高考数学第一轮复习立体几何专题题库

合集下载

高三数学一轮复习【立体几何】练习题

高三数学一轮复习【立体几何】练习题

高三数学一轮复习【立体几何】练习题1.空间中,用a,b,c表示三条不同的直线,γ表示平面,则下列说法正确的有()A.若a∥b,b∥c,则a∥cB.若a⊥γ,b⊥γ,则a∥bC.若a∥γ,b∥γ,则a∥bD.若a⊥b,b⊥c,则a⊥c答案AB解析根据空间平行直线的传递性可知A正确;由直线与平面垂直的性质定理知B正确;若a∥γ,b∥γ,则a,b可能平行、相交或异面,故C错误;若a⊥b,b⊥c,则a,c可能相交、平行或异面,故D错误.2.对于两条不同直线m,n和两个不同平面α,β,下列选项正确的为()A.若m⊥α,n⊥β,α⊥β,则m⊥nB.若m∥α,n∥β,α⊥β,则m⊥n或m∥nC.若m∥α,α∥β,则m∥β或m⊂βD.若m⊥α,m⊥n,则n∥α或n⊂α答案ACD解析对A,令m,n分别为直线m,n的方向向量,因为m⊥α,n⊥β,所以m⊥α,n⊥β,又α⊥β,所以m⊥n,即m⊥n,所以选项A正确;对B,如图所示,在正方体ABCD-A1B1C1D1中,令平面ABCD为平面α,平面ABB1A1为平面β,直线A1C1为m,直线C1D为n,满足α⊥β,m∥α,n∥β,但m与n既不平行也不垂直,所以选项B错误;对C,若m⊄β,过m作一平面γ分别与平面α和平面β相交,且交线分别为a,b,则m∥a,a∥b,所以m∥b,所以m∥β;若m⊂β,符合题意,所以选项C 正确;对D,若n⊂α,符合题意;若n⊄α,过直线n作一平面β与平面α相交,设交线为b,因为b⊂α,m⊥α,所以m⊥b,又m⊥n,且n,b在同一平面内,所以n∥b,所以n∥α,所以选项D正确.综上,选ACD.3.如图是一个正方体的平面展开图,则在该正方体中()A.AE∥CDB.CH∥BEC.DG⊥BHD.BG⊥DE答案BCD解析由正方体的平面展开图还原正方体如图,连接AH,DE,BG,BH,DG,HC.由图形可知,AE⊥CD,故A错误;因为HE∥BC,HE=BC,所以四边形BCHE为平行四边形,所以CH∥BE,故B正确;因为DG⊥HC,DG⊥BC,HC∩BC=C,HC,BC⊂平面BHC,所以DG⊥平面BHC,又BH⊂平面BHC,所以DG⊥BH,故C正确;因为BG∥AH,而DE⊥AH,所以BG⊥DE,故D正确.故选BCD.4.用一个平面截正方体,所得的截面不可能是()A.锐角三角形B.直角梯形C.有一个内角为75°的菱形D.正五边形答案BCD解析对于A,如图1,截面的形状可能是正三角形,故A可能;图1图2对于B,首先考虑平面截正方体得到的截面为梯形,且QR与AA1不平行,如图2所示,不妨假设PQ⊥QR,因为AA1⊥平面A1B1C1D1,PQ⊂平面A1B1C1D1,所以AA1⊥PQ,从而有PQ⊥平面A1ABB1,这是不可能的,故B不可能;对于C,当平面截正方体得到的截面为菱形(非正方形)时,只有如下情形,如图3,其中P,R为所在棱的中点,易知当菱形为PBRD1时,菱形中的锐角取得最小值,即∠PD1R最小.设正方体的棱长为2,则PD1=RD1=5,PR=22,则由余弦定理,得cos∠PD1R=PD21+RD21-PR22PD1·RD1=5+5-82×5×5=15<6-24=cos 75°,所以∠PD1R>75°,故C不可能;图3对于D,假设截面是正五边形,则截面中的截线必然分别在5个面内,由于正方体有6个面,分成两两平行的三对,故必然有一对平行面中有两条截线,而根据面面平行的性质可知这两条截线互相平行,但正五边形的边中是不可能有平行的边的,故截面的形状不可能是正五边形,故D不可能.综上所述,选BCD.5.已知正方体ABCD-A1B1C1D1的棱长为2,M为AA1的中点,平面α过点D1且与CM垂直,则()A.CM⊥BDB.BD∥平面αC.平面C1BD∥平面αD.平面α截正方体所得的截面图形的面积为9 2答案ABD解析如图,连接AC,则BD⊥AC.因为BD⊥AM,AM∩AC=A,AM,AC⊂平面AMC,所以BD⊥平面AMC,又CM⊂平面AMC,所以BD⊥CM,故A正确;取AD的中点E,连接D1E,DM,由平面几何知识可得D1E⊥DM,又CD⊥D1E,DM∩CD=D,DM,CD⊂平面CDM,所以D1E⊥平面CDM,又CM⊂平面CDM,所以D1E⊥CM.连接B1D1,过点E作EF∥BD,交AB于F,连接B1F,所以CM⊥EF,又D1E∩EF=E,D1E,EF⊂平面D1EFB1,所以CM⊥平面D1EFB1,所以平面α截正方体所得的截面图形即梯形D1EFB1.