溶液中的三大守恒
水溶液中三大守恒
溶液中三大守恒一、电荷守恒电解质溶液中所有阳离子所带的正电荷数与所有的阴离子所带的负电荷数相等。
例:写出碳酸钠(Na2CO3)溶液中的电荷守恒关系式(1)找出溶液中的离子:Na+H+CO32-HCO3-OH-(2)根据电荷的物质的量: n(Na+)+n(H+)=2n(CO32-)+n(HCO3-)+n(OH-) (3)根据电荷离子浓度关系: c(Na+)+c(H+)=2c(CO32-)+c(HCO3-)+c(OH-) 注意:A、准确判断溶液中的离子种类。
B、弄清离子浓度与电荷的关系。
即R n+的电荷浓度nC(R n+)练:1、NH4HCO3溶液的电荷守恒试2、Na2S溶液的电荷守恒试二、物料守恒电解质溶液中由于电离或水解因素,离子会发生变化,变成其它离子或分子等,但离子或分子中某种特定元素的原子总数是不会改变的。
某些特征性的原子是守恒的例:NaHCO3溶液中C(Na+)的物料守恒关系式C(Na+)=C(HCO3-)+C(CO32-)+C(H2CO3)练:1、Na2CO3溶液中的物料守恒关系式、2、H2S溶液中的电荷守恒关系式三、质子守恒电解质溶液中分子或离子得到质子的物质的量应相等失去质子的物质的量(由水电离出来的c(H+)、c(OH-)相等)例:NaHCO3溶液中的质子守恒关系式1、先找出溶液电离出的阴离子HCO3-2、列下列式子练:1、Na2 CO3溶液中的质子守恒关系式2、Na HS溶液中的质子守恒关系式综合练习:1、CH3COONa溶液中三大守恒关系式电荷守恒:物料守恒:质子守恒:2、Na2 CO3溶液中三大守恒关系式电荷守恒:物料守恒:质子守恒:[规律总结]正确的思路:一、溶质单一型※※关注三个守恒1.弱酸溶液:【例1】在0.1mol/L的H2S溶液中,下列关系错误的是()A.c(H+)=c(HS-)+c(S2-)+c(OH-)B.c(H+)=c(HS-)+2c(S2-)+c(OH-)C.c(H+)>[c(HS-)+c(S2-)+c(OH-)]D.c(H2S)+c(HS-)+c(S2-)=0.1mol/L分析:由于H 2S溶液中存在下列平衡:H2S H++HS-,HS-H++S2-,H2O H++OH-,根据电荷守恒得c(H+)=c(HS-)+2c(S2-)+c(OH-),由物料守恒得c(H2S)+c(HS-)+c(S2-)=0.1mol/L,所以关系式错误的是A项。
专题--溶液中三大守恒
2.物料守恒:即加入的溶质组成中存在的某些元素之间 的特定比例关系,由于水溶液中一定存在水的H、O元 素,所以物料守恒中的等式一定是非H、O元素的关系。 例: NH4Cl溶液:化学式中N:Cl=1:1,即得到, 写这个等式要注意,把所有含这种元素的粒子都 c(NH4+ )+ c(NH3•H2O) = c(Cl-) 要考虑在内,可以是离子,也可以是分子。 Na2CO3溶液:Na:C=2:1,即得到, c(Na+) = 2〔c(CO32-) + c(HCO3-) + c(H2CO3)〕 跟踪练习 . +) = c(CO 2-) + c(HCO -) + c(H CO ) c(Na NaHCO3溶液: 3 3 2 3 . Na3PO4溶液:
C
c(Na+)=2c(A2—)+c(HA—)+c(H2A)
4、水的电离:
水是一种极弱的电解质,能微弱电离。 水的离子积常数——Kw= C(H+)×C(OH—) Kw取决于温度,不仅适用于纯水,还适用于其他稀 溶液。25℃时,Kw =1×10-14
水电离平衡移动的影响因素
1、温度升高促进水的电离(T↑KW ↑) 2、酸或碱抑制水的电离,但KW不变
跟踪练习 +)+ c(H S) = c(S2-) + c(OH-) c(H 2 NaHS溶液: . c(OH-)= c(H+)+c(HPO42-)+2c(H2PO4-)+3c(H3PO Na3PO4溶液: . 4)
1、(双选)在0.1 mol· L-1NaHCO3溶液中有关粒子浓度关系
溶液中的“三大守恒”
