《球的表面积和体积》

合集下载

《球的表面积和体积》

《球的表面积和体积》

提出问题
怎样求球的表面积和体积? 球既没有底面,也无法象柱、锥、台体一样展成 平面图形,怎样求球的表面积和体积呢?
实验方法
实验:排液法测小球的体积
h
实验方法
实验:排液法测小球的体积

H h
排 开 液 体 的 体
等 于
小 球 的 体 积

曹冲称象
温故知新
回顾圆面积公式的推导
n=6
O
假设将圆n等分,则
S=12×4π×12+6×22-π×12=24+π.
该几何体的表面积是为 24+
反思与感悟
1.由三视图求球与其他几何体的简单组合 体的表面积和体积,关键要弄清组合体的 结构特征和三视图中数据的含义. 2.求解表面积和体积时要避免重叠和交叉.
随堂练习
(1)若球的表面积变为原来的2倍,则半径变为原来的 2 倍.
AA1

3 AA1 2
在ABC中由余弦定理得BC2 AB2 AC2 2AB AC cos 60 3
BC 3 设ABC的外接圆的半径为r,
则 BC 2r 2 r 1 sin 60
外接球的半径R= ( AA1 )2 +r2 = 12 +12 = 2 2
A
R2 r2 d 2
例7.已知过球面上三点A、B、C的截面到球心O的 距离等于球半径的一半,且AB=BC=CA=2cm, 求球的体积,表面积.
解:在RtOOA中,OA2 OO2 OA2 ,
R2 (R )2 (2 3 )2 ,
2
3
R 4. 3
V 4 R3 4 ( 4 )3 256 ;
一、直接法
正方体与球

球的体积与表面积

球的体积与表面积

例2:圆柱的底面直径与高都等于球的直径。求 :圆柱的底面直径与高都等于球的直径。 :(1)球的表面积等于圆柱的侧面积; 证:( )球的表面积等于圆柱的侧面积; (2)球的表面积等于圆柱全面积的三分之二。 )球的表面积等于圆柱全面积的三分之二。
R O A
一个几何体的各面与另一个几何体的 各面都相切,称这两个几何体相切。 各面都相切,称这两个几何体相切。
例2.如图,正方体ABCD-A1B1C1D1的棱长为a,它的各 2.如图,正方体ABCD的棱长为a,它的各 如图 ABCD a, 个顶点都在球O的球面上,问球O的表面积。 个顶点都在球O的球面上,问球O的表面积。
分析:正方体内接于球, 分析:正方体内接于球,则由球和正方 体都是中心对称图形可知, 体都是中心对称图形可知,它们中心重 则正方体对角线与球的直径相等。 合,则正方体对角线与球的直径相等。
O A
O′
R ∵O′O = , ∆ABC是正三角形, 是正三角形, 2
则O′落在∆ABC的中心
C
∴ O′A =
2 2 3 •高 = 3 3
B
已知过球面上三点A、 、 的截面到球心 的截面到球心O的距离 例3:已知过球面上三点 、B、C的截面到球心 的距离 已知过球面上三点 等于球半径的一半, 等于球半径的一半,且AB=BC=CA=2cm,求球的体积, 2 ,求球的体积, 表面积. 表面积.
2
B
正 正方体与球 方 问题: 的接切问题: 体 设正方体棱长为a, 设正方体棱长为 , 的 外 球的半径为R。 球的半径为R。 接 球
D1 C1 B1

D1 A1
•O1
C1 B1
D A B
C
D1B = 2 R =
3a

球的体积与表面积

球的体积与表面积

三、有关几何体的外接球与内切球
与球有关的组合体问题,一种是内切,一
种是外接,解题时要明确切点和接点的位
置,确定有关元素间的数量关系,并作出
过球心的截面图.
1.若一正方体边长为a,则该正方体的外接球 半径与a有什么关系?
思考:若一长方体边长分别为a,b,c则该正 方体的外接球半径与a,b,c有什么关系?
【例2】 已知球的两平行截面的面积为5π 和8π,它们位于球心的同一侧,且相距为1,求
这个球的表面积和体积.
思路分析:利用截面圆的半径、球的半径以
及球心与截面圆心的连线构成的直角三角形
求解.
变式训练 已知过球面上三点A,B,C的C=6,求球的
表面积与球的体积.
2.三个球的半径比是1∶2∶3,那么最大球的体 A.1倍 B.2倍 C.3倍 D.8倍
二、球的截面问题 球面被经过球心的平面截得的圆叫做大圆, 被不经过球心的平面截得的圆叫做小圆,如
图.设小圆圆心为O1,半径为r,球的球心为O,
半径为R,则有: (1)OO1⊥平面☉O1; (2)R2=r2+d2,其中d为两圆的圆心距.
【例 1】 (1)已知球的直径为 8 cm,求它的表面积 和体积; (2)已知球的表面积为 144π,求它的体积; (3)已知球的体积为
������������������ ������
π,求它的表面积.
1.两个球的体积之比为1∶27,那么两个球的表
面积之比为( A ) A.1∶9 B.1∶27 C.1∶3 积是其余两球体积和的( C) D.1∶1
������ 圆锥侧 ������ 球 3 3
=
2 5πℎ 2 4πℎ 2
=
5 2
.④
2.若一正方体边长为a,则该正方体的内切 球半径与a有什么关系?

球的表面积和体积

球的表面积和体积

课堂练习
练习二
2 倍. 1.若球的表面积变为原来的2倍,则半径变为原来的___
1: 2 2 2.若两球表面积之比为1:2,则其体积之比是______.
, 15 3.长方体的共顶点的三个侧面积分别为 3 , 5 , 9 则它的外接球的表面积为_____. 4.将半径为1和2的两个铅球,熔成一个大铅球, 3 12 3 那么这个大铅球的表面积是______.
O
OO O A OA
'2 ' 2
2
A
O’
例题讲解
例1.钢球直径是5cm,求它的体积.
4 4 5 3 125 3 3 V R ( ) cm 3 3 2 6
例题讲解
(变式1)一种空心钢球的质量是142g,外径是5cm, 求它的内径.(钢的密度是7.9g/cm2) 解:设空心钢球的内径为2xcm,则钢球的质量是 4 5 3 4 7.9 [ ( ) x 3 ] 142 3 2 3 5 3 142 3 3 x ( ) 11.3 2 7.9 4
R OO , ABC 是正三角形, 2 2 3 2 3 OA AB r 3 2 3
O A
O
在Rt OOA中, OA2 OO 2 OA2 ,
C
R 2 2 3 2 R 4 . R ( ) ( ) , 3 2 3
2
B
4 4 4 3 256 3 V R ( ) ; 3 3 3 81
课堂小结
熟练掌握球的体积、表面积公式:
4 3 ①V R 3 2 ②S 4R
课堂作业
P28,练习:1.2.3 P29,B组,第1题
由计算器算得:
x 2.24
2 x 4.5

球的表面积和体积

球的表面积和体积
长方体对角线 l2 a2 b2 c2
课后:
➢ 1、复习整理本节课内容和练习,熟记公式; ➢ 2、并完成 课后练习p35-37
A组 1、2、5、7、9、10 B组 2、4
例1:(2010·广州模拟)已知某个几何体的三视图如图(主视图 中的弧线是半圆),根据图中标出的尺寸(单位:cm),可得这个 几何体的体积是________cm3.
视图是圆及其圆心,那么这个几何体的表面
积为( B ) A.
2
B.
C. 3
2
D. 2
主视图
左视图
俯视图
巩固练习:
1.一个正方体的顶点都在球面上,它的棱长
是4cm,求这个球队体积. 14π
点2.解∴一上球析个的的:设长表三球方面条的积体棱半S的的径=4各为长 πrr顶2,分则=1点别(42π均r为).2=在11、22同+、23一2,+则3球2此,∴的球球r的2 面表1上44面,.且积一为个__顶_ . 3.长方体的共顶点的三个侧面面积分别为 3,5,15, 求它的外接球表面积.
A.8 C.12
B.8 2
3
D.12 2
3
1.(2010年湖南卷)下图中的三个直角三角形是一个体积
为20 cm3的几何体的三视图,则h=___4_____cm.
巩固练习:
2.一空间几何体的三视图如图所 示,则该几何体的体积为( )
A.2π+2 3 B.4π+2 3 C.2π+ 2 3
球的表面积 S球面=4πR 2
即球面面积等于它的
O
大圆面积的4倍。
球的体积
V球
4
3
R3
例4.已知圆柱的底面直径与高都等于球的直径。
求证:⑴球的体积等于圆柱体积的 2 。

