不锈钢裂纹
热轧不锈钢边裂原因
热轧不锈钢边裂原因
热轧不锈钢边裂的原因可以有多种,具体原因可能与材料质量、热处理条件、工艺参数等有关。
以下是一些可能的原因:
1. 内应力超过材料强度:热轧过程中,由于温度梯度等原因,材料会产生内应力。
如果内应力超过了材料的强度,就会导致边部裂纹的产生。
2. 瓦斯孔:热轧过程中,材料中的气体可能形成瓦斯孔,这些瓦斯孔会导致材料的脆性增加,从而容易发生边裂。
3. 冷却不均匀:热轧后,材料的冷却过程可能不均匀,导致边部的温度和冷却速度差异较大。
这会引起不均匀的收缩应力,从而导致边部裂纹的产生。
4. 厚度不均匀:热轧过程中,材料的厚度可能存在不均匀现象,较厚的部分冷却速度较慢,而较薄的部分冷却速度较快。
这也会引起收缩应力不均匀,从而导致边部裂纹的产生。
5. 冷却介质不当:热轧过程中所采用的冷却介质可能不适合材料的冷却速度要求,过快或过慢的冷却速度都可能导致边部裂纹的产生。
总之,热轧不锈钢边裂的原因是多方面的,需要考虑材料、工艺、设备等因素,提高生产工艺的稳定性和控制能力,以减少边裂的发生。
不锈钢拉伸缺陷
不锈钢拉伸缺陷
不锈钢拉伸缺陷是指在拉伸过程中,不锈钢材料出现的各种缺陷。
主要包括以下几类:
1. 纵向裂纹:不锈钢在拉伸过程中,如果受到过大的拉力或者
过快的拉速度,就会出现纵向裂纹。
这种缺陷不仅会降低不锈钢的强度和韧性,还可能导致材料断裂。
2. 横向裂纹:不锈钢在拉伸过程中,如果受到过大的横向应力,就会出现横向裂纹。
这种缺陷通常发生在板材或带钢等扁平材料中。
3. 毛刺:在不锈钢拉伸过程中,如果材料表面存在毛刺或划痕,就会导致拉伸过程中出现毛刺缺陷。
这种缺陷不仅会影响不锈钢的美观度,还可能导致材料表面损伤。
4. 拉伸不均匀:不锈钢在拉伸过程中,如果拉力不均匀或者应
力集中,就会导致拉伸不均匀缺陷。
这种缺陷会影响不锈钢的力学性能和使用寿命。
5. 表面氧化:不锈钢在拉伸过程中,如果材料表面存在氧化或
者腐蚀,就会导致表面氧化缺陷。
这种缺陷会影响不锈钢的耐腐蚀性和美观度。
为了避免不锈钢拉伸缺陷的发生,需要注意以下几点:
1. 控制拉伸速度和拉力大小。
2. 保持材料表面的平整度和光洁度。
3. 采用优质的不锈钢材料。
4. 加强检测和控制,及时发现和修复缺陷。
不锈钢焊接热裂的原因及解决方法
一、304不锈钢是奥氏体不锈钢,相当于1Cr19Ni9.SUS304不锈钢是0Gr18Ni9的材质,产生热裂纹的可能性比较大,奥氏体不锈钢有一个特点:他在900多度以上时是奥氏体,900多度以下至600多度时是马氏体,温度继续下降,就又转变为奥氏体。
焊接时接口开裂就是在马氏体阶段开裂的。
解决的方法:减小一下焊接时的热输入量,加大焊后水冷却的工艺,使其在马氏体阶段的时间缩短,避免焊件在敏感的温度区间停留,接口就不会裂了。
二、不锈钢的焊接1、奥氏体不锈钢的焊接不锈钢是不锈钢和耐酸钢的总称,钢中所加合金元素在10%(质量分数)以上,属于高合金钢。
它包括奥氏体型、马氏体型、铁素体型、奥氏体-马氏体型和沉淀硬化型五类。
焊接奥氏体不锈钢(0Cr18Ni9、00Cr18Ni9、0Cr18Ni12Mo2、0 0Cr18Ni12Mo2、0Cr18Ni9Ti、1Cr18Ni9Ti、1Cr18Ni12Mo3Ti 等)主要问题是热裂纹――焊接过程中,焊缝和热影响区金属冷却到固相线附近的高温区所产生的焊接热裂纹、脆化、晶间腐蚀――沿金属晶粒边界发生的腐蚀破坏现象。
和应力腐蚀开裂――金属材料(包括焊接接头)在一定温度下受腐蚀介质和拉应力的共同作用而产生的裂纹。
此外,因导热性差,线膨胀系数大,焊接变形也大。
1)热裂纹与结构钢相比,它的热裂纹倾向较大,在焊缝及热影响区均可能出现热裂纹。
最常见的是焊缝结晶裂纹--在焊缝凝固过程的后期所形成的焊接裂纹,时在热影响区和多层焊层间还会出现液化裂纹。
含镍量越高,产生热烈倾向越大,而且越不容易控制。
;防止措施:a.严格限制硫、磷等杂质的含量。
b.调整焊缝金属组织,以奥氏体为主的γ+δ双相组织具有良好抗裂性。
c.调整焊缝金属合金成分,在单相稳定奥氏钢中适当增加锰、碳、氮的含量。
d.采用小线能量及小截面焊道2)接头脆化奥氏体钢焊接接头的低温脆化和高温脆化是值得注意的问题防止措施:a.严格控制焊缝中铁素体含量(体积分数)2~7%,因为475℃脆化和δ相脆化易出现在铁素体中。
304不锈钢 硫化氢气体 封头 裂纹
304不锈钢硫化氢气体封头裂纹
摘要:
1.304 不锈钢的概述
2.硫化氢气体的性质和影响
3.封头的作用和类型
4.304 不锈钢封头在硫化氢气体中的应用
5.裂纹的产生原因及预防措施
正文:
一、304 不锈钢的概述
304 不锈钢是一种常见的不锈钢材料,因其良好的耐腐蚀性能和焊接性能,被广泛应用于石油、化工、食品等工业领域。
二、硫化氢气体的性质和影响
硫化氢(H2S)是一种无色、有毒、具有臭鸡蛋气味的气体。
在工业生产中,硫化氢常出现在石油、化工等领域。
硫化氢对金属材料具有较强的腐蚀性,尤其是对不锈钢。
三、封头的作用和类型
封头是压力容器的一个部件,通常用于封闭容器的顶部,以保证容器内部压力稳定。
根据封头的形状和结构,封头可分为多种类型,如平封头、球封头、锥形封头等。
四、304 不锈钢封头在硫化氢气体中的应用
由于304 不锈钢的耐腐蚀性能较好,所以在含有硫化氢气体的环境中,304 不锈钢封头被广泛应用。
然而,硫化氢气体对304 不锈钢仍具有一定的
腐蚀性,长时间接触会导致不锈钢封头出现裂纹。
五、裂纹的产生原因及预防措施
