高中数学数列知识点总结(经典)
数列知识点总结加公式
数列知识点总结加公式一、数列的概念数列是指按照一定的规律排列在一起的一系列数,它是由一些固定的数字按照一定的顺序排列而成的。
数列中的每一个数字称为这个数列的项,数列中的第n个数字称为这个数列的第n项。
数列常用字母表示,如an,表示数列的第n项。
数列常常根据其规律性质进行分类。
一般地,数列可以分为等差数列、等比数列、递推数列等。
1. 等差数列等差数列是指数列中任意相邻两项的差都是相等的,差值为d。
等差数列的通项公式为an=a1+(n-1)d,其中a1为第一项,d为公差,n为项数。
2. 等比数列等比数列是指数列中任意相邻两项的比值都是相等的,比值为q。
等比数列的通项公式为an=a1*q^(n-1),其中a1为第一项,q为公比,n为项数。
3. 递推数列递推数列是指数列中的每一项都是由前面的项按一定的规律递推而来的数列。
递推数列常常可以通过递推关系式进行表达。
二、数列的性质数列在数学中有许多重要的性质,这些性质在研究数列的规律和性质时起着非常重要的作用。
下面就数列的一些重要的性质进行总结。
1. 数列的有界性若数列中的所有项都小于等于某一实数M,则称数列是有上界的,并称M为数列的一个上界。
若数列中的所有项都大于等于某一实数m,则称数列是有下界的,并称m为数列的一个下界。
若数列同时有上界和下界,则称数列有界。
2. 数列的单调性如果数列中的每一个项都不小于或不大于其前一项,则该数列是单调递增的或单调递减的。
特别地,如果数列中的每一个项都不小于或不大于其前一项的绝对值,则该数列是单调非减的或单调非增的。
3. 数列的极限数列的极限是指当数列的项数n趋于无穷大时,数列中的项an的极限存在并且唯一。
当这个极限存在时,我们称数列是收敛的,否则称数列是发散的。
三、常见数列及其性质1. 斐波那契数列斐波那契数列是一种递推数列,它的定义是前两项均为1,从第三项开始,每一项都是前两项之和。
斐波那契数列的通项公式可以表示为an=an-1+an-2,其中a1=1,a2=1。
数列知识点归纳总结详细
数列知识点归纳总结详细数列是数学中重要的概念之一,广泛应用于各个领域。
本文将对数列的基本概念、常见类型以及解题方法等进行详细的归纳总结。
通过本文的学习,读者可以全面了解数列的相关知识,为日后的学习和应用打下坚实的基础。
一、数列的概念数列是按照一定规律排列的数的集合。
其中,每个数都称为数列的项,每个项的位置称为项数。
通常用字母a1,a2,a3,…,an 等表示数列的项,其中an表示第n个项。
数列可以分为有限数列和无限数列。
有限数列是指项数有限的数列,而无限数列是指项数无限的数列。
二、数列的表示方式1. 显式表示法:数列的每一项都直接用公式表示。
常见的显式公式有等差数列的通项公式an=a1+(n-1)d 和等比数列的通项公式an=a1*r^(n-1)。
2. 递推关系式表示法:数列的每一项通过前一项来表示。
常见的递推关系式有等差数列的递推关系式an=an-1 +d 和等比数列的递推关系式an=an-1*r。
三、常见数列类型1. 等差数列:数列中的任意两项之差都相等。
常用的求和公式为Sn=n/2(a1+an),其中n为项数,a1为首项,an为末项。
2. 等比数列:数列中的任意两项之比都相等。
常用的求和公式为Sn=a1(1-r^n)/(1-r),其中n为项数,a1为首项,r为公比。
3. 斐波那契数列:数列中每一项都是前两项之和。
斐波那契数列的特点是每一项都等于前两项之和,即a1=a2=1,an=an-1+an-2(n>=3)。
4. 平方数列:数列中的每一项都是该项的平方。
例如1,4,9,16,…5. 等差平方数列:数列中的相邻两项之差为平方数。
例如3,8,15,24,…四、数列的求和1. 等差数列的求和公式为Sn=n/2(a1+an)。
2. 等比数列的求和公式为Sn=a1(1-r^n)/(1-r)。
3. 其他特殊数列的求和需要根据数列的特点进行推导计算。
五、数列的性质和运算1. 数列的项可以进行加减乘除等运算,同类型数列可以互相进行运算。
高中数学数列知识点总结(精华版)
..一、数列1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项.⑴数列中的数是按一定“次序”排列的,在这里,只强调有“次序”,而不强调有“规律”.因此,如果组成两个数列的数相同而次序不同,那么它们就是不同的数列.⑵在数列中同一个数可以重复出现.⑶项a n与项数n是两个根本不同的概念.⑷数列可以看作一个定义域为正整数集(或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列2.通项公式:如果数列a n的第n项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即af(n)n.3.递推公式:如果已知数列a n的第一项(或前几项),且任何一项a n与它的前一项a(或前几项)间的关系可以用一个式子来表示,即a n f(a n1)或a n f(a n1,a n2),n1那么这个式子叫做数列a的递推公式.如数列an中,a11,a n2a n1,其中na n2a n1是数列a n的递推公式.4.数列的前n项和与通项的公式①Sn a1a2a;②nS(n1)1a n.SS(n2)nn15.数列的表示方法:解析法、图像法、列举法、递推法.6.数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.①递增数列:对于任何nN,均有a n1a n.②递减数列:对于任何nN,均有a n1a n.③摆动数列:例如:1,1,1,1,1,.④常数数列:例如:6,6,6,6,⋯⋯.⑤有界数列:存在正数M使a n M,n N.⑥无界数列:对于任何正数M,总有项a使得a n M.n1、已知n*a2(nN)nn156,则在数列{}a的最大项为__(答:n125);2、数列{}a的通项为nana n,其中a,b均为正数,则a n与a n1的大小关系为___(答:bn1aa n1);n23、已知数列{a}中,a是递增数列,求实数的取值范围(答:3);ann,且{}nnn4、一给定函数yf(x)的图象在下列图中,并且对任意a(0,1),由关系式a n1f(a n)1*得到的数列{}a满足a n1a n(nN),则该函数的图象是()(答:A)neord完美格式..二、等差数列1、等差数列的定义:如果数列a n 从第二项起每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫等差数列的公差。
高中数学数列知识点精华总结
数 列 专 题考点一:求数列的通项公式1. 由a n 与S n 的关系求通项公式由S n 与a n 的递推关系求a n 的常用思路有:①利用S n -S n -1=a n (n≥2)转化为a n 的递推关系,再求其通项公式;数列的通项a n 与前n 项和S n 的关系是a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n≥2.当n =1时,a 1若适合S n-S n -1,则n =1的情况可并入n≥2时的通项a n ;当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示. ②转化为S n 的递推关系,先求出S n 与n 的关系,再求a n .}2.由递推关系式求数列的通项公式由递推公式求通项公式的常用方法:已知数列的递推关系,求数列的通项公式时,通常用累加、累乘、构造法求解.累加法:递推关系形如a n +1-a n =f(n),常用累加法求通项; 累乘法:递推关系形如a n +1a n=f(n),常用累乘法求通项;构造法:1)递推关系形如“a n +1=pa n +q(p 、q 是常数,且p≠1,q≠0)”的数列求通项,此类通项问题,常用待定系数法.可设a n +1+λ=p(a n +λ),经过比较,求得λ,则数列{a n +λ}是一个等比数列;2)递推关系形如“a n +1=pa n +q n(q ,p 为常数,且p≠1,q≠0)”的数列求通项,此类型可以将关系式两边同除以q n转化为类型(4),或同除以p n +1转为用迭加法求解.3)(倒数变形3.数列函数性质的应用数列与函数的关系数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.