二次函数知识结构图

合集下载

二次函数知识点

二次函数知识点

一、二次函数的概念1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的图像二次函数的图像是一条关于abx 2-=对称的曲线,这条曲线叫抛物线。

抛物线的主要特征:①有开口方向;②有对称轴;③有顶点。

a 的绝对值越大,抛物线的开口越小。

三、二次函数图像的画法--------五点作图法:(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴(2)求抛物线c bx ax y ++=2与坐标轴的交点:当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。

将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。

当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。

由C 、M 、D 三点可粗略地画出二次函数的草图。

如果需要画出比较精确的图像,可再描出一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。

四、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质:上加下减。

23.()2y a x h=-的性质:左加右减。

4.()2y a x h k=-+的性质:y=3(x+4)2(x-2)2y=3x222-325、二次函数)0,,(2≠++=a c b a c bx ax y 是常数,的性质2、二次函数)0,,(2≠++=a c b a c bx ax y 是常数,中,c b 、、a 的含义:a 表示开口方向:a >0时,抛物线开口向上 a <0时,抛物线开口向下b 与对称轴有关:对称轴为x=ab2-c 表示抛物线与y 轴的交点坐标:(0,c ) 3、二次函数与一元二次方程的关系一元二次方程的解是其对应的二次函数的图像与x 轴的交点横坐标。

二次函数基础知识

二次函数基础知识

特别地,二次函数(以下称函数) y=ax^2+bx+c, 当y=0时,二次函数为关于 x的一元二次方程(以下称方程), 即 ax^2+bx+c=0 此时,函数图像与x轴有无交 点即方程有无实数根。 函数与x轴交点的横 坐标即为方程的根。
1.二次函数y=ax²;,y=a(x-h)²;,y=a(x-h)²+k,y=ax²+bx+c(各式中, a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴 如下表: 解析式 顶点坐标 对 称 轴 y=ax^2 (0,0) x=0 y=ax^2+K (0,K) x=0 y=a(x-h)^2 (h,0) x=h y=a(x-h)^2+k (h, k) x=h y=ax^2+bx+c (-b/2a,4ac-b²/4a) x=-b/2a 当h>0时,y=a(x-h)^2;的图象可由抛物线y=ax^2;向右平行移动h 个单位得到, 当h<0时,则向左平行移动|h|个单位得到。 当h>0,k>0时,将抛物线y=ax^2;向右平行移动h个单位,再向上 移动k个单位,就可以得到y=a(x-h)^2+k的图象; 当h>0,k<0时,将抛物线y=ax^2;向右平行移动h个单位,再向下移 动|k|个单位可得到y=a(x-h)^2-k的图象; 当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个 单位可得到y=a(x+h)^2+k的图象; 当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个 单位可得到y=a(x+h)^2-k的图象;在向上或向下。向左或向右平移 抛物线时,可以简记为“上加下减,左加右减”。 因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般 式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线 的大体位置就很清楚了。这给画图象提供了方便 。

数学-二次函数知识点总结

数学-二次函数知识点总结

二次函数知识点一、常用二次函数1.()2y a x h k =-+2.2y ax bx c =++1)画图注意事项开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.注:a 的正负决定开口方向,a 的大小决定开口的大小.b 决定了抛物线对称轴的位置.c 决定了抛物线与y 轴交点的位置.2)函数性质a 的符号开口方向顶点坐标对称轴性质a >向上()h k ,X=hx h >时,y 随x 的增大而增大;x h <时,y随x 的增大而减小;x h =时,y 有最小值k .0a <向下()h k ,X=hx h >时,y 随x 的增大而减小;x h <时,y随x 的增大而增大;x h =时,y 有最大值k .a 的符号开口方向顶点坐标对称轴性质a >向上2424b ac b aa ⎛⎫-- ⎪⎝⎭,2bx a=-当2bx a<-时,y 随x 的增大而减小;当2bx a>-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值244ac b a-.a <向下2424b ac b aa ⎛⎫-- ⎪⎝⎭,2bx a=-当2bx a<-时,y 随x 的增大而增大;当2bx a>-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.二、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,.三、二次函数的平移规律图示“左加右减,上加下减”四、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1.关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2.关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3.关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-;()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;4.关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5.关于点()m n ,对称()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.五、二次函数与一元二次方程1.二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况.2.图象与x 轴的交点个数:①当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根②当0∆=时,图象与x 轴只有一个交点;③当0∆<时,图象与x 轴没有交点.其中:当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.3.抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c。

二次函数知识点总结

二次函数知识点总结

二次函数知识点总结二次函数是高中数学中的一个重要概念,它在数学和实际问题中都有广泛的应用。

本文将对二次函数的定义、性质、图像及其相关内容进行总结。

一、二次函数的定义二次函数是指形如 f(x) = ax^2 + bx + c 的函数,其中 a、b、c为常数且a ≠ 0。

其中,a 表示二次项的系数,b 表示一次项的系数,c 表示常数项。

二次函数的定义域为全体实数集。

二、二次函数的性质1. 凹凸性:二次函数的凹凸性取决于a 的正负性。

当a > 0 时,函数图像开口向上,为凹函数;当 a < 0 时,函数图像开口向下,为凸函数。

2. 对称轴:二次函数的对称轴是 x = -b / (2a)。

对称轴是图像的中心线,函数图像关于对称轴对称。

3. 零点:二次函数的零点是指函数值等于零的 x 值。

二次函数的零点可以有 0、1 或 2 个。

当判别式 D = b^2 - 4ac > 0 时,有 2个不同的实零点;当 D = 0 时,有一个实零点;当 D < 0 时,没有实零点。

4. 最值:当二次函数的开口向上时,函数的最小值为 f(-b / (2a)) = c - (b^2 - 4ac) / (4a);当二次函数的开口向下时,函数的最大值为 f(-b / (2a)) = c + (b^2 - 4ac) / (4a)。

三、二次函数的图像二次函数的图像为抛物线,其开口方向、顶点、对称轴和零点等特征在前面已经介绍过。

关于图像的绘制,可以根据以下步骤进行:1. 确定顶点:顶点的横坐标为 -b / (2a),纵坐标为 f(-b / (2a))。

2. 确定对称轴:对称轴的方程为 x = -b / (2a)。

3. 确定开口方向:根据 a 的正负性可以确定开口方向。

4. 确定零点:根据判别式 D 的值可以确定零点的情况。

除了以上内容,二次函数还与一些相关概念有密切联系:1. 判别式:二次函数的判别式 D = b^2 - 4ac 可以用来判断二次函数的零点情况。

二次函数基础知识梳理

二次函数基础知识梳理

二次函数基础知识梳理一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c=++(a b c,,是常数,0a≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0,可以为零.二次函数的定义域a≠,而b c是全体实数.2. 二次函数2=++的结构特征:y ax bx c⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax=的性质:a 的绝对值Array越大,抛物线的开口越小。