溶液中的“三大守恒”1.溶液中的“三大守恒”规律,即电荷守恒、物料守恒、质子守恒。
2.以NaHCO3溶液为例来说明溶液中的“三大守恒”规律(1)NaHCO3溶液存在的微粒有________________________________________________。
Na+、H+、HCO-3、CO2-3、OH-、H2CO3、H2O(2)电荷守恒:溶液显电中性,溶液中阳离子所带的正电荷总数等于阴离子所带的负电荷总数。
NaHCO3溶液中电荷守恒等式为:c(Na+)+c(H+)=c(HCO-3)+2c(CO2-3)+c(OH-)。
电荷守恒的等式特点为______________________________________。
(3)物料守恒:物质初始的某些元素的物质的量或物质的量浓度的比值为定值,如NaHCO3溶液中c(Na+)总:c(含C元素的微粒)总=1:1。
NaHCO3溶液中物料守恒等式为:c(Na+)=c(H2CO3)+c(HCO-3)+c(CO2-3)。
物料守恒的等式特点为______________________________________。
思考:电荷守恒的等式与物料守恒的等式相减得到:___________________________。
(4)质子守恒:电解质溶液中,由于电离、水解等过程的发生,有的微粒得H+(质子),有的微粒失H+,在这个过程中H+得失守恒,称为质子守恒。
溶液的质子守恒可以用图示法,如NaHCO3溶液中:NaHCO3溶液中质子守恒等式为:c(H2CO3)+c(H+)=c(CO2-3)+c(OH-)。
质子守恒的等式特点为______________________________________。
注意:a.溶液的质子守恒图示法只适合于单一溶质的溶液,能得失H+的微粒为溶液初始状态的H2O+弱酸阴离子或H2O+弱碱阳离子。
b.多溶质的混合溶液质子守恒等式要用电荷守恒的等式与物料守恒的等式相减得到。
溶液三大守恒定律
物料守恒物料守恒和电荷守恒,质子守恒一样同为溶液中的三大守恒关系。
物料守恒即溶液中某一组分的原始浓度应该等于它在溶液中各种存在形式的浓度之和。
也就是元素守恒,变化前后某种元素的原子个数守恒。
例:0.1mol/L的NaOH溶液0.2L,通入标准状况下448m L H2S气体,所得溶液离子浓度大小关系正确的是(D)A.[Na+]>[HS-]>[OH-]>[H2S]>[S2-]>[H+]B.[Na+]+[H+]=[HS-]+[S2-]+[OH-]C.[Na+]=[H2S]+[HS-]+[S2-]+[OH-]D.[S2-]+[OH-]=[H+]+[H2S]〖分析〗对于溶液中微粒浓度(或数目)的比较,要遵循两条原则:一是电荷守恒,即溶液中阳离子所带正电荷总数等于阴离子所带负电荷总数;二是物料守恒,即溶液中某一组分的原始浓度应该等于它在溶液中各种存在形式的浓度之和。
上述溶液实际上是含0.02molNaHS的溶液。
根据上面的规律:电荷守恒:溶液中阳离子有Na+ 、H+,阴离子有HS-、S2-、OH-。
[Na+]+[H+]=[HS-]+2[S2-]+[OH-]…………………①物料守恒:HS-由于水解和电离,其存在形式为HS-、S2-、H2S。
S=[S2-]+[HS-]+[H2S]而钠元素物质的量等于硫元素物质的量即[Na+]=[S2-]+[HS-]+[H2S]…………②②代入①中,得[S2-]+[OH-]=[H+]+[H2S]…………………③另在溶液中,H+ 、OH-都由H2O电离而来(仅对20摄氏度时pH=7的溶液),故H+ 、OH-二者的总量应相等,而H+由于HS-水解的原因存在形式为H+、H2S,OH-由于HS -电离的原因存在形式为O H-、S2-。
同样可得到③。
综上所述,答案选D 物料守恒实际属于原子个数守恒和质量守恒。
溶液中的三大守恒