因此,在研究函数问题时既要注意函数方法的普遍性,又要考虑数列方法的特殊性.函数思想在数列中的应用(1)数列可以看作是一类特殊的函数,因此要用函数的知识,函数的思想方法来解决. (2)数列的单调性是高考常考内容之一,有关数列最大项、最小项、数列有界性问题均可借助数列的单调性来解决,判断单调性时常用:①作差;②作商;③结合函数图象等方法.;(3)数列{a n }的最大(小)项的求法可以利用不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1,找到数列的最大项;利用不等式组⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1,找到数列的最小项.[例3] 已知数列{a n }.(1)若a n =n 2-5n +4,①数列中有多少项是负数②n 为何值时,a n 有最小值并求出最小值.(2)若a n =n 2+kn +4且对于n ∈N *,都有a n +1>a n 成立.求实数k 的取值范围.考点二:等差数列和等比数列等差数列 等比数列 【定义 a n -a n -1=常数(n≥2) a na n -1=常数(n≥2) 通项公式a n =a 1+(n -1)da n =a 1qn -1(q≠0)…也是等差数列,(1)若m 、n 、p 、q∈N *,且m +n =p +q ,则a m ·a n =a p ·a q特别地,若m +n =2p ,则a m ·a n =a 2p . (2)a n =a m qn -m(3) 若等比数列前n 项和为S n 则S m ,S 2m -S m ,S 3m -S 2m 仍成等比数列,即(S 2m -S m )2=S m (S 3m -S 2m )(m ∈N *,公比q≠-1). ,S n =na 1+a n 2=na 1+n n -12d(1)q≠1,S n =a 11-qn1-q =a 1-a n q 1-q(2)q =1,S n =na 11n n 个.解这类问题时,一般是转化为首项a 1和公差d(公比q)这两个基本量的有关运算. 2.等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.3.用函数的观点理解等差数列、等比数列(1)对于等差数列a n =a 1+(n -1)d =dn +(a 1-d),当d≠0时,a n 是关于n 的一次函数,对应的点(n ,a n )是位于直线上的若干个离散的点;当d >0时,函数是单调增函数,对应的数列是单调递增数列,S n 有最小值;:当d =0时,函数是常数函数,对应的数列是常数列,S n =na 1;当d <0时,函数是减函数,对应的数列是单调递减数列,S n 有最大值.若等差数列的前n 项和为S n ,则S n =pn 2+qn(p ,q∈R ).当p =0时,{a n }为常数列;当p≠0时,可用二次函数的方法解决等差数列问题.(2)对于等比数列a n =a 1qn -1,可用指数函数的性质来理解.当a 1>0,q >1或a 1<0,0<q <1时,等比数列{a n }是单调递增数列;当a 1>0,0<q <1或a 1<0,q >1时,等比数列{a n }是单调递减数列;当q =1时,是一个常数列;当q <0时,无法判断数列的单调性,它是一个摆动数列. 4.常用结论—(1)若{a n },{b n }均是等差数列,S n 是{a n }的前n 项和,则{ma n +kb n },{S nn }仍为等差数列,其中m ,k 为常数.(2)若{a n },{b n }均是等比数列,则{ca n }(c≠0),{|a n |},{a n ·b n },{ma n b n }(m 为常数),{a 2n },{1a n}等也是等比数列.(3)公比不为1的等比数列,其相邻两项的差也依次成等比数列,且公比不变,即a 2-a 1,a 3-a 2,a 4-a 3,…成等比数列,且公比为a 3-a 2a 2-a 1=a 2-a 1qa 2-a 1=q .(4)等比数列(q≠-1)中连续k 项的和成等比数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等比数列,其公比为q k.等差数列中连续k 项的和成等差数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列,公差为k 2d.5)>5.易错提醒(1)应用关系式a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n≥2时,一定要注意分n =1,n≥2两种情况,在求出结果后,看看这两种情况能否整合在一起.(2)三个数a ,b ,c 成等差数列的充要条件是b =a +c2,但三个数a ,b ,c 成等比数列的必要条件是b 2=ac. 6.等差数列的判定方法(1)定义法:对于n≥2的任意自然数,验证a n -a n -1为同一常数; (2)等差中项法:验证2a n -1=a n +a n -2(n≥3,n ∈N *)成立; (3)通项公式法:验证a n =pn +q ; (4)前n 项和公式法:验证S n =An 2+Bn.%注意:在解答题中常应用定义法和等差中项法,而通项公式法和前n 项和公式法主要适用于选择题、填空题中的简单判断. 7.等比数列的判定方法(1)定义法:若a n +1a n =q(q 为非零常数,n ∈N *)或a n a n -1=q(q 为非零常数且n≥2,n ∈N *),则{a n }是等比数列.(2)等比中项公式法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列.(3)通项公式法:若数列通项公式可写成a n =c·q n(c ,q 均是不为0的常数,n ∈N *),则{a n }是等比数列.(4)前n 项和公式法:若数列{a n }的前n 项和S n =k·q n -k(k 为常数且k≠0,q≠0,1),则{a n }是等比数列.注意:前两种方法常用于解答题中,而后两种方法常用于选择、填空题中的判定.考点三:数列求和中应用转化与化归思想的常见类型:]1.公式法——直接利用等差数列、等比数列的前n 项和公式求和(1)等差数列的前n 项和公式:S n =na 1+a n 2=na 1+n n -12d ; (2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q =a 11-q n1-q ,q≠1.2.倒序相加法如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的. 3.错位相减法这是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{a n },{b n }分别是等差数列和等比数列.求a 1b 1+a 2b 2+…+a n b n 的和就适用此法.做法是先将和的形式写出,再给式子两边同乘或同除以公比q ,然后将两式相减,相减后以“q n”为同类项进行合并得到一个可求和的数列(注意合并后有两项不能构成等比数列中的项,不要遗漏掉). 4.裂项相消法(注重积累!!!))利用通项变形,将通项分裂成两项或n 项的差,通过相加过程中的相互抵消,最后只剩下有限项的和.这种方法,适用于求通项为1a n a n +1的数列的前n 项和,其中{a n }若为等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1.利用裂项相消法求和时应注意哪些问题(1)在把通项裂开后,是否恰好等于相应的两项之差;(2)在正负项抵消后,是否只剩下了第一项和最后一项,或前面剩下两项,后面也剩下两项.常见的拆项公式(1)1n n +k =1k ⎝ ⎛⎭⎪⎫1n -1n +k ; (2) 12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1;(3) 1nn +1=1n -1n +1; (4) 1n +n +1=n +1-n ;(5)n +n +k =1k(n +k -n).5.分组求和法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减. 6.并项求和法一个数列的前n 项和,可两两结合求解,则称之为并项求和.形如a n =(-1)nf(n)类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 7.放缩法是证明数列型不等式的压轴题的最重要的方法,放缩法的注意问题以及解题策略(1)明确放缩的方向:即是放大还是缩小,看证明的结论,是小于某项,则放大,是大于某个项,则缩小。