由EF∥BD,BD⊄平面α,EF⊂平面α,得BD∥平面α,故B正确;连接AB1,AD1,易知平面AB1D1∥平面C1BD,而平面AB1D1∩平面α=B1D1,所以平面C1BD与平面α不平行,故C不正确;截面图形为等腰梯形D1EFB1,EF=2,B1D1=22,D1E=B1F=5,所以截面图形的面积S=12×(2+22)×(5)2-⎝⎛⎭⎪⎫22-222=92,故D正确.6.在正方体ABCD-A1B1C1D1中,N为底面ABCD的中心,P为线段A1D1上的动点(不包括两个端点),M为线段AP的中点,则()A.CM与PN是异面直线B.CM>PNC.平面PAN⊥平面BDD1B1D.过P,A,C三点的正方体的截面一定是等腰梯形答案BCD解析对于选项A,如图,连接NC,PC,则A,N,C三点共线.又M为AP的中点,N为AC的中点,所以CM与PN共面,故A错误;对于选项B,因为P为线段A1D1上的动点(不包括两个端点),所以AC>AP.在△MAC中,CM2=AC2+AM2-2AC·AM cos∠MAC=AC2+14AP2-AC·AP·cos∠MAC.在△PAN中,PN2=AP2+AN2-2AP·AN cos∠PAN=AP2+1 4AC 2-AP ·AC cos ∠PAN ,则CM 2-PN 2=34(AC 2-AP 2)>0,所以CM >PN ,故B 正确;对于选项C ,在正方体ABCD-A 1B 1C 1D 1中,易知AC ⊥平面BDD 1B 1,即AN ⊥平面BDD 1B 1,又AN ⊂平面PAN ,所以平面PAN ⊥平面BDD 1B 1,故C 正确; 对于选项D ,连接A 1C 1,在平面A 1B 1C 1D 1内作PK ∥A 1C 1,交C 1D 1于K ,连接KC .在正方体中,A 1C 1∥AC ,所以PK ∥AC ,PK ,AC 共面,所以四边形PKCA 就是过P ,A ,C 三点的正方体的截面,AA 1=CC 1,A 1P =C 1K ,所以AP =CK ,即梯形PKCA 为等腰梯形,故D 正确.故选BCD.7.如图,在正四棱柱ABCD-A 1B 1C 1D 1中,AA 1=2AB =2,点P 为线段AD 1上一动点,则下列说法正确的是( )A.直线PB 1∥平面BC 1DB.三棱锥P-BC 1D 的体积为13C.三棱锥D 1-BC 1D 外接球的表面积为3π2D.直线PB 1与平面BCC 1B 1所成角的正弦值的最大值为53 答案 ABD解析 对于A 选项,连接B 1D 1,AB 1,根据正四棱柱的性质可知AD 1∥BC 1,BD ∥B 1D 1,因为BC 1⊄平面AB 1D 1,AD 1⊂平面AB 1D 1,所以BC 1∥平面AB 1D 1,同理得BD ∥平面AB 1D 1,又BC 1∩BD =B ,所以平面AB 1D 1∥平面BC 1D ,又PB 1⊂平面AB 1D 1,所以PB 1∥平面BC 1D ,所以A 选项正确;对于B 选项,易知AD 1∥平面BC 1D ,所以V P-BC 1D =V A-BC 1D =V C 1-ABD =13×12×1×1×2=13,所以B 选项正确;对于C 选项,三棱锥D 1-BC 1D 的外接球即正四棱柱ABCD-A 1B 1C 1D 1的外接球.设外接球的半径为R ,则4R 2=12+12+22=6,所以外接球的表面积为4πR 2=6π,所以C 选项错误;对于D 选项,过P 作PE ∥AB ,交BC 1于点E ,则PE ⊥平面BCC 1B 1,连接B 1E ,则∠PB 1E 即直线PB 1与平面BCC 1B 1所成的角,当B 1E 最小时,∠PB 1E 最大,此时B 1E ⊥BC 1,由等面积法得S △BB 1C 1=12BC 1·B 1E =12BB 1·B 1C 1,解得B 1E =25,在Rt △PB 1E 中,PE =AB =1,所以PB 1=12+⎝ ⎛⎭⎪⎫252=35,所以∠PB 1E 的正弦值的最大值为PE PB 1=53,所以D 选项正确.故选ABD.8.如图,已知正方体ABCD-A 1B 1C 1D 1的棱长为2,E ,F ,G 分别为BC ,CC 1,BB 1的中点,则( )A.直线D1D与直线AF垂直B.直线A1G与平面AEF平行C.平面AEF截正方体ABCD-A1B1C1D1所得的截面的面积为9 2D.点A1和点D到平面AEF的距离相等答案BCD解析对于选项A,假设AF与D1D垂直,又D1D⊥AE,AE∩AF=A,AE,AF⊂平面AEF,所以D1D⊥平面AEF.