函数零点问题-2020高考数学尖子生辅导专题
2020高考数学热点难点微专题含参函数的零点问题(3页)
2020高考数学热点难点微专题含参函数的零点问题含参函数的零点问题常以超越方程、分段函数等为载体,达到考察函数性质、函数零点的个数、参数的范围和通过函数性质求解不等式问题等目的.要注意函数的零点、方程的根、不等式的解集三者之间的关系,进行彼此之间的转化是解决该类题的关键,等价转化是这类问题的难点.解决该类问题的途径往往是根据函数的性质作出示意图,利用数形结合研究分界位置,结合函数、方程、不等式刻画边界位置,其间要注意导数的应用.例1 已知函数f (x )=x 2+ax (a ∈R ),g (x )=⎩⎪⎨⎪⎧f (x ), x ≥0,f ′(x ), x <0.若方程g (f (x ))=0有4个不等的实根,则a 的取值范围是________.点评:例2 (1) 若关于x 的方程|x 4-x 3|=ax 在R 上存在4个不同的实根,则实数a 的取值范围为________.(2) 已知函数f (x )=x 2+|x -a |,g (x )=(2a -1)x +a ln x ,若函数y =f (x )与函数y =g (x )的图象恰好有2个不同的交点,则实数a 的取值范围为________.点评:【思维变式题组训练】1. 已知函数f (x )=⎩⎪⎨⎪⎧ 2x -1, x ≥2,2, 1≤x <2.若方程f (x )=ax +1恰有一个解时,则实数a 的取值范围为________.2. 设函数f (x )=⎩⎨⎧ x -1e x , x ≥a ,-x -1, x <a ,g (x )=f (x )-b .若存在实数b ,使得函数g (x )恰有3个零点,则实数a 的取值范围为________.3. 已知函数f (x )=⎝ ⎛ x -1, 1≤x <2,2f ⎝ ⎛⎭⎪⎫12x , x ≥2,如果函数g (x )=f (x )-k (x -3)恰有2个不同的零点,那么实数k 的取值范围是________.4. 已知k 为常数,函数f (x )=⎩⎪⎨⎪⎧ x +2x +1, x ≤0,|ln x |, x >0,若关于x 的方程f (x )=kx+2有且只有4个不同解,则实数k 的取值构成的取值集合为________.。
2020年高考数学二轮复习高频考点一遍清函数的零点个数问题(7页)
2020年高考数学二轮复习高频考点一遍清函数的零点个数问题一、知识点讲解与分析:1、零点的定义:一般地,对于函数()()y f x x D =∈,我们把方程()0f x =的实数根x 称为函数()()y f x x D =∈的零点2、函数零点存在性定理:设函数()f x 在闭区间[],a b 上连续,且()()0f a f b <,那么在开区间(),a b 内至少有函数()f x 的一个零点,即至少有一点()0,x a b ∈,使得()00f x =。
(1)()f x 在[],a b 上连续是使用零点存在性定理判定零点的前提 (2)零点存在性定理中的几个“不一定”(假设()f x 连续)① 若()()0f a f b <,则()f x 的零点不一定只有一个,可以有多个 ② 若()()0f a f b >,那么()f x 在[],a b 不一定有零点 ③ 若()f x 在[],a b 有零点,则()()f a f b 不一定必须异号3、若()f x 在[],a b 上是单调函数且连续,则()()()0f a f b f x <⇒在(),a b 的零点唯一4、函数的零点,方程的根,两图像交点之间的联系设函数为()y f x =,则()f x 的零点即为满足方程()0f x =的根,若()()()f x g x h x =-,则方程可转变为()()g x h x =,即方程的根在坐标系中为()(),g x h x 交点的横坐标,其范围和个数可从图像中得到。
由此看来,函数的零点,方程的根,两图像的交点这三者各有特点,且能相互转化,在解决有关根的问题以及已知根的个数求参数范围这些问题时要用到这三者的灵活转化。
(详见方法技巧) 二、方法与技巧:1、零点存在性定理的应用:若一个方程有解但无法直接求出时,可考虑将方程一边构造为一个函数,从而利用零点存在性定理将零点确定在一个较小的范围内。
函数零点的题型归纳与解题技巧
函数零点的题型归纳与解题技巧函数零点是指函数取值为零的点,即f(x)=0的解。
在高中数学、大学数学以及各类数学竞赛中,函数零点常见的题型有很多种,这里我们将从题型归纳与解题技巧两方面进行探讨。
一、题型归纳1. 求解一元函数零点:例如求解f(x) = x^3-2x^2-x+2=0的零点。
2. 求解二元函数零点:例如求解f(x,y) = x^2+y^2-1=0的零点。
3. 求解多项式方程零点:例如求解f(x) = x^3-x^2+2x-2=0的零点。
4. 求解参数方程零点:例如求解x(t) = t^2-t+2,y(t) =t^3-t^2+2t-2,求解当f(x,y)=0时对应的参数t。
5. 利用零点求解函数的性质:例如已知f(x)的零点及其性质,求解f'(x)或f''(x)的零点。
6. 证明存在或不存在零点:例如证明函数f(x)在区间(a,b)上存在唯一零点。
二、解题技巧1. 分类讨论:对于不同的函数类型,采用不同的方法求解零点。
例如线性函数、二次函数、三次函数、对数函数等,都有相应的求解方法。
2. 利用代数方法:通过代数运算,将原方程转化为容易求解的方程。
例如将原方程化为因式分解的形式,利用韦达定理等。
3. 利用几何方法:将方程与几何图形进行关联,求解图形的相交点即为零点。
例如将方程与直线、圆、椭圆、抛物线等几何图形关联起来。
4. 利用数学分析方法:利用微积分知识,如导数、二分法、牛顿法等,求解零点。
例如,求解f'(x)=0的零点,可以找到函数的拐点;二分法则多用于求解逼近零点。
5. 利用数值方法:通过计算机进行数值逼近求解零点。
例如求解非线性方程组零点时,可以采用牛顿法、拟牛顿法等。
6. 利用泰勒展开:对于非常复杂的函数,可以考虑将其在某一点附近进行泰勒展开,将高次函数近似为低次函数(如线性、二次),再求解零点。
7. 利用解析几何方法:通过解析几何知识,求解平面或空间上的几何问题。
2020高考数学微专题4 函数零点(学生版)
第一部分函数零点题组一:零点判断1.已知函数()26log f x x x=-,在下列区间中,包含()f x 零点的区间是()A.()0,1 B.()1,2 C.()2,4 D.()4,+∞2.函数()2ln f x x =的图像与函数()245g x x x =-+的图象的交点个数为()A.3B.2C.1D.03.函数0.5()2|log |1xf x x =-的零点个数为()A.1B.2C.3D.44.设函数2()23xf x x =+-,则函数()y f x =的零点个数是()A.4B.3C.2D.15.设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不.存在零点的是()A.[]4,2-- B.[]2,0- C.[]0,2 D.[]2,46.已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3()f x x x =-,则函数()y f x =的图象在区间[]0,6上与x 轴的交点的个数为().A.6B.7C.8D.9题组二函数零点中的参数1.函数2()2xf x a x=--的一个零点在区间(1,2)内,则实数a 的取值范围是()A.(1,3)B.(1,2)C.(0,3)D.(0,2)2.若关于x 的方程210x mx ++=有两个不相等的实数根,则实数m 的取值范围是()A.(1,1)- B.(2,2)- C.(),2(2,)-∞-⋃+∞ D.(),1(1,)-∞-⋃+∞3.已知函数3ln(1),0()3,0x x f x x x x +≥⎧=⎨-<⎩,若函数()y f x k =-有三个不同的零点,则实数k的取值范围是()A.(2,2)- B.(2,1)- C.(0,2)D.(1,3)4.已知函数01,()1,1.x f x x x⎧⎪=⎨>⎪⎩ 若关于x 的方程1()()4f x x a a R =-+∈恰有两个互异的实数解,则a 的取值范围为()A.59,44⎡⎤⎢⎥⎣⎦B.59,44⎛⎤⎥⎝⎦C.59,{1}44⎛⎤⎥⎝⎦D.59,{1}44⎡⎤⎢⎥⎣⎦5.已知函数2()3,f x x x x R =+∈,若方程()10f x a x --=恰有4个互异的实数根,则实数a 的取值范围是________.题组三综合问题1.若函数2()f x x ax b =++的两个零点是2-和3,则不等式(2)0af x ->的解集是______.2.函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于()A.2B.4C.6D.83.已知()f x 是奇函数且是R 上的单调函数,若函数2(21)()y f x f x λ=++-只有一个零点,则实数λ的值是()A.14B.18C.-78D.-384.已知lg ,0()2,0x x x f x x ⎧>⎪=⎨≤⎪⎩,则函数[]22()3()1y f x f x =-+的零点个数是________.5.已知0a >,函数222,0()22,0x ax a x f x x ax a x ⎧++≤⎪=⎨-+->⎪⎩.若关于x 的方程()f x ax =恰有2个互异的实数解,则a 的取值范围是________.第二部分综合训练一、填空题.1.设集合{|2}S x x =≥,}5|{≤=x x T ,则S T = ()A.]5,(-∞ B.),2[+∞ C.)5,2( D.]5,2[2.设四边形ABCD 的两条对角线为AC 、BD ,则“四边形ABCD 为菱形”是“BD AC ⊥”的()A.充分不必要条件B.必要不成分条件C.充要条件D.既不充分也不必要条件3.为了得到函数x x y 3cos 3sin +=的图象,可以将函数x y 3cos 2=的图象()A.向右平移12π个单位长 B.向右平移4π个单位长C.向左平移12π个单位长 D.向左平移4π个单位长4.已知圆02222=+-++a y x y x 截直线02=++y x 所得弦的长度为4,则实数a 的值为()A.2- B.4- C.6- D.8-5.设m 、n 是两条不同的直线,α、β是两个不同的平面,则()A.若n m ⊥,α//n ,则α⊥mB.若β//m ,αβ⊥,则α⊥mC.若β⊥m ,β⊥n ,α⊥n ,则α⊥m D.若n m ⊥,β⊥n ,αβ⊥,则α⊥m 6.正项等比数列{}n a 满足:4321228a a a a +=++,则652a a +的最小值是()A.64B.32C.16D.87.已知函数c bx ax x x f +++=23)(,且3)3()2()1(0≤-=-=-<f f f ,则()A.3≤c B.63≤<c C.96≤<c D.9>c8.在同一坐标系中,函数)0()(>=x x x f a,x x g a log )(=的图象可能是()9.设θ为两个非零向量,a b 的夹角,已知对任意实数t ,b ta +的最小值为1()A.若θ确定,则a唯一确定B.若θ确定,则b唯一确定C.若a 确定,则θ唯一确定D.若b确定,则θ唯一确定10.设()f x 是定义在(0,)+∞上的单调函数,且对任意(0,)x ∈+∞都有(()ln )1f f x x e -=+,则方程()()f x f x e '-=的实数解所在区间为()A.1(0,)eB.1(,1)eC.(1,)eD.(,4)e 二、填空题.1.设已知i 是虚数单位,计算21(1)ii -=+________.2.若,x y 满足和240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩,则y x +的取值范围是________.3.在三张奖劵中有一、二等各一张,另有一张无奖,甲乙两人各抽取一张,两人都中奖的概率为.4.设函数⎪⎩⎪⎨⎧>-≤++=0,0,22)(22x x x x x x f ,若2))((=a f f ,则=a .。
高考数学复习考点题型专题讲解题型14函数的零点解析版
高考数学复习考点题型专题讲解题型: 函数的零点函数零点存在定理:若函数()y f x =在区间[],a b 上的图象是连续不断的一条曲线,并且有0)()(<⋅b f a f ,那么函数()y f x =在区间(),a b 内存在零点,即存在(),,c a b ∈使得()0f c =。
深层理解:1.若()f x 在(),a b 上内单调,且0)()(<⋅b f a f ,则()f x 在(),a b 上有且只有一个零点。
2.若0)()(>⋅b f a f ,则)(x f 在(),a b 上不一定有零点。
若()f x 在(),a b 上内单调,且0)()(>⋅b f a f ,则()f x 在(),a b 上一定没有零点。
【考点题型一】:函数零点所在区间确定(一般情况下只考查选择题)。
『解题策略』:一般情况下只需验证四个选项中给出区间两个端点函数值是否异号。
1.(高考题)函数()23x f x x =+的零点所在的一个区间是 ( )A.()2,1--B.()1,0-C.()0,1D.()1,2【解析】:)(x f 单调递增,且(1)(0)0f f -⋅<,选B 。
2.(高考题)函数()f x =2x e x +-的零点所在的一个区间是 ( )A.()2,1--B.()1,0-C.()0,1D.()1,2【解析】:)(x f 单调递增,且0)1()0(<⋅f f ,选C 。
【考点题型二】:函数零点个数确定。
【题型1】:单一函数分析法。
『解题策略』:若)(x f 在(),a b 上单调,且0)()(<⋅b f a f ,则)(x f 有且只有一个零点,若0)()(>⋅b f a f ,则)(x f 没有零点,逆过来亦成立。
1.(高考题)函数22)(3-+=x x f x 在区间()1,0内的零点个数是 ( )A.0B.1C.2D.3【解析】:)(x f 单调递增,且0)1()0(<⋅f f ,选B 。
2020届新高考数学二轮微专题突破专题13 函数的零点的问题(解析版)