裂纹的产生原因主要有以下几点:1.硫化氢气体的腐蚀作用;2.应力集中;3.制造和安装过程中的缺陷。
为防止裂纹的产生,可采取以下预防措施:1.选择合适的材料和厚度;2.优化设计,减小应力集中;3.加强制造和安装过程的质量控制;4.定期检查和维护。
不锈钢无缝管焊接裂纹的原因
不锈钢无缝管焊接裂纹的原因不锈钢无缝管焊接裂纹的原因可能包括以下几点:1.热裂纹:热裂纹是焊接冷却过程中高温阶段产生的裂纹,主要存在于焊接金属中,少量存在于近缝部。
分为结晶(凝固)裂纹、液化裂纹和多边化裂纹。
其中晶体裂纹是常见的裂纹,主要发生在杂质元素多的碳钢焊接中。
2.再热裂纹:厚板焊接结构消除应力处理过程中,在热影响区的粗晶区存在不同程度的应力集中时,由于应力松弛所产生附加变形大于该部位的蠕变塑性,则产生再热裂纹。
产生温度通常在为550℃~650℃。
3.冷裂纹:焊接接头冷却到较低温度下(对于钢来说在M。
温度以下)产生的裂纹称为冷裂纹。
冷裂纹可在焊后立即出现,也有可能经过一段时间(几小时、几天甚至更长时间)才出现,这种裂纹又称延迟裂纹,它是冷裂纹中比较普遍的一种形态,具有更大的危险性。
4.应力腐蚀裂缝:某些焊接结构(如容器和管道等),在腐蚀介质和应力的共同作用下产生的延迟开裂;在任何温度下可发生;裂纹发生的位置通常位于焊缝和热影响区;裂纹形态为沿晶或穿晶。
5.层状撕裂:主要是由于钢板中存在分层的夹杂物(沿轧制方向),在焊接时产生垂直于轧制方向的应力,致使在热影响区或稍远的地方,产生“台阶”式层状开裂;产生温度通常在约400℃以下;裂纹发生的位置通常位于热影响区附近;裂纹形态为穿晶或沿晶。
6.工艺不良:不锈钢焊接过程中,如果焊接参数设置不当、热输入过大或者焊接速度过快,都可能导致焊接区域内应力过高,从而导致裂纹的产生。
7.材质问题:不锈钢本身性质不佳,如果存在夹杂物、气孔等缺陷,那么焊接时这些缺陷就会聚集在一起,形成较大的缺陷区域,从而导致裂纹的产生。
8.环境因素影响:不锈钢焊接时,环境的氧气、水分等物质会对焊接区域的化学成分产生影响。
如果焊接区域处于高温高压环境下,比如制备压力容器时,热应力增大,易导致裂纹的产生。
为了防止不锈钢无缝管焊接出现裂纹,应严格按照操作规程进行焊接,选用合格的焊材,避免在环境恶劣的条件下进行焊接。
304不锈钢 硫化氢气体 封头 裂纹
304不锈钢硫化氢气体封头裂纹摘要:一、304不锈钢简介1.304不锈钢的特性2.304不锈钢的应用领域二、硫化氢气体的危害1.硫化氢气体的性质2.硫化氢气体对金属材料的腐蚀作用三、304不锈钢在硫化氢气体环境下的表现1.304不锈钢的耐腐蚀性2.304不锈钢在硫化氢气体环境下的损伤现象四、封头的作用和分类1.封头的定义和功能2.封头的分类和特点五、304不锈钢封头在硫化氢气体环境下的裂纹问题1.裂纹产生的原因2.裂纹对封头安全性能的影响3.防止裂纹产生的措施正文:一、304不锈钢简介304不锈钢是一种广泛应用的不锈钢材料,具有良好的耐腐蚀性、耐磨性和可焊性。
其主要成分是18%的铬和8%的镍,适用于各种工业领域,尤其是食品、制药和化工行业。
二、硫化氢气体的危害硫化氢气体是一种无色、有毒、具有强烈刺激性气味的气体,能对人体和金属材料产生严重的腐蚀作用。
硫化氢气体会导致金属表面产生氢脆和应力腐蚀开裂,从而影响材料的强度和性能。
三、304不锈钢在硫化氢气体环境下的表现尽管304不锈钢具有良好的耐腐蚀性,但在硫化氢气体环境下,仍然可能出现损伤现象。
硫化氢气体会导致304不锈钢表面产生裂纹,从而降低其使用寿命和性能。
四、封头的作用和分类封头是用于封闭管道或容器端部的零件,具有防止介质泄漏和保护管道的作用。
封头根据形状和用途可分为多种类型,如平盖封头、球形封头和锥形封头等。
五、304不锈钢封头在硫化氢气体环境下的裂纹问题在硫化氢气体环境下,304不锈钢封头可能出现裂纹,这主要是由于硫化氢气体的腐蚀作用和材料内部的应力集中。
裂纹会对封头的安全性能产生严重影响,可能导致介质泄漏和设备损坏。
为防止304不锈钢封头在硫化氢气体环境下产生裂纹,可以采取以下措施:1.选择更高耐腐蚀性的材料,如2205双相不锈钢;2.对封头进行合理的设计和制造,避免应力集中;3.在使用过程中,加强对封头的检查和维护,及时发现并处理裂纹。
不锈钢内部裂纹的改善措施
不锈钢发生内部裂纹时的改善措施如下:(1)内部裂纹。
铸坯从皮下到中心出现的裂纹都是内部裂纹,在凝固过程中产生的裂纹,也叫凝固裂纹。
从结晶器下口拉出带液芯的铸坯,在弯曲、矫直和夹辊压力作用下,于凝固前沿薄弱的固液界面上沿一次树枝晶或等轴晶界裂开,富集溶质元素母液流入缝隙中,此裂纹往往伴有偏析线,也称“偏析条纹”,在热加工过程中不能消除的,影响钢的力学性能,尤其是对横向性能危害最大。
内部裂纹主要取决于二冷区凝固坯壳所承受的各种应力的相互作用。
改善的措施是:1)合理地制定二冷制度;2)拉坯力均匀分布;3)控制成分;4)控制合理的工艺操作参数。
(2)凝固结构。
是铸坯的低倍组织,即钢液凝固过程中形成等轴晶和柱状晶的比例。
铸坯的内部质量与二冷区的冷却及支撑系统密切相关。
(3)中心偏析和疏松。
中心偏析往往与中心疏松和缩孔相伴存在。
中心偏析是由于铸坯凝固末期,尚未凝固富集偏析元素的钢流流动造成的。
二冷区采用弱冷却制度和电磁搅拌技术,可以促进柱状晶向等轴晶转化,是减少中心疏松和改善铸坯致密度的有效措施,从而提高铸坯质量。