2. 2=+y ax c的性质:上加下减。

3. ()2y a x h =-的性质: 左加右减。

k +的三、二次函数图象的平移 1. 平移方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿x 轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -. 七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 八、二次函数的图象与各项系数之间的关系 九 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式. 十、二次函数图象的对称十一、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标. 十二、二次函数的应用1.对于任意实数m ,下列函数一定是二次函数的是 ( )A .y=(m -1) 2x 2B .y=(m+1) 2x 2C .y=(m 2+1)x 2D .y=(m 2-1)x 2 2.已知二次函数y=(m+1)x 2有最大值,则m 的取值范围是_____.3.抛物线y=12-5x 2的对称轴为_______,顶点坐标为______.4.抛物线(1)(3)(0)y a x x a =+-≠的对称轴是直线( ) A .1x =B .1x =-C .3x =-D .3x =5.已知函数2)(22+-+=x m m mx y 的图象关于y 轴对称,则m =________;6.抛物线()2321--=x y +5,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有最 值 .7.已知二次函数y=x 2-2x -3的函数值y<0,则x 的取值范围为______.8.已知二次函数y =a x 2+bx +c(a ≠0),其中a 、b 、c 满足a -b +c =0和9a +3b +c =0,则该二次函数的对称轴为直线_______.9.二次函数2365y x x =--+的图象的顶点坐标是( ) A .(18)-, B .(18),C .(12)-,D .(14)-,10.抛物线y=8x 2+2mx+m-2的顶点在x 轴上,则顶点坐标是( )A .(4,0)B . C. D .(0,)11. 不论x 取何值,二次函数y =-x 2+6x +c 的函数值总为负数,则c 的取值范围为 . 12.已知x 、y 都是正实数,且满足4x 2+4xy +y 2+2x +y -6=0,则x (1-y )的最小值为 . 13.若直线y =m (m 为常数)与函数y =⎩⎪⎨⎪⎧x 2(x ≤2)4x (x >2)的图像恒有三个不同的交点,则常数m 的取值范围是___________。

二次函数知识点 二次函数图像与性质

二次函数知识点 二次函数图像与性质

二次函数图像与性质〖知识要点〗 1.二次函数定义一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

定义域是全体实数,图像是抛物线。

2y ax bx c =++是二次函数的“一般式”。

特点:① 自变量x 最高次数是2,② a ≠0 ③ 整式2. 二次函数的基本形式:2y ax =(0a ≠)的图像性质:a 越大抛物线的开口越小考点一:二次函数定义例1.(1)圆的半径是xcm ,圆的面积为ycm²,写出y 与x 之间的函数关系式;(2)用总长为60m 的篱笆围成矩形场地,写出场地面积y(m ²)与矩形一边长x(m)之间的关系式例2. (1)下列函数中,是二次函数的是 .①y=x 2-4x+1; ②y=2x 2; ③y=2x 2+4x ; ④y=-3x ; ⑤y=-2x -1; ⑥y=mx 2+nx+p ; ⑦y =222(2)2x x --;⑧y=-5x.(2)若y=(m +1)x562--m m 是二次函数,则m=( )A .7B .—1C .-1或7D .以上都不对(3)函数)1(432-=x y 的自变量x 的取值范围是 ; (4)已知二次函数3)12()1(2+++-=x m x m y ,当x=1时,y=3,则其表达式为 ;(5)已知二次函数8-10-2x xy +=,当x=________________时,函数值y 为1.考点二:2y ax =(0a ≠)的图像性质例3.作二次函数2x 2y =的图像观察图象,你发现了:例4.(1) 函数y=-x 2的图像是一条______线,开口向_______,对称轴是______, 顶点是________, 顶点是图像最_____点,表示函数在这点取得最_____值。

函数y=x 2 的图像的开口方向________,对称轴________,顶点_______.(2).关于213y x =,2y x =,y=-3x 2的图像,开口最大的是 .例5已知抛物线y=ax 2经过点A (-2,-8).(1)求此抛物线的函数解析式;(2)判断点B (-1,- 4)是否在此抛物线 ;(3)求出此抛物线上纵坐标为-6的点的坐标.例6已知二次函数mm m +=2xy (1)当m 取何值时它的图象开口向上。