专题13 函数的零点的问题一、题型选讲题型一 函数零点问题中参数的范围已知函数零点的个数,确定参数的取值范围,常用的方法和思路:(1) 直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2) 分离参数法:先将参数分离,转化成求函数值域问题加以解决,解法2就是此法.它的本质就是将函数转化为一个静函数与一个动函数的图像的交点问题来加以处理,这样就可以通过这种动静结合来方便地研究问题.(3) 数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图像,然后数形结合求解. 例1、(2018南通、扬州、淮安、宿迁、泰州、徐州六市二调)设函数f(x)=⎩⎪⎨⎪⎧e -x -12,x>0,x 3-3mx -2,x ≤0(其中e 为自然对数的底数)有3个不同的零点,则实数m 的取值范围是________. 【答案】 (1,+∞)【解析】解法1(直接法) 当x>0时,令f(x)=e -x -12=0,解得x =ln 2>0,此时函数f(x)有1个零点,因为要求函数f(x)在R 上有3个不同的零点,则当x ≤0时,f (x )=x 3-3mx -2有2个不同的零点,因为f ′(x )=3x 2-3m ,令f ′(x )=0,则x 2-m =0,若m ≤0,则函数f (x )为增函数,不合题意,故m >0,所以函数f (x )在(-∞,-m )上为增函数,在(-m ,0]上为减函数,即f (x )max =f (-m )=-m m +3m m -2=2m m -2,f (0)=-2<0,要使f (x )=x 3-3mx -2在(-∞,0]上有2个不同的零点,则f (x )max =2m m -2>0,即m >1,故实数m 的取值范围是(1,+∞).解法2(分离参数) 当x>0时,令f(x)=e -x -12=0,解得x =ln 2>0,此时函数f(x)有1个零点,因为要求函数f(x)在R 上有3个不同的零点,则当x ≤0时,f (x )=x 3-3mx -2有2个不同的零点,即x 3-3mx -2=0,显然x =0不是它的根,所以3m =x 2-2x ,令y =x 2-2x (x <0),则y ′=2x +2x 2=2(x 3+1)x 2,当x ∈(-∞,-1)时,y ′<0,此时函数单调递减;当x ∈(-1,0)时,y ′>0,此时函数单调递增,故y min =3,因此,要使f (x )=x 3-3mx -2在(-∞,0)上有两个不同的零点,则需3m >3,即m >1.例2、(2018扬州期末)已知函数f(x)=e x ,g(x)=ax +b ,a ,b ∈R . 若对任意实数a ,函数F (x )=f (x )-g (x )在(0,+∞)上总有零点,求实数b 的取值范围.【解析】研究函数的零点问题,主要是抓住两点,一是函数的单调性,二是寻找支撑点,要避免由“图”来直观地说明.规范解答 (1) 由g(-1)=0知,g(x)的图像过点(-1,0).若a<0,F(x)=f(x)-g(x)=e x -ax -b 在(0,+∞)上单调递增,故F(x)=f(x)-g(x)在(0,+∞)上总有零点的必要条件是F(0)<0,即b>1.(10分)以下证明当b>1时,F(x)=f(x)-g(x)在(0,+∞)上总有零点. ①若a<0.由于F(0)=1-b<0,F ⎝⎛⎭⎫-b a =e -b a -a ⎝⎛⎭⎫-b a -b =e -ba >0,且F(x)在(0,+∞)上连续,由零点存在定理可知F(x)在⎝⎛⎭⎫0,-ba 上必有零点.(12分) ②若a ≥0.由(2)知e x >x 2+1>x 2在x ∈(0,+∞)上恒成立.取x 0=a +b ,则F(x 0)=F(a +b)=e a +b -a(a +b)-b>(a +b)2-a 2-ab -b =ab +b(b -1)>0.由于F(0)=1-b<0,F(a +b)>0,且F(x)在(0,+∞)上连续,由零点存在定理可知F(x)在(0,a +b)上必有零点.综上得实数b 的取值范围是(1,+∞).(16分)第(3)问是函数零点问题,不能从粗糙的图像来确定,必须按零点存在定理来确定,这是此题的难点所在,难在所谓的“支撑点”的寻找,这要在平时的解题中加以积累.此外第(3)问的参数范围的确定,采用的是以证代求,这也是值得关注的地方例3、(2019苏州期末)已知函数f(x)=ax 3+bx 2-4a(a ,b ∈R ).(1) 当a =b =1时,求f (x )的单调增区间;(2) 当a ≠0时,若函数f (x )恰有两个不同的零点,求ba 的值;【解析】 思路分析 (1) 先解不等式f′(x)>0,再写出函数f(x)的单调递增区间.(2) 记ba =k ,则转化为函数g(x)=x 3+kx 2-4恰有两个不同的零点.由三次函数的图像可知,g(x)在极值点处取得零点.解后反思 在第(2)题中,也可转化为b a =4x2-x 恰有两个不同的实数解.另外,由g(x)=x 3+kx 2-4恰有两个不同的零点,可设g(x)=(x -s)(x -t)2.展开,得x 3-(s +2t)x 2+(2st +t 2)x -st 2=x 3+kx 2-4,所以⎩⎪⎨⎪⎧-(s +2t )=k ,2st +t 2=0,-st 2=-4,解得⎩⎪⎨⎪⎧s =1,t =-2,k =3.解:(1)当a =b =1时,f(x)=x 3+x 2-4,f ′(x)=3x 2+2x.(2分) 令f′(x)>0,解得x>0或x<-23,所以f(x)的单调增区间是⎝⎛⎭⎫-∞,-23和(0,+∞).(4分) (2)法一:f′(x)=3ax 2+2bx ,令f′(x)=0,得x =0或x =-2b3a ,(6分)因为函数f(x)有两个不同的零点,所以f(0)=0或f ⎝⎛⎭⎫-2b3a =0. 当f(0)=0时,得a =0,不合题意,舍去;(8分) 当f ⎝⎛⎭⎫-2b 3a =0时,代入得a ⎝⎛⎭⎫-2b 3a +b ⎝⎛⎭⎫-2b3a 2-4a =0, 即-827⎝⎛⎭⎫b a 3+49⎝⎛⎭⎫b a 3-4=0,所以ba =3.(10分)法二:由于a ≠0,所以f(0)≠0,由f(x)=0得,b a =4-x 3x 2=4x2-x(x ≠0).(6分)设h(x)=4x 2-x ,h ′(x)=-8x3-1,令h′(x)=0,得x =-2,当x ∈(-∞,-2)时,h ′(x)<0,h(x)递减;当x ∈(-2,0)时,h ′(x)>0,h(x)递增, 当x ∈(0,+∞)时,h ′(x)>0,h(x)单调递增, 当x>0时,h(x)的值域为R ,故不论b a 取何值,方程b a =4-x 3x 2=4x 2-x 恰有一个根-2,此时函数f (x )=a (x +2)2(x -1)恰有两个零点-2和1.(10分)题型二 函数零点个数证明与讨论函数的零点:有“零点存在性定理”作为理论基础,可通过区间端点值的符号和函数的单调性确定是否存在零点。
2020全国卷高考导数压轴--函数隐性零点问题
2020全国卷高考导数压轴--函数隐性零点问题近些年高考压轴题中,用导数研究函数的单调性、极值、最值及不等式问题成为命题趋势。
用导数解决函数综合问题,最终都会归结于函数的单调性的判断,而函数的单调性又与导函数的零点有着密切的联系,可以说函数的零点的求解或估算是函数综合问题的核心。
函数的零点是高中数学中的一个极其重要的概念,经常借助于方程、函数的图象等加以解决。
根据函数的零点在数值上是否可以准确求出,我们把它分为两类:一类是在数值上可以准确求出的, 不妨称之为显性零点;另一类是依据有关理论(如函数零点的存在性定理)或函数的图象,能够判断出零点确实存在,但是无法直接求出,不妨称之为隐性零点。
本专题通过几个具体的例题来体会隐性零点的处理步骤和思想方法。
一、隐性零点问题示例及简要分析:1.求参数的最值或取值范围例1(2012年全国I 卷)设函数f (x )=e x ﹣ax ﹣2. (1)求f (x )的单调区间;(2)若a=1,k 为整数,且当x >0时,(x ﹣k )f ′(x )+x+1>0,求k 的最大值. 解析:(1)(略解)若a≤0,则f ′(x )>0,f (x )在R 上单调递增; 若a >0,则f (x )的单调减区间是(﹣∞,lna ),增区间是(lna ,+∞). (2)由于a=1,所以(x ﹣k )f′(x )+x+1=(x ﹣k )(e x ﹣1)+x+1. 故当x >0时,(x ﹣k )f ′(x )+x+1>0等价于k <11-+xe x +x (x >0)(*), 令g (x )=11-+x e x +x ,则g′(x )=2)1()2(---x x x e x e e , 而函数f (x )=e x ﹣x ﹣2在(0,+∞)上单调递增,①f (1)<0,f (2)>0, 所以f (x )在(0,+∞)存在唯一的零点.故g ′(x )在(0,+∞)存在唯一的零点. 设此零点为a ,则a ∈(1,2).当x ∈(0,a )时,g ′(x )<0;当x ∈(a ,+∞)时,g ′(x )>0.所以g (x )在(0,+∞)的最小值为g (a ).③所以g (a )=a+1∈(2,3).由于(*)式等价于k <g (a ),故整数k 的最大值为2. 点评:从第2问解答过程可以看出,处理函数隐性零点三个步骤: ①确定零点的存在范围(本题是由零点的存在性定理及单调性确定); ②根据零点的意义进行代数式的替换; ③结合前两步,确定目标式的范围。
函数零点 题型归纳讲义
专题四《函数》讲义5.9函数的零点知识梳理.函数的零点1.函数的零点(1)函数零点的定义:对于函数y=f(x),把使f(x)=0的实数x叫做函数y=f(x)的零点.(2)三个等价关系:方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.2.函数零点的判定如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是f(x)=0的根.我们把这一结论称为函数零点存在性定理.题型一.零点所在的区间1.函数f(x)=3x−3−2的零点所在区间是()A.(﹣1,0)B.(0,1)C.(1,2)D.(2,3)【解答】解:由于函数f(x)=3x−3−2,∴f(1)=3﹣3﹣2=﹣2<0,f(2)=9−32−2>0,∵f(1)•f(2)<0,函数是连续增函数,∴函数f(x)=3x−3−2的零点所在的区间是(1,2),故选:C.2.函数f(x)=log2x+x+2的零点所在的一个区间是()A.(0,18)B.(18,14)C.(14,13)D.(13,12)【解答】解:函数f(x)在(0,+∞)单调递增,且其图象在定义域上是一条不间断的曲线,又o18)=−3+18+2=−78<0,o14)=−2+14+2=14>0,由函数零点存在性定理可知,函数f(x)在(18,14)上有零点.故选:B.3.设函数y=x3与y=(12)x﹣2的图象交点为(x0,y0),则x0所在的区间是()A.(0,1)B.(3,4)C.(1,2)D.(2,3)【解答】解:函数y=x3在R上单调递增,y=(12)K2在R上是减函数.∵x≤1时,函数y=x3的图象在y=(12)K2的下面;x≥2时,函数y=x3在y=(12)K2的上面.∴x0所在的区间是(1,2).故选:C.题型二.零点的个数1.函数f(x)=4x|log0.5x|﹣1的零点个数为2.【解答】解:函数的零点满足|l0.5U=(14),则零点的个数即函数y=|log0.5x|与=(14)交点的个数,绘制函数图象如图所示,观察可得,交点个数为2,故函数零点的个数为2.故答案为:2.2.函数f(x)=2−2,≤12−3+2,>1的图象与函数g(x)=ln(x+1)的图象的交点的个数是2.【解答】解:作出函数f(x)和g(x)的图象如图:由两个函数的图象可知两个函数有2个交点,故答案为:2.3.若偶函数f(x)满足f(x﹣1)=f(x+1),在x∈[0,1]时,f(x)=x2,则关于x的方程f(x)=(110)x在[0,4]上根的个数是4.【解答】解:因为偶函数f(x)满足f(x﹣1)=f(x+1),所以函数f(x)的图象关于y 轴对称,同时以2为周期.根据x∈[0,1]时,f(x)=x2得该函数在[0,4]上的图象为:再在同一坐标系中做出函数=(110)的图象,如图,当x∈[0,4]时,两函数图象有四个交点.所以方程f(x)=(110)x在[0,4]上有4个根.故答案为4.4.已知定义在R上的函数f(x)满足f(x+1)=﹣f(x),当x∈[﹣1,1]时,f(x)=x2,函数g(x)=l(−1)>12≤1,若函数h(x)=f(x)﹣g(x)在区间[﹣5,5]上恰有8个零点,则a的取值范围为()A.(2,4)B.(2,5)C.(1,5)D.(1,4)【解答】解:函数h(x)=f(x)﹣g(x)在区间[﹣5,5]上恰有8个零点即函数f(x)与函数g(x)在区间[﹣5,5]上有8个交点,由f(x+1)=﹣f(x)=f(x﹣1)知,f(x)是R上周期为2的函数,作函数f(x)与函数g(x)在区间[﹣5,5]上的图象如下,由图象知,当x∈[﹣5,1]时,图象有5个交点,故在[1,5]上有3个交点即可;故l(3−1)<1l(5−1)>1;解得,2<a<4;故选:A.题型三.已知零点个数求参1.若函数f(x)=e x﹣x2+ax﹣1在区间[1,2]内有且仅有一个零点,则实数a的取值范围为()A.[5−22,+∞)B.(﹣∞,2﹣e] C.(5−22,2−p D.[5−22,2−p【解答】解:依题意,−=−−1在x∈[1,2]上有且仅有一个解,设op=−−1,则n(p=⋅K2−1+12=(K1)(−K1)2,由e x≥x+1(当且仅当x=0时取等号)可知,当x∈[1,2]时,函数g(x)单调递增,∴当x∈[1,2]时,op m=o1)=−2,op B=o2)=22−2−12=2−52,∴−∈[−2,2−52],∴∈[5−22,2−p.故选:D.2.若函数f(x)=log a x﹣x+a(a>0且a≠1)有两个零点,则实数a的取值范围是()A.(0,1)B.(1,+∞)C.(1,e)D.(e,+∞)【解答】解:令f(x)=0,有log a x=x﹣a,①当a>1时,函数y=log a x单增,函数y=x﹣a相当于函数y=x向下至少移动了1个单位,故函数y=log a x与y=x﹣a的图象有两个交点;②当0<a<1时,函数y=log a x与y=x﹣a的图象显然仅有一个交点,综上,a>1.故选:B.3.已知函数f(x)=3,∈(−1,0]∈(0,1],且函数g(x)=f(x)﹣mx﹣m在(﹣1,1]内有且仅有两个不同的零点,则实数m的取值范围是(−94,﹣2]∪(0,32].【解答】解:由g(x)=f(x)﹣mx﹣m=0,即f(x)=m(x+1),分别作出函数f(x)(图中红色曲线),和y=h(x)=m(x+1)的图象(图中绿色曲线),为一条过点(﹣1,0)的直线,如图:由图象可知f(1)=3,h(x)表示过定点A(﹣1,0)的直线,当h(x)过(1,3)时,m=32,此时两个函数有两个交点,此时满足条件的m的取值范围是0<m≤32①.当h(x)过(0,﹣2)时,h(0)=﹣2,解得m=﹣2,此时两个函数有两个交点.当h(x)与f(x)相切时,两个函数只有一个交点,此时1r3x+3=m(x+1),即m(x+1)2+3(x+1)﹣1=0,当m=0时,只有1解;当m≠0,由△=9+4m=0得m=−94,此时直线和f(x)相切.∴要使函数有两个零点,则−94<m≤﹣2②.综上可得,函数g(x)=f(x)﹣mx﹣m在(﹣1,1]内有且仅有两个不同的零点,则实数m的取值范围为(−94,﹣2]∪(0,32],故答案为:(−94,﹣2]∪(0,32].4.已知函数f(x)=e2x﹣a(x+2).当a=2时,f(x)的增区间为(0,+∞);若f (x)有两个零点,则实数a的取值范围为(2e﹣3,+∞).【解答】解:当a=2时,f(x)=e2x﹣2(x+2),f′(x)=2e2x﹣2,令f′(x)>0,解得x>0,则f(x)的增区间为(0,+∞).f′(x)=2e2x﹣a,x∈R.①当a≤0时,f′(x)>0,f(x)单调递增,至多有一个零点,不合题意;②当a>0时,令f′(x)=0⇒x=12ln2,可得f(x)在(﹣∞,12ln2)单调递减,在(12ln2,+∞)单调递增,故f(x)的最小值为f(12ln2)=2−a(12ln2+2)=−2ln2−32.∵f(x)有两个零点,当x→±∞时,f(x)→+∞,∴f(2ln2)<0⇒2ln2+32>0,解得a>2e﹣3,所以实数a的取值范围为(2e﹣3,+∞)故答案为:(0,+∞);(2e﹣3,+∞).5.已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+12|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是(0,12).