因为EF⊂平面AEF,所以D1D⊥EF,这显然是错误的,所以假设不成立,故A错误;图1对于选项B,取B1C1的中点N,连接A1N,GN,如图1所示,易知A1N∥AE,又AE⊂平面AEF,A1N⊄平面AEF,所以A1N∥平面AEF.因为GN∥EF,EF⊂平面AEF,GN⊄平面AEF,所以GN∥平面AEF.又A1N,GN⊂平面A1GN,A1N∩GN=N,所以平面A1GN∥平面AEF.因为A1G⊂平面A1GN,所以A1G∥平面AEF,故B正确;对于选项C,连接AD1,FD1,如图2所示,因为AD1∥EF,所以四边形AD1FE 为平面AEF截正方体ABCD-A1B1C1D1所得的截面,又AD1=22+22=22,图2EF =12+12=2,D 1F =AE =12+22=5,所以四边形AD 1FE 为等腰梯形, 高为(5)2-⎝ ⎛⎭⎪⎫222=322,则S 梯形AD 1FE =12×(2+22)×322=92,故C 正确;对于选项D ,连接A 1D ,如图2所示,由选项C 可知A 1D 与平面AEF 相交且交点为A 1D 的中点,所以点A 1和点D 到平面AEF 的距离相等,故D 正确.综上,选BCD.9.已知棱长为a 的正方体ABCD-A 1B 1C 1D 1中,M 是B 1C 1的中点,点P 在正方体的表面上运动,且总满足MP ⊥MC ,则下列结论中正确的是( ) A.点P 的轨迹中包含AA 1的中点B.点P 在侧面AA 1D 1D 内的轨迹的长为5a4 C.MP 长度的最大值为21a4D.直线CC 1与直线MP 所成角的余弦值的最大值为55 答案 BCD解析 如图,取A 1D 1的中点E ,分别取A 1A ,B 1B 上靠近A 1,B 1的四等分点F ,G ,连接EM ,EF ,FG ,MG ,易知EM ∥FG 且EM =FG ,所以E ,M ,F ,G 四点共面.连接GC ,因为MG 2=⎝ ⎛⎭⎪⎫a 22+⎝ ⎛⎭⎪⎫a 42=5a 216,MC 2=⎝ ⎛⎭⎪⎫a 22+a 2=5a 24,GC 2=⎝ ⎛⎭⎪⎫3a 42+a 2=25a 216,因此MG 2+MC 2=GC 2,所以MG ⊥MC ,易知ME ⊥MC ,又MG ∩ME =M ,MG ,ME ⊂平面MEFG ,所以MC ⊥平面MEFG ,即点P 的轨迹为四边形MEFG (不含点M ),易知点P 在侧面AA 1D 1D 内的轨迹为EF ,且EF =MG =5a4,所以A 选项错误,B 选项正确;根据点P 的轨迹可知,当P 与F 重合时,MP 最长,易知FG ⊥平面BB 1C 1C ,则FG ⊥MG ,连接MF ,所以MF =a 2+5a 216=21a4,故C 选项正确;由于点P 的轨迹为四边形MEFG (不含点M ),所以直线CC 1与直线MP 所成的最小角就是直线CC 1与平面MEFG 所成的角,又向量CC 1→与平面MEFG 的法向量CM →的夹角等于∠C 1CM ,且sin ∠C 1CM =a25a 2=55,所以直线CC 1与平面MEFG 所成角的余弦值为55,即直线CC 1与直线MP 所成角的余弦值的最大值等于55,故D 选项正确.10.如图,长方体ABCD-A 1B 1C 1D 1中,AB =BC =1,AA 1=2,M 为AA 1的中点,过B 1M 作长方体的截面α交棱CC 1于N ,则( )A.截面α可能为六边形B.存在点N,使得BN⊥截面αC.若截面α为平行四边形,则1≤CN≤2D.当N与C重合时,截面图形的面积为36 4答案CD解析设N0为棱CC1的中点,当N从C1移动到C时,其过程中存在以下几种情况,如图1,当点N在线段C1N0上时,截面α为平行四边形;当点N在线段N0C上(不包括点N0,C)时,截面α为五边形;当点N与点C重合时,截面α为梯形.图1图2由以上分析可知,对于A,截面α不可能为六边形,所以A错误;对于B,假设BN⊥截面α,因为B1M⊂α,所以BN⊥B1M,所以必有点N,C重合,而BC与平面B1CQM不垂直,所以B错误;对于C,当截面α为平行四边形时,点N在线段C1N0上,则1≤CN≤2,所以C 正确;对于D,当点N与点C重合时,截面α为梯形,如图2,过M作MM′⊥B1C,垂足为M′.设梯形的高为h,B1M′=x,则在Rt△B1MM′中,由勾股定理,得h2=(2)2-x2,①同理h 2=⎝ ⎛⎭⎪⎫522-⎝ ⎛⎭⎪⎫52-x 2,② 由①②,解得x =255,h =65,所以截面α的面积等于12×⎝⎛⎭⎪⎫5+52·h =12×352×65=364,所以D 正确. 综上可知,选CD.。