高中数学必修二数列数列总知识点
高中数学必修二数列数列总知识点
1. 数列的定义与概念
- 数列是指由一系列按照一定规律排列的数构成的序列。
- 数列中的每个数称为项,用an表示第n项。
- 数列按照一定规律排列的规律称为通项公式,用an = f(n)表示。
- 数列的表示方法有通项公式、递推公式和图形表示等。
2. 等差数列
- 等差数列是指数列中相邻两项之间差相等的数列。
- 等差数列的通项公式为an = a1 + (n - 1)d,其中a1为首项,d 为公差,n为项数。
- 等差数列的前n项和公式为Sn = (a1 + an) * n / 2。
3. 等比数列
- 等比数列是指数列中相邻两项之间比相等的数列。
- 等比数列的通项公式为an = a1 * r^(n - 1),其中a1为首项,r 为公比,n为项数。
- 等比数列的前n项和公式为Sn = a1 * (1 - r^n) / (1 - r),当|r| <
1时成立。
4. 通项公式的推导
- 对于一些特定的数列,可以通过观察规律或利用数学方法推
导出通项公式。
- 例如,斐波那契数列的通项公式为an = (φ^n - (1 - φ)^n) / √5,其中φ为黄金分割比。
5. 常见数列的性质与应用
- 数列的性质包括单调性、有界性、极限等,这些性质在数学
应用中起到重要作用。
- 等差数列和等差中项数列常用于计算物体运动的位置和速度
等问题。
- 等比数列常用于计算复利、投资等涉及指数增长的问题。
以上是高中数学必修二数列的总知识点,希望对你的研究有所
帮助!。
(完整版)高中数学数列知识点整理
1数列中a n 与S n 之间的关系:a nS ‘(n 1)注意通项能否合并。
S n & i ,(n 2).2、等差数列:⑴定义:如果一个数列从第 2项起,每一项与它的前一项的差等于同一个常数,即a n - a n 1=d , (n >2, n € N ), 那么这个数列就叫做等差数列。
⑵等差中项:若三数 a 、A b 成等差数列或a n pn q (p 、q 是常数)⑷前n 项和公式:n n 1 S n n^d2⑸常用性质: ① 若 mn p q m,n, p,q N ,贝U a m a n a p a q;② 下标为等差数列的项 a k ,a k m ,a k 2m ,,仍组成等差数列; ③ 数列 a n b ( ,b 为常数)仍为等差数列;④ 若{a n }、{0}是等差数列,则{ka n }、{ka n pb n } (k 、p 是非零常数)、{a p nq }( p,q N )、,…也成等差数列。
⑤单调性: a n 的公差为d ,则:i) d 0 a n 为递增数列; ii) d 0 a n 为递减数列; iii) d 0a n 为常数列;⑥数列{a n }为等差数列 a n pn q ( p,q 是常数)⑦若等差数列 a n 的前n 项和S n ,则S k 、S 2kS k 、S 3k S 2k …是等差数列。
3、等比数列⑴定义:如果一个数列从第 2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。
⑵等比中项:若三数a 、Gb 成等比数列G 2 ab, ( ab 同号)。
反之不一定成立。
数列⑶通项公式:a n a 1(n 1)d a m (n m)dn a-i a n2⑶通项公式:a nn 1n maga m q⑷前n 项和公式:a 1 1 q n S i1 qa 1 a n q 1 q⑸常用性质①若m n pq m,n, p,q N , 则 am ana p a q;② a k ,a k m ,a k 2m ,为等比数列, 公比为 q k (下标成等差数列,则对应的项成等比数列)③ 数列a n (为不等于零的常数)仍是公比为 q 的等比数列;正项等比数列 a n ;则lg a n 是公差为lg q 的等差数列;④ 若a n 是等比数列,则 ca n , a n 2 ,a n r(r Z )是等比数列,公比依次是⑤ 单调性:a i 0,q 1或印 0,0 q 1 a “为递增数列; a i 0,0 q 1或q 0,q1a .为递减数列;q 1 a n 为常数列; q 0a n 为摆动数列;⑥ 既是等差数列又是等比数列的数列是常数列。
高中数学数列知识点总结(精华版)
高中数学数列知识点总结(精华版)等比数列公式性质知识点1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q表示,定义的表达式为an+1/an=q(n∈n_,q为非零常数).(2)等比中项:如果a、g、b成等比数列,那么g叫做a与b的等比中项.即:g是a与b的等比中项a,g,b成等比数列g2=ab.2.等比数列的有关公式(1)通项公式:an=a1qn-1.3.等比数列{an}的常用性质(1)在等比数列{an}中,若m+n=p+q=2r(m,n,p,q,r∈n_),则am·an=ap·aq=a.特别地,a1an=a2an-1=a3an-2=….(2)在公比为q的等比数列{an}中,数列am,am+k,am+2k,am+3k,…仍是等比数列,公比为qk;数列sm,s2m-sm,s3m-s2m,…仍是等比数列(此时q≠-1);an=amqn-4.等比数列的特征(1)从等比数列的定义看,等比数列的任意项都是非零的,公比q也是非零常数.(2)由an+1=qan,q≠0并无法立即断言{an}为等比数列,还要检验a1≠0.5.等比数列的前n项和sn(1)等比数列的前n项和sn就是用错位二者加法求出的,特别注意这种思想方法在数列议和中的运用.(2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.1.等比中项如果在a与b中间插入一个数g,使a,g,b成等比数列,那么g叫做a与b的等比中项。
存有关系:注:两个非零同号的实数的'等比中项有两个,它们互为相反数,所以g2=ab是a,g,b 三数成等比数列的必要不充分条件。
2.等比数列通项公式an=a1_q’(n-1)(其中首项是a1,公比是q)an=sn-s(n-1)(n≥2)前n项和当q≠1时,等比数列的前n项和的公式为sn=a1(1-q’n)/(1-q)=(a1-a1_q’n)/(1-q)(q≠1)当q=1时,等比数列的前n项和的公式为sn=na13.等比数列前n项和与通项的关系an=a1=s1(n=1)an=sn-s(n-1)(n≥2)4.等比数列性质(1)若m、n、p、q∈n_,且m+n=p+q,则am·an=ap·aq;(2)在等比数列中,依次每k项之和仍成等比数列。
高中数学数列知识点总结5篇
高中数学数列知识点总结5篇篇1一、数列的基本概念数列是一种特殊的函数,其定义域为自然数集或其自然数子集。
数列分为等差数列和等比数列两种基本形式,此外还有更为复杂的数列形式。
数列的通项公式是描述数列的一般规律的重要工具,对于等差数列和等比数列,其通项公式分别为an=a1+(n-1)d和an=a1×q^(n-1)。
掌握数列的基本概念对于后续的学习至关重要。
二、等差数列等差数列是一种常见且重要的数列形式,其任意两项之差都相等。
在等差数列中,需要掌握的主要知识点包括等差数列的通项公式、求和公式、中项公式等。
等差数列的求和公式为Sn=n(a1+an)/2或Sn=na1+[n(n-1)/2]d,这些公式在处理与等差数列相关的问题时非常实用。
等比数列的特点是任意两项之比都相等。
在等比数列中,需要掌握的知识点包括等比数列的通项公式、求和公式以及公比的概念。
等比数列的求和公式为Sn=a1(1-q^n)/(1-q),掌握这个公式对于解决涉及等比数列的问题非常关键。
四、数列的极限数列的极限是描述数列变化趋势的重要概念。
当n趋近于无穷大时,数列的项会趋近于一个固定的值,这个值就是数列的极限。
掌握数列极限的概念和计算方法是分析数列性质的重要工具。
五、数列的应用数列在实际生活中有着广泛的应用,如金融、物理、工程等领域。
例如,在金融领域,复利计算就涉及等比数列的应用;在物理领域,许多物理量的变化可以看作是等差或等比数列的形式。
掌握数列的应用对于解决实际问题具有重要意义。
除了等差数列和等比数列外,还有一些特殊数列需要了解,如斐波那契数列、三角数列等。