溶液中的三大守恒关系(一)溶液中的守恒关系1、电荷守恒规律:电解质溶液中,电解质总是呈电中性,即阴离子所带负电荷总数=阳离子所带正电荷总数如NaHCO3 溶液中存在着Na+、HCO3- 、H+、CO32-、OH-存在如下关系c(H+)+c (Na+)=c(HCO3-)+2c(CO32-)+c(OH-) 这个式子叫电荷守恒2、物料守恒规律:某元素的原始浓度等于它在溶液中各种存在形式的浓度之和如Na2S溶液中,S2-能水解,故S元素以S2-、HS-、H2S三种形式存在,它们之间有如下守恒关系:1/2c(Na+)=c(S2-)+ c(HS-)+c(H2S) 这个式子叫物料守恒如Na2CO3溶液中,CO32-离子存在形式有HCO3-、CO32-、H2CO3则1/2c(Na+)=c(HCO3-)+ c(HS-)+c(H2S)3、质子守恒:由水电离产生的H+、OH-浓度相等如Na2CO3溶液中,由水电离产生的OH-以游离态存在,而H+因CO32-水解有三种存在形式H+、HCO3-、H2CO3,则有c (OH-)=c(H+)+ c(HCO3-)+2c(H2CO3)同理在Na3PO4溶液中有:c (OH-)=c(H+)+ c(HPO42-)+2c(H2PO4-)+3c(H3PO4)练习:写出下列溶液中三大守恒关系①Na2S溶液电荷守恒:c(Na+)+c(H+)=2c(S2-)+ c(HS-)+c(OH-)物料守恒:1/2c(Na+)=c(S2-)+ c(HS-)+c(H2S)质子守恒:c (OH-)=c(H+)+ c(HS-)+2c(H2S)②NaHCO3溶液电荷守恒:c(H+)+c (Na+)=c(HCO3-)+2c(CO32-)+c(OH-)物料守恒:c (Na+)=c(HCO3-)+c(CO32-)+c(H2CO3)质子守恒:c (OH-)=c(H+)+ c(H2CO3)-c(CO32-)----电荷守恒-物料守恒=质子守恒溶液中离子浓度大小比较一、单一溶质1、多元弱酸溶液,根据多步电离规律,前一步电离产生的离子浓度大于后一步电离产生的离子,如在H3PO4溶液中,c(H+)>c(H2PO4-)>c(HPO42-)>c(PO43-)2、多元弱酸的正盐,根据弱酸根的多步水解规律,前一步水解远远大于后一步水解,如在Na2CO3溶液中(Na+)>c(CO32-)>c(OH-)>c(HCO3-)+ c(H2CO3)3、不同溶液中,同一离子浓度大小的比较,要看其它离子对其影响因素练习:1、写出下列溶液中离子浓度大小的关系NH4CL溶液中:c(CL-) >c(NH4+) >c(H+) >c(OH-)CH3COONa溶液中:c(Na+) >c(CH3COO-) >c(OH-) >c(H+)2、物质的量浓度相同的下列各溶液,①Na2CO3 ②NaHCO3 ③H2CO3 ④(NH4)2CO3⑤NH4HCO3 ,c(CO32-)由小到大排列顺序为二、混合溶液混合溶液中各离子浓度的比较,要进行综合分析,如离子间的反应、电离因素、水解因素等。
化学-三大守恒定律
1 / 2对于溶液中微粒浓度(或数目)的比较,要遵循两条原则:一是电荷守恒,即溶液中阳离子所带正电荷总数等于阴离子所带负电荷总数; 二是物料守恒,即溶液中某一组分的原始浓度应该等于它在溶液中各种存在形式的浓度之和。
(物料守恒实际属于原子个数守恒和质量守恒。
)★电荷守恒1. 化合物中元素正负化合价代数和为零2.溶液呈电中性:所有阳离子所带正电荷总数等于阴离子所带负电荷总数3.除六大强酸,四大强碱外都水解,多元弱酸部分水解。
产物中有部分水解时产物4.这个离子所带的电荷数是多少,离子前写几。
例如:NaHCO 3:c(Na +)+c(H +)=c(OH -)+c(HCO 3-)+2c(CO 32-)★物料守恒物料守恒可以理解为原子守恒的另一种说法,即“任一化学反应前后原子种类(指原子核中质子数相等的原子,就是元素守恒)和数量分别保持不变”。