二次函数全章知识梳理

二次函数全章知识梳理

二次函数全章知识梳理1. 二次函数一般形式:形如2y ax bx c =++(0a ≠,a ,b ,c 是常数)2. 图象:二次函数的图象是一条抛物线3. 方向:(由a 的符号决定) (开口大小,由|a |决定) (1)0a > 开口向上,有最小值; 0a < 开口向下,有最大值. (2)|a |越大,开口越小 ;|a |越小,开口越大4. 对称轴:2b x a =-/122x x x += 5. 顶点坐标: 24,24b ac b a a ⎛⎫-- ⎪⎝⎭即:()2y a x h k =-+,其中(),h k 是抛物线的顶点坐标. 抛物线平移规律:上加下减,左加右减.抛物线顶点的横坐标是对称轴()x h =,顶点的纵坐标是最值()y k =. 6. b 符号对对称轴的影响:(1)对称轴在y 轴的左侧,a 、b 同号(2)对称轴在y 轴的右侧,a 、b 异号(即左同右异中间0) (3)对称轴是y 轴,0b =7. c 的符号决定抛物线与y 轴的交点位置: (1)0c > 与y 轴交点在x 轴的上方(即在y 轴的正半轴) (2)0c < 与y 轴交点在x 轴的下方(即在y 轴的负半轴) (3)0c =抛物线经过原点8. 抛物线与x 轴的交点个数由∆决定:(即联系一元二次方程): (1)0∆> 与x 轴有2个交点(2)0∆= 与x 轴有1个交点 (24b ac ∆=-) (3)0∆<没有交点(4)当0∆<,且0a >时,抛物线图象全部在x 轴上方 (5)当0∆<,且0a <时,抛物线图象全部在x 轴下方9. 常用特殊符号的确定:(1)2a b +与0看对称轴2ba-与1比较大小(注意a 的符号)2a b -与0 看对称轴2ba-与1-比较大小(看对称轴是在1-的左边还是右边) (2)24b ac -与0 看抛物线与x 轴交点个数a b c ++与0 看1x =时y 的值(赋值法) a b c -+与0看1x =-时y 的值42a b c ++与0 看2x =时y 的值10. 抛物线的性质:(1)0a >时,在对称轴左侧,y 随x 的增大而减小在对称轴右侧,y 随x 的增大而增大(2)0a <时,在对称轴左侧,y 随x 的增大而增大在对称轴右侧,y 随x 的增大而减小11. 确定解析式:(待定系数法)(1)一般式:2y ax bx c =++(代入三个点坐标或三对x ,y 的对应值,求a ,b ,c 的值) (2)顶点式:()2y a x h k =-+(代入顶点坐标(),h k 和另一点的坐标,求a 的值)(3)交点式:()()12y a x x x x =--(代入交点坐标()()12,0,,0x x 及另一点坐标,求a 值) 注:情况(3)是在有根的情况下. 12. 二次三项式与一元二次方程的区别: 如方程22480x x --=可变形为2240x x --=;但将二次三项式分解因式时,就只能()22248224x x x x --=--13. 二次函数与图形的变换:关键:最好用顶点式,确定变化后新的顶点坐标及a 值 (1)平移:二次函数的图象经过平移变换不会改变图形的形状和开口方向,因此a 的值不变,只要按照点的移动规律,求出新的顶点坐标即可确定其解析式. (2)轴对称:此图形变换包括关于x 轴对称和关于y 轴对称两种方式a :二次函数图象关于x 轴对称的图象,其形状不变,但开口方向相反,因此a 值为原来的相反数.顶点位置改变,只要根据关于x 轴对称的点的坐标特征求出新的顶点坐标即可.b :二次函数图象关于y 轴对称的图象,其形状和开口方向都不变,因此a 值不变.但是顶点位置会改变,只要根据关于y 轴对称的点的坐标特征求出新的顶点坐标即可. (3)旋转:主要是指以二次函数图象的顶点为旋转中心,旋转角为180︒的图象变换不会改变二次函数的图象形状,开口方向相反,因此a 值会为原来的相反数,但顶点的坐标不变.14. 二次函数的应用:(1)利润问题:建立利润与价格之间的函数关系式,求出顶点坐标,即为“最大利润”公式如下:xx yyOOa :单件利润=售价-进价b :总利润=单件利润⨯销售量=(售价-进价)⨯销售量=总销售额-总成本(2)几何面积问题:一般先运用几何图形的面积,三角形相似,对应线段成比例等性质写出图形面积y 与边长x 之间的二次函数关系式,再求出这个函数关系式的顶点坐标,即可求“最大面积”. 公式如下:a :矩形面积=长⨯宽b :梯形面积=()2+⨯上底下底高c :平行四边形面积=边⨯边上的高d :菱形面积=两对角线乘积的一半e :正方形面积=边长⨯边长f :三角形面积=2⨯底高(3)数学建模问题:建立平面直角坐标系,把实际问题中的数据用数对形式在直角坐标系中描出点,进而用二次函数的图象,解决实际问题.注:建立平面直角坐标系时,应尽可能地将已知的数对放在坐标轴上或作为顶点. (4)动点问题:关键根据题意求静止时的线段长. a :找起点,终点b :求线段的长(起点与动点的线段=动点的速度⨯动点的时间)c :用含有未知数的代数式表示线段的长 (5)与一次函数、反比例函数结合: a :求两函数交点坐标,联立方程组即可b :已知一个点同时在两函数上,那么这个点符合两个函数的解析式,其中一个函数已知,一个函数解析式中有未知数,代入即可求未知数,得出函数解析式 (6)与锐角三角函数结合:构造含有此锐角的直角三角形求解问题 15. 二次函数的最值问题:一般地,因为抛物线2y ax bx c =++的顶点是最高(低)点,所以当2bx a =-时,二次函数2y ax bx c =++有最大(小)值244ac ba-.16. 一次函数图象的位置关系:(1)两个一次函数111y k x b =+与222y k x b =+的图象互相平行:12k k = (2)两个一次函数111y k x b =+与222y k x b =+的图象互相垂直:121k k ⋅=-。

初中数学二次函数知识点总结

初中数学二次函数知识点总结

初中数学二次函数知识点总结(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!初中数学二次函数知识点总结同学们都知道初中数学中函数占据一个了很重要的比值,很多题目解题都需要运用到二次函数,那么如何学好二次函数也变得尤其重要。

二次函数图象和性质知识点总结

二次函数图象和性质知识点总结
三、综合练习
1、小李从如图所示的二次函数 的图象中,观察得出了下面四条信息:(1)b2-4ac>0;(2)c>1;(3)ab>0;(4)a-b+c<0. 你认为其中错误的有( )
A. 2个B. 3个C. 4个D. 1个 第1题
2.已知二次函数 经过点M(-1,2)和点N(1,-2),交x轴于A,B两点,交y轴于C则……()
①一般式: (a、b、c为常数,a≠0)
②顶点式: (a、h、k为常数,a≠0),其中(h,k)为顶点坐标。
③交点式: ,其中 是抛物线与x轴交点的横坐标,即一元二次方程 的两个根,且a≠0,(也叫两根式)。
2.二次函数 的图象
①二次函数 的图象是对称轴平行于(包括重合)y轴的抛物线,几个不同的二次函数,如果a相同,那么抛物线的开口方向,开口大小(即形状)完全相同,只是位置不同。
(I)当每辆车的月租金定为3600元时,能租出多少辆车?
(II)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
解答:(I)当每辆车的月租金定为3600元时,未租出的车辆数为 ,故租出了88辆;
(II)设每辆车月租金定为 元,则租赁公司的月收益为
故当月租金定为4050元时,租赁公司的月收益最大为307050元。
说明:本题利用了函数的单调性,很快求出了函数的值域,这是求函数值域的一个重要方法。
考点五二次函数的最值
例5.试求函数 在区间[1,3]上的最值。
分析:本题需就对称轴 与区间的相对位置关系进行分类讨论: <1, ∈[1,2], ∈(2,3], >3。
解答:函数的对称轴
I、当 <1即 时:函数在[1,3]上是增函数,故 ;
(1)求抛物线的函数解析式;