高考数学一轮复习讲练测(新教材新高考)专题8-1空间几何体及其三视图和直观图-教师版

高考数学一轮复习讲练测(新教材新高考)专题8-1空间几何体及其三视图和直观图-教师版

专题8.1空间几何体及其三视图和直观图练基础1.(2020·广西兴宁�南宁三中高一期末)已知一个几何体的三视图如图所示,则此几何体的组成方式为()A.上面为圆台,下面为圆柱B.上面为圆台,下面为棱柱C.上面为棱台,下面为棱柱D.上面为棱台,下面为圆柱【答案】A【解析】结合图形分析知上面为圆台,下面为圆柱.故选:A.2.(2021·江西师大附中高二月考(理))如图是一个棱锥的正视图和侧视图,它们为全等的等腰直角三角形,则该棱锥的俯视图不可能是()A.B.C.D.【答案】C【解析】根据棱锥的三视图想象原几何体的结构,可以在正方体中想象描出原几何体,确定其结构.【详解】若几何体为三棱锥,由其正视图和侧视图可知,其底面在下方且为直角三角形,故ABD 均有可能,若几何体是四棱锥,由其正视图和侧视图可知,其底面在下方,且为正方形,俯视图为正方形,但对角线应从左上到右下,C 不正确.故选:C .3.(2021·江苏高一期末)已知一个圆锥的母线长为2,其侧面积为2π,则该圆锥的高为()A .1BC D .2【答案】C【解析】由侧面积求出圆锥的底面圆半径,再根据勾股定理可求得其高.【详解】设圆锥的底面圆的半径为r ,母线为l ,则2l =,所以其侧面积为22rl r πππ==,解得1r =,==故选:C.4.(2020·河北易县中学高三其他(文))若圆台的母线与高的夹角为6π,且上、下底面半径之差为2,则该圆台的高为()A .233B .2C .22D .3【答案】D【解析】设上、下底面半径分别为R ,r ,圆台高为h ,由题可知:tan 6R r h π-=,即233h =,所以23h =.故选:D5.(2020届浙江绍兴市诸暨市高三上期末)某几何体的正视图与侧视图如图所示:则下列两个图形①②中,可能是其俯视图的是()A.①②都可能B.①可能,②不可能C.①不可能,②可能D.①②都不可能【答案】A【解析】若是①,可能是三棱锥;若是②,可能是棱锥和圆锥的组合;所以①②都有可能,故选:A.6.(2021·石家庄市第十七中学高一月考)如图,某沙漏由上、下两个圆锥组成,每个圆锥的底面直径和高均为12cm ,现有体积为396πcm 的细沙全部漏入下圆锥后,恰好堆成一个盖住沙漏底部的圆锥形沙堆,则此锥形沙堆的高度为()A .3cmB .6cmC .8cmD .9cm【答案】C【解析】根据圆锥的体积公式列方程求出沙堆的高.【详解】解:细沙漏入下部后,圆锥形沙堆的底面半径为6r =,设高为h ,则沙堆的体积为216963V h ππ=⋅⋅=圆锥,解得()8h cm =,所以圆锥形沙堆的高度为8cm .故选:C .7.(2021·云南弥勒市一中高一月考)如图,正方形OABC 的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是()A .8B .6C .(21D .(21+【答案】A【解析】根据斜二测画法的规则,得到原图形的形状为平行四边形,进而求得其边长,即可求解.【详解】由斜二测画法的规则,可得原图形为O A B C ''''是一个平行四边形,如图所示,因为水平放置的一个平面图形的直观图OABC 的边长为1的正方形,可得1,OA OB ==1,O A O B ''''==在直角O A B '''△中,可得3A B ''==,所以原图形的周长为11338+++=.故选:A.8.(2021·浙江高三三模)如图,等腰直角三角形ABC 在平面α上方,90BAC ∠= ,若ABC 以BC 为旋转轴旋转,形成的旋转体在平面α内的投影不可能的是()A .B .C .D .【答案】C【解析】对直线BC 与平面α的位置关系进行分类讨论,判断出投影的形状,即可得出合适的选项.【详解】若BC α⊥,则形成的旋转体在平面α内的投影如D 选项所示;若//BC α,则形成的旋转体在平面α内的投影为正方形;若BC 与α所成的角的取值范围是0,2π⎛⎫ ⎪⎝⎭时,则形成的旋转体在平面α内的投影如A 、B 选项所示.投影不可能如C 选项所示.故选:C.9.(2020·上海市进才中学高二期末)设MN 是半径为R 的球的直径,则,M N 两点的球面距离是________.【答案】Rπ【解析】MN 是半径为R 的球的直径,则,M N 两点所对的球心角为π,球面距离为R π.故答案为:R π.10.(2020·全国)如图为一几何体的平面展开图,按图中虚线将它折叠起来,画出它的直观图.【答案】见解析【解析】由题设中所给的展开图可以得出,此几何体是一个四棱锥,其底面是一个边长为2的正方形,垂直于底面的侧棱长为2,其直观图如图所示.练提升1.(2021·四川高一期末(理))某圆柱的高为1,底面周长为8,其三视图如图.圆柱表面上的点P在正视图上的对应点为A,圆柱表面上的点Q在左视图上的对应点为B,则在此圆柱侧面上,从P到Q的路径中,最短路径的长度为()A17B5C.32D.1【答案】B【解析】根据三视图分析出,P Q所在的位置,然后结合圆柱的侧面展开图即可求出结果.【详解】由三视图还原几何体,如图:即点B在距离点A在底面投影的14圆弧处,沿A所在的母线得到如图所示的侧面展开图,圆柱的底面周长即为侧面展开图的长,圆柱的高即为侧面展开图的宽,而线段AB 的距离即为所求P 到Q 的路径中的最短路径,因为底面周长为8,所以1824A B '=⨯=,又因为高为1,则1A A '=,所以2222125AB A A A B ''=+=+=,故选:B.2.【多选题】(2021·宁波市北仑中学高一期中)如图,棱长为a 的正四面体形状的木块,点P 是ACD △的中心.