【解答】解:f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+12|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),在同一坐标系中画出函数f(x)与y=a的图象如图:由图象可知∈(0,12).故答案为:(0,12).6.已知函数f(x)是定义域为R的偶函数,且满足f(2﹣x)=f(x),当0≤x≤1时,f(x)=2x2,g(x)=log a|x﹣1|(2<a<2),则函数h(x)=f(x)﹣g(x)所有零点的和为()A.3B.4C.5D.6【解答】解:函数f(x)是定义域为R的偶函数,且满足f(2﹣x)=f(x),可得对称轴x=1,所以可得周期T=2,又g(x)=log a|x﹣1|(2<a<2),可得g(x)也是关于x=1对称,令h(x)=f(x)﹣g(x)=0,可得g(x)=f(x),在同一坐标系中在作y=f(x)与y=g(x)的图象如图所示:因为2<a<2,g(x)=log a|x﹣1|,所以g(2)=0,g(5)=log a4∈(2,4),与f(x)无交点,g(3)=log a2∈(1,2)与f(x)有两个交点,所以x>1时,g(x)与f(x)有3个交点,所以x∈R时,g(x)与f(x)有3对关于x=1对称的点,所以所以交点之和为2+2+2=6,即函数h(x)=f(x)﹣g(x)所有零点的和为6,故选:D.7.已知函数g(x)=a﹣x2(1≤x≤e(e为自然对数的底数)与h(x)=2lnx的图象上存在关于x轴对称的点,则实数a的取值范围是()A.[1,1+2]B.[12+2,e2﹣2]C.[e2﹣2,+∞)D.[1,e2﹣2]【解答】解:因为h(x)=2lnx的图象上存在关于x轴对称的函数为:f(x)=﹣2lnx,所以可得g(x)=f(x)有零点,即a=x2﹣2lnx(1≤x≤e)有解,令t(x)=x2﹣2lnx(1≤x≤e),则t'(x)=2x−2=2⋅(K1)(r1),当x∈(1,1)时,t'(x)<0,则t(x)单调递减,x∈(1,e)时,t(x)>0,t(x)单调递增,而t(1)=12−2ln1=12+2,t(1)=12﹣2ln1=1,t(e)=e2﹣2lne=e2﹣2>o1),所以t(x)∈[1,e2﹣2].所以a的取值范围为[1,e2﹣2].故选:D.8.已知函数f(x)=3e|x﹣1|﹣a(2x﹣1+21﹣x)﹣a2有唯一零点,则负实数a=()A.−13B.−12C.﹣3D.﹣2【解答】解:函数f(x)=3e|x﹣1|﹣a(2x﹣1+21﹣x)﹣a2有唯一零点,设x﹣1=t,则函数f(t)=3e|t|﹣a(2t+2﹣t)﹣a2有唯一零点,则3e|t|﹣a(2t+2﹣t)=a2,设g(t)=3e|t|﹣a(2t+2﹣t),∵g(﹣t)=3e|t|﹣a(2t+2﹣t)=g(t),∴g(t)为偶函数,∵函数f(t)有唯一零点,∴y=g(t)与y=a2有唯一的交点,∴此交点的横坐标为0,∴3﹣2a=a2,解得a=﹣3或a=1(舍去),故选:C.题型四.复合函数的零点1.已知f(x)=x2e x,若函数g(x)=f2(x)﹣kf(x)+1恰有四个零点,则实数k的取值范围是()A.(﹣∞,﹣2)∪(2,+∞)B.(2,42+24)C.(82,2)D.(42+24,+∞)【解答】解:f′(x)=2xe x+x2e x=x(x+2)e x,令f′(x)=0,解得x=0或x=﹣2,∴当x<﹣2或x>0时,f′(x)>0,当﹣2<x<0时,f′(x)<0,∴f(x)在(﹣∞,﹣2)上单调递增,在(﹣2,0)上单调递减,在(0,+∞)上单调递增,∴当x=﹣2时,函数f(x)取得极大值f(﹣2)=42,当x=0时,f(x)取得极小值f(0)=0.作出f(x)的大致函数图象如图所示:令f(x)=t,则当t=0或t>42时,关于x的方程f(x)=t只有1解;当t=42时,关于x的方程f(x)=t有2解;当0<t<42时,关于x的方程f(x)=t有3解.∵g(x)=f2(x)﹣kf(x)+1恰有四个零点,∴关于t的方程t2﹣kt+1=0在(0,42)上有1解,在(42,+∞)∪{0}上有1解,显然t=0不是方程t2﹣kt+1=0的解,∴关于t的方程t2﹣kt+1=0在(0,42)和(42,+∞)上各有1解,∴164−42+1<0,解得k>42+24.故选:D.2.已知函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,若f(x1)=x2,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数为()A.3B.4C.5D.以上都有可能【解答】解:由题意可得,f′(x)=3x2+2ax+b=0有两个不同的实数根x1,x2,不妨设x1≠x2,所以3(f(x))2+2af(x)+b=0的不同实根f(x)=x1,f(x)=x2,若x1<x2,易得函数f(x)在(﹣∞,x1)上单调递增,在x1,x2)上单调递减,在(x2,+∞)上单调递增,此时f(x)=x2有2个根,f(x)=x1可能的根3或2或1,此时关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数5或4或3个,当x1>x2,同理可得关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数3个,故选:D.3.已知函数f(x)=(12)−4,≤−1B(+1),>−1,若f(f(x))<0,则x的取值范围为()A.(﹣2,0)B.(−∞,12−1) C.(−2,12−1)D.(−2,−1)∪(12−1,0)【解答】解:令f(x)=t,则f(t)<0,t≤﹣1时,(12)−4<0,所以2﹣t<4,解得﹣2<t≤﹣1;t>﹣1时,ln(t+1)<0,解得﹣1<t<0;综上知,t的取值范围是﹣2<t<0,即﹣2<f(x)<0.由f(x)=﹣2,x≤﹣1时,(12)−4=﹣2,解得x=﹣1;x>﹣1时,ln(x+1)=﹣2,解得x=12−1;综上知,x=﹣1或=12−1,画出函数f(x)的图象,如图所示:根据分段函数f(x)的图象得,f(f(x))<0的解集为(−2,−1)∪(12−1,0).故选:D.4.已知函数f(x)=x3﹣3x,则函数h(x)=f[f(x)]﹣c,c∈[﹣2,2]的零点个数()A.5或6个B.3或9个C.9或10个D.5或9个【解答】解:设t=f(x),则由y=f[f(x)]﹣c=0,得f[f(x)]=c,即f(t)=c,t=f(x),函数f(x)的导数f′(x)=3﹣3x2,由f′(x)>0得﹣1<x<1,此时函数单调递增,由f′(x)<0得x<﹣1或x>1,此时函数单调递减,即函数在x=1,取得极大值f(1)=3﹣1=2,函数在x=﹣1,取得极小值f(﹣1)=﹣3+1=﹣2,又由f(﹣2)=﹣2,f(2)=2得:若f(t)=c,c∈(﹣2,2),则方程有三个解,满足﹣2<t1<﹣1,0<t2<1,1<t3<2,则当﹣2<t1<﹣1时,方程t=f(x),有3个根,当0<t2<1时,方程t=f(x),有3个根,当1<t3<2时,方程t=f(x),有3个根,此时共有9个根,若f(t)=c,c=2,则方程有两个解,满足t1=﹣2,t2=1,则当t1=﹣2时,方程t=f(x),有2个根,当t2=1,有3个根,此时共有5个根,同理f(t)=c,c=﹣2时,也共有5个根故选:D.课后作业.函数的零点1.设定义在R上的函数op=2,≤0|l2U,>0,g(x)=f(x)﹣a,则当实数a满足0<a <1时,函数y=g(x)的零点个数为3个.【解答】解:定义在R上的函数op=2,≤0|l2U,>0,函数的图象如图:g(x)=f(x)﹣a,则当实数a满足0<a<1时,函数y=g(x)的零点个数,就是y =f(x)与y=a图象的交点个数,由图象可知,零点个数为3个.故答案为:3.2.已知函数f(x)=|+1|,≤0|l2U,>0,若方程f(x)=a(a∈R)有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则(x1+x2)x4的取值范围是[﹣4,﹣2).【解答】解:由题意作函数f(x)=|+1|,≤0|l2U,>0与y=a的图象如下,,结合图象可知,x1+x2=﹣2,0<log2x4≤1,故x1+x2=﹣2,1<x4≤2,故﹣4≤(x1+x2)x4<﹣2,故答案为:[﹣4,﹣2).3.已知函数op=|BU,>0|2+4+3|,≤0,若g(x)=ax(a∈R)使得方程f(x)=g(x)恰有3个不同的实根,则实数a的取值范围为[0,1)∪{23−4}.【解答】解:由已知得f(x)得图象如图(1),(1)当a>0时,要使得方程f(x)=g(x)恰有3个不同根,则需存在x>1,使得lnx >ax,即a<B,又y=B的图象如图(2),故0<a<1;(2)当a<0时,由图象(1)知y=ax需与函数f(x)=|x2+4x+3|=﹣x2﹣4x﹣3相切,设切点为(m,n),则y﹣f(m)=f'(m)(x﹣m),即y﹣(﹣m2﹣4m﹣3)=(﹣2m﹣4)(x﹣m)过点(0,0),故m2=3,因为m<0,故m=−3,所以a=f'(m)=23−4,(3)当a=0时,显然符合题意,综上,实数a的取值范围为[0,1)∪{23−4}.故答案为:[0,1)∪{23−4}.4.已知函数f(x)=3−34+32,0≤≤122+12,12<≤1,g(x)=e x﹣ax(a∈R),若存在x1,x2∈[0,1],使得f(x1)=g(x2)成立,则实数a的取值范围是()A.(﹣∞,1]B.(﹣∞,e﹣2]C.(﹣∞,e−54]D.(﹣∞,e]【解答】解:①当0≤x≤12时,f(x)=x3−34+32,则f′(x)=3x2−34≤0在[0,12]上恒成立,所以函数f(x)在区间[0,12]上单调递减,则f(12)≤f(x)≤f(0),即54≤op≤32,②当12<≤1时,f(x)=2x+12,函数在区间(12,1]上单调递增,所以f(12)<f(x)≤f(1),即32<op≤52,综上,函数f(x)的值域为[54,52];又g′(x)=e x﹣a,x∈[0,1],若a≤0时,则g′(x)>0,函数g(x)在[0,1]上单调递增,所以g(0)≤g(x)≤g (1),即g(x)∈[1,e﹣a],此时若要满足题意,只需[1,e﹣a]∩[54,52]≠∅,当a≤0时恒成立;若a>0时,令g′(x)=e x﹣a=0,解得x=lna,当0<a<e时,函数g(x)在[0,1]上单调递增,所以g(0)≤g(x)≤g(1),即1≤g (x)≤e﹣a,又因为[1,e﹣a]∩[54,52]≠∅,所以−≥540<<,解得0<a≤−54,当a>e时,g(x)在[0,1]上单调递减,所以g(1)≤g(x)≤g(0),即e﹣a≤g(x)≤1,此时[e﹣a,1]∩[54,52]=∅,所以不存在x1,x2∈[0,1],使得f(x1)=g(x2)=g(x2),综上,实数a的取值范围为(−∞,−54],故选:C.5.已知函数f(x)=,=1(12)|K1|+1,≠1,若方程2f2(x)﹣(2a+3)f(x)+3a=0有5个不同的实数解,则a的范围是()A.(1,32)∪(32,2)B.(1,2)∪(2,3)C.(1,+∞)D.(1,3)【解答】解:方程2f2(x)﹣(2a+3)f(x)+3a=0,解得f(x)=a或f(x)=32,若a=32,f(x)=,=1(12)|K1|+1,≠1,可得x=1或0或2,不满足题意;则a≠32,由f(x)=32,可得原方程有3个不等实根;只要1+(12)|x﹣1|=a有2个不等实根即可.由|x﹣1|>0可得0<(12)|x﹣1|<1,即有1<a<2,综上可得a∈(1,32)∪(32,2).故选:A.6.已知f(x)=2−4,≤−1,>(其中a<0,e为自然对数的底数),若g(x)=f[f(x)]在R上有三个不同的零点,则a【解答】解:(1)当x≤a时,f(x)=x2﹣4,①当x2﹣4≤a时,由f(f(x))=f(x2﹣4)=(x2﹣4)2﹣4=0得x=−2;②当x2﹣4>a时,由f(f(x))=f(x2﹣4)=2−4−1=0得x=﹣2(2)当x>a时,f(x)=e x﹣1,①当e x﹣1≤a时,由f(f(x))=f(e x﹣1)=(e x﹣1)2﹣4=0得e x=﹣1无解,②当e x﹣1>a时,由f(f(x))=f(e x﹣1)=−1−1=0解得x=0,因为g(x)=f(f(x))在R上有三个不同的零点,所以−2≤−2≤0>,解得:−2≤a<0,故答案为:[−2,0).。
2020年高考数学(理)总复习:利用导数解决函数零点问题(解析版)
2020年高考数学(理)总复习:利用导数解决函数零点问题题型一 利用导数讨论函数零点的个数 【题型要点解析】对于函数零点的个数的相关问题,利用导数和数形结合的数学思想来求解.这类问题求解的通法是:(1)构造函数,这是解决此类题的关键点和难点,并求其定义域; (2)求导数,得单调区间和极值点; (3)画出函数草图;(4)数形结合,挖掘隐含条件,确定函数图象与x 轴的交点情况进而求解.1.已知f (x )=ax 3-3x 2+1(a >0),定义h (x )=max{f (x ),g (x )}=⎩⎪⎨⎪⎧f (x ),f (x )≥g (x ),g (x ),f (x )<g (x ).(1)求函数f (x )的极值;(2)若g (x )=xf ′(x ),且存在x ∈[1,2]使h (x )=f (x ),求实数a 的取值范围; (3)若g (x )=ln x ,试讨论函数h (x )(x >0)的零点个数.【解】 (1)∵函数f (x )=ax 3-3x 2+1,∴f ′(x )=3ax 2-6x =3x (ax -2),令f ′(x )=0,得x 1=0或x 2=2a,∵a >0,∴x 1<x 2,列表如下:∴f (x )的极大值为f (0)=1,极小值为f ⎪⎭⎫⎝⎛a 2=8a 2-12a 2+1=1-4a 2. (2)g (x )=xf ′(x )=3ax 3-6x 2,∵存在x ∈[1,2],使h (x )=f (x ),∴f (x )≥g (x )在x ∈[1,2]上有解,即ax 3-3x 2+1≥3ax 3-6x 2在x ∈[1,2]上有解, 即不等式2a ≤1x 3+3x 在x ∈[1,2]上有解.设y =1x 3+3x =3x 2+1x 3(x ∈[1,2]),∵y ′=-3x 2-3x 4<0对x ∈[1,2]恒成立,∴y =1x 3+3x 在x ∈[1,2]上单调递减,∴当x =1时,y =1x 3+3x 的最大值为4,∴2a ≤4,即a ≤2.(3)由(1)知,f (x )在(0,+∞)上的最小值为f ⎪⎭⎫⎝⎛a 2=1-4a 2, ①当1-4a 2>0,即a >2时,f (x )>0在(0,+∞)上恒成立,∴h (x )=max{f (x ),g (x )}在(0,+∞)上无零点.②当1-4a2=0,即a =2时,f (x )min =f (1)=0.又g (1)=0,∴h (x )=max{f (x ),g (x )}在(0,+∞)上有一个零点. ③当1-4a2<0,即0<a <2时,设φ(x )=f (x )-g (x )=ax 3-3x 2+1-ln x (0<x <1),∵φ′(x )=3ax 2-6x -1x <6x (x -1)-1x <0,∴φ(x )在(0,1)上单调递减.又φ(1)=a -2<0,φ⎪⎭⎫ ⎝⎛e 1=a e3+2e 2-3e 2>0,∴存在唯一的x 0∈⎪⎭⎫⎝⎛1,1e ,使得φ(x 0)=0,(ⅰ)当0<x ≤x 0时,∵φ(x )=f (x )-g (x )≥φ(x 0)=0, ∴h (x )=f (x )且h (x )为减函数. 