对于避免铸坯内部裂纹和中心偏析要采取的措施有:(1)理论上采用连续弯曲和矫直技术比多点弯曲和矫直更能减少固液界面和表面应变,从而提高铸坯的内部和表面质量;(2)采用小辊径、分节辊并使辊子的中间支撑轴承座宽度尽量小,将扇形段辊子的偏斜不对中减到最小,以避免鼓肚引起的内部裂纹和偏析;(3)在凝固末端固液相区采用轻压下技术来减少中心偏析;(4)采用电磁搅拌技术能使晶粒细化,减少柱状晶,增加等轴晶;消除夹杂物在铸坯内弧侧的**,改善铸坯中心缩孔,消除或减轻中心偏析。
依据铸坯的不同质量,可以选择不同的组合式电磁搅拌技术。
(1)为了**或避免两相区铸坯的变形,选择铸机弧形半径时考虑全凝固矫直条件,则选用R=8~15m大弧形半径比较安全可靠;(2)由于不锈钢中易氧化元素含量高,因此必须采用无氧化浇注,防止二次氧化相比碳结钢更为重要;(3)扩大中间包容量,有利于操作稳定,夹杂物上浮,对保证不锈钢铸坯质量有利;(4)避免产生不锈钢表面星状裂纹,最根本的措施是结晶器采用电沉积Ni镀层,厚度1~3mm,结晶器寿命100~200炉,可完全消除星状裂纹缺陷;(5)采用电磁搅拌,是保证不锈钢质量必不可少的措施;(6)不锈钢用火焰切割时,必须向火焰中喷入铁粉,以提高切割效率。
不锈钢开裂补焊方法
不锈钢开裂补焊方法1.引言1.1 概述不锈钢是一种常用的材料,具有耐腐蚀、耐高温和美观等优点,在许多领域得到广泛应用。
然而,由于各种原因,不锈钢在使用过程中可能会出现开裂的情况,影响其性能和使用寿命。
为解决该问题,补焊方法成为一种常见的修复手段。
本文将介绍不锈钢开裂的原因以及两种常用的补焊方法。
首先,我们将探讨不锈钢开裂的原因,包括材料本身的缺陷、焊接过程中的应力集中、外界因素等。
深入了解不锈钢开裂的原因有助于我们选择合适的补焊方法并预防开裂的再次发生。
随后,本文将详细介绍两种常见的不锈钢补焊方法。
第一种方法是使用氩弧焊进行补焊,其通过在开裂处进行局部加热和熔融,将两侧的裂纹重新焊接在一起,以恢复材料的完整性和强度。
第二种方法是利用激光焊接技术进行补焊,其通过高能激光束在裂纹处产生瞬态加热和熔融,实现材料的再结合。
这两种方法各有优劣,我们将从实际应用、修复效果等方面进行比较和分析。
最后,在结论部分,我们将对本文进行总结,并提出一些建议。
不锈钢开裂问题对许多行业都具有一定的影响,因此,我们需要加强对材料质量的控制和焊接工艺的改进,以减少不锈钢开裂的发生。
同时,在补焊过程中,应根据具体情况选择合适的补焊方法,并结合预防措施,提高不锈钢的使用寿命和性能。
通过本文的阐述,相信读者能够更好地了解不锈钢开裂补焊方法,并在实际应用中做到理论与实践相结合,为相关行业的发展和生产提供有益的参考。
1.2 文章结构文章结构的设计是为了使读者能够清晰地了解整篇文章的框架和内容安排。
本文将按照下述结构进行分析和论述:2.正文:2.1 不锈钢开裂的原因2.2 补焊方法一2.3 补焊方法二2.1 不锈钢开裂的原因在这一部分,我们将详细探讨导致不锈钢开裂的可能原因。
不锈钢是一种耐腐蚀材料,但在特定条件下仍可能发生开裂现象。
我们将介绍热裂纹和冷裂纹两种常见的开裂形式,并深入分析它们的成因。
同时,我们会探讨一些特殊情况下引起开裂的特殊因素。
奥氏体不锈钢的结晶裂纹
奥氏体不锈钢的结晶裂纹
1.热膨胀系数大:奥氏体不锈钢的线膨胀系数相对较大,因此在焊接快速加热和冷却过程中,焊缝区域会经历显著的体积变化和收缩变形,导致较大的拉伸应力。
2.导热性差:奥氏体不锈钢的导热性能较差,使得热量分布不均匀,造成局部温度梯度高,加剧了焊接应力的形成。
3.液-固相线距离大:奥氏体不锈钢的液相线与固相线之间的温差较大,这延长了结晶时间,并且易于产生枝晶偏析,其中杂质和合金元素可能集中于晶界,降低该区域的韧性,增加开裂倾向。
4.成分影响:如碳、硫、磷等元素含量较高时,在焊缝中可能形成低熔点共晶物,这些相在冷却过程中优先凝固并产生应力集中,从而引发裂纹。
5.冶金因素:焊缝金属中的合金元素分配不均或未能得到适当的控制,例如铬贫化区的形成,可能导致晶间腐蚀和力学性能下降,增加裂纹敏感性。
为了防止奥氏体不锈钢焊接过程中的结晶裂纹,可以采取以下措施:
-选择合适的焊接材料和填充金属,确保其具有良好的抗裂纹性能。
-控制焊接工艺参数,比如电流、电压、焊接速度以及预热和后热处理温度,以减小焊接热输入和优化冷却速率。
-使用含有适量稳定化元素(如铌、钛)的合金来减少有害相的形成和改善焊缝组织性能。
-对关键部位进行焊前清理,避免油污、水分或其他污染物影响焊接质量。
-根据需要设计合理的接头形式和坡口尺寸,以分散焊接应力。
不锈钢焊接缺陷以及应对措施
不锈钢焊接缺陷以及应对措施不锈钢焊接是工业生产中常见的一种加工方法,但是在焊接的过程中,也会出现各种缺陷。
这些缺陷会影响到焊接质量,降低不锈钢焊接件的使用寿命。
本文将介绍不锈钢焊接常见的缺陷及其应对措施。
一、裂纹裂纹是不锈钢焊接中常见的缺陷。
产生裂纹的原因包括焊接时温度不均匀、焊接时应力过大、焊接时焊接材料不匹配等。
裂纹分为热裂纹和冷裂纹两种,热裂纹一般在焊接后立即出现,而冷裂纹则是在焊接后一段时间内出现。
应对措施:首先要控制好焊接时的温度和应力,保证焊接质量。
其次,选择匹配的焊接材料,避免焊接材料不匹配的情况出现。
同时,对于焊接后的零件,需要进行热处理,以消除残余应力,避免裂纹的出现。
二、气孔气孔是不锈钢焊接中常见的缺陷之一。
当焊接时,焊接区域内的空气不能完全排出,就会产生气孔。
气孔会降低不锈钢焊接件的强度,对焊接质量造成影响。
应对措施:在焊接前,需要对焊接区域进行清洁,以避免杂质的存在。
