A )=3-23,得23cos ⎝ ⎛⎭⎪⎫2A +π6+3=3-23, 故cos ⎝⎛⎭⎪⎫2A +π6=-1,又由0<A <π2,得π6<2A +π6<π+π6,故2A +π6=π,解得A =5π12.又B =π12,∴C =π2.∴a 2+b 2-c 2ab=2cos C =0.12.(xx·重庆高考)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且a 2+b 2+2ab =c 2.(1)求C ;(2)设cos A cos B =325,cos α+A cos α+B cos 2α=25,求tan α的值. 解:(1)因为a 2+b 2+2ab =c 2,由余弦定理有cos C =a 2+b 2-c 22ab =-2ab 2ab =-22.又0<C <π,故C =3π4.(2)由题意得sin αsin A -cos αcos A sin αsin B -cos αcos B cos 2α=25. 因此(tan αsin A -cos A )(tan αsin B -cos B )=25, tan 2αsin A sin B -tan α(sin A cos B +cos A sin B )+cos A cos B =25, tan 2αsin A sin B -tan αsin(A +B )+cos A cos B =25.① 因为C =3π4,所以A +B =π4,所以sin(A +B )=22,因为cos(A +B )=cos A cos B -sin A sin B , 即325-sin A sin B =22,解得sin A sin B =325-22=210.由①得tan 2α-5tan α+4=0, 解得tan α=1或tan α=4.[冲击名校]1.在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b a +a b =6cos C ,则tan C tan A +tan Ctan B=________.解析:∵b a +a b =6cos C ,∴b a +a b =6·a 2+b 2-c 22ab ,化简得a 2+b 2=32c 2,则tan C tan A +tan C tan B=tan C ·sin B cos A +sin A cos B sin A sin B =tan C sin A +B sin A sin B =sin 2Ccos C sin A sin B=c 2a 2+b 2-c 22ab·ab =4.答案:42.(xx·福建高考)如图,在等腰直角△OPQ 中,∠POQ =90°,OP =22,点M 在线段PQ 上.(1)若OM =5,求PM 的长;(2)若点N 在线段MQ 上,且∠MON =30°,问:当∠POM 取何值时,△OMN 的面积最小?并求出面积的最小值.解:(1)在△OMP 中,∠OPM =45°,OM =5,OP =22,由余弦定理,得OM 2=OP 2+PM 2-2×OP ×PM ×cos 45°,得PM 2-4PM +3=0, 解得PM =1或PM =3.(2)设∠POM =α,0°≤α≤60°,在△OMP 中,由正弦定理,得OM sin ∠OPM =OPsin ∠OMP,所以OM =OP sin 45°sin 45°+α,同理ON =OP sin 45°sin 75°+α.故S △OMN =12×OM ×ON ×sin∠MON=14×OP 2sin 245°sin 45°+αsin 75°+α=1sin 45°+αsin 45°+α+30°=1sin 45°+α⎣⎢⎡⎦⎥⎤32sin 45°+α+12cos 45°+α=132sin 245°+α+12sin 45°+αcos 45°+α=134[1-cos 90°+2α]+14sin 90°+2α=134+34sin 2α+14cos 2α=134+12sin 2α+30°.因为0°≤α≤60°,则30°≤2α+30°≤150°,所以当α=30°时,sin(2α+30°)的最大值为1,此时△OMN 的面积取到最小值.即∠POM =30°时,△OMN 的面积的最小值为8-4 3.[高频滚动]1.已知sin x -sin y =-23,cos x -cos y =23,且x ,y 为锐角,则tan(x -y )=( )A.2145 B .- 2145 C .±2145 D .±51428解析:选B ∵sin x -sin y =-23,x ,y 为锐角,∴-π2<x -y <0,又⎩⎪⎨⎪⎧sin x -sin y =-23,①cos x -cos y =23,②①2+②2,得2-2sin x sin y -2cos x cos y =⎝ ⎛⎭⎪⎫-232+⎝ ⎛⎭⎪⎫232,即2-2cos(x -y )=89,得cos(x -y )=59,又-π2<x -y <0,∴sin(x -y )=-1-cos 2x -y =-1-⎝ ⎛⎭⎪⎫592=-2149,∴tan(x -y )=sinx -y cosx -y =-2145. 2.设α为锐角,若cos ⎝ ⎛⎭⎪⎫α+π6=45,则sin ⎝ ⎛⎭⎪⎫2α+π12的值为________.