劳动课上需过点P 将该木块锯开,并使得截面平行于棱AB 和CD ,则下列关于截面的说法中正确的是()A .截面不是平行四边形B .截面是矩形C .截面的面积为229a D .截面与侧面ABC 的交线平行于侧面ABD【答案】BCD【解析】过点P 构建四边形,通过相关直线间的平行关系进一步证明为平行四边形,找对应线之间的垂直证明截面为矩形,从而计算截面面积【详解】解:如图所示,在正四面体中,4个面均为正三角形,由于点P 为ACD △的中心,所以P 位于CD 的中线的23外,分别取,,,BC AC AD BD 的三等分点,则EM ∥AB ,EF ∥CD ,FN ∥AB ,MN ∥CD ,所以EM ∥FN ,EF ∥MN ,所以截面EFNM 为平行四边形,所以A 错误,延长AP 交CD 于G ,连接BG ,由于P 为ACD △的中心,所以G 为CD 的中点,因为AC AD BC BD ===,所以,AG CD BG CD ⊥⊥,因为AG BG G = ,所以CD ⊥平面ABG ,所以CD AB ⊥,因为EM ∥AB ,EF ∥CD ,所以EM EF ⊥,所以截面EFNM 为矩形,所以B 正确,因为2211,3333MN CD a ME AB a ====,所以2212339S MN ME a a a =⋅=⋅=,所以C 正确,对于D ,截面EFNM ⋂平面ABC ME =,ME ∥AB ,ME ⊄平面ABD ,AB Ì平面ABD ,所以ME ∥平面ABD ,所以D 正确,故选:BCD3.(2021·湖北随州市·广水市一中高一月考)如图所示,矩形O A B C ''''是水平放置一个平面图形的直观图,其6O A ''=,2O C ''=,则原图形是()A .正方形B .矩形C .菱形D .梯形【答案】C【解析】由已知得原图为平行四边形,OD BC ^,利用勾股定理计算边长得到OC OA =,可判断原图形的形状.【详解】因为//O A B C '''',=O A B C '''',所以直观图还原得//OA BC ,=6OA BC O A ''==,四边形OABC 为平行四边形,OD BC ^,则2C D O C ''''==,2CD ∴=,O D C ''''==2OD O D ''==6OC =,所以6OC OA ==,故原图形为菱形.故选:C.4.(2021·肇州县第二中学高一月考)如图是利用斜二测画法画出的Rt ABO 的直观图,已知4O B ''=,且ABO 的面积为16,过点A '作A C x '''⊥轴于点C ',则A C ''的长为()A .BC .D .1【答案】A【解析】利用面积公式,求出直观图的高,求出''A B ,然后在直角三角形'''A B C 中求解即可【详解】解:由直观图可知,在Rt ABO 中,2ABO π∠=,因为ABO 的面积为16,4O B OB ''==,所以1162AB OB ⋅=,所以8AB =,所以''4A B =,因为'''4A B C π∠=,A C x '''⊥轴于点C ',所以''''sin 44AC A B π=⋅==故选:A5.(2021·宁夏大学附属中学高一月考)三棱锥S ABC -及其三视图中的正视图和侧视图如图所示,则棱SB 的长为()A .B .CD .【答案】B【解析】根据几何体的三视图,结合几何体的数量关系,在直角SBD 中,即可求解.【详解】如图所示,根据三棱锥S ABC -及其三视图中的正视图和侧视图,可得底面ABC 中,点D 为AC 的中点,BD =SC ⊥底面ABC ,又由点D 为AC 的中点,且根据侧视图,可得BD AC ⊥,在直角BCD △中,可得4BC ===又由4SC =,在直角SBC 中,可得SB =故选:B.6.(2021·江苏省镇江中学)点P 是平面ABC 外一点,且PA PB PC ==,则点P 在平面ABC 上的射影一定是ABC 的()A .外心B .内心C .重心D .垂心【答案】A【解析】过点P 作PO ⊥平面ABC ,因为PA PB PC ==,得到OA OB OC ==,即可求解.【详解】如图所示,过点P 作PO ⊥平面ABC ,可得222222,OA PA PO OB PB PO OC PC PO =-=-=-因为PA PB PC ==,可得OA OB OC ==,所以O 为ABC 的外心.故选:A.7.(2021·上海高二期末)圆锥的高为1,3则过圆锥顶点的截面面积的最大值为____________【答案】2【解析】求出圆锥轴截面顶角大小,判断并求出所求面积最大值.【详解】如图,SAB 是圆锥轴截面,SC 是一条母线,设轴截面顶角为θ,因为圆锥的高为1tan 2θ(0,)θπ∈,所以23θπ=,232ππθ=>,设圆锥母线长为l ,则2l =,截面SBC 的面积为211sin sin 22S SB SC BSC l BSC =⋅∠=∠,因为2(0,]3BSC π∠∈,所以2BSC π∠=时,2max 1222S =⨯=.故答案为:2.8.(2021·浙江绍兴市·高一期末)已知四面体ABCD 的所有棱长均为4,点O 满足OA OB OC OD ===,则以O ABCD 表面所得交线总长度为______.【答案】3【解析】根据正四面体的结构特征求得O 到面的距离,进而利用球的截面的性质求得各面所在平面与球的截面圆的半径,注意与各面的三角形内切圆的半径比较,确定此截面圆是否整个在面所在的三角形内,进而确定球与各面的交线,得到球与四面体表面所得交线总长度.【详解】已知四面体ABCD 的所有棱长均为4,所以四面体ABCD 是正四面体,因为点O 满足OA OB OC OD ===,所以O 为正四面体ABCD 的中心.