⒈ 含特定元素的微粒(离子或分子)守恒 ⒉ 不同元素间形成的特定微粒比守恒 ⒊ 特定微粒的来源关系守恒 【例1】在0.1mol/LNa3PO4溶液中: 根据P 元素形成微粒总量守恒有:c[PO 43-]+c[HPO 42-]+c[H 2PO 4-]+c[H 3PO 4]=0.1mol/L 根据Na 与P 形成微粒的关系有:c[Na +]=3c[PO 43-]+3c[HPO 42-]+3c[H 2PO 4-]+3c[H 3PO 4]根据H2O 电离出的H+与OH-守恒有:c[OH -]=c[HPO 42-]+2c[H 2PO 4-]+3c[H 3PO 4]+c[H +]【例2】以NaHCO 3溶液为例若HCO 3-没有电离和水解,则c (Na +)=c (HCO 3-)现在HCO 3-会水解成为H 2CO 3,电离为CO 32-(都是1:1反应,也就是消耗一个HCO 3-,就产生一个H 2CO 3或者CO 32-),那么守恒式中把Na +浓度和HCO 3-及其产物的浓度和画等号(或直接看作钠与碳的守恒):即c(Na +) == c(HCO 3-) + c(CO 32-) + c(H 2CO 3)【例3】在0.1mol/L 的H 2S 溶液中存在如下电离过程:(均为可逆反应) H 2S=(H +) +(HS -) (HS -)=(H +)+(S 2-) H 2O=(H +)+(OH -)可得物料守恒式c(S 2-)+c(HS -)+c(H 2S)==0.1mol/L, (在这里物料守恒就是S 元素守恒--描述出有S 元素的离子和分子即可)【例4】Na 2CO 3溶液的电荷守恒、物料守恒、质子守恒 ·电荷守恒c(Na+)+c(H+)=2c(CO 32-)+c(HCO 3-)+c(OH-)上式中,阴阳离子总电荷量要相等,由于1mol 碳酸根电荷量是2mol 负电荷,所以碳酸2 / 2根所带电荷量是其物质的量的2倍。
规律五-三大守恒规律规律
规律五三大守恒规律在水溶液化学计算中,三大守恒规律即:电子守恒、原子守恒、电荷守恒。
根据这些守恒方法可以快速找到解题突破口,利用物质变化过程中某一特定的量(如得失电子数目、某一特定原子数目、质子H+)固定不变来列式求解。
考察了学生整体化学思维方式。
一.电子守恒电子守恒特指在氧化还原反应过程中,氧化剂所得电子总数=还原剂所失电子总数。
在氧化还原反应过程中,常常利用电子守恒法计算生成物的物质的量或电解池的电解过程中电极产物的相关计算。
解题思路:先分别找出氧化剂、还原剂及其各自物质的量及每摩尔氧化剂(还原剂)得失电子的数目,根据电子守恒列出数学等式----氧化剂的物质的量×每摩尔氧化剂得到的电子数目=还原剂的物质的量×每摩尔还原剂失去的电子数目,求解即可。
在非氧化还原反应过程中,要遵循电荷守恒。
即电解质溶液中,无论存在多少种离子,电解质溶液总是呈电中性。
所有阴离子所带负电荷总数=所有阳离子所带正电荷总数。
1.直接以电子守恒建立关系式运用物质之间的当量关系进行计算。
如:用Cu电极电解Na2SO4溶液,阳极、阴极产物及电子转移关系为Cu---2e----H2---2OH-。
2.对于多步或连续的氧化还原反应,可根据“电子传递路径”找出起始反应物与最终生成物之间的关系进行计算而忽略反应过程。
如:将a g Cu投入V mL未知浓度的HNO3中,Cu 完全溶解,将用集气瓶收集到的气体倒置于水面,再向集气瓶中通入bmLO2后,集气瓶中充满水。
该过程电子传递路径为Cu→HNO3→O2,起始反应物与最终生成物的关系为2Cu---O23.以电子守恒为核心建立等价代换关系式。
如:用OH-或Cl-来沉淀某些金属阳离子时,所消耗的阴离子的物质的量=金属的“总正化合价数”。
据此,可延伸为将金属用非氧化性酸恰好溶解后,再用上述阴离子沉淀时,消耗的阴离子物质的量=金属失去的电子的总物质的量。
二.原子守恒原子守恒即化学反应前后,各元素的原子种类、数目都不变。
溶液中的三大守恒