解析:因为α为锐角,cos ⎝ ⎛⎭⎪⎫α+π6=45,所以sin ⎝ ⎛⎭⎪⎫α+π6=35,sin 2⎝⎛⎭⎪⎫α+π6=2425,cos 2⎝ ⎛⎭⎪⎫α+π6=725,所以sin ⎝ ⎛⎭⎪⎫2α+π12=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α+π6-π4=sin 2⎝ ⎛⎭⎪⎫α+π6·cos π4-cos 2⎝⎛⎭⎪⎫α+π6·sin π4=17250.答案:17250R36590 8EEE 軮20070 4E66 书21940 55B4 喴`34804 87F4 蟴24897 6141 慁Y31679 7BBF 箿33018 80FA 胺(39269 9965 饥 31232 7A00 稀@。
第21讲-正弦定理和余弦定理-2021年新高考数学一轮专题训练含真题及解析
第21讲-正弦定理和余弦定理一、 考情分析1.掌握正弦定理、余弦定理.2.能解决一些简单的三角形度量问题.二、 知识梳理1.正、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则定理正弦定理余弦定理公式a sin A =b sin B =csin C =2Ra 2=b 2+c 2-2bc cos__A ;b 2=c 2+a 2-2ca cos__B ; c 2=a 2+b 2-2ab cos__C 常见变形(1)a =2R sin A ,b =2R sin__B ,c =2R sin__C ;(2)sin A =a 2R ,sin B =b 2R ,sin C =c 2R ; (3)a ∶b ∶c =sin__A ∶sin__B ∶sin__C ; (4)a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin Acos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r .3.在△ABC 中,已知a ,b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式 a =b sin A b sin A <a <b a ≥b a >b a ≤b 解的个数一解两解一解一解无解[微点提醒]1.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ;(3)sin A +B 2=cos C 2;(4)cos A +B 2=sin C 2. 2.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 3.在△ABC 中,两边之和大于第三边,两边之差小于第三边,A >B ⇔a >b ⇔sin A > sin B ⇔cos A <cos B .三、 经典例题考点一 利用正、余弦定理解三角形【例1】 (1)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =________.(2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若 (a +b )(sin A -sin B )=(c -b )sin C ,则A =( ) A.π6B.π3C.5π6D.2π3(3)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为a 2+b 2-c 24,则C =( )A.π2B.π3C.π4D.π6 【解析】 (1)由正弦定理,得sin B =b sin Cc =6×323=22,结合b <c 得B =45°,则A =180°-B -C =75°. (2)∵(a +b )(sin A -sin B )=(c -b )sin C ,∴由正弦定理得(a +b )(a -b )=c (c -b ),即b 2+c 2-a 2=bc . 所以cos A =b 2+c 2-a 22bc =12, 又A ∈(0,π),所以A =π3.(3)因为a 2+b 2-c 2=2ab cos C ,且S △ABC =a 2+b 2-c 24,所以S △ABC =2ab cos C 4=12ab sin C ,所以tan C =1.又C ∈(0,π),故C =π4.规律方法 1.三角形解的个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.2.已知三角形的两边和其中一边的对角解三角形.可用正弦定理,也可用余弦定理.用正弦定理时,需判断其解的个数,用余弦定理时,可根据一元二次方程根的情况判断解的个数.考点二判断三角形的形状【例2】(1)在△ABC中,角A,B,C所对的边分别为a,b,c,若cb<cos A,则△ABC为()A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形(2)设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B=a sin A,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定【解析】(1)由cb<cos A,得sin Csin B<cos A,又B∈(0,π),所以sin B>0,所以sin C<sin B cos A,即sin(A+B)<sin B cos A,所以sin A cos B<0,因为在三角形中sin A>0,所以cos B<0,即B为钝角,所以△ABC为钝角三角形.