这些数列具有独特的性质和应用场景,了解这些数列有助于拓宽数学视野,提高数学素养。
七、数列的证明在数列的学习中,还需要掌握一些证明方法,如数学归纳法、反证法等。
这些证明方法在证明数列的性质和解决问题时非常有用。
掌握这些证明方法有助于提升数学思维和逻辑推理能力。
综上所述,高中数学中的数列知识点丰富且重要,需要掌握基本概念、等差数列和等比数列的性质、数列的极限、应用、特殊数列以及证明方法等方面的知识。
高中数列知识点总结(附例题)
高中数列知识点总结(附例题)知识点1:等差数列及其前n 项 1.等差数列的定义 2.等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式a n =a 1+(n -1)d .3.等差中项如果 A =a +b2 ,那么A 叫做a 与b 的等差中项. 4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n-m )d ,(n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n ,(k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d .(4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.5.等差数列的前n 项和公式设等差数列{a n }的公差d ,其前n 项和S n =n (a 1+a n )2或S n =na 1+n (n -1)2d .6.等差数列的前n 项和公式与函数的关系S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n .数列{a n }是等差数列⇔S n =An 2+Bn ,(A 、B 为常数).7.等差数列的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最 大 值;若a 1<0,d >0,则S n 存在最 小 值.[难点正本 疑点清源] 1.等差数列的判定(1)定义法:a n -a n -1=d (n ≥2); (2)等差中项法:2a n +1=a n +a n +2.2.等差数列与等差数列各项和的有关性质(1)a m ,a m +k ,a m +2k ,a m +3k ,…仍是等差数列,公差为kd . (2)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列. (3)S 2n -1=(2n -1)a n .(4)若n 为偶数,则S 偶-S 奇=n2d . 若n 为奇数,则S 奇-S 偶=a 中(中间项).例1(等差数列的判定或证明):已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由.(1)证明 ∵a n =2-1a n -1 (n ≥2,n ∈N *),b n =1a n -1.∴n ≥2时,b n -b n -1=1a n -1-1a n -1-1=1⎝⎛⎭⎪⎫2-1a n -1-1-1a n -1-1=a n -1a n -1-1-1a n -1-1=1.∴数列{b n }是以-52为首项,1为公差的等差数列.(2)解 由(1)知,b n =n -72,则a n =1+1b n=1+22n -7,设函数f (x )=1+22x -7,易知f (x )在区间⎝ ⎛⎭⎪⎫-∞,72和⎝ ⎛⎭⎪⎫72,+∞内为减函数. ∴当n =3时,a n 取得最小值-1;当n =4时,a n 取得最大值3.例2(等差数列的基本量的计算)设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足S 5S 6+15=0.(1)若S 5=5,求S 6及a 1 (2)求d 的取值范围.解 (1)由题意知S 6=-15S 5=-3,a 6=S 6-S 5=-8.所以⎩⎨⎧5a 1+10d =5,a 1+5d =-8.解得a 1=7,所以S 6=-3,a 1=7. (2)方法一 ∵S 5S 6+15=0,∴(5a 1+10d )(6a 1+15d )+15=0,即2a 21+9da 1+10d 2+1=0.因为关于a 1的一元二次方程有解,所以 Δ=81d 2-8(10d 2+1)=d 2-8≥0,解得d ≤-22或d ≥2 2. 方法二 ∵S 5S 6+15=0,∴(5a 1+10d )(6a 1+15d )+15=0, 9da 1+10d 2+1=0.故(4a 1+9d )2=d 2-8.所以d 2≥8.故d 的取值范围为d ≤-22或d ≥2 2.例3(前n 项和及综合应用)(1)在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值; (2)已知数列{a n }的通项公式是a n =4n -25,求数列{|a n |}的前n 项和.解 方法一 ∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142d ,∴d =-53.∴a n =20+(n -1)×⎝ ⎛⎭⎪⎫-53=-53n +653.∴a 13=0,即当n ≤12时,a n >0,n ≥14时,a n <0,∴当n =12或13时,S n 取得最大值,且最大值为S 13=S 12=12×20+12×112×⎝ ⎛⎭⎪⎫-53=130.方法二 同方法一求得d =-53.∴S n =20n +n (n -1)2·⎝ ⎛⎭⎪⎫-53=-56n 2+1256n =-56⎝ ⎛⎭⎪⎫n -2522+3 12524. ∵n ∈N *,∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130. (2)∵a n =4n -25,a n +1=4(n +1)-25, ∴a n +1-a n =4=d ,又a 1=4×1-25=-21.所以数列{a n }是以-21为首项,以4为公差的递增的等差数列. 令⎩⎨⎧a n =4n -25<0, ①a n +1=4(n +1)-25≥0, ②由①得n <614;由②得n ≥514,所以n =6. 即数列{|a n |}的前6项是以21为首项,公差为-4的等差数列,从第7项起以后各项构成公差为4的等差数列, 而|a 7|=a 7=4×7-24=3. 设{|a n |}的前n 项和为T n ,则T n =⎩⎪⎨⎪⎧21n +n (n -1)2×(-4) (n ≤6)66+3(n -6)+(n -6)(n -7)2×4 (n ≥7)=⎩⎨⎧-2n 2+23n (n ≤6),2n 2-23n +132 (n ≥7).例4,已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为 3例5等差数列{},{}n n a b 的前n 项和分别为{},{}n n S T ,且7453n nS n T n,则使得n na b 为正整数的正整数n 的个数是 3 . (先求an/bn n=5,13,35)已知递推关系求通项:这类问题的要求不高,但试题难度较难把握.一般有三常见思路:(1)算出前几项,再归纳、猜想;(2)“a n+1=pa n+q ”这种形式通常转化为an +1+λ=p (an +λ),由待定系数法求出,再化为等比数列; (3)逐差累加或累乘法.例6 已知数列{}n a 中,113a =,当2≥n 时,其前n 项和n S 满足2221nn n S a S =-,则数列{}n a 的通项公式为例7在数列{}n a 中,12a =,11ln(1)n n a a n+=++,则n a = .知识点2:等比数列及其n 项和 1.等比数列的定义 2.等比数列的通项公式 3.等比中项若G 2=a ·b (ab ≠0),那么G 叫做a 与b 的等比中项.4.等比数列的常用性质(1)通项公式的推广:a n =a n q n-m,(n ,m ∈N *).(2)若{a n }为等比数列,且k +l =m +n ,(k ,l ,m ,n ∈N *),则a k ·a l =a m ·a n . (3)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),21221nn n n S S S S --=-1.21n S n ⇒=+1111122(2)n n n n n n S S S S n S S ---⇒-=⇒-=≥()()21132214n n a n n ⎧=⎪=⎨⎪-⎩≥13211221, 2.