球的体积与表面积

球的体积与表面积
光学
在光学中,光线在真空中传播时是沿直线传播的,但在通过透镜等光学元件时,光线会发 生折射和反射。透镜的形状通常为球体的一部分,因此了解球体的光学性质对于光学设计 和研究非常重要。
数学物理方程
在数学物理方程中,球对称解是指解函数与球坐标系中的角度变量无关的解。在求解某些 偏微分方程时,如果解函数具有球对称性,则可以大大简化求解过程。
球体与多面体的关系
多面体是指具有多于3个面和顶点的几何体。当多面体的所有面都是三角形时,称为正多面体。正多 面体的每个面都是一个等边三角形,且所有面都是全等的。正多面体的每个顶点都是三条边的交点, 且所有顶点都是全等的。
球体在物理学中的应用
地球物理学
地球是一个近似于球体的天体,其表面积和体积的计算对于地球物理学的研究非常重要。 地球的赤道半径约为6378公里,地球的极半径约为6357公里,地球的平均半径约为6371 公里。
05
球的体积与表面积的实例 分析
地球的半径与表面积
总结词
地球是一个近似于球体的天体,其半径约为6371公里, 表面积约为5.1亿平方公里。
详细描述
地球的半径是通过大地测量和卫星轨道测量相结合的方 法得出的,而地球的表面积则是由球体的表面积公式计 算得出。地球的表面积包括了陆地和水域,是地球表面 各种自然和人文地理现象的重要基础数据。
球表面积的应用
总结词
球表面积的应用非常广泛,包括计算球的表面积、设计球形物体、研究球形物体的物理 特性等。
详细描述
在物理学、工程学、天文学等领域,经常需要计算球体的表面积。例如,在研究地球的 表面温度分布、设计球形建筑或容器等方面,都需要用到球表面积的计算公式。此外, 在研究球形物体的物理特性时,如球的滚动摩擦力、空气阻力等,也需要用到球表面积

球的表面积和体积

球的表面积和体积

1 A.6π cm3 4 C.3π cm3
[答案] A
6.一个长、宽、高分别为 2,1,2 的长方体,则它的外接球的表面 积为________,体积为________.
9 [答案] 9π, π. 2
7.若棱长为 3 的正方体的顶点都在同一球面上, 则该球的表面 积为________.
正方体都是中心对称图形可 知,它们中心重合,则正方体对角线与球的直径相等。
D A O D1 A1 B
C A
D B O D1 A1
C
略解:
RtDB1 D1 D中 : B1 D 2 R,B1 D 2a 3 a 2
C1 B1
C1 B1
(2 R ) 2 a 2 ( 2a ) 2 , 得:R \ S 4R 2 3a 2
略解: Rt D B 1 D 1 D 中 : ( 2 R ) 2 3 2 42+5 2R= 5 2 \ S 4 R 50
2 2
D A D1 A1 D A O B O B
C
C1 B1 C
D1
A1 B1
C1
2.如图,正方体ABCD-A1B1C1D1的棱长为a,它的各个顶 点都在球O的球面上,问球O的表面积。
a2 变题1.如果球O和这个正方体的六个面都相切,则有S=——。
2 2 a 变题2.如果球O和这个正方体的各条棱都相切,则有S=——。
关键: 找正方体的棱长a与球半径R之间的关系
球与正方体的“接切”问题
典型:有三个球,一球切于正方体的各面,一球切 于正方体的各侧棱,一球过正方体的各顶点,求 这三个球的体积之比.
问题2:把直线换成平面,圆换成球,即用一个平 面去截球,情况又怎样呢?
提示:圆面.

球的表面积和体积

球的表面积和体积

球的表面积和体积1.球的表面积公式:S球面=4πR2(R为球半径) 2.球的体积公式:V球=43πR3(R为球半径)球的表面积和体积的计算过球的半径的中点,作一垂直于这条半径的截面,已知此截面的面积为12π cm2,试求此球的表面积.若截面不过球的半径的中点,而是过半径上与球心距离为1的点,且截面与此半径垂直,若此截面的面积为π,试求此球的表面积和体积.球的表面积及体积的应用一个倒立圆锥形容器,它的轴截面是正三角形,在此容器内注入水并且放入一个半径为r的铁球,这时水面恰好和球面相切,问将球从圆锥内取出后,圆锥内水面的高是多少?圆柱形容器的内壁底面半径为5 cm,两个直径为5 cm的玻璃小球都浸没于容器的水中,若取出这两个小球,则容器的水面将下降多少?有关球的切、接问题求棱长为a的正四面体P—ABC的外接球,内切球的体积.有三个球,第一个球内切于正方体的六个面,第二个球与这个正方体各条棱都相切,第三个球过这个正方体的各个顶点,求这三个球的表面积之比.一个球内有相距9 cm的两个平行截面,面积分别为49π cm2和400π cm2,求球的表面积.基础训练1.若球的体积与其表面积数值相等,则球的半径等于( )A.12B .1C .2D .3 2.用过球心的平面将一个球平均分成两个半球,则两个半球的表面积是原来整球表面积的________倍.3.过球的半径的中点,作一垂直于这条半径的截面,已知此截面的面积为48π cm 2,试求此球的表面积和体积.4.正方体的表面积与其外接球表面积的比为( )A .3∶π B.2∶πC.1∶2π D.1∶3π5.(2013·温州高一检测)长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( )A .25π B.50πC.125π D.都不对4.把3个半径为R 的铁球熔成一个底面半径为R 的圆柱,则圆柱的高为( )A .RB .2RC .3RD .4R6.设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2B.73πa 2C.113πa 2 D .5πa 2 7.圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球,则球的半径是________cm.提高训练.1.一只小球放入一长方体容器内,且与共点的三个面相接触.若小球上一点到这三个面的距离分别为4、5、5,则这只小球的半径是 ( )A .3或8B .8或11C .5或8D .3或112.已知A 、B 、C 是球O 的球面上三点,三棱锥O ABC -的高为22,且ABC ∠=60º ,AB =2, BC =4,则球O 的表面积为( )A . 24π B.32π C. 48π D.192π3.一几何体的三视图如右图所示,若主视图和左视图都是等腰直角三角形,直角边长为1,则该几何体外接球的表面积为( )A .4πB .π3C .π2D .π4. 将半径都为1的四个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为 ( ) A.3263+ B. 2+263 C. 4+263 D. 43263+5. 某几何体的三视图如图所示,则该几何体的外接球的球面面积为( )A .5πB .12πC .20πD .8π6.【江西省抚州市临川一中2015届高三10月月考】已知一个空间几何体的三视图如图所示,其中俯视图是边长为6的正三角形,若这个空间几何体存在唯一的一个内切球(与该几何体各个面都相切),则这个几何体的全面积是( )A . 18B .36C . 45D . 547.【浙江省重点中学协作体2015届第一次适应性训练】一几何体的三视图如右图所示,若主视图和左视图都是等腰直角三角形,直角边长为1,则该几何体外接球的表面积为( )A . 4πB .π3C .π2D .π8.【山西省大同市2015届高三学情调研测试】设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( )A.2a πB.237a π C. 2311a π D. 25a π9.【四川省成都实验外国语高2015届高三11月月考】某四面体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此四面体的外接球的表面积为( ) A .3π B .π4 C .π2 D .π2510. 【全国高考新课标(I )理】如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为( )A 、500π3cm 3 B 、866π3cm 3 C 、1372π3cm 3 D 、2048π3cm 311. 矩形ABCD 中,4,3,AB BC ==沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积是( ) A.π12125 B.π9125 C.π6125 D.π3125 12.在半径为R 的球内放入大小相等的4个小球,则小球半径r 的最大值为( ) A. (2-1)R B . (6-2)R C. 1 4R D. 1 3R13. 一个平面截一个球得到直径是6的圆面,球心到这个平面的距离是4,则该球的体积是 .14.三棱锥P ABC -的四个顶点均在同一球面上,其中ABC ∆是正三角形,PA ⊥平面ABC ,26PA AB ==,则该球的体积是 .15.一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是16. 四棱锥ABCD P -的五个顶点都在一个球面上,且底面ABCD 是边长为1的正方形,ABCD PA ⊥,2=PA ,则该球的体积为 _ .17. 过球O 表面上一点A 引三条长度相等的弦AB 、AC 、AD ,且两两夹角都为︒60,若球半径为R ,求弦AB 的长度.19. 【改编自浙江高考题】已知球O 的面上四点A 、B 、C 、D ,DA ABC ⊥平面,AB BC ⊥,DA=AB=BC=3,求球O 的体积.20. 【改编自山东高考题】在等腰梯形ABCD 中,AB=2DC=2,0DAB=60∠,E 为AB 的中点,将ADE ∆与BEC ∆分布沿ED 、EC 向上折起,使A B 、重合于点P ,求三棱锥P-DCE 的外接球的体积.21. 一个正四棱锥的底面边长为2,侧棱长为3,五个顶点都在同一个球面上,求此球的表面积.22. 球面上有3个点,其中任意两点的球面距离都等于大圆周长的61,经过3个点的小圆的周长为π4,求这个球的半径.。