又h (x 0)=f (x 0)=g (x 0)=ln x 0<ln 1=0, f (0)=1>0,∴h (x )在(0,x 0)上有一个零点; (ⅱ)当x >x 0时,∵φ(x )=f (x )-g (x )<φ(x 0)=0, ∴h (x )=g (x )且h (x )为增函数,∵g (1)=0,∴h (x )在(x 0,+∞)上有一零点;从而h (x )=max{f (x ),g (x )}在(0,+∞)上有两个零点,综上所述,当0<a <2时,h (x )有两个零点;当a =2时,h (x )有一个零点; 当a >2时,h (x )无零点.题组训练一 利用导数讨论函数零点的个数 已知函数f (x )=ln x -12ax +a -2,a ∈R .(1)求函数f (x )的单调区间;(2)当a <0时,试判断g (x )=xf (x )+2的零点个数. 【解析】 (1)f ′(x )=1x -a 2=2-ax2x(x >0).若a ≤0,则f ′(x )>0,∴函数f (x )的单调递增区间为(0,+∞);若a >0,当0<x <2a 时,f ′(x )>0,函数f (x )单调递增,当x >2a 时,f ′(x )<0,函数f (x )单调递减,综上,若a ≤0时,函数f (x )的单调递增区间为(0,+∞);若a >0时,函数f (x )的单调递增区间为⎪⎭⎫ ⎝⎛a 2,0,单调递减区间为⎪⎭⎫ ⎝⎛∞+a 2. (2)g (x )=x ln x -12ax 2+ax -2x +2,g ′(x )=-ax +ln x +a -1.又a <0,易知g ′(x )在(0,+∞)上单调递增, g ′(1)=-1<0,g ′(e)=-a e +a =a (1-e)>0, 故而g ′(x )在(1,e)上存在唯一的零点x 0, 使得g ′(x 0)=0.当0<x <x 0时,g ′(x )<0,g (x )单调递减;当x >x 0时,g ′(x )>0,g (x )单调递增, 取x 1=e a ,又a <0,∴0<x 1<1,∴g (x 1)=x 1)2221(ln 111x a ax x +-+-=e a⎪⎭⎫ ⎝⎛+-+-a a e a ae a 2221, 设h (a )=a -12a e a +a -2+2ea ,(a <0),h′(a)=-12a ea-12ea-2e a+2,(a<0),h′(0)=-12,h″(a)=e-a-e a+e-a-12a ea>0,∴h′(a)在(-∞,0)上单调递增,h′(a)<h′(0)<0,∴h(a)在(-∞,0)上单调递减,∴h(a)>h(0)=0,∴g(x1)>0,即当a<0时,g(e a)>0.当x趋于+∞时,g(x)趋于+∞,且g(2)=2ln2-2<0.∴函数g(x)在(0,+∞)上始终有两个零点.题型二由函数零点个数求参数的取值范围【题型要点解析】研究方程的根(或函数零点)的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,并借助函数的大致图象判断方程根(函数零点)的情况,这是导数这一工具在研究方程中的重要应用.已知函数f(x)=mxln x,曲线y=f(x)在点(e2,f(e2))处的切线与直线2x+y=0垂直(其中e 为自然对数的底数).(1)求f(x)的解析式及单调减区间;(2)若函数g(x)=f(x)-kx2x-1无零点,求k的取值范围.【解析】(1)函数f(x)=mxln x的导数为f′(x)=m(ln x-1)(ln x)2,又由题意有:f′(e2)=12⇒m4=12⇒m=2,故f(x)=2xln x.此时f′(x)=2(ln x-1)(ln x)2,由f′(x)≤0⇒0<x<1或1<x≤e,所以函数f(x)的单调减区间为(0,1)和(1,e].(2)g (x )=f (x )-kx 2x -1⇒g (x )=x ⎪⎭⎫ ⎝⎛--1ln 2x kx x ,且定义域为(0,1)∪(1,+∞),要函数g (x )无零点,即要2ln x =kxx -1在x ∈(0,1)∪(1,+∞)内无解,亦即要k ln x -2(x -1)x =0在x ∈(0,1)∪(1,+∞)内无解.构造函数h (x )=k ln x -2(x -1)x ⇒h ′(x )=kx -2x2.①当k ≤0时,h ′(x )<0在x ∈(0,1)∪(1,+∞)内恒成立,所以函数h (x )在(0,1)内单调递减,h (x )在(1,+∞)内也单调递减.又h (1)=0,所以在(0,1)内无零点,在(1,+∞)内也无零点,故满足条件;②当k >0时,h ′(x )=kx -2x 2⇒h ′(x )=22xkx k ⎪⎭⎫ ⎝⎛-,(i)若0<k <2,则函数h (x )在(0,1)内单调递减,在⎪⎭⎫⎝⎛k 2,1内也单调递减,在⎪⎭⎫ ⎝⎛+∞,2k 内单调递增,又h (1)=0,所以在(0,1)内无零点;易知h ⎪⎭⎫ ⎝⎛k 2<0,而h (e 2k )=k ·2k -2+2e2k>0,故在⎪⎭⎫⎝⎛+∞,2k 内有一个零点,所以不满足条件;(ii)若k =2,则函数h (x )在(0,1)内单调递减,在(1,+∞)内单调递增.又h (1)=0,所以x ∈(0,1)∪(1,+∞)时,h (x )>0恒成立,故无零点,满足条件;(iii)若k >2,则函数h (x )在⎪⎭⎫ ⎝⎛k 2,0内单调递减,在⎪⎭⎫⎝⎛1,2k 内单调递增,在(1,+∞)内单调递增,又h (1)=0,所以在⎪⎭⎫⎝⎛1,2k 及(1,+∞)内均无零点. 又易知h ⎪⎭⎫⎝⎛k 2<0,而h (e -k )=k (-k )-2+2e k =2e k -k 2-2,又易证当k >2时,h (e -k )>0,所以函数h (x )在⎪⎭⎫ ⎝⎛k 2,0内有一零点,故不满足条件.综上可得:k 的取值范围为:k ≤0或k =2.题组训练二 由函数零点个数求参数的取值范围 已知函数f (x )=ln x -ax (ax +1),其中a ∈R . (1)讨论函数f (x )的单调性;(2)若函数f (x )在(0,1]内至少有1个零点,求实数a 的取值范围. 【解析】(1)依题意知,函数f (x )的定义域为(0,+∞), 且f ′(x )=1x-2a 2x -a=2a 2x 2+ax -1-x =(2ax -1)(ax +1)-x,当a =0时,f (x )=ln x ,函数f (x )在(0,+∞)上单调递增; 当a >0时,由f ′(x )>0,得0<x <12a,由f ′(x )<0,得x >12a ,函数f (x )⎪⎭⎫⎝⎛a 21,0上单调递增, 在⎪⎭⎫⎝⎛+∞,21a 上单调递减.当a <0时,由f ′(x )>0,得0<x <-1a ,由f ′(x )<0,得x >-1a,函数f (x )在⎪⎭⎫ ⎝⎛-a 1,0上单调递增,在⎪⎭⎫⎝⎛+∞-,1a 上单调递减. (2)当a =0时,函数f (x )在(]0,1内有1个零点x 0=1;当a >0时,由(1)知函数f (x )在⎪⎭⎫ ⎝⎛a 21,0上单调递增,在⎪⎭⎫⎝⎛+∞,21a 上单调递减. ①若12a ≥1,即0<a ≤12时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞且f (1)=-a 2-a <0知,函数f (x )在(0,1]内无零点;②若0<12a <1,即当a >12时,f (x )在⎪⎭⎫ ⎝⎛a 21,0上单调递增,在⎥⎦⎤ ⎝⎛1,21a 上单调递减,要使函数f (x )在(0,1]内至少有1个零点,只需满足f ⎪⎭⎫⎝⎛a 21≥0,即ln 12a ≥34, 又∵a >12,∴ln 12a <0,∴不等式不成立.∴f (x )在(0,1]内无零点;当a <0时,由(1)知函数f (x )在⎪⎭⎫ ⎝⎛-a 1,0上单调递增,在⎪⎭⎫⎝⎛+∞-,1a 上单调递减. ③若-1a ≥1,即-1≤a <0时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞,且f (1)=-a 2-a >0,知函数f (x )在(0,1]内有1个零点;④若0<-1a <1,即a <-1时,函数f (x )在⎪⎭⎫ ⎝⎛-a 1,0上单调递增,在⎥⎦⎤⎝⎛-1,1a 上单调递减,由于当x →0时,f (x )→-∞,且当a <-1时,f ⎪⎭⎫⎝⎛-a 1=ln ⎪⎭⎫⎝⎛-a 1<0,知函数f (x )在(0,1]内无零点.综上可得a 的取值范围是[-1,0].题型三 利用导数证明复杂方程在某区间上仅有一解 【题型要点解析】证明复杂方程在某区间上有且仅有一解的步骤: (1)在该区间上构造与方程相应的函数; (2)利用导数研究该函数在该区间上的单调性; (3)判断该函数在该区间端点处的函数值的符号; (4)作出结论.已知函数f (x )=(x 2-2x )ln x +ax 2+2.(1)当a =-1时,求f (x )在点(1,f (1))处的切线方程;(2)当a >0时,设函数g (x )=f (x )-x -2,且函数g (x )有且仅有一个零点,若e -2<x <e ,g (x )≤m ,求m 的取值范围.【解析】 (1)当a =-1时,f (x )=(x 2-2x )ln x -x 2+2,定义域为(0,+∞),∵f ′(x )=(2x -2)ln x +x -2-2x =(2x -2)ln x -x -2.∴f ′(1)=-3,又f (1)=1,f (x )在(1,f (1))处的切线方程3x +y -4=0.(2)令g (x )=f (x )-x -2=0,则(x 2-2x )ln x +ax 2+2=x +2,即a =1-(x -2)·ln xx ,令h (x )=1-(x -2)·ln xx,则h ′(x )=-1x 2-1x +2-2ln x x 2=1-x -2ln xx 2.令t (x )=1-x -2ln x ,t ′(x )=-1-2x =-x -2x ,∵t ′(x )<0,t (x )在(0,+∞)上是减函数, 又∵t (1)=h ′(1)=0,所以当0<x <1时,h ′(x )>0, 当x >1时,h ′(x )<0,所以h (x )在(0,1)上单调递增, 在(1,+∞)上单调递减,∴h (x )max =h (1)=1.因为a >0,所以当函数g (x )有且仅有一个零点时,a =1.g (x )=(x 2-2x )ln x +x 2-x ,若e -2<x <e ,g (x )≤m ,只需g (x )max ≤m , g ′(x )=(x -1)(3+2ln x ),令g ′(x )=0得x =1,或x =e -32,又∵e -2<x <e∴函数g (x )在(e -2,e -32)上单调递增,在(e -32,1)上单调递减,在(1,e)上单调递增,又g (e -32)=-12e -3+2e -32,g (e)=2e 2-3e ,∵g (e -32)=-12e -3+2e -32<2e -32<2e<2e ⎪⎭⎫ ⎝⎛-23e =g (e),即g (e -32)<g (e),g (x )max =g (e)=2e 2-3e ,∴m ≥2e 2-3e .题组训练三 利用导数证明复杂方程在某区间上仅有一解 已知y =4x 3+3tx 2-6t 2x +t -1,x ∈R ,t ∈R .(1)当x 为常数时,t 在区间⎥⎦⎤⎢⎣⎡32,0变化时,求y 的最小值φ(x );(2)证明:对任意的t ∈(0,+∞),总存在x 0∈(0,1),使得y =0.【解析】 (1)当x 为常数时,设f (t )=4x 3+3tx 2-6t 2x +t -1=-6xt 2+(3x 2+1)t +4x 3-1,f ′(t )=-12xt +3x 2+1.①当x ≤0时,由t ∈⎥⎦⎤⎢⎣⎡32,0知f (t )>0,f (t )在⎥⎦⎤⎢⎣⎡32,0上递增,其最小值φ(x )=f (0)=4x 3-1; ②当x >0时,f (t )的图象是开口向下的抛物线,其对称轴为直线;t =-3x 2+1-12x =3x 2+112x ,若⎩⎪⎨⎪⎧x >0,3x 2+112x ≤13,即13≤x ≤1,则f (t )在⎥⎦⎤⎢⎣⎡32,0上的最小值为 φ(x )=f ⎪⎭⎫⎝⎛32=4x 3+2x 2-83x -13.若⎩⎪⎨⎪⎧x >0,3x 2+112x >13,即0<x <13或x >1,则f (t )在⎥⎦⎤⎢⎣⎡32,0上的最小值为φ(x )=f (0)=4x 3-1.综合①②,得φ(x )=⎩⎨⎧4x 3-1,x <13或x >1,4x 3+2x 2-83x -13,13≤x ≤1.(2)证明:设g (x )=4x 3+3tx 2-6t 2x +t -1,则g ′(x )=12x 2+6tx -6t 2=12(x +t )⎪⎭⎫ ⎝⎛-2t x 由t ∈(0,+∞),当x 在区间(0,+∞)内变化时,g ′(x ),g (x )取值的变化情况如下表:①当t2≥1,即t ≥2时,g (x )在区间(0,1)内单调递减,g (0)=t -1>0,g (1)=-6t 2+4t +3=-2t (3t -2)+3≤-4(3-2)+3<0.所以对任意t ∈[2,+∞),g (x )在区间(0,1)内均存在零点,即存在x 0∈(0,1),使得g (x 0)=0.②当0<t 2<1,即0<t <2时,g (x )在⎪⎭⎫ ⎝⎛2,0t 内单调递减,在⎪⎭⎫⎝⎛1,2t 内单调递增,若t ∈(0,1),则g ⎪⎭⎫⎝⎛2t =-74t 3+t -1≤-74t 3<0,g (1)=-6t 2+4t +3≥-6t +4t +3=-2t +3≥1>0,所以g (x )在⎪⎭⎫⎝⎛1,2t 内存在零点;若t ∈(1,2),则g (0)=t -1>0,g ⎪⎭⎫ ⎝⎛2t =-74t 3+t -1<-74×13+2-1<0,所以g (x )在⎪⎭⎫⎝⎛2,0t 内存在零点.所以,对任意t ∈(0,2),g (x )在区间(0,1)内均存在零点,即存在x 0∈(0,1),使得g (x 0)=0, 综合①②,对任意的t ∈(0,+∞),总存在x 0∈(0,1),使得y =0.【专题训练】1.已知函数f (x )=xln x+ax ,x >1.(1)若f (x )在(1,+∞)上单调递减,求实数a 的取值范围; (2)若a =2,求函数f (x )的极小值;(3)若方程(2x -m )ln x +x =0,在(1,e]上有两个不等实根,求实数m 的取值范围.[解析] (1)f ′(x )=ln x -1ln 2x +a ,由题意可得f ′(x )≤0在(1,+∞)上恒成立,∴a ≤1ln 2x -1ln x=221ln 1⎪⎭⎫⎝⎛-x -14.∵x ∈(1,+∞),∴ln x ∈(0,+∞), ∴当1ln x -12=0时,函数t =221ln 1⎪⎭⎫ ⎝⎛-x -14的最小值为-14,∴a ≤-14. 故实数a 的取值范围为⎥⎦⎤ ⎝⎛∞-41,(2)当a =2时,f (x )=xln x +2x ,f ′(x )=ln x -1+2ln 2x ln 2x,令f ′(x )=0,得2ln 2x +ln x -1=0, 解得ln x =12或ln x =-1(舍),即x =e 12.当1<x <e 12时,f ′(x )<0,当x >e 12时,f ′(x )>0,∴f (x )的极小值为f (e 12)=e 1212+2e 1e =4e 12.(3)将方程(2x -m )ln x +x =0两边同除以ln x 得(2x -m )+x ln x =0,整理得xln x +2x =m ,即函数g (x )=xln x +2x 的图象与函数y =m 的图象在(1,e]上有两个不同的交点.