(2)由正弦定理得sin B cos C+sin C cos B=sin2A,∴sin(B+C)=sin2A,即sin A=sin2A.∵A∈(0,π),∴sin A>0,∴sin A=1,即A=π2,∴△ABC为直角三角形.规律方法 1.判定三角形形状的途径:(1)化边为角,通过三角变换找出角之间的关系;(2)化角为边,通过代数变形找出边之间的关系,正(余)弦定理是转化的桥梁.2.无论使用哪种方法,都不要随意约掉公因式,要移项提取公因式,否则会有漏掉一种形状的可能.注意挖掘隐含条件,重视角的范围对三角函数值的限制.考点三和三角形面积、周长有关的问题角度1 与三角形面积有关的问题【例3-1】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A +3cos A =0,a =27,b =2. (1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积. 【解析】(1)由sin A +3cos A =0及cos A ≠0, 得tan A =-3,又0<A <π, 所以A =2π3.由余弦定理,得28=4+c 2-4c ·cos 2π3. 即c 2+2c -24=0,解得c =-6(舍去),c =4.(2)由题设可得∠CAD =π2,所以∠BAD =∠BAC -∠CAD =π6. 故△ABD 与△ACD 面积的比值为12AB ·AD sin π612AC ·AD =1.又△ABC 的面积为12×4×2sin ∠BAC =23, 所以△ABD 的面积为 3.角度2 与三角形周长有关的问题【例3-2】 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足a sin B =3b cos A .若a =4,则△ABC 周长的最大值为________. 【解析】 由正弦定理a sin A =bsin B ,可将a sin B =3b cos A 转化为sin A sin B =3sin B cos A . 又在△ABC 中,sin B >0,∴sin A =3cos A , 即tan A = 3. ∵0<A <π,∴A =π3.由余弦定理得a 2=16=b 2+c 2-2bc cos A=(b +c )2-3bc ≥(b +c )2-3⎝⎛⎭⎪⎫b +c 22, 则(b +c )2≤64,即b +c ≤8(当且仅当b =c =4时等号成立), ∴△ABC 周长=a +b +c =4+b +c ≤12,即最大值为12.规律方法 1.对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.2.与面积周长有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化. [方法技巧]1.正弦定理和余弦定理其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系.2.在已知关系式中,既含有边又含有角,通常的解题思路是:先将角都化成边或边都化成角,再结合正弦定理、余弦定理即可求解.3.在△ABC 中,若a 2+b 2<c 2,由cos C =a 2+b 2-c 22ab <0,可知角C 为钝角,则△ABC 为钝角三角形.4.在利用正弦定理解有关已知三角形的两边和其中一边的对角解三角形时,有时出现一解、两解,所以要进行分类讨论.另外三角形内角和定理起着重要作用,在解题中要注意根据这个定理确定角的范围,确定三角函数值的符号,防止出现增解等扩大范围的现象.5.在判断三角形的形状时,等式两边一般不要约去公因式,应移项提取公因式,以免漏解.四、 课时作业1.(2020·安徽省舒城中学高一月考(文))在ABC 中,a =c =60A =︒,则C =( ). A .30°B .45°C .45°或135°D .60°2.(2020·四川外国语大学附属外国语学校高一月考)在ABC ∆中,,,a b c 分别为,,A B C 的对边,60,1A b ==,则a =( )A .2BC .D3.(2020·浙江省高一期中)在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,222c a b =+,则C =( ) A .60B .30C .60或120D .1204.(2020·金华市江南中学高一期中)钝角三角形ABC 的面积是12,AB=1,,则AC=( )A .5B C .2D .15.(2020·全国高三(文))在锐角ABC ∆中,若2C B =,则cb的范围( )A .B .)2C .()0,2D .)26.