球的表面积和体积

球的表面积和体积

球的表面积和体积1.球的表面积公式:S球面=4πR2(R为球半径) 2.球的体积公式:V球=43πR3(R为球半径)球的表面积和体积的计算过球的半径的中点,作一垂直于这条半径的截面,已知此截面的面积为12π cm2,试求此球的表面积.若截面不过球的半径的中点,而是过半径上与球心距离为1的点,且截面与此半径垂直,若此截面的面积为π,试求此球的表面积和体积.球的表面积及体积的应用一个倒立圆锥形容器,它的轴截面是正三角形,在此容器内注入水并且放入一个半径为r 的铁球,这时水面恰好和球面相切,问将球从圆锥内取出后,圆锥内水面的高是多少?圆柱形容器的内壁底面半径为5 cm,两个直径为5 cm的玻璃小球都浸没于容器的水中,若取出这两个小球,则容器的水面将下降多少?有关球的切、接问题求棱长为a的正四面体P—ABC的外接球,内切球的体积.有三个球,第一个球内切于正方体的六个面,第二个球与这个正方体各条棱都相切,第三个球过这个正方体的各个顶点,求这三个球的表面积之比.一个球内有相距9 cm的两个平行截面,面积分别为49π cm2和400π cm2,求球的表面积.基础训练1.若球的体积与其表面积数值相等,则球的半径等于()A.12B.1C.2 D.32.用过球心的平面将一个球平均分成两个半球,则两个半球的表面积是原来整球表面积的________倍.3.过球的半径的中点,作一垂直于这条半径的截面,已知此截面的面积为48π cm2,试求此球的表面积和体积.4.正方体的表面积与其外接球表面积的比为()A.3∶π B.2∶πC.1∶2π D.1∶3π5.(2013·温州高一检测)长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( )A .25πB .50πC .125πD .都不对4.把3个半径为R 的铁球熔成一个底面半径为R 的圆柱,则圆柱的高为( ) A .R B .2R C .3R D .4R6.设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2 B.73πa 2C.113πa 2 D .5πa 27.圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球,则球的半径是________cm.提高训练.1.一只小球放入一长方体容器内,且与共点的三个面相接触.若小球上一点到这三个面的距离分别为4、5、5,则这只小球的半径是 ( ) A .3或8B .8或11C .5或8D .3或112.已知A 、B 、C 是球O 的球面上三点,三棱锥O ABC -的高为22,且ABC ∠=60º ,AB =2, BC =4,则球O 的表面积为( )A . 24π B.32π C. 48π D.192π3.一几何体的三视图如右图所示,若主视图和左视图都是等腰直角三角形,直角边长为1,则该几何体外接球的表面积为( )A .4πB .π3C .π2D .π4. 将半径都为1的四个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为 ( ) A.3263+ B. 2+263 C. 4+263 D. 43263+5. 某几何体的三视图如图所示,则该几何体的外接球的球面面积为( )A .5πB .12πC .20πD .8π6.【江西省抚州市临川一中2015届高三10月月考】已知一个空间几何体的三视图如图所示,其中俯视图是边长为6的正三角形,若这个空间几何体存在唯一的一个内切球(与该几何体各个面都相切),则这个几何体的全面积是( ) A . 18 B .36C . 45D .547.【浙江省重点中学协作体2015届第一次适应性训练】一几何体的三视图如右图所示,若主视图和左视图都是等腰直角三角形,直角边长为1,则该几何体外接球的表面积为( )A . 4πB .π3C .π2D .π8.【山西省大同市2015届高三学情调研测试】设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( ) A.2a π B. 237a π C. 2311a π D. 25a π9.【四川省成都实验外国语高2015届高三11月月考】某四面体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此四面体的外接球的表面积为( ) A .3π B .π4 C .π2 D .π2510. 【全国高考新课标(I )理】如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为( )A 、500π3cm 3B 、866π3cm 3C 、1372π3cm 3D 、2048π3cm 311. 矩形ABCD 中,4,3,AB BC ==沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积是( ) A.π12125 B.π9125 C.π6125 D.π312512.在半径为R 的球内放入大小相等的4个小球,则小球半径r 的最大值为( )A. (2-1)R B . (6-2)R C. 1 4R D. 1 3R13. 一个平面截一个球得到直径是6的圆面,球心到这个平面的距离是4,则该球的体积是 .14.三棱锥P ABC -的四个顶点均在同一球面上,其中ABC ∆是正三角形,PA ⊥平面ABC ,26PA AB ==,则该球的体积是 .15.一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是16. 四棱锥ABCD P -的五个顶点都在一个球面上,且底面ABCD 是边长为1的正方形,ABCD PA ⊥,2=PA ,则该球的体积为 _ .17. 过球O 表面上一点A 引三条长度相等的弦AB 、AC 、AD ,且两两夹角都为︒60,若球半径为R ,求弦AB 的长度.19. 【改编自浙江高考题】已知球O 的面上四点A 、B 、C 、D ,DA ABC ⊥平面,AB BC ⊥,DA=AB=BC=3,求球O 的体积.20. 【改编自山东高考题】在等腰梯形ABCD 中,AB=2DC=2,0DAB=60∠,E 为AB 的中点,将ADE ∆与BEC ∆分布沿ED 、EC 向上折起,使A B 、重合于点P ,求三棱锥P-DCE 的外接球的体积.21. 一个正四棱锥的底面边长为2,侧棱长为3,五个顶点都在同一个球面上,求此球的表面积.22. 球面上有3个点,其中任意两点的球面距离都等于大圆周长的61,经过3个点的小圆的周长为π4,求这个球的半径.。