由(2)可知,g (x )在(1,e 12)上单调递减,在(e 12,e]上单调递增,g (e 12)=4e 12,g (e)=3e ,在(1,e]上,当x →1时,x ln x →+∞,∴4e 12<m ≤3e ,故实数m 的取值范围为(4e 12,3e].2.已知f (x )=2x ln x ,g (x )=x 3+ax 2-x +2.(1)如果函数g (x )的单调递减区间为⎪⎭⎫⎝⎛-1,31,求函数g (x )的解析式; (2)在(1)的条件下,求函数y =g (x )的图象在点P (-1,g (-1))处的切线方程; (3)已知不等式f (x )≤g ′(x )+2恒成立,若方程a e a -m =0恰有两个不等实根,求m 的取值范围.【解】 (1)g ′(x )=3x 2+2ax -1,由题意知,3x 2+2ax -1<0的解集为⎪⎭⎫⎝⎛-1,31, 即3x 2+2ax -1=0的两根分别是-13,1,代入得a =-1,∴g (x )=x 3-x 2-x +2. (2)由(1)知,g (-1)=1,∴g ′(x )=3x 2-2x -1,g ′(-1)=4,∴点P (-1,1)处的切线斜率k =g ′(-1)=4,∴函数y =g (x )的图象在点P (-1,1)处的切线方程为y -1=4(x +1),即4x -y +5=0.(3)由题意知,2x ln x ≤3x 2+2ax +1对x ∈(0,+∞)恒成立,可得a ≥ln x -32x -12x 对x ∈(0,+∞)恒成立.设h (x )=ln x -32x -12x,则h ′(x )=1x -32+12x 2=-(x -1)(3x +1)2x 2,令h ′(x )=0,得x =1,x =-13(舍),当0<x <1时,h ′(x )>0;当x >1时,h ′(x )<0,∴当x =1时,h (x )取得最大值,h (x )max =h (1)=-2,∴a ≥-2.令φ(a )=a e a ,则φ′(a )=e a +a e a =e a (a +1), ∴φ(a )在[-2,-1]上单调递减,在(-1,+∞)上单调递增,∵φ(-2)=-2e -2=-2e 2,φ(-1)=-e -1=-1e ,当a →+∞时,φ(a )→+∞,∴方程a e a -m =0恰有两个不等实根,只需-1e <m ≤-2e 2.3.设函数f (x )=x 3+ax 2+bx +c .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值范围; (3)求证:a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.【解析】 (1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b .因为f (0)=c ,f ′(0)=b ,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =bx +c .(2)当a =b =4时,f (x )=x 3+4x 2+4x +c , 所以f ′(x )=3x 2+8x +4. 令f ′(x )=0,得3x 2+8x +4=0, 解得x =-2或x =-23.f (x )与f ′(x )在区间(-∞,+∞)上的情况如下:所以,当c >0且c -3227<0时,存在x 1∈(-4,-2),x 2∈⎪⎭⎫ ⎝⎛--3,2,x 3∈⎪⎭⎫⎝⎛-0,3,使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈⎪⎭⎫⎝⎛2732,0时,函数f (x )=x 3+4x 2+4x +c 有三个不同零点.(3)证明:当Δ=4a 2-12b <0时,f ′(x )=3x 2+2ax +b >0,x ∈(-∞,+∞),此时函数f (x )在区间(-∞,+∞)上单调递增,所以f (x )不可能有三个不同零点.当Δ=4a 2-12b =0时,f ′(x )=3x 2+2ax +b 只有一个零点,记作x 0. 当x ∈(-∞,x 0)时,f ′(x )>0,f (x )在区间(-∞,x 0)上单调递增; 当x ∈(x 0,+∞)时,f ′(x )>0,f (x )在的区间(x 0,+∞)上单调递增. 所以f (x )不可能有三个不同零点.综上所述,若函数f (x )有三个不同零点,则必有Δ=4a 2-12b >0. 故a 2-3b >0是f (x )有三个不同零点的必要条件.当a =b =4,c =0时,a 2-3b >0,f (x )=x 3+4x 2+4x =x (x +2)2只有两个不同零点,所以a 2-3b >0不是f (x )有三个不同零点的充分条件.因此a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.。
高考数学热点难点突破技 函数的零点问题处理方法
第05讲:函数的零点问题处理方法【知识要点】一、方程的根与函数的零点(1)定义:对于函数(,把使成立的实数叫做函数(的零点.函数的零点不是一个点的坐标,而是一个数,类似的数学概念有截距和极值点等.(2)函数零点的意义:函数的零点就是方程的实数根,亦即函数的图像与轴的交点的横坐标,即:方程有实数根函数的图像与轴有交点函数有零点.(3)零点存在性定理:如果函数在区间上的图像是一条连续不断的曲线,并且有,那么函数在区间内至少有一个零点,即存在使得,这个也就是方程的根.函数在区间上的图像是一条连续不断的曲线,并且有是函数在区间内至少有一个零点的一个充分不必要条件.零点存在性定理只能判断是否存在零点,但是零点的个数则不能通过零点存在性定理确定,一般通过数形结合解决.二、二分法(1)二分法及步骤对于在区间上连续不断,且满足的函数,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到函数零点近似值的方法叫做二分法.(2)给定精确度,用二分法求函数的零点近似值的步骤如下:第一步:确定区间,验证,给定精确度.第二步:求区间的中点.第三步:计算:①若=0,则就是函数的零点;②若,则令(此时零点)③若,则令(此时零点)第四步:判断是否达到精确度即若,则得到零点值或,否则重复第二至第四步.三、一元二次方程的根的分布讨论一元二次方程的根的分布一般从以下个方面考虑列不等式组:(1)的符号;(2)对称轴的位置;(3)判别式的符号;(4)根分布的区间端点的函数值的符号.四、精确度为0.1指的是零点所在区间的长度小于0.1,其中的任意一个值都可以取;精确到0.1指的是零点保留小数点后一位数字,要看小数点后两位,四舍五入.五、方法总结1、函数零点问题的处理常用的方法有:(1) 方程法;(2)图像法;(3)方程+图像法.2、高考考查单调函数的零点时,一般要找到两个变量,并且要证明.这是一个难点,一般利用放缩法证明.【方法讲评】方法一方程法使用情景方程可以直接解出来.解题步骤先解方程,再求解.【例1 】已知函数区间内有零点,求实数的取值范围.【点评】(1)本题如果用其它方法比较复杂,用这种方法就比较简洁.关键是能发现方程能直接解出来.(2)对于含有参数的一元二次函数要比较敏感,看到它就要想到因式分解,如果不好因式分解,再考虑其它方法.【反馈检测1】函数在区间上的零点个数是()A.4B.5C.6D. 7方法二图像法使用情景函数是一些简单的初等函数(反比例函数、一次函数、二次函数、指数函数、对数函数、三角函数等)或单调性容易求出,比较容易画出函数的图像.解题步骤先求函数的单调性,再根据函数的单调性画出函数的图像分析.【例2】(2016年北京高考文科)设函数(1)求曲线在点处的切线方程;(2)设,若函数有三个不同零点,求c的取值范围;(3)求证:是有三个不同零点的必要而不充分条件.(2)当时,,所以.令,得,解得或.与在区间上的情况如下:所以,当且时,存在,,,使得.由的单调性知,当且仅当时,函数有三个不同零点.(3)当时,,,此时函数在区间上单调递增,所以不可能有三个不同零点.当时,只有一个零点,记作.当时,,在区间上单调递增;当时,,在区间上单调递增.所以不可能有三个不同零点.【点评】(1)本题的第2问是用数形结合解答的,画图分析得只有满足极大值大于零且极小值小于零,则函数图像与轴会有三个不同的交点,函数有三个不同零点.(2)本题的第3问,,是一个二次函数,但是由于该二次函数与轴的交点的个数不确定,所以要就判别式分类讨论,分类讨论时结合数形结合比较直观地看到函数的单调性,从而得到零点的个数.【例3】(2017全国高考新课标I理科数学)已知函数. (1)讨论的单调性;(2)若有两个零点,求a的取值范围.(2) ①若由(1)知至多有一个零点.②若,由(1)知当时,取得最小值,. (i)当时,=0,故只有一个零点.(ii)当时,由于>0,即,故没有零点. (iii)当时,,即.故在只有一个零点.【点评】(1)本题第2问根据函数的零点个数求参数的范围,用的就是图像法. 由于第1问已经求出了函数的单调性,所以第2问可以直接利用第1问的单调性作图分析. (2) 当时,要先判断的零点的个数,此时考查了函数的零点定理,,还必须在该区间找一个函数值为正的值,它就是要说明,这里利用了放缩法,丢掉了.(3) 当时,要判断上的零点个数,也是在考查函数的零点定理,还要在该区间找一个函数值为正的值,它就是,再放缩证明>0. (4)由此题可以看出零点定理在高考中的重要性.【反馈检测2】已知函数,其中为实数,常数.(1) 若是函数的一个极值点,求的值;(2) 当时,求函数的单调区间;(3) 当取正实数时,若存在实数,使得关于的方程有三个实数根,求的取值范围.方法三方程图像法使用情景函数比较复杂,不方便解方程,也不容易求函数的单调性.先令,重新构造方程,再画函数的图解题步骤像分析解答.【例4】【2017江苏,14】设是定义在且周期为1的函数,在区间上,其中集合,则方程的解的个数是 .因此,则,此时左边为整数,右边为非整数,矛盾,因此,因此不可能与每个周期内对应的部分相等,只需考虑与每个周期的部分的交点,画出函数图象,图中交点除外其他交点横坐标均为无理数,属于每个周期的部分,且处,则在附近仅有一个交点,因此方程的解的个数为8.【点评】直接求方程的解的个数比较困难,所以转化为方程的解的个数. 所以要先化出函数和函数的图像,再分析它们的交点个数,即得到方程的解的个数.【例5】函数.(1)当时,若函数与的图象有且只有3个不同的交点,求实数的值的取值范围;(2)讨论的单调性.【解析】(1)当时,由题得,两式相减得,故.令,,故当时,;当时,;当时,;,.故.【点评】(1)由于函数与函数的图像不好画,即使能画出来,也不方便研究两个函数图像的交点个数,所以把交点转化成方程组的解来解答,再转化成方程的解来解答,再分离参数化成的形式,利用数形结合分析解答. (2)对于一个函数如果不方便解方程,也不方便画图,则可以尝试利用重新构造方程,再分别画出函数和函数的图像分析解答.【例6】函数的零点个数是个.当时,所以函数在上只有一个零点.综上所述,函数零点个数为2.【点评】(1)函数是一个分段函数,求出每一段的函数的零点个数再相加即可. (2)上面一段宜选用解方程的方法求零点,因为它可以整理成一个关于的一元二次方程. 下面的一段宜选用图像法求零点.因为它的单调性比较容易求得. (3)要想灵活选择,主要取决于熟练生巧.【反馈检测3】设函数.(1)求函数的单调区间;(2)当时,讨论函数与图象的交点个数.高考数学热点难点突破技巧第05讲:函数的零点问题处理方法参考答案【反馈检测1答案】【反馈检测2答案】(1);(2)的单调增区间是,;的单调减区间是,,;(3)的取值范围是. 【反馈检测2详细解析】(1)因为是函数的一个极值点,所以,即.而当时,,可验证:是函数的一个极值点.因此.(2) 当时,令得,解得,而.所以当变化时,、的变化是极小极大值值因此的单调增区间是,;的单调减区间是,,;(3) 当取正实数时,,令得,当时,解得.在和上单调递增,在上单调递减,但是函数值恒大于零,极大值,极小值,并且根据指数函数和二次函数的变化速度可知当时,,当时,.因此当时,关于的方程一定总有三个实数根,结论成立;当时,的单调增区间是,无论取何值,方程最多有一个实数根,结论不成立.因此所求的取值范围是.【反馈检测3答案】(1)单调递增区间是, 单调递减区间是;(2).【反馈检测3详细解析】(1)函数的定义域为.(2)令,问题等价于求函数的零点个数,,当时,,函数为减函数,注意到,所以有唯一零点;当时,或时,时,,所以函数在和上单调递减,在上单调递增,注意到,所以有唯一零点.综上,函数有唯一零点,即两函数图象总有一个交点.。
高考数学复习高频考点题型精讲精练专题11 函数的零点
4
42
故选:D.
12.函数
f
(x)
=
cos
π 3
(x
−1)
在区间
[−3,
5]
上的所有零点之和等于(
)
7 / 54
. . . . A −2 B 0C 3D 2 【答案】D 【分析】直接求出所以零点,然后求和即可.
【详解】令 ,则 ,得 ,因为 , cos
π 3
(x
−1)
=
0
π (x −1) = π + kπ , k ∈ Z
1、定理:如果函数 f ( x) 在区间 [a,b] 上的图象是一条连续不断的曲线,且
1 / 54
f (a)⋅ f (b) < 0, 那么,函数 y = f ( x) 在区间 (a.b) 内至少有一个零点,即存在 c ∈ (a.b) ,使得 f (c) = 0。 2、函数 f ( x) 在区间[a,b] 上的图象是一条连续不断的曲线, f (a) ⋅ f (b) < 0 ,且 f ( x) 具有单调性,则函数 f ( x) 在区间 (a.b) 内只有一个零点.
. . . . A c < b < a B a < c < b C c<a<b D b < a < c
【答案】B
【分析】在同一坐标系中作出 y = 2x, y = log2 x, y = x3, y = −x 的图象,利用数形结合法求解.
【详解】解:在同一坐标系中作出 y = 2x, y = log2x, y = x3, y = −x 的图象,
10.函数 f (x) = ln | x − 2 | +x2与 g(x) = 4x ,两函数图象所有交点的横坐标之和为( ).
高考数学尖子生辅导专题02 函数零点问题
象,此时 M x 与 n x 的图象只有 1 个交点.当 0 a 1 时,将 m x 图象上每一点的横坐标
固定不动,纵坐标变为原来的 a 倍,就得到了 M x 的图象,此时 M x 与 n x 的图象有两
个不同交点.
综上所述, a 的取值范围是 0,1 .
4
原创精品资源学科网独家享有版权,侵权必究!
②,得
f
n
2
1
2
22
2
n 1
n
2
n
1 2n 1 2
n 2n
1 n 2n
1 ,所以
f
n
2
n
1 2 n
1.
【证明】(2)因为
f
0
1 0
,f
n
2 3
2 3
1
2 3
n
1 2
1 1
2
2 3
n
1
2
2 3
2
1 9
0
,
3
由零点存在性定理可知
fn
x
在
0,
2 3
内至少存在一个零点.又因为
1 ln t0 t02
t0
1 2 ,
即 2t0 1ln t0 t0 1 0 ,即 ln t0 t0 1 0 .令 p t ln t t 1,
显然 p t 是增函数,且 p 1 0 ,于是 t0 1,此时切点 P 1,0 ,斜率 a 1 .所以当 y k t
与 y t 有两个交点时, 0 a 1 ,所以 a 的取值范围是 0,1 .
定理:设函数 f x 为区间 a,b 上的可导函数,则 f x 为 a,b 上的下凸函数 f x 为 a,b 上的递增函数 f x 0 且不在 a,b 的任一子区间上恒为零.