≥n n n n n a a a a a a n a a a a ---=⋅⋅⋅⋅⋅2ln n+⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a nb n 仍是等比数列.5.等比数列的前n 项和公式等比数列{a n }的公比为q(q ≠0),其前n 项和为S n , 当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q1-q.6.等比数列前n 项和的性质公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n .7. 等比数列的单调性【难点】1.等比数列的特征从等比数列的定义看,等比数列的任意项都是非零的,公比q 也是非常数. 2.等比数列中的函数观点利用函数、方程的观点和方法,揭示等比数列的特征及基本量之间的关系.在借用指数函数讨论单调性时,要特别注意首项和公比的大小. 3.等比数列的前n 项和S n(1)等比数列的前n 项和S n 是用错位相减法求得的,注意这种思想方法在数列求和中的运用.(2)等比数列的通项公式a n =a 1q n -1及前n 项和公式S n =a 1(1-q n )1-q =a 1-a n q 1-q(q ≠1)共涉及五个量a 1,a n ,q ,n ,S n ,知三求二,体现了方程的思想的应用.(3)在使用等比数列的前n 项和公式时,如果不确定q 与1的关系,一般要用分类讨论的思想,分公比q =1和q ≠1两种情况.例1:(1)在等比数列{a n }中,已知a 6-a 4=24,a 3a 5=64,求{a n }的前8项和S 8; (2)设等比数列{a n }的公比为q (q >0),它的前n 项和为40,前2n 项和为3 280,且前n 项中数值最大的项为27,求数列的第2n 项. (1)设数列{a n }的公比为q ,由通项公式a n =a 1q n -1及已知条件得: ⎩⎨⎧a 6-a 4=a 1q 3(q 2-1)=24, ①a 3·a 5=(a 1q 3)2=64. ②由②得a 1q 3=±8.将a 1q 3=-8代入①式,得q 2=-2,无解将a 1q 3=8代入①式,得q 2=4,∴q =±2.,故舍去.当q =2时,a 1=1,∴S 8=a 1(1-q 8)1-q =255;当q =-2时,a 1=-1,∴S 8=a 1(1-q 8)1-q =85.(2)若q =1,则na 1=40,2na 1=3 280,矛盾.∴q ≠1,∴⎩⎪⎨⎪⎧a 1(1-q n )1-q =40, ①a 1(1-q 2n )1-q =3 280, ②②①得:1+q n =82,∴q n=81, ③ 将③代入①得q =1+2a 1. ④又∵q >0,∴q >1,∴a 1>0,{a n }为递增数列. ∴a n =a 1q n -1=27, ⑤ 由③、④、⑤得q =3,a 1=1,n =4. ∴a 2n =a 8=1×37=2 187.例2 已知数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1 (n ≥2),且a n +S n =n.(1)设c n =a n -1,求证:{c n }是等比数列; (2)求数列{b n }的通项公式. 1)证明 ∵a n +S n =n , ① ∴a n +1+S n +1=n +1. ②②-①得a n +1-a n +a n +1=1,∴2a n +1=a n +1,∴2(a n +1-1)=a n -1, ∴a n +1-1a n -1=12,∴{a n -1}是等比数列. ∵首项c 1=a 1-1,又a 1+a 1=1,∴a 1=12,∴c 1=-12,公比q =12. 又c n =a n -1,∴{c n }是以-12为首项,12为公比的等比数列.(2)解 由(1)可知c n =⎝ ⎛⎭⎪⎫-12·⎝ ⎛⎭⎪⎫12n -1=-⎝ ⎛⎭⎪⎫12n , ∴a n =c n +1=1-⎝ ⎛⎭⎪⎫12n . ∴当n ≥2时,b n =a n -a n -1=1-⎝ ⎛⎭⎪⎫12n -⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n -1-⎝ ⎛⎭⎪⎫12n =⎝ ⎛⎭⎪⎫12n.又b 1=a 1=12代入上式也符合,∴b n =⎝ ⎛⎭⎪⎫12n .例3 在等比数列{a n }中,(1)若已知a 2=4,a 5=-12,求a n ;(2)若已知a 3a 4a 5=8,求a 2a 3a 4a 5a 6的值.解 (1)设公比为q ,则a 5a 2=q 3,即q 3=-18,∴q =-12,∴a n =a 5·q n -5=⎝ ⎛⎭⎪⎫-12n -4.(2)∵a 3a 4a 5=8,又a 3a 5=a 24,∴a 34=8,a 4=2.∴a 2a 3a 4a 5a 6=a 54=25=32.例4已知数列{a n }满足a 1=1,a 2=2,a n +2=a n +a n +12,n ∈N *. (1)令b n =a n +1-a n ,证明:{b n }是等比数列; (2)求{a n }的通项公式. 规范解答(1)证明 b 1=a 2-a 1=1, [1分]当n ≥2时,b n =a n +1-a n =a n -1+a n2-a n=-12(a n -a n -1)=-12b n -1, [5分]∴{b n }是首项为1,公比为-12的等比数列. [6分](2)解 由(1)知b n =a n +1-a n =⎝ ⎛⎭⎪⎫-12n -1, [8分]当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) [10分]=1+1+⎝ ⎛⎭⎪⎫-12+…+⎝ ⎛⎭⎪⎫-12n -2=1+1-⎝ ⎛⎭⎪⎫-12n -11-⎝ ⎛⎭⎪⎫-12=1+23⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n -1=53-23⎝ ⎛⎭⎪⎫-12n -1当n =1时,53-23⎝ ⎛⎭⎪⎫-121-1=1=a 1, ∴a n =53-23⎝ ⎛⎭⎪⎫-12n -1 (n ∈N *). [14分]例4 (07 重庆11)设11a a -+是和的等比中项,则a +3b 的最大值为 2 .(三角函数)例5 若数列1, 2cos θ, 22cos 2θ,23cos 3θ, … ,前100项之和为0, 则θ的值为( )例 6 △ABC 的三内角成等差数列, 三边成等比数列,则三角形的形状为__等边三角形__________.【综合应用】例7.已知等差数列{a n }的首项a 1=1,公差d >0,且第2项、第5项、第14项分别是等比数列{b n }的第2项、第3项、第4项. (1)求数列{a n }与{b n }的通项公式;22,Z 3k k ππ±∈(2)设数列{c n }对n ∈N *均有c 1b 1+c 2b 2+…+c nb n=a n +1成立,求c 1+c 2+c 3+…+c 2 013.解 (1)由已知有a 2=1+d ,a 5=1+4d ,a 14=1+13d , ∴(1+4d )2=(1+d )(1+13d ).解得d =2 (∵d >0). ∴a n =1+(n -1)·2=2n -1.又b 2=a 2=3,b 3=a 5=9,∴数列{b n }的公比为3, ∴b n =3·3n -2=3n -1.2)由c 1b 1+c 2b 2+…+c nb n=a n +1得当n ≥2时,c 1b 1+c 2b 2+…+c n -1b n -1=a n .两式相减得:n ≥2时,c nb n=a n +1-a n =2.∴c n =2b n =2·3n -1 (n ≥2).又当n =1时,c 1b 1=a 2,∴c 1=3.∴c n =⎩⎨⎧3 (n =1)2·3n -1 (n ≥2).∴c 1+c 2+c 3+…+c 2 013=3+6-2×32 0131-3=3+(-3+32 013)=32 013.知识点3:数列的基本知识1,1-1)1(n n n n n S S n S a S a -==或的关系:与例1:设{}n a 数列的前n 项和2n S n =,则8a 的值为 15 .2,数列的递推公式及应用:利用数列的递推公式求数列的通项公式,一般有三种方法:累加法,累积法,构造法①对形如q pa a a a n n +==+11;的递推公式()1.≠p q p 为常数且,可令()λλ+=++n n a p a 1,整理得()λλλ+=+=+n n a p a p q1,1-,所以是{}λ+n a 等比数列②对形如q pa a a n n n +=+1的递推公式,两边取倒数后换元转化为nn a qp a +=+11,再求出⎭⎬⎫⎩⎨⎧n a 1即可例2:已知数列{}n a 满足n a a a n n 2-,3311==+,则na n的最小值为 10.5。