球的体积和表面积(附答案)

球的体积和表面积(附答案)

球得体积与表面积[学习目标] 1、记准球得表面积与体积公式,会计算球得表面积与体积、2、能解决与球有关得组合体得计算问题、知识点一 球得体积公式与表面积公式1、球得体积公式V =43πR 3(其中R 为球得半径)、 2、球得表面积公式S =4πR2、思考 球有底面吗?球面能展开成平面图形吗?答 球没有底面,球得表面不能展开成平面、知识点二 球体得截面得特点1、球既就是中心对称得几何体,又就是轴对称得几何体,它得任何截面均为圆,它得三视图也都就是圆、2、利用球半径、截面圆半径、球心到截面得距离构建直角三角形就是把空间问题转化为平面问题得主要途径、题型一 球得表面积与体积例1 (1)已知球得表面积为64π,求它得体积;(2)已知球得体积为错误!π,求它得表面积、解 (1)设球得半径为R ,则4πR2=64π,解得R=4,所以球得体积V=错误!πR 3=错误!π·43=错误!π、(2)设球得半径为R ,则错误!πR 3=错误!π,解得R =5,所以球得表面积S=4πR 2=4π×52=100π、跟踪训练1 一个球得表面积就是16π,则它得体积就是( )A、64π B、错误!C、32πD、错误!答案D解析设球得半径为R,则由题意可知4πR2=16π,故R=2、所以球得半径为2,体积V=错误!πR 3=\f(32,3)π、题型二球得截面问题例2平面α截球O得球面所得圆得半径为1、球心O到平面α得距离为\r(2),则此球得体积为()A、\r(6)π B、4错误!π C、4错误!π D、6错误!π答案 B解析如图,设截面圆得圆心为O′,M为截面圆上任一点,则OO′=错误!,O′M=1、∴OM=错误!=错误!、即球得半径为3、∴V=错误!π(错误!)3=4错误!π、跟踪训练2 已知长方体共顶点得三个侧面面积分别为3,错误!,错误!,则它得外接球表面积为________、答案9π解析如图,就是过长方体得一条体对角线AB得截面,设长方体有公共顶点得三条棱得长分别为x,y,z,则由已知,得错误!解得错误!所以球得半径R=错误!AB=错误!错误!=错误!,所以S球=4πR2=9π、题型三球得组合体与三视图例3 某个几何体得三视图如图所示,求该几何体得表面积与体积、解 由三视图可知该几何体得下部就是棱长为2得正方体,上部就是半径为1得半球,该几何体得表面积为S =12×4π×12+6×22-π×12=24+π、 该几何体得体积为V =23+\f (1,2)×43π×13=8+\f (2π,3)、 跟踪训练3 有三个球,第一个球内切于正方体,第二个球与这个正方体各条棱相切,第三个球过这个正方体得各个顶点,求这三个球得表面积之比、解 设正方体得棱长为a 、①正方体得内切球球心就是正方体得中心,切点就是正方体六个面得中心,经过四个切点及球心作截面,如图(1)所示,则有2r 1=a ,即r 1=错误!,所以S 1=4πr 错误!=πa2、②球与正方体得得各棱得切点在每条棱得中点,过球心作正方体得对角面得截面,如图(2)所示,则2r2=错误!a,即r2=错误!a,所以S2=4πr错误!=2πa2、③正方体得各个顶点在球面上,过球心作正方体得对角面得截面,如图(3)所示,则有2r3=\r(3)a,即r3=错误!a,所以S3=4πr错误!=3πa2、综上可得S1∶S2∶S3=1∶2∶3、轴截面得应用例4有一个倒圆锥形容器,它得轴截面就是一个正三角形,在容器内部放一个半径为r得铁球,并注入水,使水面没过铁球与球正好相切,然后将球取出,求这时容器中水得深度、分析分别表示出取出铁球前后水得体积→由水得体积不变建立等式→求出所求量、解如图,⊙O就是球得最大截面,它内切于△ABC,球得半径为r、设将球取出后,水平面在MN处,MN与CD交于点E、则DO=r,AD=错误!r,AB=AC=BC=2错误!r,∴CD=3r、由图形知V圆锥CE∶V圆锥CD=错误!∶错误!=CE3∶CD3、又∵V圆锥CD=\f(π,3)(3r)2·3r=3πr3,V圆锥CE=V圆锥CD-V球O=3πr3-错误!πr3=错误!πr3,∴错误!∶3πr3=CE3∶(3r)3,∴CE=错误!r、∴球从容器中取出后,水得深度为错误!r、1、直径为6得球得表面积与体积分别就是()A、36π,144π ﻩB、36π,36πC、144π,36πD、144π,144π2、若球得体积与其表面积数值相等,则球得半径等于()A、错误!B、1 C、2D、33、两个半径为1得实心铁球,熔化成一个球,这个大球得半径就是________、4、若球得半径由R增加为2R,则这个球得体积变为原来得________倍,表面积变为原来得________倍、5、某几何体得三视图如图所示,则其表面积为________、一、选择题1、设正方体得表面积为24,那么其外接球得体积就是( )A、错误!π B、错误!C、4错误!π D、32错误!π2、一个正方体得八个顶点都在半径为1得球面上,则正方体得表面积为()A、8B、82C、8错误!D、4错误!3、两个球得半径之比为1∶3,那么两个球得表面积之比为( )A、1∶9 B、1∶27 C、1∶3D、1∶14、设正方体得表面积为24cm2,一个球内切于该正方体,那么这个球得体积就是()A、6π cm3B、\f(32,3)π cm3C、\f(8,3)πcm3D、错误!π cm35、若与球外切得圆台得上、下底面半径分别为r,R,则球得表面积为()A、4π(r+R)2ﻩB、4πr2R2C、4πRrD、π(R+r)26、已知底面边长为1,侧棱长为\r(2)得正四棱柱得各顶点均在同一球面上,则该球得体积为()A、错误!B、4πC、2π D、错误!π7、如图,有一个水平放置得透明无盖得正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器厚度,则球得体积为()A、错误!cm3B、错误!cm3C、错误!cm3ﻩD、错误!cm3二、填空题8、一个几何体得三视图(单位:m)如图所示,则该几何体得体积为________ m3、9、已知一个正方体得所有顶点在一个球面上、若球得体积为\f(9π,2),则正方体得棱长为_____、10、正四棱锥得顶点都在同一球面上,若该棱锥得高为4,底面边长为2,则该球得表面积就是________、11、圆柱形容器内盛有高度为8 cm得水,若放入三个相同得球(球得半径与圆柱得底面半径相同)后,水恰好淹没最上面得球(如图所示),则球得半径就是______cm、三、解答题12、如图所示,半径为R得半圆内得阴影部分以直径AB所在直线为轴,旋转一周得到一几何体,求该几何体得表面积、(其中∠BAC=30°)13、一个高为16得圆锥内接于一个体积为972π得球,在圆锥内又有一个内切球,求:(1)圆锥得侧面积;(2)圆锥得内切球得体积、当堂检测答案1、答案 B解析 球得半径为3,表面积S=4π·32=36π,体积V=\f(4,3)π·33=36π、2、答案 D解析 设球得半径为R,则4πR 2=43πR 3,所以R=3、 3、答案 \r(3,2)解析 设大球得半径为R ,则有错误!πR 3=2×错误!π×13,R 3=2,∴R =32、4、答案 8 4解析 球得半径为R时,球得体积为V 1=错误!πR 3,表面积为S1=4πR 2,半径增加为2R 后,球得体积为V 2=错误!π(2R )3=错误!πR 3,表面积为S2=4π(2R )2=16πR 2、所以\f(V 2,V 1)=错误!=8,错误!=错误!=4,即体积变为原来得8倍,表面积变为原来得4倍、5、答案 3π解析 由三视图可知,该几何体为一个半径为1得半球,其表面积为半个球面面积与截面面积得与,即\f(1,2)×4π+π=3π、 课时精练一、选择题1、答案 C解析 由题意可知,6a2=24,∴a=2、设正方体外接球得半径为R,则\r(3)a=2R,∴R=错误!,∴V球=错误!πR3=4错误!π、2、答案 A解析∵球得半径为1,且正方体内接于球,∴球得直径即为正方体得对角线,即正方体得对角线长为2、不妨设正方体得棱长为a,则有3a2=4,即a2=错误!、∴正方体得表面积为6a2=6×错误!=8、3、答案A解析由表面积公式知,两球得表面积之比为R错误!∶R错误!=1∶9、4、答案 D解析由正方体得表面积为24 cm2,得正方体得棱长为2 cm,故这个球得直径为2cm,故这个球得体积为\f(4,3)π cm3、5、答案C解析方法一如图,设球得半径为r1,则在Rt△CDE中,DE=2r1,CE=R-r,DC=R+r、由勾股定理得4r错误!=(R+r)2-(R-r)2,解得r1=错误!、故球得表面积为S球=4πr 错误!=4πRr、方法二如图,设球心为O,球得半径为r1,连接OA,OB,则在Rt△AOB中,OF就是斜边AB 上得高、由相似三角形得性质得OF2=BF·AF=Rr,即r错误!=Rr,故r1=错误!,故球得表面积为S球=4πRr、6、答案D解析∵正四棱柱得底面边长为1,侧棱长为错误!,∴正四棱柱得体对角线得长为错误!=2、又∵正四棱柱得顶点在同一球面上,∴正四棱柱体对角线恰好就是球得一条直径,∴球得半径R=1、故球得体积为V=错误!πR3=错误!π、7、答案 A解析利用球得截面性质结合直角三角形求解、如图,作出球得一个截面,则MC=8-6=2(cm),BM=\f(1,2)AB=错误!×8=4(cm)、设球得半径为R cm,则R2=OM2+MB2=(R-2)2+42,∴R=5,∴V球=错误!π×53=错误!(cm3)、二、填空题8、答案9π+18解析将三视图还原为实物图后求解、由三视图知,几何体下面就是两个球,球半径为错误!;上面就是长方体,其长、宽、高分别为6、3、1,所以V=错误!π×错误!×2+1×3×6=9π+18、9、答案错误!解析先求出球得半径,再根据正方体得体对角线等于球得直径求棱长、设正方体棱长为a,球半径为R,则错误!πR3=错误!π,∴R=错误!,∴错误!a=3,∴a=错误!、10、答案错误!π解析由已知条件可知,球心在正四棱锥得高所在得直线上、设球得半径为R,球心为O,正四棱锥底面中心为E,则OE=|4-R|,所以(4-R)2+(错误!)2=R2,解得R=错误!、所以球得表面积S=4πR2=\f(81π,4)、11、答案4解析设球得半径为r,则圆柱形容器得高为6r,容积为πr2×6r=6πr3,高度为8 cm得水得体积为8πr2,3个球得体积与为3×错误!πr3=4πr3,由题意得6πr3-8πr2=4πr3,解得r =4(cm)、三、解答题12、解如图所示,过C作CO1⊥AB于O1、在半圆中可得∠BCA=90°,∠BAC=30°,AB=2R,∴AC=错误!R,BC=R,CO1=错误!R,∴S球=4πR2,=π×错误!R×错误!R=错误!πR2,=π×错误!R×R=错误!πR2,∴S几何体表=S球++=错误!πR2+错误!πR2=错误!πR2、故旋转所得几何体得表面积为错误!πR2、13、解(1)如图作轴截面,则等腰三角形CAB内接于⊙O,⊙O1内切于△ABC、设⊙O得半径为R,由题意,得错误!πR3=972π,所以R3=729,R=9,所以CE=18、已知CD=16,所以ED=2、连接AE,因为CE就是直径,所以CA⊥AE,所以CA2=CE·CD=18×16=288,所以CA=12错误!,因为AB⊥CD,所以AD2=CD·DE=16×2=32,所以AD=4错误!,S圆锥侧=π×4\r(2)×12\r(2)=96π、(2)设内切球O1得半径为r,因为△ABC得周长为2×(12错误!+4错误!)=32错误!,所以S△ABC=错误!r·32错误!=错误!×8错误!×16,解得r=4,所以内切球O1得体积V球=错误!πr3=错误!π、。