焊接时,需要控制好焊接的电流和气体流量,保证焊接区域内的空气完全排出。
如果出现气孔,需要对焊接区域进行修补,直至完全消除气孔。
三、未焊透未焊透是不锈钢焊接中另一种常见的缺陷。
未焊透是指焊接区域内的焊接材料没有完全熔化,没有形成完整的焊接缝。
未焊透会导致焊接件的强度降低,影响焊接质量。
应对措施:在焊接前,需要对焊接区域进行清洁,以避免杂质的存在。
焊接时,需要控制好焊接的电流和焊接速度,保证焊接材料可以完全熔化。
如果出现未焊透的情况,需要对焊接区域进行修补,直至完全焊接透。
四、焊接变形焊接变形是不锈钢焊接中常见的问题之一。
当焊接时,由于焊接区域内温度的变化,会导致零件发生变形。
焊接变形会影响不锈钢焊接件的尺寸精度和装配质量。
应对措施:首先要选择合适的焊接方法和焊接参数,控制好焊接时的温度和应力。
其次,需要在焊接前进行预热,以减少焊接区域内的应力。
在焊接后,需要对焊接区域进行热处理,以消除残余应力,避免焊接变形的出现。
奥氏体不锈钢结晶裂纹
奥氏体不锈钢结晶裂纹一、奥氏体不锈钢的特性奥氏体不锈钢是含有至少50%的铁和铬的合金,并通常还含有一定量的镍、锰、硅等元素。
奥氏体不锈钢具有优良的耐腐蚀性能、高强度和耐磨损性能,广泛应用于化工、医疗、建筑等领域。
奥氏体不锈钢的主要特点包括:1. 耐腐蚀性能好,能够抵抗大多数化学物质的侵蚀;2. 抗氧化性能好,不易生锈;3. 加工性能好,易于切削、锻造和焊接。
二、结晶裂纹的形成原因结晶裂纹是指在奥氏体不锈钢的焊接、冷加工等过程中,因晶粒形成异常或应力集中而导致的裂纹。
结晶裂纹的形成原因主要包括以下几点:1. 晶粒粗化:奥氏体不锈钢在焊接或冷加工时,晶粒受到过高温度或过大应力的影响,导致晶粒粗化,容易形成晶粒界裂纹。
2. 应力集中:奥氏体不锈钢在焊接或冷加工过程中,由于焊接速度不均匀、焊接电流过大或应力非均匀等原因,会使应力在局部区域集中,从而产生应力集中裂纹。
3. 化学成分不均匀:奥氏体不锈钢中的铬、镍等合金元素含量不均匀或超过规定量,会使晶界区域发生脆性相形成,容易引起结晶裂纹。
三、预防结晶裂纹的措施为有效预防奥氏体不锈钢的结晶裂纹问题,我们可以采取以下措施:1. 选择合适的焊接工艺:在焊接奥氏体不锈钢时,应选择合适的焊接工艺和焊接参数,控制好焊接速度和焊接电流,避免过高温度和应力集中。
2. 控制晶粒长大:在焊接或冷加工过程中,应尽量控制好温度和应力,防止晶粒过大或不规则生长,减少晶界裂纹的形成。
3. 控制化学成分:在奥氏体不锈钢的生产和加工过程中,应严格控制合金元素的含量和均匀性,避免出现脆性相形成,降低结晶裂纹的风险。
4. 进行热处理:对于已经出现结晶裂纹的奥氏体不锈钢,可以通过热处理的方式进行修复,提高材料的结晶强度和韧性。
总之,奥氏体不锈钢是一种重要的建筑材料,但在使用过程中可能出现结晶裂纹等问题。
为了有效预防结晶裂纹的发生,我们应该选择合适的工艺,控制好温度和应力,严格控制化学成分等方面,保证奥氏体不锈钢的质量和安全性。
不锈钢焊缝裂纹产生的原因的重新陈述
不锈钢焊缝裂纹产生的原因的重新陈述不锈钢焊缝裂纹产生的原因的重新陈述在不锈钢焊接过程中,焊缝裂纹的产生是一个常见的问题。
虽然在之前的文章中已经探讨过这个主题,但现在我将重新陈述关于不锈钢焊缝裂纹产生原因的深入讨论。
我将从多个方面分析这个问题,以便我们更全面地理解不锈钢焊缝裂纹产生的原因。
1. 焊接材料选择不当:不锈钢焊缝裂纹的产生可以归因于焊接材料的选择不当。
不同等级的不锈钢具有不同的化学成分和热处理特性,因此选择合适的焊接材料对于避免焊缝裂纹至关重要。
当焊接材料的化学成分与母材不匹配时,焊缝裂纹的风险就会增加。
2. 母材的应力集中:母材中的应力集中也是导致不锈钢焊缝裂纹产生的原因之一。
当焊接过程中施加的热应力与存在的局部应力相结合时,焊缝周围的母材就会受到更大的应力,从而增加了焊缝裂纹的形成风险。
3. 焊接过程的热控制不当:热控制是焊接过程中至关重要的方面。
不当的热输入或冷却速度可能导致焊缝区域的热循环不均匀,从而引发焊缝裂纹。
热输入过高可能导致焊缝区域过热,而热输入过低则可能导致冷凝速度过快,这两种情况都会增加焊缝裂纹的风险。
4. 焊接残余应力:焊接过程中产生的残余应力也是不锈钢焊缝裂纹产生的原因之一。
焊接会改变材料的晶体结构并引入残余应力,当这些应力超过材料的强度极限时,焊缝裂纹可能会出现。
5. 焊接操作技术不当:不正确的焊接操作技术也会导致焊缝裂纹的形成。
这包括焊接速度、焊接电流和焊接电压的控制不当,以及不适当的焊接角度和焊接位置等因素。
这些技术问题可能会导致焊接过程中的应力不均匀,从而引发焊缝裂纹。
不锈钢焊缝裂纹的产生是由多种因素共同作用导致的。
正确选择焊接材料、控制焊接过程中的热量和应力、遵循正确的焊接操作技术等都是避免焊缝裂纹的关键。
只有全面理解这些原因,我们才能更好地避免不锈钢焊缝裂纹的产生,并确保焊接质量的稳定性和可靠性。
我对这个问题的理解是,不锈钢焊缝裂纹产生的原因是一个复杂且多方面的问题。
不锈钢焊缝热影响区出现裂纹的原因
不锈钢焊缝热影响区出现裂纹的原因引言:不锈钢作为一种常见的材料,广泛应用于许多领域,如航空航天、化工、建筑等。
在焊接过程中,常常会出现焊缝热影响区裂纹的问题,这给不锈钢的使用和维护带来了困扰。
本文将探讨不锈钢焊缝热影响区出现裂纹的原因,并提出相应的解决方法。
一、热影响区的定义和特点不锈钢焊缝热影响区是指在焊接过程中,焊缝周围的区域受到热影响而发生微结构和性能变化的区域。
热影响区具有以下特点:1. 高温:焊接过程中,热影响区温度较高,一般处于临界温度以上。