数列高考知识点大全总结
数列高考知识点大全总结一、数列的概念1. 数列的定义数列是由一系列有限或无限个数按照一定的顺序排列组成的。
用数学语言描述就是一个由实数构成的序列。
一般用字母或符号表示,如{an}、{bn}等。
2. 数列中的相关概念(1)通项公式:数列中的第n个数的一般表达式,通常用an表示。
(2)前n项和:数列前n项的和,通常用Sn表示。
3. 数列的分类(1)等差数列:若数列中相邻两项的差恒定,称其为等差数列。
其通项公式为an=a1+(n-1)d。
(2)等比数列:若数列中相邻两项的比恒定,称其为等比数列。
其通项公式为an=a1*q^(n-1)。
(3)常数数列:数列中的每一项都相等的数列称为常数数列。
二、数列的性质1. 数列的有界性(1)有界数列:当数列中的数有上界和下界时,称其为有界数列。
(2)无界数列:当数列中的数没有上界和下界时,称其为无界数列。
2. 数列的单调性若数列中的每一项都满足an≤an+1或者an≥an+1时,称其为单调递增数列或者单调递减数列。
3. 数列的性质(1)数列的线性组合:若an和bn是两个数列,k和m是任意常数,那么k*an+m*bn 也是一个数列。
(2)数列的绝对值:若an是一个数列,那么|an|也是一个数列。
三、常见数列1. 等差数列(1)性质:等差数列的前n项和Sn=a1*n+n(n-1)d/2。
(2)求通项公式:an=a1+(n−1)d。
(3)常用公式:Sn=n/2(a1+an)。
2. 等比数列(1)性质:等比数列的前n项和Sn=a1*(q^n-1)/(q-1),|q|>1。
(2)求通项公式:an=a1*q^(n-1)。
(3)常用公式:Sn=a1*(q^n-1)/(q-1)。
3. 斐波那契数列(1)定义:斐波那契数列是一个典型的递推数列,前两项都为1,从第三项开始,每一项都等于前两项之和。
(2)通项公式:an=f(n)=f(n-1)+f(n-2)。
(3)性质:斐波那契数列是一个无界数列。
高中数学数列知识点.总结(精华版)
. .一、数列1. 数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项.⑴数列中的数是按一定“次序”排列的,在这里,只强调有“次序”,而不强调有“规律”.因此,如果组成两个数列的数相同而次序不同,那么它们就是不同的数列.⑵在数列中同一个数可以重复出现.⑶项a n 与项数n 是两个根本不同的概念.⑷数列可以看作一个定义域为正整数集( 或它的有限子集) 的函数当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列2. 通项公式:如果数列a n 的第n 项与序号之间可以用一个式子表示, 那么这个公式叫做这个数列的通项公式,即 a f (n)n .3. 递推公式:如果已知数列a n 的第一项(或前几项),且任何一项a n 与它的前一项a (或前几项)间的关系可以用一个式子来表示,即a n f (a n 1 ) 或a n f (a n 1,a n 2) ,n 1那么这个式子叫做数列a的递推公式. 如数列a n 中,a1 1, a n 2a n 1 ,其中na n 2a n 1是数列a n 的递推公式.4. 数列的前n 项和与通项的公式①S n a1 a2 a ;②nS (n 1)1a n .S S (n 2)n n 15. 数列的表示方法:解析法、图像法、列举法、递推法.6. 数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.①递增数列: 对于任何n N , 均有a n 1 a n .②递减数列: 对于任何n N , 均有a n 1 a n .③摆动数列: 例如: 1,1 ,1, 1, 1, .④常数数列: 例如:6,6,6,6, ⋯⋯.⑤有界数列: 存在正数M 使a n M ,n N .⑥无界数列: 对于任何正数M , 总有项a 使得a n M .n1、已知n*a 2 (n N )nn 156,则在数列{ }a 的最大项为__(答:n125);2、数列{ }a 的通项为nana n ,其中a,b 均为正数,则a n 与a n 1 的大小关系为___(答:bn 1a a n 1);n23、已知数列{ a } 中, a 是递增数列,求实数的取值范围(答:3);a n n ,且{ } nn n4、一给定函数y f (x)的图象在下列图中,并且对任意a( 0,1) ,由关系式a n 1 f (a n )1* 得到的数列{ }a 满足a n 1 a n (n N ) ,则该函数的图象是()(答:A)neord 完美格式. .二、等差数列1、等差数列的定义:如果数列a n 从第二项起每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫等差数列的公差。
(完整版)数列知识点归纳
数列一、等差数列性质总结1. 等差数列的定义式:d a a n n =--1(d 为常数)(2≥n );2.等差数列通项公式:*1(1) ()n a a n d n N =+-∈ , 首项:1a ,公差:d 推广: d m n a a m n )(-+=. 从而mn a a d mn --=; 3.等差中项(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2b a A +=或b a A +=2(2)等差中项:数列{}n a 是等差数列*-112(2,)n n n a a a n n N +⇔=+≥∈212+++=⇔n n n a a a4.等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+211()22d n a d n =+-2An Bn =+(其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 特别地,当项数为奇数21n -时,n a 是项数为2n-1的等差数列的中间项()()()1212121212n n n n a a S n a ---+==-(项数为奇数的等差数列的各项和等于项数乘以中间项)5.等差数列的判定方法(1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列.(2) 等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a . (3) 数列{}n a 是等差数列⇔b kn a n +=(其中b k ,是常数)。
(4)数列{}n a 是等差数列⇔2n S An Bn =+,(其中A 、B 是常数)。
6.等差数列的证明方法定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列 等差中项性质法:-112(2n )n n n a a a n N ++=+≥∈,.7.提醒:(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。
高中数学数列知识点归纳
高中数学数列知识点归纳摘要:一、数列的定义与性质1.等差数列的定义与性质2.等比数列的定义与性质二、数列的求和公式1.等差数列的前n 项和公式2.等比数列的前n 项和公式三、数列的应用1.高考数学中数列的知识点考察2.数列在实际问题中的应用正文:高中数学数列知识点归纳数列是高中数学中的一个重要知识点,它在历年的高考中都占有重要的地位。
本文将对数列的定义、性质、求和公式以及应用进行归纳总结。
一、数列的定义与性质1.等差数列的定义与性质等差数列是指一个数列,它的相邻两项之差是一个常数,这个常数称为公差。
等差数列的通项公式为:an = a1 + (n-1)d,其中a1 是首项,d 是公差,n 是项数。