球的体积与表面积

球的体积与表面积

球的体积与表面积球是一种立体几何体,具有很多特点和属性。

其中,体积和表面积是球的两个重要参数,用于描述球的大小和形态。

本文将详细介绍球的体积和表面积的计算方法,并探讨一些与球相关的实际问题。

一、球的体积球的体积表示了球所占据的空间大小。

对于一个给定的球,其体积可以通过以下公式计算得出:V = (4/3)πr³其中V表示球的体积,π是一个数学常数,约等于3.14159,r表示球的半径。

通过上述公式,我们可以轻松计算出球的体积。

例如,假设球的半径为5cm,那么根据上述公式,可以得到球的体积为:V = (4/3)π(5)³ ≈ 523.6cm³二、球的表面积球的表面积表示了球的外部覆盖面积。

同样,对于一个给定的球,其表面积可以通过以下公式计算得出:A = 4πr²其中A表示球的表面积,π是一个数学常数,约等于3.14159,r表示球的半径。

通过上述公式,我们可以轻松计算出球的表面积。

例如,假设球的半径为5cm,那么根据上述公式,可以得到球的表面积为:A = 4π(5)² ≈ 314.16cm²三、球体积与表面积的关系从球的体积和表面积的计算公式可以看出,球的体积与半径的立方成正比,而表面积与半径的平方成正比。

这意味着球的体积和表面积都与球的半径密切相关。

当球的半径增大时,其体积和表面积也会增大。

例如,当半径由5cm增加到10cm时,根据上述公式计算可以得到新球的体积为:V = (4/3)π(10)³ ≈ 4188.8cm³同时,新球的表面积为:A = 4π(10)² ≈ 1256.64cm²可以看出,新球的体积和表面积较原来的球都有所增大。

这一点在实际应用中十分重要,例如在建筑设计、物体容器容量计算等方面都会涉及到。

四、实际应用举例球的体积和表面积在现实生活中有着广泛的应用,下面举几个例子说明其重要性:1. 建筑设计:在建筑设计中,对于球形结构(如球形穹顶、球形体育馆等),需要计算球的体积和表面积,以合理规划结构和空间。

球的表面积与体积

球的表面积与体积

O1
性质3: 球心到截面的距离d与球的半径R及截面的半径r有下面的关系:
r R d
2
2
垂径定理的拓展
课堂练习
LOGO
1.用与球心距离为1的平面去截球所得的截面面
积为π,则球的表面积为( C )
O1
2.已知过球面上三点A,B,C的截面和球心的
所以球的体积 V= ×π×r =
π.
3
3
4 3 500
(2)设球的半径为 R,由已知得 πR = π,所以 R=5,
3
3
所以球的表面积为 S=4πR 2=4π×52=100π.
LOGO
探究新知
3. 球的截面及其性质
LOGO
问题3 一条直线与圆相交,在圆内的部分是什么图形?
提示:弦(线段).
问题4 把直线换成平面,圆换成球,即用一个平面去截球,截面
第八章
立体几何初步
8.3.3 球表面积和体积
2023/4/1
引 入
圆柱
圆锥
• O'
h
LOGO
圆台
r'• O'
S
l
h
r •O
2πr
l
r •O
h
l
r •O
S圆柱 2 r (r l )
S圆锥 r (r l )
S圆台 (r 2 r 2 rl r l )
V柱体 Sh
和,而这n个“小椎体”的底面积这个就是球的
表面积. 因此,球的体积为
1
1
4
2
V球 S球 R 4 R R R 3 .
3
3
3
2. 球的体积
LOGO