溶液中的三大守恒溶液中的三大守恒关系(一)溶液中的守恒关系1、电荷守恒规律:电解质溶液中,电解质总是呈电中性,即阴离子所带负电荷总数=阳离子所带正电荷总数如NaHCO3 溶液中存在着Na+、HCO3- 、H+、CO32-、OH-存在如下关系c(H+)+c (Na+)=c(HCO3-)+2c(CO32-)+c(OH-) 这个式子叫电荷守恒2、物料守恒规律:某元素的原始浓度等于它在溶液中各种存在形式的浓度之和如Na2S溶液中,S2-能水解,故S元素以S2-、HS-、H2S三种形式存在,它们之间有如下守恒关系:1/2c(Na+)=c(S2-)+ c(HS-)+c(H2S) 这个式子叫物料守恒如Na2CO3溶液中,CO32-离子存在形式有HCO3-、CO32-、H2CO3则1/2c(Na+)=c(HCO3-)+ c(HS-)+c(H2S)3、质子守恒:由水电离产生的H+、OH-浓度相等如Na2CO3溶液中,由水电离产生的OH-以游离态存在,而H+因CO32-水解有三种存在形式H+、HCO3-、H2CO3,则有c (OH-)=c(H+)+ c(HCO3-)+2c(H2CO3)同理在Na3PO4溶液中有:c (OH-)=c(H+)+ c(HPO42-)+2c(H2PO4-)+3c(H3PO4)练习:写出下列溶液中三大守恒关系①Na2S溶液电荷守恒:c(Na+)+c(H+)=2c(S2-)+ c(HS-)+c(OH-)物料守恒:1/2c(Na+)=c(S2-)+ c(HS-)+c(H2S)质子守恒:c (OH-)=c(H+)+ c(HS-)+2c(H2S)②NaHCO3溶液电荷守恒:c(H+)+c (Na+)=c(HCO3-)+2c(CO32-)+c(OH-)物料守恒:c (Na+)=c(HCO3-)+c(CO32-)+c(H2CO3)质子守恒:c (OH-)=c(H+)+ c(H2CO3)-c(CO32-)----电荷守恒-物料守恒=质子守恒溶液中离子浓度大小比较一、单一溶质1、多元弱酸溶液,根据多步电离规律,前一步电离产生的离子浓度大于后一步电离产生的离子,如在H3PO4溶液中,c(H+)>c(H2PO4-)>c(HPO42-)>c(PO43-)2、多元弱酸的正盐,根据弱酸根的多步水解规律,前一步水解远远大于后一步水解,如在Na2CO3溶液中(Na+)>c(CO32-)>c(OH-)>c(HCO3-)+ c(H2CO3)3、不同溶液中,同一离子浓度大小的比较,要看其它离子对其影响因素练习:1、写出下列溶液中离子浓度大小的关系NH4CL溶液中:c(CL-) >c(NH4+) >c(H+) >c(OH-)CH3COONa溶液中:c(Na+) >c(CH3COO-) >c(OH-) >c(H+)2、物质的量浓度相同的下列各溶液,①Na2CO3 ②NaHCO3 ③H2CO3 ④(NH4)2CO3⑤NH4HCO3 ,c(CO32-)由小到大排列顺序为二、混合溶液混合溶液中各离子浓度的比较,要进行综合分析,如离子间的反应、电离因素、水解因素等。
水溶液中三大守恒定理
溶液中三大守恒一、电荷守恒电解质溶液中所有阳离子所带的正电荷数与所有的阴离子所带的负电荷数相等。
例:写出碳酸钠(Na2CO3)溶液中的电荷守恒关系式(1)找出溶液中的离子:Na+H+CO32-HCO3-OH-(2)根据电荷的物质的量: n(Na+)+n(H+)=2n(CO32-)+n(HCO3-)+n(OH-) (3)根据电荷离子浓度关系: c(Na+)+c(H+)=2c(CO32-)+c(HCO3-)+c(OH-) 注意:A、准确判断溶液中的离子种类。
B、弄清离子浓度与电荷的关系。
即R n+的电荷浓度nC(R n+)练:1、NH4HCO3溶液的电荷守恒试2、Na2S溶液的电荷守恒试二、物料守恒电解质溶液中由于电离或水解因素,离子会发生变化,变成其它离子或分子等,但离子或分子中某种特定元素的原子总数是不会改变的。