高温会引起不锈钢晶粒的长大和相变,从而导致热影响区的性能变化。
2. 快速冷却:焊接结束后,热影响区会经历快速冷却过程,冷却速度较快。
快速冷却会导致不锈钢晶粒的细化和残余应力的产生,进而引发裂纹的形成。
二、裂纹形成的原因1. 残余应力:焊接过程中,由于热量的不均匀分布和快速冷却,热影响区内会形成残余应力。
残余应力是裂纹形成的主要原因之一。
当残余应力超过材料的强度极限时,就会导致裂纹的形成。
2. 晶粒长大和相变:高温会引起不锈钢晶粒的长大和相变,这会导致晶界的断裂和裂纹的生成。
尤其是在焊接过程中,由于热量集中和焊接速度较快,晶粒的长大和相变更加明显,容易引发裂纹。
3. 焊接变形:焊接过程中,由于热膨胀和热收缩的影响,不锈钢焊缝周围会发生变形。
焊接变形会导致局部应力集中,从而增加了裂纹的形成概率。
三、预防和解决方法为了预防和解决不锈钢焊缝热影响区裂纹的问题,可以采取以下方法:1. 控制焊接参数:合理控制焊接电流、电压、焊接速度等参数,避免热输入过大或过小,减少热影响区的温度梯度和冷却速度,从而降低裂纹的形成概率。
2. 采用适合的焊接工艺:选择合适的焊接工艺,如预热、后热处理等,可以改变热影响区的组织和性能,减少裂纹的产生。
预热可以提高材料的塑性和韧性,后热处理可以消除残余应力。
3. 使用适当的填充材料:选择合适的填充材料,可以改变热影响区的组织和性能,提高焊缝的抗裂性能。
不锈钢生锈腐蚀断裂的原因
不锈钢生锈腐蚀断裂的原因
不锈钢生锈、腐蚀和断裂的原因可能有以下几个方面:
1. 化学腐蚀:不锈钢主要是由铁、铬、镍等合金元素组成,其中铬的含量较高。
铬会与氧气结合形成一层致密的氧化铬膜,起到防止钢材进一步腐蚀的作用。
然而,当遭受一些强酸、强碱等化学物质的侵蚀时,氧化铬膜可能会被破坏,导致不锈钢发生腐蚀。
2. 空气中存在的污染物:不锈钢在潮湿的环境中,易受到空气中的氧气、水分和含有硫、氯等污染物的侵蚀。
尤其是在工业污染较为严重的地区,不锈钢的腐蚀速度可能更快。
3. 电化学腐蚀:如果不锈钢表面存在微小的缺陷,例如划痕、裂纹等,这些缺陷可能导致不锈钢在电化学条件下发生腐蚀。
例如,在存在电解质溶液中,不锈钢可能会发生电化学腐蚀。
4. 力学因素:不锈钢的断裂可能与力学因素有关,如应力过大、外力冲击等。
当不锈钢受到超过其承载能力的应力时,可能会发生断裂。
为了避免不锈钢的生锈、腐蚀和断裂问题,我们可以采取以下措施:
1. 注意环境:尽量避免将不锈钢暴露在潮湿、有酸碱性或含有污染物的环境中。
2. 定期清洁:定期清洁不锈钢表面,确保其表面干净,并使用适当的清洁剂。
3. 防护涂层:在一些特殊环境下,可以考虑给不锈钢表面添加一层防护涂层,增加其抗腐蚀性能。
4. 注意使用条件:在使用不锈钢制品时,要注意避免过大的应力和外力冲击,以防止不锈钢发生断裂。
总之,不锈钢的生锈、腐蚀和断裂问题是一个综合因素的结果,需要注意环境因素、化学因素、力学因素等,以保证不锈钢的使用寿命和安全性。
不锈钢铸造工艺防止裂纹的措施
不锈钢铸造工艺防止裂纹的措施1.优化设计:在设计过程中,应考虑到不锈钢铸件的形状、壁厚、角度等因素,以最大限度地减少应力集中和热应力引起的裂纹。
避免设计中产生尖锐的内外角,可以通过增加半径和倒角来实现。
2.提高铸造温度:提高不锈钢铸造的温度可以减少热应力和凝固收缩应力。
通过增加浇注温度,可以提高金属的流动性,减少凝固时间,并减少不锈钢铸件内部产生的应力。
3.减少快速凝固区域:在铸造过程中,通过减少冷却速率,可以减少快速凝固区域的形成。
这可以通过增加铸型或导热材料的厚度,或者使用隔热材料来实现。
4.预热铸型:在进行高温铸造之前,对铸型进行预热可以减少热应力的形成。
预热可以使铸型的温度均匀分布,并提供足够的热量,以使不锈钢铸件在冷却过程中保持稳定。
5.合理使用冷却剂:冷却剂的选择和使用对不锈钢铸造的质量起着至关重要的作用。
选择适当的冷却剂,以避免过快的冷却速度,从而减少热应力的产生。
6.控制冷却速率:合理控制不锈钢铸造过程中的冷却速率可以减少应力的积累,从而降低裂纹的风险。
这可以通过控制浇注速度、浇注温度和冷却介质的循环来实现。
7.热处理:热处理是减少裂纹的一种常用方法。
通过进行退火、正火、淬火等热处理过程,可以改变不锈钢的晶体结构和性能,减少内部应力和裂纹的形成。
8.焊接接头设计:在设计焊接接头时,应选择合适的焊接方法和参数,以减少热影响区域的形成。
合理的焊接接头设计可以有效地分散和缓解焊接引起的应力,降低裂纹的风险。
9.质量控制和检测:在不锈钢铸造过程中,严格控制每个步骤的质量是十分重要的。
定期进行非破坏性和破坏性测试,以评估不锈钢铸件的质量和结构完整性。
总之,防止不锈钢铸造中的裂纹是一项重要的工艺措施。
通过合理的设计、优化的工艺参数、适当的热处理和严格的质量控制,可以有效地减少不锈钢铸件的裂纹风险,提高产品的可靠性和安全性。
不锈钢奥氏体焊接裂纹
不锈钢奥氏体焊接裂纹
不锈钢奥氏体焊接裂纹是一种常见的焊接缺陷,通常是由于焊接过程中热输入和冷却速度不当导致的。
以下是可能引起奥氏体不锈钢焊接裂纹的一些原因:
1. 热裂纹:由于奥氏体不锈钢的导热系数较低,焊接过程中容易在焊缝中产生较大的温度梯度,导致热裂纹的产生。
2. 冷裂纹:在焊接后冷却过程中,如果冷却速度过快,会导致焊缝中的氢不能充分扩散,从而在焊缝中形成裂纹。
3. 应力裂纹:由于焊接过程中产生的热应力和结构本身存在的残余应力叠加,可能导致应力裂纹的产生。