1.3.2球的表面积和体积

1.3.2球的表面积和体积
1.3.2 球的表面积
球的体积和表面积 设球的半径为R,则有体积公式和表面积公式
球的体V积 4: R3
3
R
A
O
球的表面积 S :4R2
B
球的表面积等于球的大圆面积的4倍
例四 如图:圆柱的底面直径与高都等于球的直径。
求证:1、球的体积等于圆柱体积的 2 倍。 3
证明:设球的半径为R,则圆柱的底面半径为R, 高为2R。
则1π(3r)2h=4πr3, 可得h∶r=4∶9.
3
3
8.将一钢球放入底面半径为3 cm的圆柱形玻璃容器
中,水面升高4 cm,则钢球的半径是____3____.
解析 设球的半径为r,
则 36π=4πr3, 3
可得r=3 cm.
7.毛泽东在《送瘟神》中写到:“坐地日行八万 里”.又知地球的体积大约是火星的8倍,则火星的大
13.有三个球,第一个球内切于正方体,第二个球与 这个正方体各条棱相切,第三个球过这个正方体的各 个顶点,求这三个球的表面积之比.
13.有三个球,第一个球内切于正方体,第二个球与 这个正方体各条棱相切,第三个球过这个正方体的各 个顶点,求这三个球的表面积之比.
练习:课本P28 2
1.批评对作品的意义不言而喻。好的 批评如 同灯光 ,指引 着作品 从暗处 走向前 台。近 些年的 诗歌批 评中, 不乏这 样的经 典或中 肯之作 。
融化后不会溢出杯子,怎子,则 必须V圆锥≥V半球,
V 半球=1×4πr3=1×4π×43, 23 23
V 圆锥=1Sh=1πr2h=1π×42×h.
33
3
依题意:1π×42×h≥1×4π×43, 解得h≥8.
3
23
10.如图所示,一个圆锥形的空杯子上放着 一个直径为8 cm的半球形的冰淇淋,请你设计 一种这样的圆锥形杯子(杯口直径等于半球形的 冰淇淋的直径,杯子壁厚忽略不计),使冰淇淋 融化后不会溢出杯子,怎样设计最省材料?

球的体积和表面积

球的体积和表面积

O
C1 B1
例3 如图,圆柱的底面直径与高都等 于球的直径,求证: 2 (1)球的体积等于圆柱体积的 3 ; (2)球的表面积等于圆柱的侧面积.
课堂小结
1.熟练掌握球的体积、表面积公式:
4 3 ①V R 3 ②S 4R 2
2.影响球的表面积及体积的只有一个元素, 就是球的半径.
1. 球的体积 设球的半径为R,它的体积只与半径R 有关,是以R为自变量的函数 定理:半径为R的球的体积是:
4 3 V R 3
2. 球的表面积 设球的半径为R,它的体积由半径R惟 一确定,也是以R为自变量的函数
定理:半径为R的球的表面积是:
S 4R
2
例题讲解
例2.如图,正方体ABCD-A1B1C1D1的棱长为a, 它的各个顶点都在球O的球面上,问球O的表 面积。
分析:正方体内接于球,则由球和正方 体都是中心对称图形可知,它们中心重 合,则正方体对角线与球的直径相等。
D A D1 A1 D A D1 A1 B B1 C O C1 B
C

略 解 :RtB1 D1 D中 : ( 2 R ) a ( 2a ) , 得
2 2 2
3 R a 2 S 4R 2 3a 2

球的体积和表面积(附答案)

球的体积和表面积(附答案)