等差数列的前n 项和公式为:sn = n/2 * (a1 + an) = n/2 * (2a1 + (n-1)d)。
2.等比数列的定义与性质等比数列是指一个数列,它的相邻两项之比是一个常数,这个常数称为公比。
等比数列的通项公式为:an = a1 * q^(n-1),其中a1 是首项,q 是公比,n 是项数。
等比数列的前n 项和公式为:sn = a1 * (1 - q^n) / (1 - q),当q = 1 时,等比数列变为等差数列。
二、数列的求和公式1.等差数列的前n 项和公式等差数列的前n 项和公式为:sn = n/2 * (a1 + an) = n/2 * (2a1 + (n-1)d)。
2.等比数列的前n 项和公式等比数列的前n 项和公式为:sn = a1 * (1 - q^n) / (1 - q),当q = 1 时,等比数列变为等差数列。
三、数列的应用1.高考数学中数列的知识点考察高考数学中,数列是一个重要的考点,主要考察等差数列和等比数列的性质、通项公式、前n 项和公式,以及数列的求和、递推关系、极限等。
2.数列在实际问题中的应用数列在实际问题中有很多应用,如在金融领域,等比数列可以用来计算复利的未来值;在生物领域,等差数列可以用来描述种群数量的增长;在物理领域,等差数列可以用来描述匀速运动的速度等。
高中数学《数列》知识点归纳
高中数学《数列》知识点归纳
一、数列的概念
1. 数列的定义与表示
2. 数列的分类:等差数列、等比数列、等差几何数列、斐波那契数列、调和数列等
3. 数列的通项公式、前n项和公式及其应用
五、斐波那契数列
1. 斐波那契数列的定义和性质
2. 斐波那契数列的通项公式及其应用
3. 斐波那契数列的递推公式及其推导方法
4. 斐波那契数列的特殊应用:黄金分割
六、调和数列
1. 调和数列的定义和特征:调和平均数、算术平均数、宾汉姆不等式
2. 调和数列的通项公式及应用
3. 调和数列和几何平均数的关系
4. 调和数列的应用:调和平均数与平均速度等
七、数列极限
1. 数列的极限及其定义
2. 数列极限的性质:唯一性、有界性、保号性、代数运算性等
3. 数列极限的判定法:夹逼定理、单调有界原理等
4. 数列极限的应用:数学归纳法、发散数列的研究等
八、数列的应用领域
1. 数列在经济方面的应用:摆脱“复利”套路等
2. 数列在自然科学中的应用:波动方程、元素周期表等
3. 数列在计算机科学中的应用:搜索算法、排序算法等
4. 数列在生命科学和社会实践中的应用:基因序列分析、大学分配问题等。
高三数列知识点总结
高三数列知识点总结一、数列的概念与表示方法数列是由按照一定顺序排列的一列数构成的数学对象。
通常用小写字母a、s、b等表示数列,数列中的每一个数称为数列的项。
数列可以表示为a_{1}, a_{2}, a_{3}, ...,其中a_{1}是首项,a_{n}是第n 项。
数列的一般形式可以表示为a_{n} = f(n),其中f(n)是项的函数表达式。
二、等差数列与等比数列1. 等差数列等差数列是指从第二项起,每一项与其前一项的差都相等的数列。
这个相等的差称为公差,通常用字母d表示。
等差数列的通项公式为a_{n} = a_{1} + (n - 1)d,其中a_{1}是首项,d是公差。
等差数列的前n项和公式为S_{n} = \frac{n}{2} [2a_{1} + (n - 1)d]。
2. 等比数列等比数列是指每一项与其前一项的比都相等的数列。
这个相等的比称为公比,通常用字母q表示。
等比数列的通项公式为a_{n} =a_{1}q^{n-1},其中a_{1}是首项,q是公比。
等比数列的前n项和公式为S_{n} = \frac{a_{1}(1 - q^n)}{1 - q},当q ≠ 1时成立。
三、数列的极限与函数极限数列的极限是指当项数n无限增大时,数列的项趋向于某个确定的值。
如果数列{a_{n}}的项满足a_{n} → L (n → ∞),那么我们称L是数列{a_{n}}的极限。
数列极限的性质包括唯一性、有界性、保号性等。
四、递推数列递推数列是指通过数列的前一项或前几项来定义下一项的数列。
递推数列的一般形式可以表示为a_{n} = g(a_{n-1}, a_{n-2}, ...,a_{n-k}),其中g是定义递推关系的函数。
常见的递推数列有斐波那契数列等。
五、无穷等比数列及其和无穷等比数列是指项数无限的等比数列。
无穷等比数列的和是指所有项的和,只有当公比的绝对值小于1时,无穷等比数列的和才收敛。
无穷等比数列的和公式为S = \frac{a_{1}}{1 - q},其中a_{1}是首项,q是公比。
高中数学数列知识点总结(精华版)
一、数列1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项. ⑴数列中的数是按一定“次序”排列的,在这里,只强调有“次序”,而不强调有“规律”.因此,如果组成两个数列的数相同而次序不同,那么它们就是不同的数列. ⑵在数列中同一个数可以重复出现. ⑶项a n 与项数n 是两个根本不同的概念. ⑷数列可以看作一个定义域为正整数集(或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列2.通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n =.3.递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,12,11+==n n a a a ,其中12+=n n a a 是数列{}n a 的递推公式.4.数列的前n 项和与通项的公式①n n a a a S +++=Λ21; ②⎩⎨⎧≥-==-)2()1(11n S S n S a n nn . 5. 数列的表示方法:解析法、图像法、列举法、递推法.6. 数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.①递增数列:对于任何+∈N n ,均有n n a a >+1.②递减数列:对于任何+∈N n ,均有n n a a <+1.③摆动数列:例如: .,1,1,1,1,1Λ---④常数数列:例如:6,6,6,6,…….⑤有界数列:存在正数M 使+∈≤N n M a n ,.⑥无界数列:对于任何正数M ,总有项n a 使得M a n >.1、已知*2()156n n a n N n =∈+,则在数列{}n a 的最大项为__(答:125); 2、数列}{n a 的通项为1+=bn an a n ,其中b a ,均为正数,则n a 与1+n a 的大小关系为___(答:n a <1+n a );3、已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围(答:3λ>-);4、一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式)(1n n a f a =+得到的数列}{n a 满足)(*1N n a a n n ∈>+,则该函数的图象是 ()(答:A )二、 等差数列1、 等差数列的定义:如果数列{}a n 从第二项起每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫等差数列的公差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列基础知识点和方法归纳1. 等差数列的定义与性质定义:1n n a a d +-=(d 为常数),()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ⇔=+ 前n 项和()()11122n n a a n n n S nad +-==+性质:{}n a 是等差数列(1)若m n p q +=+,则m n p q a a a a +=+;(2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2;(3)若三个成等差数列,可设为a d a a d -+,, (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则2121m m m m a S b T --= (5){}n a 为等差数列2n S an bn ⇔=+(a b ,为常数,是关于n 的常数项为0的二次函数)n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界项,即:当100a d ><,,解不等式组100n n a a +≥⎧⎨≤⎩可得n S 达到最大值时的n 值.