(2020·全国高三(文))在△ABC 中,如果sin :sin :sin 2:3:4A B C =,那么cosC 等于 ( ) A .23B .23-C .13-D .14-7.(2020·山东省枣庄八中高一开学考试)在ABC 中,π3A =,b 2=,其面积为sin sin A Ba b++等于( )A .14B .13C D 8.(2020·四川省高三二模(文))ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,若sin 2sin B A =,3C π=,则ca的值为( )A B C .2 D .129.(2020·秦皇岛市抚宁区第一中学高二月考(理))在ABC ∆中,内角A ,B ,C 所对的边分别为,,a b c .已知sin cos 2A a B b c -=-,则A = A .6πB .4π C .3π D .23π 10.(2020·金华市江南中学高一期中)在ABC ∆中,内角,,A B C 所对的边分别为,,,a b c 若a =60A ︒=,45B ︒=,则b 的长为( )A .2B .1CD .211.(2020·浙江省高二学业考试)已知ABC 的三个内角A ,B ,C 所对的三条边为a ,b ,c ,若::1:1:4A B C =,则::a b c =( )A .1:1:4B .1:1:2C .1:1:3D .1:1:12.(2020·威远中学校高一月考(文))在△ABC 中,a=3,b=5,sinA=,则sinB=( ) A .B .C .D .113.(2020·石嘴山市第三中学高三其他(理))在三角形ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且满足22265b c a bc +=+,则sin 2B C +⎛⎫= ⎪⎝⎭( )A .22B .5 C .25D .2514.(2020·山东省高三其他)在3世纪中期,我国古代数学家刘徽在《九章算术注》中提出了割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”.这可视为中国古代极限观念的佳作.割圆术可以视为将一个圆内接正n 边形等分成n 个等腰三角形(如图所示),当n 变得很大时,等腰三角形的面积之和近似等于圆的面积.运用割圆术的思想,可得到sin 3°的近似值为( )(π取近似值3.14)A .0.012B .0.052C .0.125D .0.23515.(2020·全国高三(文))在ABC ∆中,若cos cos a cA C b++=,则ABC ∆的形状是( ) A .C 为直角的直角三角形 B .C 为钝角的钝角三角形 C .B 为直角的直角三角形D .A 为锐角的三角形16.(2020·四川省成都外国语学校高一期中(文))在锐角..ABC 中, 2,2a B A ==,则b 的取值范围是( ) A .(2,23B .(22,23C .()2,4D .()23,417.(2020·四川省高一月考(理))在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若,23C c π==,当ABC面积最大时,此时的ABC 为( ) A .直角三角形 B .钝角三角形C .等边三角形D .不能对形状进行判断18.(2020·宁夏回族自治区银川一中高三其他(文))已知ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的外接圆的面积为3π,且222cos cos cos 1sin sin A B C A C -+=+,则ABC 的最大边长为( ) A .3B .4C .5D .619.(2020·辽宁省高三月考(文))已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足6a =,c =2sin tan tan cos CA B A+=,则ABCS =( )A .B .C .D .20.(2020·威远中学校高一月考(文))在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,若ABC ∆的面积为S ,且221,41a S b c ==+-,则ABC ∆外接圆的面积为( )A .2πB .2πCD 21.(2020·山东省高三其他)已知ABC △同时满足下列四个条件中的三个: ①π3A =;②2cos 3B =-;③ 7a =;④ 3b =. (Ⅰ)请指出这三个条件,并说明理由; (Ⅱ)求ABC △的面积.22.(2020·山东省枣庄八中高一开学考试)一道题目因纸张破损,其中的一个条件不清楚,具体如下:在ABC ∆中,已知a =_______,)22cos1cos 2A CB +=,经过推断破损处的条件为该三角形一边的长度,且该题的答案为60A =︒,那么缺失的条件是什么呢? 问题:(1)如何根据题目条件求出,B C 的大小? (2)由求得的,B C 的值和正弦定理如何求出,b c 的值?(3)破损处的条件应该用b 边的长度还是用c 边的长度,还是二者均可?为什么?23.(2020·肥城市教学研究中心高三其他)在ABC 中,,,a b c 分别为角,,A B C 所对的边,且22()b a a c c -=-.(1)求角B .(2)若 b =2a c +的最大值.。