二次函数知识点

二次函数知识点

二次函数(知识点)1. 二次函数的概念:一般地,如果y=ax 2+bx+c(a ,b ,c 是常数,a ≠0),其中二次项中x 的次数必须是2并且二次项的系数不能为0,那么这样的函数y 叫做x 的二次函数.2.二次函数y=ax 2+bx+c(a ,b ,c 是常数,a ≠0)的图象及画法二次函数y=ax 2+bx+c(a ≠0)的图象是对称轴平行于y 轴(或是y 轴本身)的抛物线.几个不同的二次函数.如果二次项系数a 相同,那么其图象的开口方向、形状完全相同,只是顶点的位置不同. 一 用描点法画图象首先确定二次函数的开口方向、对称轴、顶点坐标,然后在对称轴两侧,以顶点为中心,左右对称地画图.画结构图时应抓住以下几点:对称轴、顶点、与x 轴的交点、与y 轴的交点. 二 用平移法画图象由于a 相同的抛物线y=ax 2+bx+c 的开口及形状完全相同,故可将抛物线y=ax 2的图象平移得到a 值相同的其它形式的二次函数的图象.步骤为:利用配方法或公式法将二次函数化为y=a(x-h)2+k 的形式,确定其顶点(h ,k),然后做出二次函数y=ax 2的图象.将抛物线y=ax 2平移,使其顶点平移到(h ,k).3.(1)函数y=ax 2(a ≠0)的图象与性质:a 的符号图象开口方向 顶点坐标 对称轴增减性最大(小)值a>0向上(0,0)y 轴或说直线x=0 x>0时,y 随x 增大而增大 x<0时,y 随x 增大而减小当x=0时,y 最小=0a<0向下(0,0)y 轴或说直线x=0 x>0时,y 随x 增大而减小 x<0时,y 随x 增大而增大当x=0时,y 最大=0顶点是坐标原点(0,0),对称轴是y 轴或直线x=0的抛物线的解析式形式为220)0(ax x a y =+-=)(0≠a(2)函数y=ax 2+c(a ≠0)的图象及其性质:a 的符号图象开口方向 顶点坐标对称轴 增减性 最大(小)值 a>0向上(0,c)y 轴或说 直线x=0x>0时,y 随x 增大而增大 x<0时,y 随x 增大而减小 当x=0时, y 最小=ca<0向下(0,c)y 轴或说 直线x=0x>0时,y 随x 增大而减小 x<0时,y 随x 增大而增大当x=0时, y 最大=c顶点在y 轴上其坐标为(0,c ),对称轴是y 轴或直线x=0的抛物线的解析式形式为y=a (x-0)2+c=ax 2+c (3)抛物线y=ax 2与y=ax 2±c 之间的关系是:形状大小相同,开口方向相同,对称轴相同,而顶点位置和抛物线的位置不同. (4)抛物线之间的平移规律:抛物线y=ax 2向上平移c 个单位可以得到抛物线 y=ax 2+c ;抛物线y=ax 2向下平移c 个单位可以得到抛物线 y=ax 2-c ;4.(1)二次函数 y=ax 2+bx+c 的图像的性质二次函数y=ax 2+bx+c(a ≠0)的图象是一条抛物线.它的顶点坐标是(a b ac a b 44,22--),对称轴是直线x=ab 2-函数 二次函数y=ax 2+bx+c(a ,b ,c 是常数,a ≠0) 图象a>0a<0性质 (1)当a>0时,抛物线开口向上,并向上无限延伸,顶点(a b ac a b 44,22--)有最低点,存在最小值,对称轴为x=a b 2-,当x=a b 2-,y 最小值=ab ac 442-。

人教版初三数学上册二十二章 二次函数

人教版初三数学上册二十二章 二次函数
AO
M1
3
x
B
y =M-x32+2x+3
课堂知识梳理
本节课你回顾了哪些知识?学到了什么?有 什么收获和大家一起分享……
收获
作业布置 感谢各位老师与同学的参与!
x22x3m
一元二次 方程的解
﹒ 交点的横坐标 y
2x

3
-1
x1 O

3
x
x2
y =-x2+2x+3


讨 论 : 一 元 二 次 方 程 x 2 2 x 3 m 根 的 情 况
问题3、结合图象思考:当m为何值时,
方程 x22x3m
与 y 轴交于点 C(0,3).
y x=1
(1)点M是抛物线第一象限 内一动点,
M(1,4)
C
M
①当M点运动到何处时,
3
△AMB 的面积最大?求出
△AMB的最大面积及此时 点 M的坐标;
-1
N3
x
AO
B
②当 M 点运动到何处时, △MCB 的面积最大?并求出最 大面积及此时点 M 的坐标.
y =-x2+2x+3
四、能力提升
若该抛物线 y = -x2+2x+3 与 x轴交于 A,B 两点,
与 y 轴交于点 C(0,3).
y
(2)设抛物线的对称轴交抛
5 E
物线于点E,交直线BC于点F,
问在抛物线上是否存在一点
M,使S△MCB= S△ECB ,若存 在,请在图中找出,并求出
各点的坐标。
C 3 M2 F -1 1
y
一看a的值,二看顶点坐标
O