为了防止奥氏体不锈钢焊接裂纹的产生,可以采取以下措施:
1. 适当调整焊接参数,控制焊接过程中的热输入和冷却速度。
2. 选用合适的焊接材料,并确保焊缝金属的韧性、强度等力学性能与母材相匹配。
3. 在焊接前对母材进行预热,以降低焊接过程中的温度梯度。
4. 在焊接后进行消氢处理,以促进焊缝中氢的扩散。
5. 对焊缝进行适当的保温处理,以减少焊接残余应力的影响。
6. 对于存在较大结构拘束度的地方,可以采取加装约束的方法来减小结构拘束度的影响。
综上所述,为了防止奥氏体不锈钢焊接裂纹的产生,需要综合考虑焊接工艺、材料、结构等多种因素,采取合适的措施来降低裂纹产生的风险。
不锈钢缺陷图谱解读
2、山鳞脱皮
三、脱皮缺陷的定义与分类
缺陷名称:山鳞脱皮。 缺陷描述:带钢表面呈山形状(M型)的带根部翘皮缺陷,无固定位置,一般发生在钢边部20100mm居多。长度一般大于10mm,宽度≥1mm。 产生工序:精炼工序。 产生原因:板坯表面质量问题,如边部横裂、表面凹坑等缺陷未修磨、修磨不当等经热轧后形 成的山形鳞状折叠,经冷轧后出现的脱皮状缺陷。 预防措施:优化冶炼工序,减少钢坯表面缺陷,对于板坯表面缺陷的修磨做好消缺操作和管理 规范。 建议处理方式:轻微脱皮补打磨,严重时切边,边丝判为废材。
4、线鳞
三、脱皮缺陷的定义与分类
缺陷名称:线鳞。 缺陷描述:缺陷散布在冷轧钢带的表面,缺陷呈线状剥落状态,缺陷的两端为针状,较细。 产生工序:精炼工序。 产生原因:热轧钢带中附有细小夹杂物,主要是冶炼时产生的呈球状的脱氧产物或耐材夹杂 物,未充分去除后,残留于钢坯中,经冷轧时加以延伸产生。 预防措施:保证钢水洁净度,提升稳态浇注水平 建议处理方式:补打磨或降级
二、冷爆缺陷的定义与分类
定义: 冷爆是钢带在轧制过程中,发生突发的断带现象或是轧制完成后待退火过程中发生自 发的爆裂。 1、头尾断带
缺陷名称:头尾断带。 缺陷描述:通常断口只有一个,发生在轧制过程中,断带位置位于头尾8%以内的断带。 产生工序:带钢工序 产生原因:头尾厚度存在的超差、板形、冷却、厚度波动等问题相关,导致受力不不均而断 带 预防措施:控制头尾厚度超差、板形、厚度波动等问题 建议处理方式:重量大于300kg能成卷判为利用材,重量小于300kg或不能成卷判为废材
2.生锈及锈蚀裂纹
一、裂纹缺陷的定义与分类
缺陷名称:生锈及锈蚀裂纹。 缺陷描述:在白卷上能看到明显的锈蚀痕迹,轧制后产生裂口。 产生工序:运输及储存 产生原因:在运输及储存过程中,带钢经海水、雨水等浸入而出现生锈、腐蚀 预防措施:带钢在运输及储存过程中避免海水、雨水浸入,钢带存放时干燥地方 建议处理方式:判为利用材
304不锈钢板焊接裂纹产生的原因
304不锈钢板焊接裂纹产生的原因
304不锈钢板焊接裂纹产生的原因有以下几个:
1.固溶态时的组织和冷作应力:304不锈钢板焊接过程中,高温下的固溶态会使晶界处形成内在弥散的碳化物,这会导致结晶间腐蚀敏感性增加。
冷作应力会形成微观应力集中点,从而易于形成裂纹。
2.焊接过程中的热应力:焊接过程中,焊缝和热影响区的温度会迅速上升和降低,产生热应力。
这些热应力可能超过了304不锈钢板的抗拉强度和延性,导致裂纹的产生。
3.焊接过程中的残余应力:冷却过程中,焊接接头会产生残余应力,这些应力可能超过了304不锈钢板的强度和抗拉性能,从而导致裂纹产生。
4.杂质和缺陷:304不锈钢板中的杂质和缺陷会增加焊接过程中的局部应力,从而导致裂纹的产生。
5.无机和有机污染物:焊接区域附近的无机和有机污染物可能会对304不锈钢板产生腐蚀作用,破坏其表面保护膜,进一步导致局部腐蚀和裂纹的产生。
总之,焊接过程中的热应力、残余应力、杂质和缺陷以及外界污染物等因素,都可能导致304不锈钢板的焊接裂纹产生。
因此,焊接过程中应采取适当的措施和工艺参数,以减少这些因素对304不锈钢板焊接裂纹的影响。
不锈钢表面裂纹检测方法
不锈钢表面裂纹检测方法不锈钢作为一种广泛应用于各种工业领域的材料,其表面质量对于产品的性能和使用寿命具有重要影响。
裂纹是常见的表面缺陷之一,因此,不锈钢表面裂纹的检测显得尤为重要。
以下是针对不锈钢表面裂纹的检测方法:1. 外观检测外观检测是最简单直观的检测方法,通过肉眼观察不锈钢表面,检查是否有裂纹、划痕、凹坑等缺陷。
这种方法虽然简单,但对于一些明显的裂纹可以快速检出。
2. 光学检测法光学检测法包括光学显微镜、电子显微镜等,可以放大表面裂纹,提供更精确的观察结果。
这些设备可以清晰地显示出裂纹的大小、形状和位置。
3. 电磁检测法电磁检测法利用磁感应原理,通过在不锈钢表面施加磁场,观察磁场的分布变化来检测裂纹。
这种方法对于一些细微的裂纹也能有效检出。
4. 涡流检测法涡流检测法利用交流电在不锈钢表面产生涡流,通过检测涡流的变化来判断表面是否存在裂纹。
该方法对于非导电材料表面的裂纹检测效果较好。
5. 超声波检测法超声波检测法利用超声波在材料中的传播特性,通过接收反射回来的声波信号来判断表面是否存在裂纹。
这种方法对于较深层的裂纹检出效果较好。
6. 红外热像检测法红外热像检测法利用不同温度下材料发射的红外辐射不同,通过红外热像仪捕捉并分析表面温度分布,从而判断裂纹的存在和位置。
这种方法对于微小裂纹的检测效果较好。
7. 气体渗透检测法气体渗透检测法利用特殊的气体或液体渗透剂,将其涂敷在不锈钢表面,通过观察渗透剂的流动和聚集情况来检出裂纹。
该方法主要用于检测非开口裂纹和孔洞。
8. 磁粉检测法磁粉检测法利用磁粉在磁场作用下的磁性特性,将磁粉施加到不锈钢表面,观察磁粉的分布情况来判断裂纹的存在和位置。