高考常考题-函数的零点问题(含解析)
函数的零点问题一、题型选讲 题型一、运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。
作图与根分布综合的题目,英中作图是通过分析函数的单调性和关键点来进行作图,在作图的过程中还要 注意渐近线的细节,从而保证图像的准确。
例1、(2019苏州三市、苏北四市二调)立义在R 上的奇函数金)满足Λx+4)=Λx),且在区间[2, 4)上例3、【2018年高考全国III 卷理数】函数/(x) = COS^3Λ + ^ ∣^[0,π]的零点个数为 ______ 题型二、函数零点问题中参数的范围已知函数零点的个数,确定参数的取值范围,常用的方法和思路:(1) 直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范囤.(2) 分离参数法:先将参数分离,转化成求函数值域问题加以解决,解法2就是此法.它的本质就是将 函数转化为一个静函数与一个动函数的图像的交点问题来加以处理,这样就可以通过这种动静结合来方便 地研究问题.(3) 数形结合法:先对解析式变形,在同一平面直角坐标系中,画岀函数的图像,然后数形结合求解.1∏Λ∖X≥ 1例4. (2020届山东省枣庄.滕州市髙三上期末)已知/(X) = {…、f ,若函数y = ∕(x)-l 恰有f(2-x) + k,x<∖一个零点,则实数A ∙的取值范围是( )A. (l,4∙s) B ・ ILC. (YU)D ・(Y M]Z、21og^ x,x≥∖. Z 、例5、(2020全国高三专题练习(文))函数/(M = [f(w]) JI yl ,若方程f(x) = ~2x + m 有且只有两个不相等的实数根,则实数加的取值范围是()A. (-oo,4)B. (Y ,4]C. (-2,4)D. (-2,4]2-x,2≤x<3x-4,3≤x<4则函数y=∕ω-iog s H 的零点的个数为 ____________x<b例2、(2017苏锡常镇调研)若函数Λx)=≤ IInx<x>l, )则函数y=^χ)∣~∣的零点个数为 ______若函数F(X) =/(x)-g(x)在[0,2)上只有两个零点,则实数R 的值不可能为A.丄 3 3 C.——4例6、[2020年高考天津】已知函数f(x) = < Λ j'0,若函数g(γ) =γ,(j).∣AΛ^2点,则k 的取值范围是A. (→>,-∣)U(2√2,+oo)B ∙ U(0,2√Σ)c ・(Y,0)U(0,2√Σ) D ・ YO)U(2√Σ,S例7. [2019年髙考浙江】已知t 函数f(x) = < 1x,x < O1 c ・若函数一F --(α + l)f +ax.x≥O 13 2y = f(x)-cιx -b 恰有3个零点,则A. Λ<-L b<0B. αv -l, b>0C. α>-l, XoD ・ α>-l, b>Q例8. (2020浙江学军中学髙三3月月考)已知函数/(X)=(A -÷4)V5≤X <-3J 若函数 /(x-2),x≥-3g(x) = ∕α)-W(X+ 1)1有9个零点,则实数M 的取值范围是()A.[科丿B.1 1)匕'FD.1 1 <55例9.(2020届浙江省杭州市第二中学髙三3月月考)已知函数/(X)=2/V 『心2'B- 4D ・-1-2彳伙WR)恰有4个零二、达标训练1、(2019 IlJ 东师范大学附中高三月考)函数/(x) = √-W 的零点所在区间为()A- (一 1'O)B- [θ,^j C - (Al D- (1'2)e 丫 X V 02、 【2018年髙考全国I 卷理数】已知函数/(X)=g(χ) = f(χ) + x + a •若g(x)存在2个lnx, x>O,零点,则α的取值范用是A. [一 1, 0)B. [0, +∞)C. [-1, +oo)D. [1, +∞)3、 (2020届浙江省“山水联盟"髙三下学期开学)已知αbwR,函数f(x) = <(A+(l)e +αr "≤°,若函x,x>0数y = f{x)-ax-b 恰有3个零点,则()A. a>∖J)>OB. d>l,D<0C. a<tb>OD. a<^b<O4. (2020届山东实验中学髙三上期中)设定义在/?上的函数/(X)满足/(→) + /(X) = X 2,K 当X WO 时,__________ ・若函数沧)恰有2个零点,则2的取值范圉是 _____________≥∕(1~x ))2}且★为函数 g(x) = e λ-y[ex-aZR 疋为自然对数的底数)的一个零点,则实数α的取值可能是()A. 1√E 2D ・√72√7(0<x≤l)5、(2020届山东师范大学附中髙三月考)已知函数fW = ∖2—(X > DIX若方程/(兀)=一力+ α有三个不同的实根,则实数α的取值范围是 _______6、[2018年髙考浙江】已知z∈R.函数沧)=<X - 4, % ≥ Λ X 2-4x + 3,x<2,当z=2时,不等式√(x)vθ的解集是广(X)Vx .己知存在如Λ 2+2ax + a,x ≤ O 74202O届江苏省南通市如皋市高三下学期二模】已知函数f(x) = \e x_ex I ,,若存在实数+-a2,x>O X 3使得函数y = f(χ)-k有6个零点,则实数。
函数零点问题的题型归类及解题策略
函数零点问题的题型归类及解题策略一、函数零点问题的题型归类在数学中,函数零点问题是一个常见的题型,通常是要求求出一个函数的零点或根。
根据不同的函数形式和解法,可以将这些题型分为以下几类:1. 多项式函数的零点问题:多项式函数是指由一系列单项式相加或相减而成的函数,例如f(x) = 2x^3 - 3x^2 + 4x - 5就是一个三次多项式函数。
对于多项式函数而言,求解它的零点通常使用因式分解、配方法、牛顿迭代法等方法。
2. 三角函数的零点问题:三角函数包括正弦、余弦、正切等等,例如f(x) = sin(x) - x就是一个三角函数。
对于三角函数而言,求解它的零点通常使用周期性、奇偶性等特征来进行简化。
3. 指数和对数函数的零点问题:指数和对数函数包括指数、自然对数等等,例如f(x) = e^x - x就是一个指数和对数函数。
对于指数和对数函数而言,求解它们的零点通常需要使用到特殊技巧如换底公式、取对数等方法。
4. 分段定义的复合函数的零点问题:分段定义的复合函数是指一个函数在不同的区间内采用不同的定义方式,例如f(x) = {x^2 + 1, x < 0; x - 1, x >= 0}就是一个分段定义的复合函数。
对于这类函数,求解它们的零点通常需要将其分成不同的部分进行讨论。
二、解题策略针对以上不同类型的函数零点问题,我们可以采用以下几种解题策略:1. 因式分解法因式分解法是一种常见的求多项式函数零点的方法。
对于一个多项式函数f(x),我们可以先将其进行因式分解,然后再求出每个因子的零点。
例如f(x) = x^3 - 3x^2 + 2x可以写成f(x) = x(x-1)(x-2),然后再求出每个因子的零点即可得到f(x)在实数范围内所有的零点。
2. 配方法配方法也是一种常见的求多项式函数零点的方法。
对于一个二次或三次多项式函数,我们可以通过配方将其转化为完全平方或完全立方形式,然后再根据完全平方或完全立方公式来求解它们的零点。
专题02函数零点问题-2024高考数学尖子生辅导专题
专题02函数零点问题-2024高考数学尖子生辅导专题函数的零点问题在数学中是一个非常重要的概念和问题。
而在2024高考的数学尖子生辅导专题中,函数的零点问题无疑是一个重点内容。
下面,我们来详细探讨一下这个问题。
函数的零点问题即是求解函数的解析式方程$f(x)=0$的解$x$。
在实际问题中,函数的零点往往表示了其中一种特定情况下的平衡点或者特殊点,因此求解函数的零点问题是非常实用和重要的。
那么,如何求解函数的零点问题呢?下面,我们将从三个方面进行讨论。
首先,我们可以通过图像来求解函数的零点问题。
对于一般的函数,我们可以通过画出函数的图像来判断函数的零点。
函数的零点为函数与$x$轴相交的点,在图像上表现为函数曲线与$x$轴的交点。
通过观察函数图像上哪些点与$x$轴相交,我们可以找到函数的零点。
对于简单的函数,我们可以手工画出函数图像,对于复杂的函数,我们可以借助计算机软件进行绘图。
其次,我们可以通过函数的解析式来求解函数的零点问题。
对于一般的函数,我们可以通过解方程$f(x)=0$来求解函数的零点。
通过将方程变形化简,最终得到$x$的解析表达式。
这种方法适用于存在解析解的函数,对于一些特殊函数,解析解并不存在,我们需要采用其他方法进行求解。
最后,我们可以通过数值计算方法来求解函数的零点问题。
对于一些无法通过解析式求解的函数,我们可以采用数值计算方法进行求解。
数值计算方法包括二分法、不动点迭代法、牛顿迭代法等。
这些方法通过迭代计算,逐渐接近函数的零点。
在实际计算中,我们可以通过计算机软件来进行数值计算,以提高计算的精度和效率。
综上所述,函数的零点问题在数学中具有重要的意义,我们可以通过图像、解析式和数值计算方法等多种途径来求解函数的零点。
在2024高考的数学尖子生辅导专题中,函数的零点问题无疑是一个关键的内容,掌握这个问题对于学生的数学能力提高和应试能力提升都具有重要作用。
因此,我们应该重视并加以学习和实践。
盘点高考数学中函数的零点问题
盘点高考数学中函数的零点问题高二数学 杨社锋函数思想是贯穿高中数学学习中的一个重要思想。
而函数的零点问题可以很好的将函数和方程结合起来,同时也考察了学生分析问题转化问题的能力。
因此这部分内容也是高考考查的重点内容,下面我们一起来盘点一下函数零点问题的考察方法。
首先我们回顾一下函数零点的定义,函数y=f (x )的图像与x 轴交点的横坐标,称为函数的零点。
换句话说,y=f(x)的零点、方程f(x)=0的根与y=f (x )的图像与x 轴交点的横坐标三者之间是等价的。
也就是说,函数的零点问题我们可以通过解方程来解决,也可以通过函数图像来解决。
到底采用什么思路我们还要具体问题具体分析。
函数的零点问题总结起来大致有三种考法。
一、函数y=f(x)的零点个数问题对于这类问题,我们无需考虑零点的具体值是多少,我们只需考虑函数y=f(x)与x 轴有几个交点就可以了;当函数y=f(x)的图象不容易画出时,我们可以将其转化为两个函数图像的交点个数问题例1. (2012天津)函数f (x )=2x +x 3-2在区间(0,1)内的零点个数是( )A .0B .1C .2D .3【分析】如果能画出f(x)的图像一切问题都迎刃而解了,又发现f (x )=2x +x 3-2是增函数,只需计算f(0),f(1)的值就可以了.【解析】:由题意知f (x )为单调增函数且f (0)=-1<0,f (1)=1>0,所以在区间(0,1)内有且只有一个零点.答案:B例2.(2013天津)函数f (x )=2x |log 0.5x |-1的零点个数为( )A .1B .2C .3D .4【分析】首先考虑到直接画出函数f (x )=2x |log 0.5x |-1的图像但是发现行不通,函数f(x)的图像你我都不会画。
于是就考虑到看能不能转化为两个函数的图像的交点问题。
f (x )=2x |log 0.5x |-1的零点等价于方程2x |log 0.5x |=1的根,再转化为方程0.51log 2x x =的根的问题,到这里我们恍然大悟,原来就是研究函数0.5log y x =与函数12x y =图像的交点问题。
2020高考数学之函数零点问题《04 “用好零点”,确定参数的最值或取值范围》(解析版)
高考数学函数零点问题专题四“用好零点”,确定参数的最值或取值范围函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间——零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题围绕利用函数零点,确定参数的最值或取值范围问题,例题说法,高效训练.【典型例题】例1.【山东省淄博市2019届高三3月模拟】已知函数.(1)若是的极大值点,求的值;(2)若在上只有一个零点,求的取值范围.【答案】(1)(2)【解析】(1),因为是的极大值点,所以,解得,当时,,,令,解得,当时,,在上单调递减,又,所以当时,;当时,,故是的极大值点;(2)令,,在上只有一个零点即在上只有一个零点,当时,,单调递减;当时,,单调递增,所以.(Ⅰ)当,即时,时,在上只有一个零点,即在上只有一个零点.(Ⅱ)当,即时,取,,①若,即时,在和上各有一个零点,即在上有2个零点,不符合题意;②当即时,只有在上有一个零点,即在上只有一个零点,综上得,当时,在上只有一个零点.例2.【东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2019届高三第一次模拟】已知函数(为自然对数的底数),.(1)当时,求函数的极小值;(2)若当时,关于的方程有且只有一个实数解,求的取值范围.【答案】(1)0(2)【解析】(1)当时,,,令则列表如下:所以.(2)设,,设,,由得,,,在单调递增,即在单调递增,,①当,即时,时,,在单调递增,又,故当时,关于的方程有且只有一个实数解,符合题意.②当,即时,由(1)可知,所以,又故,当时,,单调递减,又,故当时,,在内,关于的方程有一个实数解1.又时,,单调递增,且,令,,,故在单调递增,又在单调递增,故,故,又,由零点存在定理可知,,故在内,关于的方程有一个实数解.又在内,关于的方程有一个实数解1,不合题意.综上,.例3. 已知函数()()ln 1axf x e x =+,其中a R ∈. (1)设()()axF x ef x -=',讨论()F x 的单调性;(2)若函数()()g x f x x =-在()0,+∞内存在零点,求a 的范围. 【答案】(1)见解析;(2)a 的取值范围是10,2⎛⎫ ⎪⎝⎭. 【解析】(i ) 当 0a <时,则 111x a=-<-,因此在()1,-+∞ 上恒有 ()'0F x < ,即 ()F x 在()1,-+∞ 上单调递减;(ii )当0a >时, 111x a =->-,因而在11,1a ⎛⎫-- ⎪⎝⎭上有()'0F x <,在11,a ⎛⎫-+∞ ⎪⎝⎭上有()'0F x > ;因此 ()F x 在 11,1a ⎛⎫-- ⎪⎝⎭上单调递减,在11,a ⎛⎫-+∞ ⎪⎝⎭单调递增. (2)设 ()()()()ln 1,0,axg x f x x e x x x =-=+-∈+∞,()()()()1''1ln 1111ax axg x f x e a x e F x x ⎛⎫=-=++-=- ⎪+⎝⎭,设()()()'1ax h x g x e F x ==-,则 ()()()()()22221''ln 11axaxax a h x e aF x F x e a x x ⎛⎫+- ⎪⎡⎤=+=++⎣⎦ ⎪+⎝⎭. 先证明一个命题:当0x >时, ()ln 1x x +<.令()()ln 1S x x x =+-, ()1'1011xS x x x-=-=<++,故()S x 在()0,+∞上是减函数,从而当0x >时, ()()00S x S <=,故命题成立.若0a ≤ ,由 0x >可知, 01ax e <≤.()()()ln 1110ax ax ax g x e x e x x x e ∴=+-<-=-≤,故()0g x <,对任意()0,x ∈+∞都成立,故 ()g x 在()0,+∞上无零点,因此0a >.(ii )当102a <<,考察函数 ()'h x ,由于 ()()1'0210,'0,'2h a h h x a ⎛⎫=-∴ ⎪⎝⎭在 ()0,+∞上必存在零点.设()'h x 在 ()0,+∞的第一个零点为0x ,则当()00,x x ∈时, ()'0h x <,故 ()h x 在 ()00,x 上为减函数,又 ()()000h x h <=,所以当 ()00,x x ∈时, ()'0g x <,从而 ()g x 在 ()00,x 上单调递减,故在 ()00,x 上恒有()()00g x g <=.即 ()00g x < ,注意到 ax e x ax >,因此()()()()()ln 1ln 11ln 11axg x e x x x ax x x a x =+->+-=+-,令1ax e =时,则有()0g x >,由零点存在定理可知函数 ()y g x =在 10,ax e ⎛⎫ ⎪⎝⎭上有零点,符合题意. 学科%网例4.【广东省广州市天河区2019届高三综合测试(一)】设函数.若函数在处的切线与直线垂直,求实数a的值;讨论函数的单调区间与极值;若函数有两个零点,求满足条件的最小整数a的值.【答案】(1);(2)见解析;(3)3【解析】,.,函数在处的切线与直线垂直,,解得.,时,,此时函数在内单调递增,无极值.时,可得函数在内单调递减,在内单调递增.可得时,函数取得极小值,.由可得:时,函数在内单调递增,不可能有两个零点,舍去.时,可得时,函数取得极小值,时,;时,.因此极小值.即.令函数,在上单调递增.,,,可得,满足条件的最小整数.