某些特征性的原子是守恒的例:NaHCO3溶液中C(Na+)的物料守恒关系式C(Na+)=C(HCO3-)+C(CO32-)+C(H2CO3)练:1、Na2CO3溶液中的物料守恒关系式、2、H2S溶液中的电荷守恒关系式三、质子守恒电解质溶液中分子或离子得到质子的物质的量应相等失去质子的物质的量(由水电离出来的c(H+)、c(OH-)相等)例:NaHCO3溶液中的质子守恒关系式1、先找出溶液电离出的阴离子HCO3-2、列下列式子练:1、Na2 CO3溶液中的质子守恒关系式2、Na HS溶液中的质子守恒关系式综合练习:1、CH3COONa溶液中三大守恒关系式电荷守恒:物料守恒:质子守恒:2、Na2 CO3溶液中三大守恒关系式电荷守恒:物料守恒:质子守恒:[规律总结]正确的思路:一、溶质单一型※※关注三个守恒1.弱酸溶液:【例1】在0.1mol/L的H2S溶液中,下列关系错误的是()A.c(H+)=c(HS-)+c(S2-)+c(OH-)B.c(H+)=c(HS-)+2c(S2-)+c(OH-)C.c(H+)>[c(HS-)+c(S2-)+c(OH-)]D.c(H2S)+c(HS-)+c(S2-)=0.1mol/L分析:由于H2S溶液中存在下列平衡:H2S H++HS-,HS-H++S2-,H2O H++OH-,根据电荷守恒得c(H+)=c(HS-)+2c(S2-)+c(OH-),由物料守恒得c(H2S)+c(HS-)+c(S2-)=0.1mol/L,所以关系式错误的是A项。
溶液中的三大守恒
溶液中的三大守恒质子守恒就是酸失去的质子和碱得到的质子数目相同,质子守恒和物料守恒,电荷守恒一样同为溶液中的三大守恒关系1电荷守恒溶液中所有阳离子所带的正电荷总数等于所有阴离子所带的负电荷总数例:NaHC03溶液中C(H+)+C(Na+)=C(HCO3-)+2C(CO32-)+C(OH-)这个式子叫电荷守恒2物料守恒1.含特定元素的微粒(离子或分子)守恒2.不同元素间形成的特定微粒比守恒3.特定微粒的来源关系守恒例1:在0.1mol/LNa3PO4 溶液中:根据P元素形成微粒总量守恒有:c[PO43-]+c[HPO42-]+c[H2PO4-]+c[H3PO4]=0.1mol/L根据Na与P形成微粒的关系有:c[Na+]=3c[PO43-]+3c[HPO42-]+3c[H2PO4-]+3c[H3PO4]根据H2O电离出的H+与OH-守恒有:c[OH-]=c[HPO42-]+2c[H2PO4-]+3c[H3PO4]+c[H+]例2: NaHCO3溶液中C(Na+)=C(HCO3-)+ C(CO32-)+C(H2CO3)这个式子叫物料守恒3质子守恒也可以由电荷守恒和物料守恒关系联立得到NaHCO3溶液中存在下列等式C(H+)+C(Na+)=C(HCO3-)+2C(CO32-)+C(OH-) {电荷守恒}C(Na+)=C(HCO3-)+ C(CO32-)+C(H2CO3) {物料守恒}方法一:两式相减得C ( H+) +C ( H2CO3 =C (CO32-) +C(OH-)这个式子叫质子守恒。
方法二:由酸碱质子理论原始物种:HCO , H2O消耗质子产物H2CO3产生质子产物CO32-, OH-C ( H+) =C ( CO32-) +C(OH-) -C ( H2CO3 即C ( H+) +C ( H2CO3 =C (CO32-) +C(OH-)关系:剩余的质子数目等于产生质子的产物数目-消耗质子的产物数目直接用酸碱质子理论求质子平衡关系比较简单,但要细心;如果用电荷守恒和物料守恒关系联立得到则比较麻烦,但比较保险又如NaH2PO4§液原始物种:H2PO4-, H2O消耗质子产物:H3PO4产生质子产物:HPO42-(产生一个质子),PO43- (产生二个质子),OH-所以:c(H+)=c(HPO42-)+2c(PO43-)+c(OH-)-c (H3PO4你可以用电荷守恒和物料守恒联立验证下快速书写质子守恒的方法:第一步:确定溶液的酸碱性,溶液显酸性,把氢离子浓度写在左边,反之则把氢氧根离子浓度写在左边。
三大守恒定律公式
三大守恒定律公式1. 电荷守恒。
- 概念:溶液中阳离子所带正电荷总数等于阴离子所带负电荷总数。
- 公式示例(以Na₂CO₃溶液为例):- 在Na₂CO₃溶液中,存在的离子有Na^+、H^+、CO_3^2 -、HCO_3^-、OH^-。
- 根据电荷守恒:n(Na^+)+n(H^+) = 2n(CO_3^2 -)+n(HCO_3^-)+n(OH^-)。
- 由于在同一溶液中,体积相同,所以浓度关系为:c(Na^+)+c(H^+) =2c(CO_3^2 -)+c(HCO_3^-)+c(OH^-)。