该方法主要用于铁磁性不锈钢材料的表面裂纹检测。
9. 激光全息检测法激光全息检测法利用激光干涉原理,通过记录和分析激光束在材料表面形成的干涉图样,来观察和检出表面裂纹。
该方法具有高精度和高灵敏度,但设备成本较高。
综上所述,不锈钢表面裂纹的检测方法有多种,各有其特点和使用范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•钢。
奥氏体不锈钢通常在常温下的组织为纯奥氏体,也有一些为奥氏体+少量铁素体。
奥氏体不锈钢具有优良的焊接性能,但由于其特殊的成分和组织,相对于普碳钢,其焊接又有很多不同之处,本文就奥氏体不锈钢的焊接进行分析。
一、奥氏体不锈钢的焊接特点•奥氏体不锈钢是石油化工生产中应用最为广泛的金属材料之一,其焊接性能良好,但在焊接过程中也容易产生不少问题,主要表现为以下几种:• 1.1 晶间腐蚀•奥氏体不锈钢焊接件容易在焊接接头处发生晶间腐蚀,根据贫铬理论,其原因是焊接时焊缝和热影响区在加热到450~850℃温度范围停留一定时间的接头部位,在晶界处析出高铬碳化物(Cr23C6),引起晶粒表层含铬量降低,形成贫铬区,在腐蚀介质的作用下,晶粒表层的贫铬区受到腐蚀而形成晶间腐蚀。
这时被腐蚀的焊接接头表面无明显变化,受力时则会沿晶界断裂,几乎完全失去强度。
•为防止和减少焊接接头处的晶间腐蚀,一般采取的防止措施有:(1)采用低碳或超低碳的焊材,如A002等,或采用含钛、铌等稳定化元素的焊条,如A137、A132等;(2)由焊丝或焊条向焊缝熔入一定量的铁素体形成元素,使焊缝金属成为奥氏体+铁素体的双相组织(铁素体一般控制4-12%);(3)减少焊接熔池过热,选用较小的焊接电流和较快的焊接速度,加快冷却速度;(4)对耐晶间腐蚀性能要求很高的焊件进行焊后稳定化退火处理。
• 1.2 焊接热裂纹•热裂纹产生的主要原因是焊缝中的树枝晶方向性强,有利于S、P等元素的低熔点共晶产物的形成和聚集。
另外,此类钢的导热系数小(约为低碳钢的1/3),线胀系数大(比低碳钢大50%),所以焊接应力也大,加剧了热裂纹的产生。
其防止的办法是:•(1)选用含碳量低的焊接材料,采用含适量Mo、Si等铁素体形成元素的焊接材料,使焊缝形成奥氏体加铁素体的双相组织,减少偏析;•(2)尽量选用碱性药皮的优质焊条,以限制焊缝金属中S、P、C等的含量。
• 1.3 应力腐蚀开裂•应力腐蚀开裂是焊接接头在特定腐蚀环境下受拉伸应力作用时所产生的延迟开裂现象。
奥氏体不锈钢焊接接头的应力腐蚀开裂是焊接接头比较严重的失效形式,表现为无塑性变形的脆性破坏。
•应力腐蚀开裂防止措施:(1)采取合适的焊接工艺,保证焊缝成形良好,不产生任何应力集中或点蚀的缺陷,如咬边等;采取合理的焊接顺序,降低焊接残余应力水平;(2)合理选择焊材,焊缝与母材应有良好的匹配,不产生任何不良组织,如晶粒粗化及硬脆马氏体等;(3)消除应力处理:焊后热处理,如焊后完全退火或退火;在难以实施热处理时采用焊后锤击或喷丸等。
• 1.4 焊缝金属的低温脆化•对于奥氏体不锈钢焊接接头,在低温使用时,焊缝金属的塑韧性是关键问题。
此时,焊缝组织中的铁素体的存在总是恶化低温韧性。
一般可以通过选用纯奥氏体焊材和调整焊接工艺获得单一的奥氏体焊缝的方法来防止焊缝金属的低温催化。
• 1.5 焊接接头的σ相脆化•焊件在经受一定时间的高温加热后会在焊缝中析出一种脆性的σ相,导致整个接头脆化,塑性和韧性显著下降。
σ相的析出温度范围650-850℃。
在高温加热过程中,σ相主要由铁素体转变而成。
加热时间越长,σ相析出越多。
•防止措施:•(1)限制焊缝金属中的铁素体含量(小于15%),采用超合金化焊接材料,即高镍焊材;•(2)采用小规范,以减小焊缝金属在高温下的停留时间;•(3)对已析出的σ相在条件允许时进行固溶处理,使σ相溶入奥氏体。
二、奥氏体不锈钢的焊条选用原则•不锈钢主要用于耐腐蚀,但也用作耐热钢和低温钢。
因此,在焊接不锈钢时,焊条的性能首先必须与不锈钢的用途相符,其次不锈钢焊条还必须根据母材和工作条件(包括工作温度和接触介质等)来选用。
结合不锈钢焊接过程中容易出现的问题以及防止措施,焊条的选用原则一般有如下几种:• 2.1 一般来说,焊条的选用可参照母材的材质,选用与母材成分相同或相近的焊条。
如:A102对应0Cr19Ni9,A137对应1Cr18Ni9Ti等。
• 2.2 奥氏体不锈钢的焊缝金属应保证力学性能。
这可以通过焊接工艺评定进行验证。
• 2.3 由于碳含量对不锈钢的抗腐蚀性能有很大的影响,因此,一般选用熔敷金属含碳量不高于母材的不锈钢焊条。
如316L必须选用A022焊条。
• 2.4 对于在高温工作的耐热不锈钢(奥氏体耐热钢),所选用的焊条主要应能满足焊缝金属的抗热裂性能和焊接接头的高温性能。
•(1)对Cr/Ni≥1的奥氏体耐热钢,如1Cr18Ni9Ti等,一般均采用奥氏体-铁素体不锈钢焊条,以焊缝金属中含2-5%铁素体为宜。
铁素体含量过低时,焊缝金属抗裂性差;若过高,则在高温长期使用或热处理时易形成σ脆化相,造成裂纹。
如A002、A102、A137。
在某些特殊的场合,可能要求采用全奥氏体的焊缝金属时,可采用比如A402、A407焊条等。
•(2)对Cr/Ni<1的稳定型奥氏体耐热钢,如Cr16Ni25Mo6等,一般应在保证焊缝金属具有与母材化学成分大致相近的同时,增加焊缝金属中Mo、W、Mn等元素的含量,使得在保证焊缝金属热强性的同时,提高焊缝的抗裂性。
如采用A502、A507。