球的体积和表面积[学习目标] 1.记准球的表面积和体积公式,会计算球的表面积和体积.2.能解决与球有关的组合体的计算问题.知识点一 球的体积公式与表面积公式 1.球的体积公式V =43πR 3(其中R 为球的半径). 2.球的表面积公式S =4πR 2.思考 球有底面吗球面能展开成平面图形吗 答 球没有底面,球的表面不能展开成平面. 知识点二 球体的截面的特点1.球既是中心对称的几何体,又是轴对称的几何体,它的任何截面均为圆,它的三视图也都是圆.2.利用球半径、截面圆半径、球心到截面的距离构建直角三角形是把空间问题转化为平面问题的主要途径.题型一 球的表面积和体积例1 (1)已知球的表面积为64π,求它的体积; (2)已知球的体积为5003π,求它的表面积.解 (1)设球的半径为R ,则4πR 2=64π,解得R =4, 所以球的体积V =43πR 3=43π·43=2563π.(2)设球的半径为R ,则43πR 3=5003π,解得R =5, 所以球的表面积S =4πR 2=4π×52=100π.跟踪训练1 一个球的表面积是16π,则它的体积是( ) π π 答案 D解析 设球的半径为R ,则由题意可知4πR 2=16π,故R =2.所以球的半径为2,体积V =43πR 3=323π.题型二 球的截面问题例2 平面α截球O 的球面所得圆的半径为1.球心O 到平面α的距离为2,则此球的体积为( ) π π π π 答案 B解析 如图,设截面圆的圆心为O ′, M 为截面圆上任一点, 则OO ′=2,O ′M =1. ∴OM =22+1= 3.即球的半径为 3. ∴V =43π(3)3=43π.跟踪训练2 已知长方体共顶点的三个侧面面积分别为3,5,15,则它的外接球表面积为________.答案 9π解析 如图,是过长方体的一条体对角线AB 的截面,设长方体有公共顶点的三条棱的长分别为x ,y ,z ,则由已知,得⎩⎨⎧xy =3,yz =5,zx =15,解得⎩⎨⎧x =3,y =1,z = 5.所以球的半径R =12AB =12x 2+y 2+z 2=32, 所以S 球=4πR 2=9π.题型三 球的组合体与三视图例3 某个几何体的三视图如图所示,求该几何体的表面积和体积.解 由三视图可知该几何体的下部是棱长为2的正方体,上部是半径为1的半球,该几何体的表面积为S =12×4π×12+6×22-π×12=24+π. 该几何体的体积为 V =23+12×43π×13=8+2π3.跟踪训练3 有三个球,第一个球内切于正方体,第二个球与这个正方体各条棱相切,第三个球过这个正方体的各个顶点,求这三个球的表面积之比.解 设正方体的棱长为a .①正方体的内切球球心是正方体的中心, 切点是正方体六个面的中心, 经过四个切点及球心作截面, 如图(1)所示,则有2r 1=a , 即r 1=a 2,所以S 1=4πr 21=πa 2.②球与正方体的的各棱的切点在每条棱的中点,过球心作正方体的对角面得截面, 如图(2)所示,则2r 2=2a ,即r 2=22a ,所以S 2=4πr 22=2πa 2.③正方体的各个顶点在球面上,过球心作正方体的对角面得截面, 如图(3)所示,则有2r 3=3a ,即r 3=32a ,所以S 3=4πr 23=3πa 2.综上可得S 1∶S 2∶S 3=1∶2∶3.轴截面的应用例4 有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内部放一个半径为r 的铁球,并注入水,使水面没过铁球和球正好相切,然后将球取出,求这时容器中水的深度. 分析 分别表示出取出铁球前后水的体积→由水的体积不变建立等式→求出所求量. 解 如图,⊙O 是球的最大截面,它内切于△ABC ,球的半径为r .设将球取出后,水平面在MN 处,MN 与CD 交于点E .则DO =r ,AD =3r ,AB =AC =BC =23r , ∴CD =3r .由图形知V 圆锥CE ∶V 圆锥CD =⎝⎛⎭⎫13π·ME 2·CE ∶⎝⎛⎭⎫13π·AD 2·CD =CE 3∶CD 3.又∵V 圆锥CD =π3(3r )2·3r =3πr 3,V 圆锥CE =V 圆锥CD -V 球O =3πr 3-43πr 3=53πr 3, ∴5πr 33∶3πr 3=CE 3∶(3r )3,∴CE =315r . ∴球从容器中取出后,水的深度为315r .1.直径为6的球的表面积和体积分别是( ) π,144π π,36π π,36ππ,144π2.若球的体积与其表面积数值相等,则球的半径等于()3.两个半径为1的实心铁球,熔化成一个球,这个大球的半径是________.4.若球的半径由R增加为2R,则这个球的体积变为原来的________倍,表面积变为原来的________倍.5.某几何体的三视图如图所示,则其表面积为________.一、选择题1.设正方体的表面积为24,那么其外接球的体积是()π π π2.一个正方体的八个顶点都在半径为1的球面上,则正方体的表面积为()3.两个球的半径之比为1∶3,那么两个球的表面积之比为()∶9 ∶27 ∶3 ∶14.设正方体的表面积为24 cm2,一个球内切于该正方体,那么这个球的体积是()π cm3π cm3 π cm3π cm35.若与球外切的圆台的上、下底面半径分别为r ,R ,则球的表面积为( ) π(r +R )2 πr 2R 2 πRrD.π(R +r )26.已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一球面上,则该球的体积为( )π π π7.如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器厚度,则球的体积为( ) cm 3 cm 3 372π,3) cm 3 048π,3) cm 3二、填空题8.一个几何体的三视图(单位:m)如图所示,则该几何体的体积为________ m 3.9.已知一个正方体的所有顶点在一个球面上.若球的体积为9π2,则正方体的棱长为_____. 10.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积是________.11.圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是______cm.三、解答题12.如图所示,半径为R的半圆内的阴影部分以直径AB所在直线为轴,旋转一周得到一几何体,求该几何体的表面积.(其中∠BAC=30°)13.一个高为16的圆锥内接于一个体积为972π的球,在圆锥内又有一个内切球,求:(1)圆锥的侧面积;(2)圆锥的内切球的体积.当堂检测答案1.答案B解析 球的半径为3,表面积S =4π·32=36π,体积V =43π·33=36π. 2.答案 D解析 设球的半径为R ,则4πR 2=43πR 3,所以R =3.3.答案 32解析 设大球的半径为R ,则有43πR 3=2×43π×13, R 3=2,∴R =32. 4.答案 8 4解析 球的半径为R 时,球的体积为V 1=43πR 3,表面积为S 1=4πR 2,半径增加为2R 后,球的体积为V 2=43π(2R )3=323πR 3,表面积为S 2=4π(2R )2=16πR 2. 所以V 2V 1=323πR 343πR 3=8,S 2S 1=16πR 24πR 2=4,即体积变为原来的8倍,表面积变为原来的4倍. 5.答案 3π解析 由三视图可知,该几何体为一个半径为1的半球,其表面积为半个球面面积与截面面积的和,即12×4π+π=3π.课时精练一、选择题 1.答案 C解析 由题意可知,6a 2=24,∴a =2. 设正方体外接球的半径为R ,则3a =2R ,∴R =3,∴V 球=43πR 3=43π. 2.答案 A解析 ∵球的半径为1,且正方体内接于球,∴球的直径即为正方体的对角线,即正方体的对角线长为2.不妨设正方体的棱长为a ,则有3a 2=4,即a 2=43.∴正方体的表面积为6a 2=6×43=8. 3.答案 A解析 由表面积公式知,两球的表面积之比为R 21∶R 22=1∶9.4.答案 D解析 由正方体的表面积为24 cm 2,得正方体的棱长为2 cm ,故这个球的直径为2cm ,故这个球的体积为43π cm 3. 5.答案 C解析 方法一 如图,设球的半径为r 1,则在Rt △CDE 中,DE =2r 1,CE =R -r ,DC =R +r .由勾股定理得4r 21=(R +r )2-(R -r )2,解得r 1=Rr .故球的表面积为S 球=4πr 21=4πRr .方法二 如图,设球心为O ,球的半径为r 1,连接OA ,OB ,则在Rt △AOB中,OF 是斜边AB 上的高.由相似三角形的性质得OF 2=BF ·AF =Rr ,即r 21=Rr ,故r 1=Rr ,故球的表面积为S 球=4πRr . 6.答案 D解析 ∵正四棱柱的底面边长为1,侧棱长为2,∴正四棱柱的体对角线的长为1+1+22=2.又∵正四棱柱的顶点在同一球面上,∴正四棱柱体对角线恰好是球的一条直径,∴球的半径R =1.故球的体积为V =43πR 3=43π. 7.答案 A 解析 利用球的截面性质结合直角三角形求解.如图,作出球的一个截面,则MC =8-6=2(cm),BM =12AB =12×8=4(cm).设球的半径为R cm ,则R 2=OM 2+MB 2=(R -2)2+42,∴R =5,∴V 球=43π×53=500π3(cm 3).二、填空题8.答案 9π+18解析 将三视图还原为实物图后求解.由三视图知,几何体下面是两个球,球半径为32;上面是长方体,其长、宽、高分别为6、3、1,所以V =43π×278×2+1×3×6=9π+18.9.答案 3解析 先求出球的半径,再根据正方体的体对角线等于球的直径求棱长.设正方体棱长为a ,球半径为R ,则43πR 3=92π,∴R =32,∴3a =3,∴a = 3.10.答案 814π解析 由已知条件可知,球心在正四棱锥的高所在的直线上.设球的半径为R ,球心为O ,正四棱锥底面中心为E ,则OE =|4-R |,所以(4-R )2+(2)2=R 2,解得R =94.所以球的表面积S =4πR 2=81π4.11.答案 4解析 设球的半径为r ,则圆柱形容器的高为6r ,容积为πr 2×6r =6πr 3,高度为8cm 的水的体积为8πr 2,3个球的体积和为3×43πr 3=4πr 3,由题意得6πr 3-8πr 2=4πr 3,解得r =4(cm).三、解答题12.解 如图所示,过C 作CO 1⊥AB 于O 1.在半圆中可得∠BCA =90°,∠BAC =30°,AB =2R ,∴AC =3R ,BC =R ,CO 1=32R ,∴S 球=4πR 2,1AO S 圆锥侧=π×32R ×3R =32πR 2,1BO S 圆锥侧=π×32R ×R =32πR 2,∴S 几何体表=S 球+1AO S 圆锥侧+1BO S 圆锥侧 =112πR 2+32πR 2=11+32πR 2.故旋转所得几何体的表面积为11+32πR 2.13.解 (1)如图作轴截面,则等腰三角形CAB 内接于⊙O ,⊙O 1内切于△ABC .设⊙O 的半径为R ,由题意,得43πR 3=972π,所以R 3=729,R =9,所以CE =18.已知CD =16,所以ED =2.连接AE ,因为CE 是直径,所以CA ⊥AE ,所以CA 2=CE ·CD =18×16=288,所以CA =122, 因为AB ⊥CD ,所以AD 2=CD ·DE =16×2=32, 所以AD =42,S 圆锥侧=π×42×122=96π.(2)设内切球O 1的半径为r ,因为△ABC 的周长为2×(122+42)=322,所以S △ABC =12r ·322=12×82×16,解得r =4,所以内切球O 1的体积V 球=43πr 3=2563π.。