当100a d <>,,由100n n a a +≤⎧⎨≥⎩可得n S 达到最小值时的n 值.(6)项数为偶数n 2的等差数列{}n a ,有),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n Snd S S =-奇偶,1+=n na a S S 偶奇. (7)项数为奇数12-n 的等差数列{}n a ,有)()12(12为中间项n n n a a n S -=-,n a S S =-偶奇,1-=n n S S 偶奇. 2. 等比数列的定义与性质定义:1n na q a +=(q 为常数,0q ≠),11n n a a q -=.等比中项:x G y 、、成等比数列2G xy ⇒=,或G =前n 项和:()11(1)1(1)1n n na q S a q q q =⎧⎪=-⎨≠⎪-⎩(要注意!)性质:{}n a 是等比数列(1)若m n p q +=+,则m n p q a a a a =··(2)232n n n n n S S S S S --,,……仍为等比数列,公比为n q . 注意:由n S 求n a 时应注意什么?1n =时,11a S =; 2n ≥时,1n n n a S S -=-. 3.求数列通项公式的常用方法 (1)求差(商)法如:数列{}n a ,12211125222n n a a a n +++=+……,求n a解 1n =时,112152a =⨯+,∴114a = ①2n ≥时,12121111215222n n a a a n --+++=-+…… ②①—②得:122n n a =,∴12n n a +=,∴114(1)2(2)n n n a n +=⎧=⎨≥⎩[练习]数列{}n a 满足111543n n n S S a a +++==,,求n a注意到11n n n a S S ++=-,代入得14n nS S +=;又14S =,∴{}n S 是等比数列,4n n S =2n ≥时,1134n n n n a S S --=-==……· (2)叠乘法如:数列{}n a 中,1131n n a na a n +==+,,求n a解3212112123n n a a a n a a a n --=·……·……,∴11n a a n=又13a =,∴3n a n =. (3)等差型递推公式由110()n n a a f n a a --==,,求n a ,用迭加法2n ≥时,21321(2)(3)()n n a a f a a f a a f n --=⎫⎪-=⎪⎬⎪⎪-=⎭…………两边相加得1(2)(3)()n a a f f f n -=+++……∴0(2)(3)()n a a f f f n =++++…… [练习]数列{}n a 中,()111132n n n a a a n --==+≥,,求n a (()1312nn a =-)(4)等比型递推公式1n n a ca d -=+(c d 、为常数,010c c d ≠≠≠,,)可转化为等比数列,设()()111n n n n a x c a x a ca c x --+=+⇒=+- 令(1)c x d -=,∴1d x c =-,∴1n d a c ⎧⎫+⎨⎬-⎩⎭是首项为11d a c c +-,为公比的等比数列 ∴1111n n d d a a c c c -⎛⎫+=+ ⎪--⎝⎭·,∴1111n n d d a a c c c -⎛⎫=+- ⎪--⎝⎭ (5)倒数法 如:11212nn n a a a a +==+,,求n a 由已知得:1211122n n n n a a a a ++==+,∴11112n n a a +-= ∴1n a ⎧⎫⎨⎬⎩⎭为等差数列,111a =,公差为12,∴()()11111122n n n a =+-=+·,∴21n a n =+( 附:公式法、利用{1(2)1(1)n n S S n S n n a --≥==、累加法、累乘法.构造等差或等比1n n a pa q +=+或1()n n a pa f n +=+、待定系数法、对数变换法、迭代法、数学归纳法、换元法)4. 求数列前n 项和的常用方法(1) 裂项法把数列各项拆成两项或多项之和,使之出现成对互为相反数的项. 如:{}n a 是公差为d 的等差数列,求111nk k k a a =+∑解:由()()11111110k k k k k k d a a a a d d a a ++⎛⎫==-≠ ⎪+⎝⎭·∴11111223111111111111nnk k k k k k n n a a d a a d a a a a a a ==+++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-=-+-++-⎢⎥ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦∑∑…… 11111n d a a +⎛⎫=- ⎪⎝⎭[练习]求和:111112123123n+++++++++++ (121)n n a S n ===-+…………, (2)错位相减法若{}n a 为等差数列,{}n b 为等比数列,求数列{}n n a b (差比数列)前n 项和,可由n n S qS -,求n S ,其中q 为{}n b 的公比.如:2311234n n S x x x nx -=+++++……①()23412341n n n x S x x x x n x nx -=+++++-+·……②①—②()2111n n n x S x x x nx --=++++-……1x ≠时,()()2111nnnx nx S xx -=---,1x =时,()11232n n n S n +=++++=…… (3)倒序相加法把数列的各项顺序倒写,再与原来顺序的数列相加.121121n n n n n n S a a a a S a a a a --=++++⎫⎬=++++⎭…………相加()()()12112n n n n S a a a a a a -=++++++……[练习]已知22()1x f x x =+,则 111(1)(2)(3)(4)234f f f f f f f ⎛⎫⎛⎫⎛⎫++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭由2222222111()111111x x x f x f x x x x x ⎛⎫ ⎪⎛⎫⎝⎭+=+=+= ⎪+++⎝⎭⎛⎫+ ⎪⎝⎭∴原式11111(1)(2)(3)(4)111323422f f f f f f f ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=++++++=+++= ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦(附:a.用倒序相加法求数列的前n 项和如果一个数列{a n },与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。
我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n 项和公式的推导,用的就是“倒序相加法”。
b.用公式法求数列的前n 项和对等差数列、等比数列,求前n 项和S n 可直接用等差、等比数列的前n 项和公式进行求解。
运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。
c.用裂项相消法求数列的前n 项和裂项相消法是将数列的一项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的前n 项和。
d.用错位相减法求数列的前n 项和错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。
即若在数列{a n ·b n }中,{a n }成等差数列,{b n }成等比数列,在和式的两边同乘以公比,再与原式错位相减整理后即可以求出前n 项和。
e.用迭加法求数列的前n 项和迭加法主要应用于数列{a n }满足a n+1=a n +f(n),其中f(n)是等差数列或等比数列的条)。