• 2.5 对于在各种腐蚀介质中工作的耐蚀不锈钢,则应按介质和工作温度来选择焊条,并保证其耐腐蚀性能(做焊接接头的腐蚀性能试验)。
•(1)对于工作温度在300℃以上、有较强腐蚀性的介质,须采用含有Ti或Nb稳定化元素或超低碳不锈钢焊条。
如A137或A002等。
•(2)对于含有稀硫酸或盐酸的介质,常选用含Mo或含Mo和Cu的不锈钢焊条如:A032、A052等。
•(3)对工作介质腐蚀性弱或仅为避免锈蚀污染的不锈钢设备,可采用不含Ti或Nb的不锈钢焊条。
为保证焊缝金属的耐应力腐蚀能力,采用超合金化的焊材,即焊缝金属中的耐蚀合金元素(Cr、Mo、Ni等)含量高于母材。
如采用00Cr18Ni12Mo2类型的焊接材料(如A022)焊接00Cr19Ni10焊件。
• 2.6 对于在低温条件下工作的奥氏体不锈钢,应保证焊接接头在使用温度的低温冲击韧性,故采用纯奥氏体焊条。
如A402、A407。
• 2.7 也可选用镍基合金焊条。
如采用Mo达9%的镍基焊材焊接Mo6型超级奥氏体不锈钢。
•综上所述,奥氏体不锈钢的焊接是有其独特特点的,奥氏体不锈钢焊接时焊条的选用尤其值得注意,只有根据不同材料和工作条件选用不同的焊接方法和不同的焊接材料,才能达到所预期的焊接质量。
三、在使用氩弧焊焊接奥氏体不锈钢时,由于各类偶然或必然因素的作用,难免会出现一些焊接不良的不合格品。
分析其产生的原因并制定补救方法是提高成品率的一种手段。
本文就焊接时出现的一些不合格现象做出分析,并提出一些补救方法,以作参考。
• 3.1 表面气孔•原因:产生表面气孔的原因一般为使用了不符合要求的焊材或工件表面的清理未达到要求或操作时焊条角度不对或施工环境未达到要求等而引起的。
•预防:使用正确的焊材,焊前清理干净工件,选择合适的焊接角度。
•补救措施:用角向磨光机或焊工凿子对缺陷进行清理,如缺陷清除后焊缝表面成型达不到标准的要求时,必须重新进行补焊。
补焊时必须考虑到引弧和熄弧的位置;补焊完成后应重新打磨清理焊缝,使之过渡圆滑。
•• 3.2 焊缝未填满•原因:产生焊缝未填满的原因一般为焊工责任心不强或工件坡口形式不当而引起的。
•预防:选择合适的工件坡口。
•补救措施:必须重新进行补焊。
补焊前应进行必要的清理,补焊时必须考虑到引弧和熄弧的位置;补焊完成后应重新打磨清理焊缝,使之过渡圆滑。
• 3.3 焊缝余高超标•原因:产生焊缝余高超标缺陷的原因一般为操作方法不当或层间焊道布置不当而引起的。
•预防:合理布置层间焊道。
•补救措施:用角向磨光机或焊工凿子对缺陷进行打磨清理使之过渡圆滑,焊缝达到标准要求。
• 3.4 焊缝宽窄差超标•原因:产生焊缝宽窄超标缺陷的原因一般为焊工技能水平不够或责任心不强或坡口形式不当而引起的。
•预防:选择合适的坡口。
•补救措施:用角向磨光机或焊工凿子对缺陷进行打磨清理使之焊缝达到标准要求。
必要时应进行补焊。
补焊前应进行必要的清理,补焊时必须考虑到引弧和熄弧的位置;补焊完成后应重新打磨清理焊缝,使之过渡圆滑。
• 3.5 咬边•原因:产生咬边缺陷的原因是焊工操作不当或电流过大,或施焊时焊条、焊枪角度不当,使熔化的母材未被焊缝金属所填满。
•预防:防止措施,正确选择电流、焊条(枪)角度和焊速,焊缝两侧适当延长停留时间。
•补救措施:用角向磨光机或锉刀对咬边缺陷进行锉、磨,对轻微咬边,如缺陷清除后,并且达到圆滑过渡和符合标准要求时则认为合格,对较深咬边,则应在修磨后进行补焊。
补焊时应注意引弧和灭弧、电流略增大,填满咬边凹坑。
补焊后的焊缝仍需按规定进行打磨,并圆滑过渡至母材。
•• 3.6 裂纹•原因:产生裂纹的原因一般为焊接工艺选择不当或焊接过程中工件沾到油、水等污物或工件在焊接时焊口处于较强外应力状态而引起的。
•预防:焊前彻底清理焊件表面。
•补救措施:用角向磨光机对缺陷进行打磨清理,且进行PT着色试验检查。
确保无裂纹后进行补焊。
补焊可用GTAW、SMAW两种方法进行;补焊前应进行必要的清理,补焊时必须考虑到引弧和熄弧的位置;补焊完成后应重新打磨清理焊缝,使之过渡圆滑。
•必要时应先对焊口进行光谱检查以确认焊接工艺选择是否正确,如焊接工艺选择不当时应对焊口进行割口重焊处理。
•• 3.7 接头未熔合•原因:产生接头未熔合缺陷的原因一般为清理不当或操作接头位置未到位引起的。
•预防:焊前清理工件,操作严格按照正确程序。
•补救措施:角向磨光机、凿子对缺陷进行打磨清理,确认无缺陷后进行补焊。
补焊前应进行必要的清理;补焊时必须考虑到引弧和熄弧的位置;补焊完成后应重新打磨清理焊缝,使之过渡圆滑。
• 3.8 焊口内部气孔、夹渣等非根部的圆形缺陷•原因:产生气孔、夹渣等非圆形缺陷的原因一般为层间清理未达到要求或焊材未符合要求或操作方法不当或工艺参数选择不当或施工环境未达到要求而引起的。
•预防:正对以上项目进行改正。
•补救措施:用角向磨光机、凿子或碳弧气刨对缺陷进行打磨清理,确认无缺陷后进行补焊。
补焊前应进行必要的清理;补焊时必须考虑到引弧和熄弧的位置并进行必要的层间清理;补焊完成后应打磨清理焊缝,使之过渡圆滑。
•• 3.9 焊口内部未焊透、根部未熔合、根部内凹、夹丝等根部缺陷•原因:产生未焊透、根部未熔合、根部内凹、夹丝等缺陷的原因一般为工艺参数选择不当或坡口角度钝边厚度不当或操作方法不当等引起的。
•预防:选择合适的工艺参数及坡口。
•补救措施:用角向磨光机、凿子或碳弧气刨对缺陷进行打磨清理,打磨清理前应对焊口缺陷位置及焊口受力状态进行确认,必要时应用外力改变焊口受力状态;还可在缺陷的对称位置用磨光机开一个‘小窗’以便确认缺陷是否已清除。