【规律与方法】根据函数零点求参数取值,也是高考经常涉及的重点问题,(1)利用零点存在的判定定理构建不等式求解;(2)分离参数后转化为函数的值域(最值)问题求解,如果涉及由几个零点时,还需考虑函数的图象与参数的交点个数;(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.(4)如果导函数的解析式具有分式特征,且容易判断出分母是正数,此时往往将分子看成一个新的函数,进而对该函数进行研究从而得到相应的结论.(5)参变分离法、构造函数法、数形结合法等,均应灵活运用.【提升训练】1.【四川省高中2019届高三二诊】已知.求的极值;若有两个不同解,求实数的取值范围.【答案】(1)有极小值,为;无极大值;(2)【解析】的定义域是,,令,解得:,令,解得:,故在递减,在递增,故时,;记,,则,故可转化成,即:,令,,令,解得:,令,解得:,故在递增,在递减,且时,,时,故,由,,的性质有:,和有两个不同交点,,且,,各有一解,即有2个不同解,,和仅有1个交点,且,有2个不同的解,即有两个不同解,取其它值时,最多1个解,综上,的范围是2.【陕西省咸阳市2019年高考模拟(二)】已知函数. (1)当,求证;(2)若函数有两个零点,求实数的取值范围.【答案】(1)见证明;(2)【解析】(1)证明:当时,,得,知在递减,在递增,,综上知,当时,.(2)法1:,,即,令,则,知在递增,在递减,注意到,当时,;当时,,且,由函数有个零点,即直线与函数图像有两个交点,得.法2:由得,,当时,,知在上递减,不满足题意;当时,,知在递减,在递增.,的零点个数为,即,综上,若函数有两个零点,则.3.【湖南省怀化市2019届高三3月一模】设函数.(1)若是的极大值点,求的取值范围;(2)当,时,方程(其中)有唯一实数解,求的值. 【答案】(1)(2)【解析】(1)由题意,函数的定义域为,则导数为由,得,∴①若,由,得.当时,,此时单调递增;当时,,此时单调递减.所以是的极大值点②若,由,得,或.因为是的极大值点,所以,解得综合①②:的取值范围是(2)因为方程有唯一实数解,所以有唯一实数解设,则,令,即.因为,,所以(舍去),当时,,在上单调递减,当时,,在单调递增当时,,取最小值则,即,所以,因为,所以(*)设函数,因为当时,是增函数,所以至多有一解因为,所以方程(*)的解为,即,解得4.【安徽省马鞍山市2019届高三高考一模】已知函数在上是增函数.求实数的值;若函数有三个零点,求实数的取值范围.【答案】(1);(2)【解析】当时,是增函数,且,故当时,为增函数,即恒成立,当时,函数的导数恒成立,当时,,此时相应恒成立,即恒成立,即恒成立,当时,,此时相应恒成立,即恒成立,即恒成立,则,即.若,则在上是增函数,此时最多有一个零点,不可能有三个零点,则不满足条件.故,当时,有一个零点,当时,,故0也是故的一个零点,故当时,有且只有一个零点,即有且只有一个解,即,得,,则,在时有且只有一个根,即与函数,在时有且只有一个交点,,由得,即得,得,此时函数递增,由得,即得,得,此时函数递减,即当时,函数取得极小值,此时极小值为,,作出的图象如图,要使与函数,在时有且只有一个交点,则或,即实数的取值范围是.5.【吉林省长春市普通高中2019届高三监测(二)】已知函数.(1)讨论的单调性;(2)若方程有两个实数根,求实数的取值范围.【答案】(1)见解析;(2)【解析】(1)由题可得,当时,,在上单调递增;当时,,,在上单调递增;,,在上单调递减.(2)令,,易知单调递增且一定有大于0的零点,不妨设为,,即,,故若有有两个零点,需满足,即,令,,所以在上单调递减.,所以的解集为,由,所以.当时,,有,令,由于,所以,,故,所以,故,在上有唯一零点,另一方面,在上,当时,由增长速度大,所以有,综上,.6. 设函数()()()22ln 11f x x x =---. (1)求函数()f x 的单调递减区间;(2)若关于x 的方程()230f x x x a +--=在区间[]24,内恰有两个相异的实根,求实数a 的取值范围.【答案】(1) 函数()f x 的单调递增区间为()2,+∞;(2) a 的取值范围是[)2ln352ln24--,. 【解析】(1)函数()f x 的定义域为()1+∞, ∵()()()2212111x x f x x x x --⎡⎤=--=⎢⎥--⎣⎦'∵1x >,则使()0f x '<的x 的取值范围为()2,+∞, 故函数()f x 的单调递减区间为()2,+∞故()230f x x x a +--=在区间[]24,内恰有两个相异实根()()()20{30 40.g g g ≥⇔<≥,,即30{4220 5230a a ln a ln +≥+-<+-≥,解得: 2ln352ln24a -≤<-综上所述, a 的取值范围是[)2ln352ln24--,7. 已知函数()()21xf x e a x b =---,其中e 为自然对数的底数.(1)若函数()f x 在区间[]0,1上是单调函数,试求实数a 的取值范围;(2)已知函数()()211xg x e a x bx =----,且()10g =,若函数()g x 在区间[]0,1上恰有3个零点,求实数a 的取值范围. 【答案】(1) ][3,1,22e⎛⎫-∞⋃++∞ ⎪⎝⎭(2) ()1,2e - 【解析】(2)()()()'21xg x e a x b f x =---=.由()()010g g ==,知()g x 在区间()0,1内恰有一个零点, 设该零点为0x ,则()g x 在区间()00,x 内不单调, 所以()f x 在区间()00,x 内存在零点1x , 同理, ()f x 在区间()0,1x 内存在零点2x , 所以()f x 在区间()0,1内恰有两个零点. 由(1)知,当32a ≤时, ()f x 在区间[]0,1上单调递增,故()f x 在区间()0,1内至多有一个零点,不合题意. 当12ea ≥+时, ()f x 在区间[]0,1上单调递减, 故()f x 在()0,1内至多有一个零点,不合题意; 所以3122ea <<+.8.已知函数()()22ln R f x a x x ax a =-+∈.(Ⅰ)求函数()f x 的单调区间;(Ⅱ)当0a >时,若()f x 在()1,e 上有零点,求实数a 的取值范围.【答案】(Ⅰ)见解析(Ⅱ))1e 1,2⎛⎫⎪ ⎪⎝⎭【解析】(Ⅰ)函数()f x 的定义域为()0,+∞,()()()2222a x a x a ax x f x x x-++='-=.由()0f x '=得x a =或2ax =-. 当0a =时, ()0f x '<在()0,+∞上恒成立,所以()f x 的单调递减区间是()0,+∞,没有单调递增区间. 当0a >时, ()(),,x f x f x '的变化情况如下表:所以()f x 的单调递增区间是()0,a ,单调递减区间是(),a +∞. 当0a <时, ()(),,x f x f x '的变化情况如下表:所以()f x 的单调递增区间是0,2a ⎛⎫-⎪⎝⎭,单调递减区间是,2a ⎛⎫-+∞ ⎪⎝⎭.9.已知()()()3231ln ,2x f x x e e x g x x x a =--=-++.(1)讨论()f x 的单调性;(2)若存在()10,x ∈+∞及唯一正整数2x ,使得()()12f x g x =,求a 的取值范围.【答案】(1)()f x 的单调递减区间是()0,1,单调递增区间是()1,+∞;(2) a 的取值范围是1,22⎡⎫-⎪⎢⎣⎭. 【解析】(2)由(1)知当1x =时, ()f x 取得最小值, 又()10f =,所以()f x 在()0,+∞上的值域为[)0,+∞.因为存在()10,x ∈+∞及唯一正整数2x ,使得()()12f x g x =, 所以满足()0g x ≥的正整数解只有1个. 因为()3232g x x x a =-++, 所以()()23331g x x x x x =-+'=--,所以()g x 在()0,1上单调递增,在()1,+∞上单调递减,所以()()10{20g g ≥<,即1{ 220a a +≥-+<, 解得122a -≤<. 所以实数a 的取值范围是1,22⎡⎫-⎪⎢⎣⎭. 10.设函数()ln f x x =, ()bg x ax c x=+-(,,a b c R ∈). (1)当0c =时,若函数()f x 与()g x 的图象在1x =处有相同的切线,求,a b 的值;(2)当3b a =-时,若对任意()01,x ∈+∞和任意()0,3a ∈,总存在不相等的正实数12,x x ,使得()()()120g x g x f x ==,求c 的最小值;(3)当1a =时,设函数()y f x =与()y g x =的图象交于()11,,A x y ()2212,()B x y x x <两点.求证:122121x x x b x x x -<<-.【答案】(1)12{ 12a b ==-(2)3(3)见解析【解析】(2)当01x >时,则()00f x >,又3b a =-,设()0t f x =, 则题意可转化为方程3(0)aax c t t x-+-=>在()0,+∞上有相异两实根12,x x .即关于x 的方程()()230(0)ax c t x a t -++-=>在()0,+∞上有相异两实根12,x x .所以()()2121203430{ 030a c t a a c t x x a a x x a<<∆=+-->++=>-=>,得()()203{43 0a c t a a c t <<+>-+>, 所以c t >对()()0,,0,3t a ∈+∞∈恒成立.因为03a <<,所以(当且仅当32a =时取等号), 又0t -<,所以的取值范围是(),3-∞,所以3c …. 故c 的最小值为3. (3)当1a =时,因为函数()f x 与()g x 的图象交于,A B 两点,所以111222{b lnx xc x b lnx x c x =+-=+-,两式相减,得211221ln ln 1x x b x x x x ⎛⎫-=- ⎪-⎝⎭. 要证明122121x x x b x x x -<<-,即证211221212121ln ln 1x x x x x x x x x x x x ⎛⎫--<-<- ⎪-⎝⎭,即证212211ln ln 11x x x x x x -<<-,即证1222111ln 1x x x x x x -<<-. 令21x t x =,则1t >,此时即证11ln 1t t t-<<-. 令()1ln 1t t tϕ=+-,所以()221110t t t t t ϕ'-=-=>,所以当1t >时,函数()t ϕ单调递增. 又()10ϕ=,所以()1ln 10t t t ϕ=+->,即11ln t t-<成立;再令()ln 1m t t t =-+,所以()1110tm t t t-=-=<',所以当1t >时,函数()m t 单调递减,又()10m =,所以()ln 10m t t t =-+<,即ln 1t t <-也成立. 综上所述, 实数12,x x 满足122121x x x b x x x -<<-.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题二 函数零点问题函数的零点作为函数、方程、图象的交汇点,充分体现了函数与方程的联系,蕴含了丰富的数形结合思想.诸如方程的根的问题、存在性问题、交点问题等最终都可以转化为函数零点问题进行处理,因此函数的零点问题成为了近年来高考新的生长点和热点,且形式逐渐多样化,备受青睐.模块1 整理方法 提升能力对于函数零点问题,其解题策略一般是转化为两个函数图象的交点.对于两个函数的选择,有3种情况:一平一曲,一斜一曲,两曲(凸性一般要相反).其中以一平一曲的情况最为常见.分离参数法是处理零点问题的常见方法,其本质是选择一平一曲两个函数;部分题目直接考虑函数()f x 的图象与x 轴的交点情况,其本质是选择一平一曲两个函数;部分题目利用零点存在性定理并结合函数的单调性处理零点,其本质是选择一平一曲两个函数.函数的凸性1.下凸函数定义设函数()f x 为定义在区间(),a b 上的函数,若对(),a b 上任意两点1x ,2x ,总有()()121222f x f x x x f ++⎛⎫≤ ⎪⎝⎭,当且仅当12x x =时取等号,则称()f x 为(),a b 上的下凸函数. 2.上凸函数定义设函数()f x 为定义在区间(),a b 上的函数,若对(),a b 上任意两点1x ,2x ,总有()()121222f x f x x x f ++⎛⎫≥ ⎪⎝⎭,当且仅当12x x =时取等号,则称()f x 为(),a b 上的上凸函数.3.下凸函数相关定理定理:设函数()f x 为区间(),a b 上的可导函数,则()f x 为(),a b 上的下凸函数⇔()f x '为(),a b 上的递增函数⇔()0f x ''≥且不在(),a b 的任一子区间上恒为零. 4.上凸函数相关定理定理:设函数()f x 为区间(),a b 上的可导函数,则()f x 为(),a b 上的上凸函数⇔()f x '为(),a b 上的递减函数⇔()0f x ''≤且不在(),a b 的任一子区间上恒为零.例1已知函数()()2e 2e x x f x a a x =+--. (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.【解析】(1)()()()()22e 2e 12e 1e 1x x x x f x a a a '=+--=+-,2e 10x +>. ①当0a ≤时,e 10x a -<,所以()0f x '<,所以()f x 在R 上递减. ②当0a >时,由()0f x '>可得1lnx a >,由()0f x '<可得1ln x a<,所以()f x 在1,ln a ⎛⎫-∞ ⎪⎝⎭上递减,在1ln ,a ⎛⎫+∞ ⎪⎝⎭上递增.(2)法1:①当0a ≤时,由(1)可知,()f x 在R 上递减,不可能有两个零点.②当0a >时,()min 11ln 1ln f x f a a a ⎛⎫⎡⎤==-+ ⎪⎣⎦⎝⎭,令()()min g a f x =⎡⎤⎣⎦,则()2110g a a a'=+>,所以()g a 在()0,+∞上递增,而()10g =,所以当1a ≥时,()()min 0g a f x =⎡⎤≥⎣⎦,从而()f x 没有两个零点.当01a <<时,1ln 0f a ⎛⎫< ⎪⎝⎭,()22110e e e a a f -=++->,于是()f x 在11,ln a ⎛⎫- ⎪⎝⎭上有1个零点;因为()2333333ln 1121ln 11ln 10f a a a a a a a a ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=-+----=---> ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,且31ln 1ln a a ⎛⎫⎛⎫-> ⎪ ⎪⎝⎭⎝⎭,所以()f x 在1ln ,a ⎛⎫+∞ ⎪⎝⎭上有1个零点. 综上所述,a 的取值范围为()0,1.法2:()2222e e 2e 0e e 2e e e x xxxxxx x x a a x a a x a ++--=⇔+=+⇔=+.令()22e e e x x xxg x +=+,则()()()()()()()()()2222222e 1e e 2e 2e e e 2e 1e 1eeeexx x x x x x x x xx xx x x g x ++-++++-'==-++,令()e 1x h x x =+-,则()e 10x h x '=+>,所以()h x 在R 上递增,而()00h =,所以当0x <时,()0h x <,当0x >时,()0h x >, 于是当0x <时,()0g x '>,当0x >时,()0g x '<,所以()g x 在(),0-∞上递增,在()0,+∞上递减.()01g =,当x →-∞时,()g x →-∞,当x →+∞时,()0g x +→.若()f x 有两个零点,则y a =与()g x 有两个交点,所以a 的取值范围是()0,1.法3:设e 0x t =>,则ln x t =,于是()22e 2e 02ln x x a a x at at t t +--=⇔+=+⇔22ln t t a t t +=+,令()22ln t t G t t t +=+,则()()()()()222122ln 21t t t t t t G t t t ⎛⎫++-++ ⎪⎝⎭'==+ ()()()22211ln t t t tt +-+-+,令()1ln H t t t =-+,则()110H t t'=+>,所以()H t 在()0,+∞上递增,而()10H =,所以当01t <<时,()0H t <,()0G t '>,当1t >时,()0H t >,()0G t '<,所以()G t 在()0,1上递增,在()1,+∞上递减.()11G =,当0t +→时,()G t →-∞,当t →+∞时,()0G t +→.若()f x 有两个零点,则y a =与()G t 有两个交点,所以a 的取值范围是()0,1.