二次函数全章主要知识点梳理

二次函数全章主要知识点梳理

二次函数全章主要知识点梳理一、二次函数的图象和性质(1)二次函数2ax y =的图象和性质a 对函数2ax y =图象的影响a 的符号决定函数2ax y =图象的开口方向,a 的大小决定图象的开口大小:a 的值越大,抛物线开口越小;a 的值越小,抛物线开口越大.(2)二次函数k ax y +=2的图象和性质(3)二次函数()2h x a y -=的图象及性质(4)二次函数()k h x a y +-=2的图象及性质(5)二次函数c bx ax y ++=2的图象及性质二、二次函数的图象的平移及解析式的变化规律二次函数图象的平移遵循“左加右减,上加下减”的规律.(1)二次函数的图象左右平移时,自变量加上(左移)或减去(右移)平移的单位,注意要加小括号;(2)二次函数的图象上下平移时,解析式的后面加上(上移)或减去(下移)平移的单位.例1. 将抛物线2x y =向右平移2个单位,再向上平移1个单位,所得新抛物线对应的函数表达式为【 】(A )()122++=x y (B )()122-+=x y(C )()122+-=x y (D )()122--=x y例2. 将抛物线2x y =向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为________________. 三、二次函数的图象和性质的应用往往考查的是二次函数图象的对称轴、顶点坐标、最值以及增减性.考查最多的形式是顶点式()k h x a y +-=2.(1)抛物线()k h x a y +-=2的顶点坐标是()k h ,.(2)抛物线()k h x a y +-=2的对称轴为直线h x =.(3)以对称轴直线h x =为分界线,抛物线一侧上升,一侧下降:上升的一侧表示y 随x 的增大而增大;下降的一侧表示y 随x 的增大而减小.函数图象的升降性反应了y 随x 的变化趋势,即增减性.利用函数的增减性可以比较函数值的大小. 例3. 对于抛物线()31212++-=x y ,下列结论:①抛物线的开口向下;②对称轴为直线1=x ;③顶点坐标为()3,1-;④当1>x 时,y 随x 的增大而减小;⑤函数的最大值为3.其中正确结论的个数为【 】(A )2 (B )3 (C )4 (D )5例4. 关于二次函数()352+--=x y 的图象与性质,下列结论错误的是【 】(A )抛物线开口方向向下 (B )当5=x 时,函数有最大值(C )抛物线可由函数2x y =的图象经过平移得到 (D )当5>x 时,y 随x 的增大而减小二次函数c bx ax y ++=2,化为顶点式为a b ac a b x a y 44222-+⎪⎭⎫ ⎝⎛+=,故其顶点坐标为⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22,对称轴为直线a bx 2-=. 同学们要特别记住一般式的对称轴公式.例5. 已知二次函数()112+-+=x m x y ,当1>x 时,y 随x 的增大而增大,则m 的取值范围是__________.提示 二次函数的增减性与其图象的开口方向和对称轴有关.在根据函数的增减性确定参数的取值范围时,要先确定函数图象的开口方向和对称轴的位置,必要时可画出函数图象的简图. 四、求二次函数的解析式常考查顶点式、交点式和一般式.在求函数解析式时,如果题目给出了抛物线的解析式(系数待定),我们直接把点的坐标代入解析式求解即可;如果题目没有给出函数解析式,我们就要先根据题目条件的特点先设出合适的函数解析式,再把点的坐标代入.(1)如果已知抛物线的顶点坐标和另一个点的坐标,我们把函数解析式设为顶点式,即设二次函数的解析式为()k h x a y +-=2.(2)如果已知抛物线与x 轴的两个交点坐标和第三个点的坐标,我们把函数解析式设为交点式,即设二次函数的解析式为()()21x x x x a y --=.有下面的结论:如果抛物线与x 轴的两个交点分别为()()0,,0,21x x ,那么函数解析式为:()()21x x x x a y --=.(3)如果已知抛物线上三个点的坐标,那么我们把函数解析式设为一般式,即设二次函数的解析式为c bx ax y ++=2.例6. 已知二次函数的图象以()4,1-A 为顶点,且过点()5,2-B ,求该二次函数的解析式.变式. 已知二次函数的图象如图所示,求该二次函数的解析式.例7. 已知二次函数的图象经过()()0,1,0,3--和()3,0-三点,求该二次函数的解析式.变式. 已知二次函数c bx ax y ++=2的图象如图所示,求该二次函数的解析式.例8. 已知二次函数c bx x y ++=2的图象与x 轴交于A 、B 两点,其中点A 的坐标为()0,3-,与y 轴交于点C ,点()3,2--D ,求该抛物线的解析式.五、二次函数的图象与c b a ,,的关系 与二次项系数a 的关系(1)当0>a 时,抛物线开口向上,a 的值越大,开口越小,a 的值越小,开口越大; (2)当0<a 时,抛物线开口向下,a 的值越大,开口越大,a 的值越小,开口越小.总之,a 的值越大,抛物线的开口越小. 与一次项系数b 的关系二次项系数a 和一次项系数b 共同决定了抛物线的对称轴. 若抛物线的对称轴在y 轴的右侧,即02>-=abx ,则b a ,异号;若抛物线的对称轴在y 轴的左侧,即02<-=abx ,则b a ,同号. 总之,b a ,的符号遵循“左同右异”的规律. 特别地,当对称轴是y 轴时,02=-=abx ,此时0=b . 与常数项c 的关系对于二次函数c bx ax y ++=2,当0=x 时,c y =,函数图象与y 轴的交点为()c ,0:(1)当0>c 时,抛物线与y 轴的交点在x 轴上方,即交于y 轴的正半轴; (2)当0=c 时,抛物线经过坐标原点;(3)当0<c 时,抛物线与y 轴的交点在x 轴下方,即交于y 轴的负半轴.上述结论反之亦成立.例9. 已知二次函数c bx ax y ++=2的图象如图所示,则【 】yxO(A )0,0,0<<<c b a (B )0,0,0><<c b a (C )0,0,0>><c b a (D )0,0,0><>c b a 例10. 已知二次函数c bx ax y ++=2的图象如图所示,则下列结论: ①0<abc ; ②02=+b a ; ③042>-ac b ;④方程02=++c bx ax 的两个实数根 分别为3,121=-=x x ; ⑤024>++c b a .例11. 已知函数21x y =与函数3212+-=x y 的图象如图所示.若21y y >,则自变量x 的取值范围是____________.yxO二次函数c bx ax y ++=2与一元二次方程02=++c bx ax对于二次函数c bx ax y ++=2(0≠a ),如果其图象与x 轴有交点,那么交点的纵坐标等于零,于是交点的横坐标就是对应的一元二次方程02=++c bx ax 的实数根.因此,二次函数的图象与x 轴的相交情况,可以转化为二次方程实数根的情况.而一元二次方程实数根的情况取决于根的判别式,故我们可以用根的判别式来判断二次函数的图象与x 轴的相交情况,具体如下:(1)当042>-=∆ac b 时,抛物线c bx ax y ++=2(0≠a )与x 轴有两个交点,反过来亦成立,此时一元二次方程02=++c bx ax (0≠a )有两个不相等的实数根;(2)当042=-=∆ac b 时,抛物线c bx ax y ++=2(0≠a )与x 轴只有一个交点(即抛物线的顶点),反过来亦成立,此时一元二次方程02=++c bx ax (0≠a )有两个相等的实数根;(3)当042<-=∆ac b 时,抛物线c bx ax y ++=2(0≠a )与x 轴没有交点,反过来亦成立,此时一元二次方程02=++c bx ax (0≠a )没有实数根.因此,二次函数02=++=bx ax y 与x 轴有交点的条件是△≥0.例12. 若抛物线42-+-=mx x y 与x 轴的交点只有一个,则m 的值是_______.x100100mO例13. 抛物线442-+-=x x y 与坐标轴的交点个数为【 】 (A )0 (B )1 (C )2 (D )3例14. 二次函数m x x y -+=2的部分图象如图,则一元二次方02=-+m x x 的解为___________.六、二次函数的最值我们已经知道,把二次函数化为顶点式后,可以很快确定函数的最值以及取得最值的条件:顶点坐标为()k h ,,最值为k ,取得最值的条件为h x =.我们还知道,对于二次函数,当自变量的取值范围为全体实数时,函数的最值在顶点处取得.如果自变量是指定的取值范围,则函数的最值不一定在顶点处取得:当顶点的横坐标在自变量的取值范围之内时,函数的最值在顶点处取得;当顶点的横坐标不在自变量的取值范围之内时,函数的最值并不在顶点处取得,此时,我们应画出自变量取值范围之内的函数图象,结合函数的图象确定其最值以及取得最值的条件.例15. 某商场以50元的价格购进一种商品, 销售中发现这种商品每天的销售量m (件) 与每件的销售价格x (元)满足一次函数关 系,其图象如图所示,则该商场每天销售这种商 品的利润y (元)与每件的销售价格x (元) 之间的函数关系式为___________________.变式1 当=x _________时,该商场每天销售这种商品的利润y (元)最大. 变式2 若规定这种商品的销售价格x (元)不低于80元,且不高于95元,则当=x _________时,该商场每天销售这种商品的利润y (元)最大. 七、二次函数与几何图形的面积例16. 