设正三角BCD 的中心为F ,正三角ACD 的中心为G ,CD 的中点为E ,则连接,,,,AF BG AE BE 则,BG AF O BF AG E ⋂=⋂=.:::1:3,:1:4,OF OA GF AB EF EB OF AF ===∴=则224223BE AE =-=24333BF BE ==,224364()33AF =-,643AF OF ==.因为球O 2O 被平面BCD 截得圆半径为22623(2)()33r PF ==-=,因为正三角形BCD 的边长为4,所以正三角形内切圆半径为232tan 303︒=,故球O 与四面体ABCD 的每一个面所得的交线为正好为内切圆,每个内切圆的周长为4323r π,所以球与四面体ABCD 1633.故答案为:1633π.9.(2020届浙江杭州四中高三上期中)某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x 的值是_____,最长棱长为_____.【答案】3【解析】由已知中的三视图可得该几何体是一个以直角梯形为底面的四棱锥,且梯形上下边长为1和2,高为2,如图:2AD =,2AB =,1BC =,PA x =,//AD BC ,PA ⊥平面ABCD ,AD AB ⊥,∴底面的面积1(12)232S =⨯+⨯=,∴几何体的体积1333V x ==,可得3x =,最长棱长为:PC故答案为:3.10.(2019·全国高考真题(理))中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.【答案】共26个面.1-.【解析】由图可知第一层与第三层各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有18826+=个面.如图,设该半正多面体的棱长为x ,则AB BE x ==,延长BC 与FE 交于点G ,延长BC 交正方体棱于H ,由半正多面体对称性可知,BGE ∆为等腰直角三角形,22,21)122BG GE CH x GH x x x ∴===∴=⨯+=+=,1x ∴==1.练真题1.(2021·全国高考真题)其侧面展开图为一个半圆,则该圆锥的母线长为()A .2B .C .4D .【答案】B【解析】设圆锥的母线长为l ,根据圆锥底面圆的周长等于扇形的弧长可求得l 的值,即为所求.【详解】设圆锥的母线长为l ,由于圆锥底面圆的周长等于扇形的弧长,则2l ππ=l =.故选:B.2.(2021·北京高考真题)定义:24小时内降水在平地上积水厚度(mm )来判断降雨程度.其中小雨(10mm <),中雨(10mm 25mm -),大雨(25mm 50mm -),暴雨(50mm 100mm -),小明用一个圆锥形容器接了24小时的雨水,如图,则这天降雨属于哪个等级()A .小雨B .中雨C .大雨D .暴雨【答案】B【解析】计算出圆锥体积,除以圆面的面积即可得降雨量,即可得解.【详解】由题意,一个半径为()200100mm 2=的圆面内的降雨充满一个底面半径为()20015050mm 2300⨯=,高为()150mm 的圆锥,所以积水厚度()22150150312.5mm 100d ππ⨯⨯==⨯,属于中雨.故选:B.3.(2020·全国高考真题(理))如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为()A.EB.F C.G D.H【答案】A【解析】根据三视图,画出多面体立体图形,14D D 上的点在正视图中都对应点M ,直线34B C 上的点在俯视图中对应的点为N,∴在正视图中对应M ,在俯视图中对应N 的点是4D ,线段34D D ,上的所有点在侧试图中都对应E ,∴点4D 在侧视图中对应的点为E .故选:A4.(2019年高考全国Ⅲ卷理)如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则()A.BM =EN ,且直线BM ,EN 是相交直线B.BM ≠EN ,且直线BM ,EN 是相交直线C.BM =EN ,且直线BM ,EN 是异面直线D.BM ≠EN ,且直线BM ,EN 是异面直线【答案】B【解析】如图所示,作EO CD ⊥于O ,连接ON ,BD ,易得直线BM ,EN 是三角形EBD 的中线,是相交直线.过M 作MF OD ⊥于F ,连接BF ,平面CDE ⊥平面ABCD ,,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCD ,MFB ∴△与EON △均为直角三角形.设正方形边长为2,易知12EO ON EN ===,,5,,22MF BF BM ==∴=BM EN ∴≠,故选B.5.(2018·北京高考真题(文))某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1B.2C.3D.4【答案】C【解析】分析:根据三视图还原几何体,利用勾股定理求出棱长,再利用勾股定理逆定理判断直角三角形的个数.详解:由三视图可得四棱锥P ABCD -,在四棱锥P ABCD -中,2,2,2,1PD AD CD AB ====,由勾股定理可知:3,PA PC PB BC ====,则在四棱锥中,直角三角形有:,,PAD PCD PAB ∆∆∆共三个,故选C.6.(2021·全国高考真题(理))以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).【答案】③④(答案不唯一)【解析】由题意结合所给的图形确定一组三视图的组合即可.【详解】选择侧视图为③,俯视图为④,如图所示,长方体1111ABCD A B C D -中,12,1AB BC BB ===,,E F 分别为棱11,BC BC 的中点,则正视图①,侧视图③,俯视图④对应的几何体为三棱锥E ADF -.故答案为:③④.。