法4:设e 0x t =>,则ln x t =,于是()22e 2e 02ln 0x x a a x at at t t +--=⇔+--=⇔()ln 12t a t t +-=.令()()12k t a t =+-,()ln t t tϕ=,则()f x 有两个零点等价于()y k t =与()y t ϕ=有两个交点.因为()21ln tt tϕ-'=,由()0t ϕ'>可得0e t <<,由()0t ϕ'<可得e t >,所以()t ϕ在()0,e 上递增,在()e,+∞上递减,()1e e ϕ=,当x →+∞时,()0t ϕ+→.()y k t =是斜率为a ,过定点()1,2A --的直线.当()y k t =与()y t ϕ=相切的时候,设切点()00,P t y ,则有()0000002ln 121ln t y t y a t ta t ⎧=⎪⎪⎪=+-⎨⎪-⎪=⎪⎩,消去a 和0y ,可得()000200ln 1ln 12t t t t t -=+-, 即()()00021ln 10t t t ++-=,即00ln 10t t +-=.令()ln 1p t t t =+-,显然()p t 是增函数,且()10p =,于是01t =,此时切点()1,0P ,斜率1a =.所以当()y k t =与()y t ϕ=有两个交点时,01a <<,所以a 的取值范围是()0,1.法5:()()20e e 2e x x x f x a x =⇔+=+,令()()2e e x x M x a =+,()2e e x x m x =+,()2e x n x x =+,则()f x 有两个零点⇔()M x 与()n x 的图象有两个不同交点.()()002m n ==,所以两个函数图象有一个交点()0,2.令()()()2e e x x T x m x n x x =-=--,则()()()22e e 12e 1e 1x x x x T x '=--=+-,由()0T x '>可得0x >,由()0T x '<可得0x <,于是()T x 在(),0-∞上递减,在()0,+∞上递增,而()00T =,所以()()m x n x ≥,因此()m x 与()n x相切于点()0,2,除切点外,()m x 的图象总在()n x 图象的上方.由(1)可知,0a >.当1a >时,将()m x 图象上每一点的横坐标固定不动,纵坐标变为原来的a 倍,就得到了()M x 的图象,此时()M x 与()n x 的图象没有交点.当1a =时,()m x 的图象就是()M x 的图象,此时()M x 与()n x 的图象只有1个交点.当01a <<时,将()m x 图象上每一点的横坐标固定不动,纵坐标变为原来的a 倍,就得到了()M x 的图象,此时()M x 与()n x 的图象有两个不同交点.综上所述,a 的取值范围是()0,1.法6:()()()20e e 2e e 12e x x x x xx f x a x a =⇔+=+⇔+-=,令()()e 12xp x a =+-,()e xxq x =,则()f x 有两个零点⇔()p x 与()q x 的图象有两个不同交点. ()1ex xq x -'=,由()0q x '>可得1x <,由()0q x '<可得1x >,所以()q x 在(),1-∞上递增,在()1,+∞上递减,当x →+∞时,()0q x +→.由(1)可知,0a >,所以()p x 是下凸函数,而()q x 是 上凸函数.当()p x 与()q x 相切时,设切点为()00,P x y ,则有()00000000e 12e 1e e xx x x y a x y x a ⎧=+-⎪⎪⎪=⎨⎪-⎪=⎪⎩,消去a ,0y 可得()0000021e 12e e x x x x x -+-=,即()()0002e 1e 10x x x ++-=,即00e 10x x +-=.令()e 1x W x x =+-,显然()W x 是增函数,而()00W =,于是00x =,此时切点()0,0P ,1a =.所以当()p x 与()q x 的图象有两个交点时,01a <<,所以a 的取值范围是()0,1.【点评】函数零点问题,其解题策略是转化为两个函数图象的交点,三种方式中(一平一曲、一斜一曲、两曲)最为常见的是一平一曲.法1是直接考虑函数()f x 的图象与x 轴的交点情况,法2是分离参数法,法3用了换元,3种方法的本质都是一平一曲,其中法3将指数换成了对数,虽然没有比法2简单,但是也提示我们某些函数或许可以通过换元,降低函数的解决难度.法4是一斜一曲情况,直线与曲线相切时的a 值是一个重要的分界值.法5和法6都是两曲的情况,但法6比法5要简单,其原因在于法5的两曲凸性相同而法6的两曲凸性相反.函数零点问题对函数图象说明的要求很高,如解法2当中的()g x 是先增后减且极大值()01g =,但x →-∞和x →+∞的状态会影响a 的取值范围,所以必须要说清楚两个趋势的情况,才能得到最终的答案.例2设函数设()21n n f x x x x =+++-L ,n ∈*N ,2n ≥. (1)求()2n f ';(2)证明:()n f x 在20,3⎛⎫⎪⎝⎭内有且仅有一个零点(记为n a ),且1120233nn a ⎛⎫<-< ⎪⎝⎭.【解析】(1)因为()112n n f x x nx -'=+++L ,所以()121222n n f n -'=+⨯++⋅L …①.由()2222222n n f n '=+⨯++⋅L …②,①-②,得()21212222n n n f n -'-=++++-⋅=L ()12212112nn n n n --⋅=---,所以()()2121n n f n '=-+. 【证明】(2)因为()010f =-<,22213322211121202333913nn n f ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎛⎫⎛⎫⎣⎦=-=-≥-=> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-,由零点存在性定理可知()n f x 在20,3⎛⎫⎪⎝⎭内至少存在一个零点.又因为()1120n n f x x nx -'=+++>L ,所以()n f x 在20,3⎛⎫ ⎪⎝⎭内递增,因此()n f x 在20,3⎛⎫⎪⎝⎭内有且只有一个零点n a .由于()()111n n x x f x x-=--,所以()()1101n n n n n na a f a a -=-=-,由此可得11122n n n a a +=+,即11122n n na a +-=.因为203n a <<,所以111120223n n n a ++⎛⎫<< ⎪⎝⎭,所以1111212022333n nn na ++⎛⎫⎛⎫<<= ⎪ ⎪⎝⎭⎝⎭,所以1120233nn a ⎛⎫<-< ⎪⎝⎭.【点评】当函数()f x 满足两个条件:连续不断,()()0f a f b <,则可由零点存在性定理得到函数()f x 在(),a b 上至少有1个零点.零点存在性定理是高中阶段一个比较弱的定理,首先,该定理的两个条件缺一不可,其次,就算满足两个条件,也只能得到有零点的结论,究竟有多少个零点,也不确定.零点存在性定理常与单调性综合使用,这是处理函数零点问题的一种方法.例3已知函数()()e ln x f x x m =-+.(1)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (2)当2m ≤时,证明:()0f x >. 【解析】(1)()1e xf x x m'=-+,由0x =是()f x 的极值点,可得()00f '=,解得1m =.于是()()e ln 1x f x x =-+,定义域为()1,-+∞,()1e 1xf x x '=-+,则()()21e 01x f x x ''=+>+,所以()f x '在()1,-+∞上递增,又因为()00f '=,所以当10x -<<时()0f x '<,当0x >时()0f x '>,所以()f x 在()1,0-上递减,在()0,+∞上递增.【证明】(2)法1:()f x 定义域为(),m -+∞,()1e xf x x m'=-+,()()21e 0xf x x m ''=+>+,于是()f x '在(),m -+∞上递增.又因为当x m +→-时,()f x '→-∞,当x →+∞时,()f x '→+∞,所以()0f x '=在(),m -+∞上有唯一的实根0x ,当0m x x -<<时,()0f x '<,当0x x >时,()0f x '>,所以()f x 在()0,m x -上递减,在()0,x +∞上递增,所以当0x x =时,()f x 取得最小值.由()00f x '=可得001e 0x x m-=+,即()00ln x m x +=-,于是()()000000011e ln 2xf x x m x x m m m x m x m=-+=+=++-≥-++.当2m <时,()00f x >;当2m =时,等号成立的条件是01x =-,但显然()11e 012--≠-+,所以等号不成立,即()00f x >.综上所述,当2m ≤时,()()00f x f x ≥>.法2:当2m ≤,(),x m ∈-+∞时,()()ln ln 2x m x +≤+,于是()()e ln 2x f x x ≥-+,所以只要证明()()e ln 20x x x ϕ=-+>,()2,x ∈-+∞,就能证明当2m ≤时,()0f x >.()1e 2x x x ϕ'=-+,()()21e 02x x x ϕ''=+>+,于是()x ϕ'在()2,-+∞上递增.又因为()1110eϕ'-=-<,()10102ϕ'=->,所以()0x ϕ'=在()2,-+∞上有唯一的实根0x ,且()01,0x ∈-.当02x x -<<时,()0x ϕ'<,当0x x >时,()0x ϕ'>,所以()x ϕ在()02,x -上递减,在()0,x +∞上递增,所以当0x x =时,()x ϕ取得最小值.由()00x ϕ'=可得001e 02x x -=+,即()00ln 2x x +=-.于是()()()0200000011e ln 2022x x x x x x x ϕ+=-+=+=>++,于是()()00x x ϕϕ≥>. 综上所述,当2m ≤时,()0f x >.法3:当2m ≤,(),x m ∈-+∞时,()()ln ln 2x m x +≤+,于是()()e ln 2x f x x ≥-+,所以只要证明()e ln 20x x -+>(2x >-),就能证明当2m ≤时,()0f x >.由ln 1x x ≤-(0x >)可得()ln 21x x +≤+(2x >-),又因为e 1x x ≥+(x ∈R ),且两个不等号不能同时成立,所以()e ln 2x x >+,即()e ln 20x x -+>(2x >-),所以当2m ≤时,()0f x >.【点评】法1与法2中出现的0x 的具体数值是无法求解的,只能求出其范围,我们把这种零点称为“隐性零点”.法2比法1简单,这是因为利用了函数单调性将命题()e ln 0x x m -+>模块2 练习巩固 整合提升练习1:设函数()2e ln x f x a x =-.(1)讨论()f x 的导函数()f x '的零点的个数;(2)证明:当0a >时,()22lnf x a a a≥+. 【解析】(1)()f x 的定义域为()0,+∞,()22e x af x x'=-. ()f x '的零点的个数⇔22e x x a =的根的个数⇔()22e x g x x =与y a =在()0,+∞上的交点的个数.因为()()2221e 0x g x x '=+>,所以()g x 在()0,+∞上递增,又因为()00g =,x →+∞时,()g x →+∞,所以当0a ≤时,()g x 与y a =没有交点,当0a >时,()g x 与y a =有一个交点.综上所述,当0a ≤时,()f x '的零点个数为0,当0a >时,()f x '的零点个数为1. 【证明】(2)由(1)可知,()f x '在()0,+∞上有唯一的零点0x ,当00x x <<时,()0f x '<,当0x x >时,()0f x '>,所以()f x 在()00,x 上递减,在()0,x +∞上递增,所以当0x x =时,()f x 取得最小值,且最小值为()0f x .因为0202e 0x a x -=,所以020e 2x a x =,00ln ln 22ax x =-,所以()020000002e ln ln 22ln 2ln 2222x a a aa f x a x a x ax a a a x x a ⎛⎫=-=--=+-≥+ ⎪⎝⎭. 练习2:设函数()2e 2ln x f x k x x x ⎛⎫=-+ ⎪⎝⎭(k 为常数,e 2.71828=⋅⋅⋅是自然对数的底数).(1)当0k ≤时,求函数()f x 的单调区间;(2)若函数()f x 在()0,2内存在两个极值点,求k 的取值范围.【解析】(1)函数()f x 的定义域为()0,+∞,()32e 2e 21x x x f x k x xx -⎛⎫'=--+= ⎪⎝⎭ ()()32e x x kx x --.当0k ≤时,e 0x kx ->,所以当02x <<时,()0f x '<,当2x >时,()0f x '>.所以()f x 的递减区间为()0,2,递增区间为()2,+∞.(2)函数()f x 在()0,2内存在两个极值点()0f x '⇔=在()0,2内有两个不同的根. 法1:问题e 0x kx ⇔-=在()0,2内有两个不同的根.设()e x h x kx =-,则()e x h x k '=-.当1k ≤时,()0h x '>,所以()h x 在()0,2上递增,所以()h x 在()0,2内不存在两个不同的根.当1k >时,由()0h x '>可得ln x k >,由()0h x '<可得ln x k <,所以()h x 的最小值为()()ln 1ln h k k k =-.e 0xkx -=在()0,2内有两个不同的根()()()()20102e 20ln 1ln 00ln 2g g k g k k k k ⎧=>⎪=->⎪⇔⎨=-<⎪⎪<<⎩,解得2e e 2k <<.综上所述,k 的取值范围为2e e,2⎛⎫⎪⎝⎭.法2:问题e x k x ⇔=在()0,2内有两个不同的根y k ⇔=与()e xg x x=在()0,2内有两个不同的交点.()()221ee e xx x x x g x x x--'==,当01x <<时,()0g x '<,当1x >时,()0g x '>.()1e g =,()2e 22g =,当0x +→时,()g x →+∞.画出()g x 在()0,2内的图象,可知要使y k =与()g x 在()0,2内有两个不同的交点,k 的取值范围为2e e,2⎛⎫⎪⎝⎭.练习3:已知函数()e x f x =和()()ln g x x m =+,直线l :y kx b =+过点()1,0P -且与曲线()y f x =相切.(1)求切线l 的方程;(2)若不等式()ln kx b x m +≥+恒成立,求m 的最大值;(3)设()()()F x f x g x =-,若函数()F x 有唯一零点0x ,求证:0112x -<<-.【解析】(1)设直线l 与函数()f x 相切于点()11,e x A x ,则切线方程为()111e e x x y x x -=-,即1111e e e x x x y x x =-+,因为切线过点()1,0P -,所以11110e e e x x x x =--+,解得10x =,所以切线l 的方程为1y x =+.(2)设()()1ln h x x x m =+-+,()1x m h x x m+-'=+.当(),1x m m ∈--时,()0h x '<,当()1,x m ∈-+∞时,()0h x '>,所以()h x 在1x m =-时取极小值,也是最小值.因此,要原不11 等式成立,则()120h m m -=-≥,所以m 的最大值是2.【证明】(3)由题设条件知,函数()1e x F x x m'=-+(x m >-),令()()H x F x '=,则()()21e 0x H x x m '=+>+,于是()H x 在(),m -+∞上单调递增.因为当x m +→-时,()F x '→-∞,当x →+∞时,()F x '→+∞,所以()0F x '=有唯一的实根,设为1x ,则当()1,x m x ∈-时,()0F x '<,当()1,x x ∈+∞时,()0F x '>,于是()F x 有唯一的极小值1x ,也是最小值.当x m +→-时,()F x →+∞,当x →+∞时,()F x →+∞.因此函数()F x 有唯一零点的充要条件是其最小值为0,即()00F x =(01x x =),所以()00e ln 0x x m -+=,又因为001e x x m=+,所以00e 0x x +=.设()e x x x ϕ=+,则()e 10x x ϕ'=+>,所以()x ϕ在(),m -+∞上单调递增,又因为1211e 022ϕ-⎛⎫-=-> ⎪⎝⎭,()1110e ϕ-=-<,由零点存在性定理可知0112x -<<-.。