如图所示,已知直线AB 经过x 轴上的点A (2 , 0),且与抛物线2ax y =相交于B 、C 两点,已知B 点的坐标为(1 , 1). (1)求直线和抛物线的表达式;(2)如果D 为抛物线上的一点,使得△AOD 与△OBC 的面积相等,求D 点的坐标.yxABCO解:(1)把B (1 , 1)代入2ax y =得:112=⨯a 解之得:1=a ∴2x y =设直线AB 的解析式为b kx y +=把A (2 , 0)、B (1 , 1)分别代入b kx y +=得:⎩⎨⎧=+=+102b k b k 解之得:⎩⎨⎧=-=21b k∴2+-=x y ;(2)解方程组⎩⎨⎧+-==22x y x y 得:⎩⎨⎧=-=4211y x ,⎩⎨⎧==1122y x ∴()4,2-C ∵A (2 , 0) ∴2=OA∴AOB AOC OBC S S S ∆∆∆-=312214221=⨯⨯-⨯⨯=设点D 的纵坐标为m ,则有3221=⨯⨯=∆m S AOD ,3=m 令32==x m ,则3±=x ∴点D 的坐标为()3,3或()3,3-.八、二次函数与一元二次方程之间的关系在本章的学习中,有两种数学思想贯穿始终:数形结合思想以及函数与方程思想.对于二次函数()02≠++=a c bx ax y ,令0=y ,则得到与其对应的一元二次方程()002≠=++a c bx ax ,研究二次函数的图象与x 轴的相交情况可以转化为研究方程实数解的情况:(1)如果二次函数()02≠++=a c bx ax y 的图象与x 轴有交点,那么一元二次方程()002≠=++a c bx ax 有实数解,且交点的横坐标就是方程的实数解.①若二次函数()02≠++=a c bx ax y 的图象与x 轴有两个不同的交点,则一元二次方程()002≠=++a c bx ax 有两个不相等的实数根,此时042>-=∆ac b ;如图1、图2所示,抛物线c bx ax y ++=2与x 轴交于A 、B 两点,那么一元二次方程02=++c bx ax 有两个不相等的实数根,这两个实数根等于A 、B 两点的横坐标,即B A x x x x ==21,,此时042>-=∆ac b .②若二次函数()02≠++=a c bx ax y 的图象与x 轴只有一个交点,则一元二次方程()002≠=++a c bx ax 有两个相等的实数根,此时042=-=∆ac b .抛物线与x 轴只有一个交点时,该交点就是抛物线的顶点.图 3如图3、图4所示,抛物线c bx ax y ++=2与x 轴只有一个交点A ,点A 是抛物线的顶点,那么一元二次方程02=++c bx ax 有两个相等的实数根,这两个相等的实数根等于点A 的横坐标,即A x x x ==21,此时042=-=∆ac b .(2)如果二次函数()02≠++=a c bx ax y 的图象与x 轴没有交点,那么一元二次方程()002≠=++a c bx ax 没有实数根,此时042<-=∆ac b .yx图 5O yx图 6O如图5、图6所示,抛物线c bx ax y ++=2与x 轴没有交点,那么一元二次方程02=++c bx ax 没有实数根,此时042<-=∆ac b .反过来,一元二次方程()002≠=++a c bx ax 的实数解的情况也说明了二次函数()02≠++=a c bx ax y 的图象与x 轴的相交情况.根据ac b 42-=∆的值的符号,在不画图的情况下,可以确定抛物线与x 轴的交点个数.抛物线的对称轴的确定对于二次函数()02≠++=a c bx ax y ,其图象的对称轴公式为直线ab x 2-=. 根据上面的对称轴公式,给出二次函数的一般式,我们可以确定其图象的对称轴.除此之外,还有下面的结论:如果抛物线()02≠++=a c bx ax y 与x 轴交于A 、B 两点,那么抛物线的对称轴为直线2BA x x x +=.yx图 3O九、二次函数与一元二次不等式之间的关系一元二次不等式()002≠>++a c bx ax 的解集,从“形”的角度看,就是二次函数()02≠++=a c bx ax y 的图象位于x 轴上方的部分所对应的自变量x 的取值范围:(1)当04,02>-=∆>ac b a 时,如图1所示,此时一元二次方程02=++c bx ax 有两个不相等的实数根,抛物线与x 轴有两个不同的交点A ,B ,那么一元二次不等式02>++c bx ax 的解集为A x x <或B x x >.图 2(2)当04,02=-=∆>ac b a 时,如图2所示,此时一元二次方程02=++c bx ax 有两个相等的实数根,抛物线与x 轴只有一个交点(抛物线的顶点在x 轴上),那么一元二次不等式02>++c bx ax 的解集为A x x ≠. (3)当04,02<-=∆>ac b a 时,如图3 所示,此时一元二次方程02=++c bx ax 没有实数根,抛物线与x 轴没有交点,那么 一元二次不等式02>++c bx ax 的解集为全体实数.一元二次不等式()002≠<++a c bx ax 的解集,从“形”的角度看,就是二次函数()02≠++=a c bx ax y 的图象位于x 轴下方的部分所对应的自变量x 的取值范围:(1)当04,02>-=∆>ac b a 时,如图4所示,此时一元二次方程02=++c bx ax 有两个不相等的实数根,抛物线与x 轴有两个不同的交点A ,B ,那么一元二次不等式02<++c bx ax 的解集为B A x x x <<.图 5(2)当04,02=-=∆>ac b a 时,如图5所示,此时一元二次方程02=++c bx ax 有两个相等的实数根,抛物线与x 轴只有一个交点(抛物线的顶点在x 轴上),那么一元二次不等式02<++c bx ax 的解集为无解(也叫空集).(3)当04,02<-=∆>ac b a 时,如图6所示,此时一元二次方程02=++c bx ax 没有实数根,抛物线与x 轴没有交点,那么一元二次不等式02<++c bx ax 的解集 为无解(也叫空集).yx图 6O在上面我们分别讨论了当0>a 时,一元二次不等式()002≠>++a c bx ax 和()002≠<++a c bx ax 在不同情形下的解集的情况.下面,我们继续讨论当0<a 时,一元二次不等式()002≠>++a c bx ax 和()002≠<++a c bx ax 在不同情形下的解集的情况,讨论的结果由同学们完成.(1)当04,02>-=∆<ac b a 时,如图7所示,此时一元二次方程02=++c bx ax 有两个不相等的实数根,抛物线与x 轴有两个不同的交点A ,B ,那么一元二次不等式02>++c bx ax 的解集为____________.图 7(2)04,02=-=∆<ac b a 时,如图8所示,此时一元二次方程02=++c bx ax 有两个相等的实数根,抛物线与x 轴只有一个交点(抛物线的顶点在x 轴上),那么一元二次不等式02>++c bx ax 的解集为____________.(3)当04,02<-=∆<ac b a 时,如图9所示,此时一元二次方程02=++c bx ax 没有实数根,抛物线与x 轴没有交点,那么一元二次不等式02>++c bx ax 的解集为____________.yx图 9O(4)当04,02>-=∆<ac b a 时,如图10所示,此时一元二次方程02=++c bx ax有两个不相等的实数根,抛物线与x 轴有两个不同的交点A ,B ,那么一元二次不等式02<++c bx ax 的解集为____________.图 10(5)04,02=-=∆<ac b a 时,如图11所示,此时一元二次方程02=++c bx ax 有两个相等的实数根,抛物线与x 轴只有一个交点(抛物线的顶点在x 轴上),那么一元二次不等式02<++c bx ax 的解集为____________.(6)当04,02<-=∆<ac b a 时,如图12所示,此时一元二次方程02=++c bx ax 没有实数根,抛物线与x 轴没有交点,那么一元二次不等式02<++c bx ax 的解集为____________.yx图 12O可见,在借助于二次函数的图象求解一元二次不等式时,同学们应该学会看图,切不可去死记硬背上面的讨论结果. 作业题1. 已知二次函数的图象如图13所示,则:(1)这个二次函数的表达式是_______________; (2)当=x ________时,3=y ;(3)当x 的取值范围是____________时,0>y .图 13yx图 1431O2. 二次函数322--=x x y 的图象如图14所示,则当函数值0<y 时,x 的取值范围是【 】(A )1-<x (B )3>x (C )31<<-x (D )1-<x 或3>x3. 在平面直角坐标系中,二次函数x x y 421+-=和一次函数x y 22=的图象如图15所示,那么不等式x x x 242>+-的解集是【 】 (A )0<x (B )40<<x (C )20<<x (D )42<<x4. 如图16所示,抛物线c ax y +=2与直线n mx y +=交于()()q B p A ,3,,1-两点,则第21页 关于x 的不等式n c mx ax <+-2的解集为【 】(A )1->x (B )3<x(C )31<<-x (D )3-<x 或1>x yx图 16A BO5. 已知二次函数c bx x y ++-=2与一次函数n mx y +=的图象交于点()4,2-A , ()2,6-B ,则关于x 的方程n mx c bx x +=++-2的解是_________.6. 已知抛物线2x y =与直线32+-=x y 如图所示.(1)求交点A 、B 的坐标;(2)求△AOB 的面积;(3)直接写出不等式322+-<x x 的解集. yxBAO。