高考数学立体几何专题复习(含答案)

高考数学立体几何专题复习(含答案)
9、如图,在四棱锥 P ABCD 中,底面 ABCD 是正方形,侧棱 PD 底面 ABCD , PD DC 2 , E 是 PC
的中点.
(Ⅰ)证明: PA / / 平面 EDB ; (Ⅱ)求三棱锥 A BDP 的体积.
试卷第 2 页,总 2 页
参考答案
1、【答案】(1)详见解析;(2) . 试题分析(:1)过 B 作 CD 的垂线交 CD 于 F,则
6、如图所示,在直三棱柱 ABC-A1B1C1 中,AC=3,BC=4,AB=5,AA1=4,点 D 是 AB 的中点. (1)求证:AC1∥平面 CDB1; (2)求异面直线 AC1 与 B1C 所成角的余弦值.
7、如图所示,在三棱锥 A BOC 中,OA 底面 BOC ,OAB OAC 300 , AB AC 2 , BC 2 ,
高考数学—立体几何专题复习
1、如图,直四棱柱 ABCD–A1B1C1D1 中,AB//CD,AD⊥AB,AB=2,AD= ,AA1=3,E 为 CD 上一点,DE=1,EC=3. (1)证明:BE⊥平面 BB1C1C; (2)求点 B1 到平面 EA1C1 的距离.
2、已知四棱锥 P ABCD 的底面 ABCD 是菱形, BAD 60 ,又 PD 平面 ABCD ,点 E 是棱 AD 的中点, F 在棱 PC 上. (1)证明:平面 BEF 平面 PAD . (2)试探究 F 在棱 PC 何处时使得 PA / / 平面 BEF .
答案第 1 页,总 6 页
试题解析:
(1)证明:
PD EB

平面ABCD 平面ABCD

PD

EB
,
又底面 ABCD 是 A 60 的菱形,且点 E 是棱 AD 的中点,所以 EB AD ,

高考数学第一轮复习立体几何专题题库19.doc

高考数学第一轮复习立体几何专题题库19.doc

241. 已知点P 是正方形ABCD 所在的平面外一点,PD ⊥面AC ,PD=AD=l ,设点C 到面PAB 的距离为d 1,点B 到平面PAC 的距离为d 2,则( ) (A )l <d 1 <d 2(B )d 1< d 2<l (C )d 1<l < d 2(D )d 2<d 1<l解析:l d 221=,l d 332=,故d 2<d 1<l ,选D 。

242.如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直。

点M 在AC 上移动,点N 在BF 上移动,若CM=BN=a ).20(<<a (1)求MN 的长;(2)当a 为何值时,MN 的长最小; (3)当MN 长最小时,求面MNA 与面MNB 所成的二面角α的大小。

解析:(1)作MP ∥AB 交BC 于点P ,NQ ∥AB 交BE 于点Q ,连接PQ ,依题意可得MP ∥NQ ,且MP=NQ ,即MNQP 是平行四边形。

∴MN=PQ,由已知,CM=BN=a,CB=AB=BE=1,∴2==BF AC ,21,21a BQ a CP ==, 即2aBQ CP ==, ∴=+-==22)1(BQ CP PQ MN )20(21)22()2()21(222<<+-=+-a a a a(2)由(1)知: 2222==MN a 时,当,的中点时,分别移动到即BF AC N M ,, 22的长最小,最小值为MN (3)取MN 的中点G ,连接AG 、BG ,∵AM=AN,BM=BN ,∴AG ⊥MN,BG ⊥MN ,∴∠AGB 即为二面角α的平面角。