2021年高考数学一轮复习第三章三角函数解三角形课时达标正弦定理和余弦定理
2021年高考数学一轮复习第三章三角函数解三角形课时达标22正弦定理和余弦定理[解密考纲]本考点考查利用正弦定理、余弦定理求解三角形,判断三角形的形状,求三角形的面积等.三种考查内容均有呈现,一般排在选择题、填空题的中间位置或解答题靠前的位置,题目难度中等偏易.一、选择题1.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c .若a =1,b =3,A =π6,则B =( B )A .π3B .π3或2π3C .π6或5π6D .2π3解析 根据正弦定理a sin A =bsin B,得1sinπ6=3sin B , ∴sin B =32,∴B =π3或2π3. 2.在△ABC 中,若AB =2,AC 2+BC 2=8,则△ABC 面积的最大值为( C ) A . 2 B .2 C . 3D .3解析 ∵AC 2+BC 2≥2AC ·BC ,∴AC ·BC ≤4.∵cos C =AC 2+BC 2-AB 22AC ·BC =42AC ·BC ,∴cosC ≥12,∴0°<C ≤60°.∵S =12AC ·BC ·sin C ,∴由不等式的性质可知当AC =BC =2时,面积S 有最大值,S max=12×2×2×32=3,故选C . 3.在△ABC 中,∠A =45°,∠C =105°,BC =2,则边长AC 为( B ) A .3-1B .1C .2D .3+1解析 根据题意有∠B =180°-105°-45°=30°,根据正弦定理AC sin B =BCsin A ,得AC =2×1222=1,故选B .4.在△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( B ) A .32B .332C .3+62D .3+394解析 设AC =b ,BC =a ,AB =c ,由余弦定理b 2=a 2+c 2-2ac cos B ,得7=4+c 2-2c ,解得c =3.设BC 边上的高为h ,则h =c sin B =332.5.钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( B )A .5B . 5C .2D .1解析 S =12AB ·BC sin B =12×1×2sin B =12,∴sin B =22,∴B =π4或3π4.当B =3π4时,根据余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos B =1+2+2=5,∴AC =5,此时△ABC 为钝角三角形,符合题意;当B =π4时,根据余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos B =1+2-2=1,∴AC =1,此时AB 2+AC 2=BC 2,△ABC 为直角三角形,不符合题意,故AC = 5.6.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( C )A .3B .932C .332D .3 3解析 ∵c 2=(a -b )2+6,∴c 2=a 2+b 2-2ab +6.① ∵C =π3,∴c 2=a 2+b 2-2ab cos π3=a 2+b 2-ab .②由①②,得-ab +6=0,即ab =6.∴S △ABC =12ab sin C =12×6×32=332.二、填空题7.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a ,b ,c 成等比数列.若sin B =513,cos B =12ac,则a +c 的值为 37 . 解析 ∵a ,b ,c 成等比数列,∴b 2=ac .∵sin B =513,cos B =12ac,∴ac =13,∴b 2=a 2+c 2-2ac cos B ,∴a 2+c 2=37,∴(a +c )2=63,∴a +c =37.8.在△ABC 中,A =60°,AC =4,BC =23,则△ABC 的面积等于 2 3 . 解析 如图所示,在△ABC 中,由正弦定理,得23sin 60°=4sin B ,解得sin B =1,所以B =90°.所以S △ABC =12×AB ×23=12×42-(23)2×23=2 3.9.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c .若b -c =14a ,2sin B =3sin C ,则cos A 的值为 -14.解析 由2sin B =3sin C 及正弦定理得2b =3c ,即b =32c .又∵b -c =14a ,∴12c =14a ,即a =2c .由余弦定理,得cos A =b 2+c 2-a 22bc =94c 2+c 2-4c 22×32c 2=-34c 23c 2=-14.三、解答题10.