初中数学二次函数知识点总结

初中数学二次函数知识点总结

初中数学二次函数知识点总结初中数学二次函数知识点总结二次函数的图象与性质二次函数开口方向对称轴顶点增减性最大(小)值y=ax2a>0时,开口向上;a0时,在对称轴左侧,y随x的增大而减小,在对称轴右侧,y随x的增大而增大;当a0时,当x=0时,=0;当a0时,当x=0时,=c;当a0时,当x=h时,y 最小=0;当a0时,当x=h时,y最小=k;当a0时,当x=h时,y最小=k;当a0时,开口方向向上;a1.二次函数图像是轴对称图形。

对称轴为直线x=h或者x=-b/2a对称轴与二次函数图像唯一的交点为二次函数图像的顶点P。

特别地,当h=0时,二次函数图像的对称轴是y轴(即直线x=0)a,b同号,对称轴在y轴左侧b=0,对称轴是y轴a,b异号,对称轴在y轴右侧顶点2.二次函数图像有一个顶点P,坐标为P(h,k)当h=0时,P在y轴上;当k=0时,P在x轴上。

h=-b/2ak=(4ac-b2)/4a开口3.二次项系数a决定二次函数图像的开口方向和大小。

当a>0时,二次函数图像向上开口;当a0),对称轴在y轴左;因为对称轴在左边则对称轴小于0,也就是-b/2a0),对称轴在y轴左;当a与b异号时(即ab0;k0时,函数在x=h 处取得最小值ymix=k,在xh范围内是增函数(即y随x的变大而变小),二次函数图像的开口向上,函数的值域是y>k当ah范围内事增函数,在x且X(X1+X2)/2时Y随X的增大而减小此时,x1、x2即为函数与X轴的两个交点,将X、Y 代入即可求出解析式(一般与一元二次方程连用)。

交点式是Y=A(X-X1)(X-X2)知道两个x轴交点和另一个点坐标设交点式。

两交点X值就是相应X1X2值。

两图像对称①y=ax2+bx+c与y=ax2-bx+c两图像关于y轴对称;②y=ax2+bx+c与y=-ax2-bx-c两图像关于x轴对称;③y=ax2+bx+c与y=-a(x-h2+k关于顶点对称;④y=ax2+bx+c与y=-a(x+h2-k关于原点对称。