球的表面积和体积

球的表面积和体积

球的表面积和体积1.球的表面积公式:S球面=4πR2(R为球半径) 2.球的体积公式:V球=43πR3(R为球半径)球的表面积和体积的计算过球的半径的中点,作一垂直于这条半径的截面,已知此截面的面积为12π cm2,试求此球的表面积.若截面不过球的半径的中点,而是过半径上与球心距离为1的点,且截面与此半径垂直,若此截面的面积为π,试求此球的表面积和体积.球的表面积及体积的应用一个倒立圆锥形容器,它的轴截面是正三角形,在此容器内注入水并且放入一个半径为r 的铁球,这时水面恰好和球面相切,问将球从圆锥内取出后,圆锥内水面的高是多少?圆柱形容器的内壁底面半径为5 cm,两个直径为5 cm的玻璃小球都浸没于容器的水中,若取出这两个小球,则容器的水面将下降多少?有关球的切、接问题求棱长为a的正四面体P—ABC的外接球,内切球的体积.有三个球,第一个球内切于正方体的六个面,第二个球与这个正方体各条棱都相切,第三个球过这个正方体的各个顶点,求这三个球的表面积之比.一个球内有相距9 cm的两个平行截面,面积分别为49π cm2和400π cm2,求球的表面积.基础训练1.若球的体积与其表面积数值相等,则球的半径等于( )A.12B.1C.2 D.32.用过球心的平面将一个球平均分成两个半球,则两个半球的表面积是原来整球表面积的________倍.3.过球的半径的中点,作一垂直于这条半径的截面,已知此截面的面积为48π cm 2,试求此球的表面积和体积.4.正方体的表面积与其外接球表面积的比为( )A .3∶π B.2∶πC.1∶2π D.1∶3π5.(2013·温州高一检测)长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( )A .25π B.50πC.125π D.都不对4.把3个半径为R 的铁球熔成一个底面半径为R 的圆柱,则圆柱的高为( )A .RB .2RC .3RD .4R6.设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2 B.73πa 2C.113πa 2 D .5πa 2 7.圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球,则球的半径是________cm.提高训练.1.一只小球放入一长方体容器内,且与共点的三个面相接触.若小球上一点到这三个面的距离分别为4、5、5,则这只小球的半径是 ( )A .3或8B .8或11C .5或8D .3或112.已知A 、B 、C 是球O 的球面上三点,三棱锥O ABC -的高为22,且ABC ∠=60º ,AB =2, BC =4,则球O 的表面积为( )A . 24π B.32π C. 48π D.192π3.一几何体的三视图如右图所示,若主视图和左视图都是等腰直角三角形,直角边长为1,则该几何体外接球的表面积为( )A .4πB .π3C .π2D .π4. 将半径都为1的四个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为 ( ) A.3263+ B. 2+263 C. 4+263 D. 43263+5. 某几何体的三视图如图所示,则该几何体的外接球的球面面积为( )A .5πB .12πC .20πD .8π6.【江西省抚州市临川一中2015届高三10月月考】已知一个空间几何体的三视图如图所示,其中俯视图是边长为6的正三角形,若这个空间几何体存在唯一的一个内切球(与该几何体各个面都相切),则这个几何体的全面积是( )A . 18B .36C . 45D . 547.【浙江省重点中学协作体2015届第一次适应性训练】一几何体的三视图如右图所示,若主视图和左视图都是等腰直角三角形,直角边长为1,则该几何体外接球的表面积为( )A . 4πB .π3C .π2D .π8.【山西省大同市2015届高三学情调研测试】设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( )A.2a πB. 237a πC. 2311a π D. 25a π9.【四川省成都实验外国语高2015届高三11月月考】某四面体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此四面体的外接球的表面积为( )A .3πB .π4C .π2D .π2510. 【全国高考新课标(I )理】如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为( )A 、500π3cm 3 B 、866π3cm 3 C 、1372π3cm 3 D 、2048π3cm 311. 矩形ABCD 中,4,3,AB BC ==沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积是( ) A.π12125 B.π9125 C.π6125 D.π3125 12.在半径为R 的球内放入大小相等的4个小球,则小球半径r 的最大值为( ) A. (2-1)R B . (6-2)R C. 1 4R D. 1 3R13. 一个平面截一个球得到直径是6的圆面,球心到这个平面的距离是4,则该球的体积是 .14.三棱锥P ABC -的四个顶点均在同一球面上,其中ABC ∆是正三角形,PA ⊥平面ABC ,26PA AB ==,则该球的体积是 .15.一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是16. 四棱锥ABCD P -的五个顶点都在一个球面上,且底面ABCD 是边长为1的正方形,ABCD PA ⊥,2=PA ,则该球的体积为 _ .17. 过球O 表面上一点A 引三条长度相等的弦AB 、AC 、AD ,且两两夹角都为︒60,若球半径为R ,求弦AB 的长度.19. 【改编自浙江高考题】已知球O 的面上四点A 、B 、C 、D ,DA ABC ⊥平面,AB BC ⊥,DA=AB=BC=3,求球O 的体积.20. 【改编自山东高考题】在等腰梯形ABCD 中,AB=2DC=2,0DAB=60∠,E 为AB 的中点,将ADE ∆与BEC ∆分布沿ED 、EC 向上折起,使A B 、重合于点P ,求三棱锥P-DCE 的外接球的体积.21. 一个正四棱锥的底面边长为2,侧棱长为3,五个顶点都在同一个球面上,求此球的表面积.22. 球面上有3个点,其中任意两点的球面距离都等于大圆周长的61,经过3个点的小圆的周长为π4,求这个球的半径.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1.钢球半径是5cm,求它的表面积和体 积.
解: S 4R2 4 52 100cm2
V 4 R3 4 53 500 cm3
3
3
3
答:球的表面积和体积分别为 100cm2 ,500cm3
3
例2 (1)已知一个球的表面积为100 ,求此球的
半径R.
(2)已知一个球的体积为36 ,求此球的半径R。
一、复习回顾,引入新课
请同学们根据下面的问题,回顾前面学习的 内容,然后找同学黑板展示。
问题:柱体、锥体、台体的体积公式分别是 什么?圆柱、圆锥、圆台的表面积公式分别是 什么?
球是一个旋转体,它也有体积和表面积, 怎样求一个球的体积和表面积?这就是我们今 天一起学习的内容---球的体积和表面积。
二、自主合作 探索规律
❖ 3把半径分别为3,4,5的三个铁球,熔成一个大球,
求大球的半径。
底面直径与高都等于球的直径. 求证:(1) 球的体积等于圆柱体积的
(2) 球的表面积等于圆柱的侧面2积
3
证明:(1) 设球的半径为R,则圆柱的
底面半径为R,高为2R.
因为 V球 所以,
4 3
V球
R3
2 3
, V圆柱
V圆柱 .
R2
2R
2 R3.
(2) 因为 S球 4 R2
S圆柱侧 2 R 2R 4 R2
所以, S球 S圆柱侧
作业: P28练习:1,2,3.
解:(1)
R
S 100 5
4 4
(2)
R 3 3V 3 3 36 3
4
4
三、迁移深化 学以致用
❖ 请同学们独立完成下列题目,自主回答。
❖ 1 已知球的直径为4,则它的表面积为__1_6__,体积
为___3_2__.
3
❖ 2球的半径伸长为原来的2倍,表面积变为原来的 ___4__倍,体积变为原来的___8__倍.如果半径变为 原来的3倍,4倍呢?能否总结出规律?
请同学们阅读课本27页,回答以下几个问题。
思考1:从球的结构特征分析,球的大小由哪个量
所确定?
R
思考2:半径为R的球的体积和表面积如何表示?
V 4 R3
3
S 4R2
思考3:已知体积V,怎么表示半径R?已知表
面积S,如何表示半径R?
3V R3
4
R S
4
请同学们先独立思考,然后在练习本上写出解 答过程,同桌互改。
相关文档
最新文档