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2cos A -1)sin B +2cosA =1.(1)求A 的大小;(2)若5b 2=a 2+2c 2,求sin B sin C的值.解析 (1)∵(2cos A -1)sin B +2cos A =1, ∴(2cos A -1)(sin B +1)=0.∵0<B <π,∴sin B >0,∴cos A =12.∵0<A <π,∴A =π3.(2)在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos A =b 2+c 2-bc . ∵5b 2=a 2+2c 2,∴5b 2=b 2+c 2-bc +2c 2,∴4b 2+bc -3c 2=0, ∴4⎝ ⎛⎭⎪⎫b c2+b c-3=0.解得b c =-1(舍)或b c =34,∴sin B sin C =b c =34.11.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .已知a ≠b ,c =3,cos 2A -cos 2B =3sin A cos A -3sin B cos B .(1)求角C 的大小;(2)若sin A =45,求△ABC 的面积.解析 (1)由倍角公式,原等式可化为cos 2A +12-cos 2B +12=32sin 2A -32sin 2B , 即sin ⎝ ⎛⎭⎪⎫2B -π6=sin ⎝⎛⎭⎪⎫2A -π6.∵a ≠b ,∴A ≠B .又∵A ,B ∈(0,π),∴2B -π6+2A -π6=π,解得A +B =23π,∴C=π-(A +B )=π3.(2)由正弦定理可求得a =85.∵a <c ,∴A <C =π3,∴cos A =35.∴sin B =sin [π-(A +C )]=sin(A +C )=4+3310,∴S △ABC =12ac sin B =83+1825.12.(xx·山东卷)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知2(tan A +tanB )=tan A cos B +tan B cos A . (1)证明:a +b =2c ; (2)求cos C 的最小值.解析 (1)由题意知2⎝ ⎛⎭⎪⎫sin A cos A +sin B cos B =sin A cos A cos B +sin B cos A cos B,化简得2(sin A cos B +sin B cos A )=sin A +sin B ,即2sin(A +B )=sin A +sin B .因为A +B +C =π,所以sin(A +B )=sin(π-C )=sin C .从而sin A +sin B =2sin C .由正弦定理得a +b =2c .(2)由(1)知c =a +b2,所以cos C =a 2+b 2-c 22ab=a 2+b 2-⎝⎛⎭⎪⎫a +b 222ab =38⎝ ⎛⎭⎪⎫a b +b a -14≥12,当且仅当a =b 时,等号成立.故cos C 的最小值为12.。
高中数学高考总复习正弦定理与余弦定理习题及详解(2021年整理)
高中数学高考总复习正弦定理与余弦定理习题及详解(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学高考总复习正弦定理与余弦定理习题及详解(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学高考总复习正弦定理与余弦定理习题及详解(word版可编辑修改)的全部内容。
高中数学高考总复习正弦定理与余弦定理习题及详解一、选择题1.(2010·聊城市、银川模拟)在△ABC中,a、b、c分别是三内角A、B、C的对边,且sin2A-sin2C=(sin A-sin B)sin B,则角C等于( )A.错误!B。
错误!C.错误!D。
错误![答案]B[解析]由正弦定理得a2-c2=(a-b)·b,由余弦定理得cos C=错误!=错误!,∵0<C<π,∴C=错误!。
2.(文)(2010·泰安模拟)在△ABC中,若A=60°,BC=4错误!,AC=4错误!,则角B的大小为( )A.30° B.45°C.135° D.45°或135°[答案]B[解析] ∵AC·sin60°=4错误!×错误!=2错误!〈4错误!〈4错误!,故△ABC只有一解,由正弦定理得,错误!=错误!,∴sin B=错误!,∵4错误!〈4错误!,∴B<A,∴B=45°.(理)在△ABC中,角A、B、C的对边分别是a、b、c,A=错误!,a=错误!,b=1,则c=( )A.1 B.2C.错误!-1 D。
高考数学一轮复习 正弦定理、余弦定理及其应用
(3)若三角形三边 a,b,c 成等差数列,则 2b=____________
⇔
2sinB
=
____________
⇔
2sin
B 2
=
cos
A-C 2
解:由正弦定理得ab=ssiinnAB,所以
sinB=
2× 7
sinπ3=
721,
由余弦定理得 a2=b2+c2-2bccosA,所以 7= 4+c2-2c,所
以 c=3(负值舍去).故填 721;3.