《二次函数》知识点梳理

《二次函数》知识点梳理

《二次函数》知识点梳理一、二次函数的定义、图像和性质1. 定义:一般地,如果y=ax2+bx+c(a,b,c是常数,a ≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a的绝对值越大,抛物线的开口越小.2. 几种特殊的二次函数的图像特征如下:【典型例题】当k分别取-1,1,2时,函数y=(k-1)x2-4x+5-k都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值.解析:先求出当k分别取-1,1,2时对应的函数,再根据函数的性质讨论最大值.(1)当k=1时,函数y=-4x+4为一次函数,无最值.(2)当k=2时,函数y=x2-4x+3为二次函数且图象开口向上,无最大值.(3)当k=-1时,函数y=-2x2-4x+6=-2(x+1)2+8为二次函数且图象开口向下,对称轴为直线x=-1,顶点坐标为(-1,8),所以当x=-1时,y最大值=8.点评:本题考查一次函数和二次函数的基本性质,熟知函数的性质是求最值的关键.二、二次函数与一元二次方程的关系函数y=ax2+bx+c(a≠0),当y=0时,得到一元二次方程ax2+bx+c=0(a≠0),那么一元二次方程的解就是二次函数的图象与x轴交点的横坐标,因此二次函数图象与x轴的交点情况决定一元二次方程根的情况.通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:注意点:二次函数图象与x轴的交点的个数由△=b2-4ac 的值来确定.(1)当二次函数的图象与x轴有两个交点,这时△=b2-4ac>0(a≠0),则方程有两个不相等实根x1,2=■.(2)当二次函数的图象与x轴有且只有一个交点,这时△=b2-4ac=0,则方程有两个相等实根x1=x2=-■(3)当二次函数的图象与x轴没有交点,这时△=b2-4ac<0,则方程没有实根.【典型例题】已知:二次函数y=(2m-1)x2-(5m+3)x+3m+5(1)m为何值时,此抛物线必与x轴相交于两个不同的点;(2)m为何值时,这两个交点在原点的左右两边;(3)m为何值时,抛物线的对称轴是y轴;(4)m为何值时,二次函数有最大值-■.解析:(1)∵△=[-(5m+3)]2-4(2m-1)(3m+5)=m2+2m+29>0,∴当m≠■时,此抛物线必与x轴相交于两个不同的点;(2)据题意,得■<0,则-■<m<■;(3)据题意,得-(5m+3)=0;则m=-■;(4)据题意,得■=-■,化简,得m2-8m+34=0,此方程无实数根,则不存在.三、二次函数解析式的求法与一次函数和反比例函数类似,我们也是用待定系数法来求二次函数的关系式,不过我们要注意根据已知条件选择合适的关系式的设法,可分三种情况:(1)设一般式y=ax2+bx+c(a≠0):如果已知抛物线上三点的坐标或三组x,y的对应值,可设所求二次函数为y=ax2+bx+c(a≠0),将已知条件带入关系式,得到关于a,b,c的三元一次方程组,解方程组的值,求出a,b,c的值,关系式便可得出.(2)设顶点式y=a(x-h)2+k(a≠0):如果已知对称轴和最大值(或最小值)或顶点坐标,可设所求二次函数y=a (x-h)2+k(a≠0),将已知条件代入,求出待定系数a,从而求得函数关系式,最后要注意,把关系式化成一般形式.(3)设交点式y=a(x-x1)(x-x2)(a≠0):如果已知或较容易求得抛物线与x轴的交点坐标(x1,0)和(x2,0)及另一点的坐标或一组x,y的对应值,可设所求函数为y=a (x-x1)(x-x2),将另一点的坐标或一组的x,y对应值代入,求出待定系数a,进而得到函数关系式,最后也要注意将其化为一般形式.【典型例题】已知二次函数y=(t+1)x2+2(t+2)x+■在x=0和x=2时的函数值相等.(1)求二次函数的解析式;(2)若一次函数y=kx+6的图象与二次函数的图象都经过点A(-3,m),求m和k的值.解析:(1)由题意可知二次函数图象的对称轴为直线x=1,则-■=1,∴t=-■.∴y=-■x2+x+■.(2)∵二次函数图象必经过A点,∴m=-■×(-3)2+(-3)+■=-6.又∵一次函数y=kx+6的图象经过A点,∴-3k+6=-6,∴k=4.四、利用二次函数解决实际问题利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.利用二次函数解决实际问题的一般步骤是:第一步,设自变量;第二步,建立函数解析式;第三步,确定自变量取值范围;第四步,根据顶点坐标公式或配方法求出最值(在自变量的取值范围内).【典型例题】铜仁市某电解金属锰厂从今年1月起安装使用回收净化设备(安装时间不计),这样既改善了环境,又降低了原料成本,根据统计,在使用回收净化设备后的1至x月的利润的月平均值w(万元)满足w=10x+90.(1)设使用回收净化设备后的1至x月的利润和为y,请写出y与x的函数关系式.(2)请问前多少个月的利润和等于1620万元?解析:(1)y=w?x=(10x+90)x=10x2+90x(x为正整数)(2)设前x个月的利润和等于1620万元,10x2+90x=1620即:x2+9x-162=0得x=■x1=9,x2=-18(舍去),所以前9个月的利润和等于1620万元.。

二次函数图象和性质知识点总结

二次函数图象和性质知识点总结

二次函数的图象和性质知识点总结一、知识点回顾1. 二次函数解析式的几种形式:①一般式:(a 、b 、c 为常数,a ≠0) ②顶点式:(a 、h 、k 为常数,a ≠0),其中(h ,k )为顶点坐标。

③交点式:,其中是抛物线与x 轴交点的横坐标,即一元二次方程的两个根,且a ≠0,(也叫两根式)。

2. 二次函数的图象 ①二次函数的图象是对称轴平行于(包括重合)y 轴的抛物线,几个不同的二次函数,如果a 相同,那么抛物线的开口方向,开口大小(即形状)完全相同,只是位置不同。

②任意抛物线可以由抛物线经过适当的平移得到,移动规律可简记为:[左加右减,上加下减],具体平移方法如下表所示。

③在画的图象时,可以先配方成的形式,然后将的图象上(下)左(右)平移得到所求图象,即平移法;也可用描点法:也是将配成的形式,这样可以确定开口方向,对称轴及顶点坐标。

然后取图象与y 轴的交点(0,c ),及此点关于对称轴对称的点(2h ,c );如果图象与x 轴有两个交点,就直接取这两个点(x 1,0),y ax bx c =++2y a x h k =-+()2y a x x x x =--()()12x x 12,ax bx c 20++=y ax bx c =++2y ax bx c =++2y a x h k =-+()2y ax =2y ax bx c =++2y a x h k =-+()2y ax =2y ax bx c =++2y a x h k =-+()2(x 2,0)就行了;如果图象与x 轴只有一个交点或无交点,那应该在对称轴两侧取对称点,(这两点不是与y 轴交点及其对称点),一般画图象找5个点。

a >0 a <0 a >0 a <0(1)抛物线开口向上,(1)抛物线开口向下,(1)抛物线开口(1)抛物线开4. 求抛物线的顶点、对称轴和最值的方法①配方法:将解析式化为的形式,顶点坐标为y ax bx c =++2y a x h k =-+()2(h ,k ),对称轴为直线,若a >0,y 有最小值,当x =h 时,;若a <0,y 有最大值,当x =h 时,。

八年级二次函数的知识点

八年级二次函数的知识点

八年级二次函数的知识点二次函数是初中数学中十分重要的内容之一,它将直线与曲线融合在一起,形成了一种特殊的函数类型。

在学习了初一、初二的函数知识后,学生们逐渐进入到了初中数学的高峰——二次函数的学习中。

本文将从图像、性质、拐点、零点和应用五个方面分别介绍八年级二次函数的知识点。

一、图像二次函数的图像是一条开口向上或向下的抛物线,其标准式为y=ax²+b。

当a>0时,图像开口向上,当a<0时,则开口向下。

二、性质1、对称性二次函数的图像关于直线x=-b/2a对称。

证明如下:设顶点坐标为(h, k),则由二次函数的标准式可得y=a(x-h)²+k。

当x=h±t时,上式中的x分别为h+t和h-t,代入后可得:y-k=a(h+t-h)²=y-k=a(t)²y-k=a(h-t-h)²=y-k=a(-t)²从中可以看出,当t取任意实数时,y-k的值是相等的,因此对于任意的x,都有(x, y)和(2h-x, y)对称。

由此可以得知,二次函数的图像关于直线x=-h对称。

由于二次函数的h坐标为-b/2a,因此可以得知其对称轴方程为x=-b/2a。

2、正负性若a>0,则二次函数是一个上凸的图像,其最低点(即顶点)为(-b/2a, -△/4a)。

若a<0,则二次函数是一个下凸的图像,其最高点(即顶点)为(-b/2a, -△/4a)。

其中,△为一元二次方程中的判别式,△=b²-4ac。

三、拐点二次函数的拐点位于抛物线的顶点处,当二次函数极值不存在时,拐点即为最值点。

拐点处,二次函数的导数为0。

证明如下:对y=ax²+b求导可得y'=2ax,令y’=0,可得x=0。

则当a<0时二次函数开口朝下,有极大值;当a>0时,二次函数开口向上,有极小值。

四、零点二次函数的零点是指函数图像与x轴交点处的横坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档