2. 物料守恒。
- 概念:溶液中某一组分的原始浓度应该等于它在溶液中各种存在形式的浓度之和。
- 公式示例(以Na₂CO₃溶液为例):- Na₂CO₃溶液中,n(Na^+) = 2n(C)。
- C在溶液中的存在形式有CO_3^2 -、HCO_3^-、H₂CO₃。
- 所以物料守恒表达式为:c(Na^+) = 2[c(CO_3^2 -)+c(HCO_3^-)+c(H₂CO₃)]。
3. 质子守恒。
- 概念:酸失去的质子和碱得到的质子数目相同。
- 公式示例(以Na₂CO₃溶液为例):- 方法一(根据电荷守恒和物料守恒推导):- 由电荷守恒c(Na^+)+c(H^+) = 2c(CO_3^2 -)+c(HCO_3^-)+c(OH^-),物料守恒c(Na^+) = 2[c(CO_3^2 -)+c(HCO_3^-)+c(H₂CO₃)]。
- 将物料守恒中的c(Na^+)代入电荷守恒表达式,可得:2[c(CO_3^2 -)+c(HCO_3^-)+c(H₂CO�3)]+c(H^+) = 2c(CO_3^2 -)+c(HCO_3^-)+c(OH^-)。
- 化简得到质子守恒表达式:c(OH^-) = c(H^+)+c(HCO_3^-) +2c(H₂CO₃)。
- 方法二(直接分析质子得失):- H₂O电离出H^+和OH^-,CO_3^2 -结合H^+生成HCO_3^-和H₂CO₃。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
溶液中的三大守恒
质子守恒就是酸失去的质子和碱得到的质子数目相同,质子守恒和物料守恒,电荷守恒一样同为溶液中的三大守恒关系
1电荷守恒
溶液中所有阳离子所带的正电荷总数等于所有阴离子所带的负电荷总数
例:NaHCO3 溶液中
C(H+)+C(Na+)=C(HCO3-)+2C(CO32-)+C(OH-) 这个式子叫电荷守恒
2物料守恒
⒈ 含特定元素的微粒(离子或分子)守恒⒉ 不同元素间形成的特定微粒比守恒⒊ 特定微粒的来源关系守恒
例1:在0.1mol/LNa3PO4溶液中:
根据P元素形成微粒总量守恒有:
c[PO43-]+c[HPO42-]+c[H2PO4-]+c[H3PO4]=0.1mol/L
根据Na与P形成微粒的关系有:
c[Na+]=3c[PO43-]+3c[HPO42-]+3c[H2PO4-]+3c[H3PO4]
根据H2O电离出的H+与OH-守恒有:
c[OH-]=c[HPO42-]+2c[H2PO4-]+3c[H3PO4]+c[H+]
例2:NaHCO3 溶液中
C(Na+)=C(HCO3-)+ C(CO32-)+C(H2CO3) 这个式子叫物料守恒
3质子守恒
也可以由电荷守恒和物料守恒关系联立得到
NaHCO3 溶液中
存在下列等式
C(H+)+C(Na+)=C(HCO3-)+2C(CO32-)+C(OH-) {电荷守恒}
C(Na+)=C(HCO3-)+ C(CO32-)+C(H2CO3) {物料守恒}
方法一:两式相减得
C(H+)+C(H2CO3)=C(CO32-)+C(OH-) 这个式子叫质子守恒。
方法二:由酸碱质子理论
O
原始物种:HCO3-,H
2
消耗质子产物H2CO3,产生质子产物CO32-,OH-
C(H+)=C(CO32-)+C(OH-) -C(H2CO3)即C(H+)+C(H2CO3)=C (CO32-)+C(OH-)
关系:剩余的质子数目等于产生质子的产物数目-消耗质子的产物数目直接用酸碱质子理论求质子平衡关系比较简单,但要细心;如果用电荷守恒和物料守恒关系联立得到则比较麻烦,但比较保险
又如NaH2PO4溶液
原始物种:H2PO4-,H2O
消耗质子产物:H3PO4,产生质子产物:HPO42-(产生一个质子),PO43-(产生二个质子),OH-
所以:c(H+)=c(HPO42-)+2c(PO43-)+c(OH-)-c(H3PO4)
你可以用电荷守恒和物料守恒联立验证下.