(2018·全国卷Ⅰ) △ABC 的内角 A,B,C 的对边 分别为 a,b,c,已知 bsinC+csinB=4asinBsinC,b2+c2
-a2=8,则△ABC 的面积为________.
解:根据题意,结合正弦定理
可得 sinBsinC+sinCsinB=4sinAsinBsinC,即 sinA=12, 结合余弦定理可得 b2+c2-a2=2bccosA=8,
所以 A 为锐角,且 cosA= 23,从而求得 bc=8 3 3,
所以△ABC 的面积为 S=12bcsinA=12×8 3 3×
所 以 AB2 = BC2 + AC2 - 2BC·AC·cosC = 1 + 25 -
2×1×5×-35=32,所以 AB=4 2.故选 A.
(2017·山东)在△ABC 中,角 A,B,C 的对边分
别为 a,b,c.若△ABC 为锐角三角形,且满足 sinB(1+2cosC)
=2sinAcosC+cosAsinC,则下列等式成立的是( )
_正弦定理和余弦定理高考题(2021年整理)
_正弦定理和余弦定理高考题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(_正弦定理和余弦定理高考题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为_正弦定理和余弦定理高考题(word版可编辑修改)的全部内容。
温馨提示:此题库为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,关闭Word 文档返回原板块.考点16 正弦定理和余弦定理一、选择题1。
(2011·浙江高考文科·T5)在ABC ∆中,角,,A B C 所对的边分别为,,a b c 。
若cos sin a A b B =,则2sin cos cos A A B +=( )(A )-12 (B )12(C )—1 (D )1【思路点拨】用正弦定理统一到角的关系上,再用同角三角函数的平方关系即可解决。
【精讲精析】选D.由cos sin a A b B =可得2sin cos sin A A B =所以222sin cos cos sin cos 1A A B B B +=+=.二、填空题2.(2011·安徽高考理科·T14)已知ABC ∆ 的一个内角为120o,并且三边长构成公差为4的等差数列,则ABC ∆的面积为_______________.【思路点拨】设三角形一边的长为x,可以用x 表示其他两边,再利用余弦定理建立方程求出x ,最后利用三角形面积公式求出ABC ∆的面积.【精讲精析】设三角形中间边长为x ,则另两边的长为x —4,x+4,那么所以解得)(,10,120cos )4(2)4(4222=---+=+x x x x x x .315120sin 61021=⨯⨯⨯=∆ ABC S【答案】3。
2021版高考理科数学(北师大版)一轮复习高效演练分层突破:第四章 第6讲 正弦定理和余弦定理 W
姓名,年级:时间:[基础题组练](2020·湖北武汉调研测试)在△ABC中,角A,B,C的对边分别为a,b,c.1.已知a=错误!b,A-B=错误!,则角C=()A.错误!B.错误!C。
错误!D.错误!解析:选B。
因为在△ABC中,A-B=错误!,所以A=B+错误!,所以sin A =sin错误!=cos B,因为a=错误!b,所以由正弦定理得sin A=错误!sin B,所以cos B=错误!sin B,所以tan B=错误!,因为B∈(0,π),所以B=错误!,所以C=π-错误!-错误!=错误!,故选B。
2.(2020·江西上饶一模)在△ABC中,角A,B,C的对边分别为a,b,c,△ABC的面积为S,若2S=(a+b)2-c2,则tan C的值是( ) A。
错误!B.错误!C.-错误!D.-错误!解析:选C。
因为S=错误!ab sin C,c2=a2+b2-2ab cos C,所以由2S=(a+b)2-c2,可得ab sin C=(a+b)2-(a2+b2-2ab·cos C),整理得sin C-2cos C=2,所以(sin C-2cos C)2=4,所以错误!=4,错误!=4,化简得3tan2C+4tan C=0,因为C∈(0,π),所以tan C=-错误!,故选C。
3.设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B=a sin A,则△ABC的形状为( )A.锐角三角形B.直角三角形C.钝角三角形D.不确定解析:选B。
因为b cos C+c cos B=a sin A,所以由正弦定理得sin B cos C+sin C cos B=sin2A,所以sin(B+C)=sin2A。
又sin(B+C)=sin A且sin A≠0,所以sin A=1,所以A=错误!,所以△ABC为直角三角形,故选B。
4.在△ABC中,角A,B,C所对应的边分别为a,b,c.若角A,B,C依次成等差数列,且a=1,b=错误!,则S△ABC=()A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
『高考复习·精推资源』『题型归纳·高效训练』
高考复习·归纳训练
2021年高考理科数学一轮复习:题型全归纳与高效训练突破
专题4.5 正弦定理和余弦定理
目录
一、题型全归纳 (1)
题型一利用正、余弦定理解三角形 (1)
类型一用正弦定理解三角形 (2)
类型二用余弦定理解三角形 (2)
类型三综合利用正、余弦定理解三角形 (3)
题型二利用正、余弦定理边角互化 (5)
题型三与三角形面积有关的问题 (7)
二、高效训练突破 (10)
一、题型全归纳
题型一利用正、余弦定理解三角形
【题型要点】解三角形的常见题型及求解方法
(1)已知两角A,B与一边a,由A+B+C=π及a
sin A=
b
sin B=
c
sin C,可先求出角C及b,再求出c.
(2)已知两边b,c及其夹角A,由a2=b2+c2-2bc cos A,先求出a,再求出角B,C.
(3)已知三边a,b,c,由余弦定理可求出角A,B,C.
(4)已知两边a,b及其中一边的对角A,由正弦定理a
sin A=b
sin B可求出另一边b的对角B,由C=π-(A+B),
可求出角C,再由a
sin A=c
sin C可求出c,而通过a
sin A=
b
sin B求角B时,可能有一解或两解或无解的情况.
类型一 用正弦定理解三角形
【例1】.(2020·北京朝阳区模拟)在△ABC 中,B =π6,c =4,cos C =53
,则b =( ) A .3 3
B .3 C.32 D.43
【例2】.(2020·丹东模拟)在△ABC 中,C =60°,AC =2,AB =3,则A =( )
A .15°
B .45°
C .75°
D .105°
类型二 用余弦定理解三角形
【例3】(2020·贵阳模拟)平行四边形ABCD 中,AB =2,AD =3,AC =4,则BD =( )
A .4
B.10
C.19
D.7
【例4】.在△ABC 中,AB =4,AC =7,BC 边上中线AD =72
,则BC =________. 类型三 综合利用正、余弦定理解三角形
【例5】(2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .设(sin B -sin C )2=sin 2A -sin B sin C. △求A ; △若2a +b =2c ,求sin C.
【例6】在△ABC 中,a =3,b -c =2,cos B =-12
.。