快速书写质子守恒的方法:
第一步:确定溶液的酸碱性,溶液显酸性,把氢离子浓度写在左边,反之则把氢氧根离子浓度写在左边。
第二步:根据溶液能电离出的离子和溶液中存在的离子,来补全等式右边。
具体方法是,判断溶液你能直接电离出的离子是什么。
然后选择能电离产生氢离子或者水解结合氢离子的离子为基准,用它和它电离或者水解之后的离子(这里我称它为对比离子)做比较,是多氢还是少氢,多N
个氢,就加上N倍的该离子(对比离子)浓度。
少N个氢离子,就减去N
倍的该离子(对比离子)。
如碳酸氢钠溶液(NaHCO3):
溶液显碱性,所以把氢氧根离子浓度写在左边,其次。
判断出该溶液直接电离出的离子是钠离子和碳酸氢根,而能结合氢离子或电离氢离子的是碳酸氢根。
其次以碳酸氢根为基准离子(因为碳酸氢钠直接电离产生碳酸根和钠离子,而钠离子不电离也不水解。
)减去它电离之后的离子浓度,加上它水解生成的离子浓度。
便是:C(OH-)=C(H2CO3)-C(CO32-)+C(H+)
另外解释:
电解质溶液中的守恒关系1、电荷守恒:
利用原理:任何物质的溶液的整体对外界不显电性,即溶液中的阳离子的正电荷总数等于阴离子的负电荷总数。
例:在碳酸氢钠溶液中,
存在的阳离子有:Na+ 、H+;
存在的阴离子有:OH-、HCO3-、CO32-;
根据电荷守恒可得:C(Na+)+ C(H+) = C(OH-)+ C(HCO3-) + 2C(CO32-)
2、物料守恒:
利用原理:电解质溶液中各元素的原子个数之比符合电解质的化学式。
例:根据碳酸氢钠的化学式可得知,
Na原子总数等于碳原子总数。
在碳酸氢钠溶液中,钠元素全部以Na+的形式存在,
而碳元素存在形态有:H2CO3、HCO3-、CO32-三种,且每种存在形式中只含有一个碳原子,根据物料守恒可得:C(Na+) = C(HCO3-) + C(CO32-) + C(H2CO3)
3、质子守恒;
利用原理:无论何种物质的水溶液,由水电离出的氢离子和氢氧根离子总是相等的。
例: 在碳酸氢钠溶液中,OH- 也由两部分提供,一部分是水电离得到的,另一部分是HCO3-水解得到的。
且HCO3-水解时每生成一个OH- 离子,同时生成一个H2CO3离子。
所以溶液中由水电离出的氢氧根离子浓度为:C(OH-) - C(H2CO3)> 0
根据质子守恒可得:C(H+) - C(CO32-) = C(OH-) - C(H2CO3)
根据上述三种守恒关系式:
C(Na+)+ C(H+) = C(OH-)+ C(HCO3-) + 2C(CO32-)
C(Na+) = C(HCO3-) + C(CO32-) + C(H2CO3)
C(H+) - C(CO32-) = C(OH-) - C(H2CO3)
可以得出所有微粒浓度的相对大小:
C(Na+)>C(HCO3-)> C(H2CO3)> C(OH-)> C(H+)>C(CO32-)
3
评分次数
cherecing
shirley911206
哈利波特
收藏分享评分
. .。