又46==BG AG ,所以由余弦定理有 ADE31464621)46()46(cos 22-=∙∙-+=α。

故所求二面角)31arccos(-=α。

243. 如图,边长均为a 的正方形ABCD 、ABEF 所在的平面所成的角为)20(πθθ<<。

2024届一轮复习数学新教材人教A版 第七章立体几何与空间向量必刷小题13 立体几何 课件(37张)

2024届一轮复习数学新教材人教A版 第七章立体几何与空间向量必刷小题13 立体几何 课件(37张)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2.下列四个命题中,正确的是 A.各侧面都是全等四边形的棱柱一定是正棱柱 B.对角面是全等矩形的六面体一定是长方体 C.有两侧面垂直于底面的棱柱一定是直棱柱
√D.长方体一定是直四棱柱
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
7.蹴鞠,又名蹴球,踢圆等,蹴有用脚蹴、踢、蹋的含义,鞠最早系外
包皮革、内实米糠的球.因而蹴鞠就是指古人以脚蹴、蹋、踢皮球的活动,
类似今日的足球.2006年5月20日,蹴鞠已作为非物质文化遗产经国务院
批准列入第一批国家非物质文化遗产名录.已知某鞠的表面上有五个点P,
对于A,由m∥α,m∥n,得到: 若n∥α,过n的平面γ∩α=l,则n∥l, 又n⊥β,则l⊥β,l⊂α,则α⊥β, 若n⊂α,又n⊥β,则α⊥β.综上,α⊥β,故A正确; 对于B,若m⊥n,m⊥α,n∥β,则α与β相交或平行,故B错误; 对于C,若α⊥β,m⊥α,m⊥n,则n与β相交、平行或n⊂β,故C错误; 对于D,若α⊥β,α∩β=m,n⊥m,则n与β相交或n⊂β,故D错误.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
8.某同学画“切面圆柱体”(用与圆柱底面不平行的平面切圆柱,底面与 切面之间的部分叫做切面圆柱体),发现切面与圆柱侧面的交线是一个椭 圆(如图所示).若该同学所画的椭圆的离心率为12,则“切面”所在平面与 底面所成的角为
π A.12
4.已知m,n表示两条不同的直线,α,β表示两个不同的平面,则下列命 题中正确的是
√A.若m∥α,n⊥β,m∥n,则α⊥β

专题9.5—立体几何—异面直线所成的角1—2022届高三数学一轮复习精讲精练(含答案)

专题9.5—立体几何—异面直线所成的角1—2022届高三数学一轮复习精讲精练(含答案)

专题9.5—立体几何—异面直线所成的角1一.单选题1.如图,正四棱柱1111ABCD A B C D -满足12AB AA =,点E 在线段1DD 上移动,F 点在线段1BB 上移动,并且满足1DE FB =,则下列结论中正确的是( )A .直线1AC 与直线EF 可能异面B .直线EF 与直线AC 所成角随着E 点位置的变化而变化C .三角形AEF 可能是钝角三角形D .四棱锥A CEF -的体积保持不变2.如图,设E ,F 分别是正方体1111ABCD A B C D -的棱DC 上两点,且2AB =,1EF =,其中正确的命题为( )A .直线11DB 与1A D 所成的角为90︒ B .异面直线11D B 与EF 所成的角为60︒C .11D B ⊥平面1B EFD .三棱锥11D B EF -的体积为定值3.在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为( ) A 5 B 5 C .5 D 2 4.在正方体1111ABCD A B C D -中,E 是棱11A B 的中点,则1A B 与DE 所成角的余弦值为(A .510B .26C .55D .1055.在直三棱柱111ABC A B C -中,12AB AA ==,1BC =,AB BC ⊥,点D 是侧棱1BB 的中点,则异面直线1C D 与直线1AB 所成的角大小为( ) A .换体6.在直三棱柱111ABC A B C -中,90ACB ∠=︒,1D ,1E 分别是11B C ,11A C 的中点,1CA CB CC ==,则1AE 与1CD 所成角的余弦值为( )A .12B .32 C .35D .457.如图,在长方体1111ABCD A B C D -中,12AA AD ==,3AB =,点F 在线段11C D 上,且11D F =,则异面直线CD 与BF 所成角的余弦值为( )A .22B .33C .23D .248.如图,四边形ABCD 为矩形,2AD AB =,E 是BC 的中点,将BAE ∆沿AE 翻折至PAE ∆的位置(点P ∉平面)AECD ,设线段PD 的中点为F .则在翻折过程中,下列推断不正确的是( )A .//CF 平面AEPB .CF 的长度恒定不变C .AE DP ⊥D .异面直线CF 与PE 所成角的大小恒定不变 二.多选题9.如图,在正方体1111ABCD A B C D -中,点E 是线段1CD 上的动点,则下列判断正确的是(A .当点E 与点1D 重合时,1B E AC ⊥B .当点E 与线段1CD 的中点重合时,1B E 与1AC 异面 C .无论点E 在线段1CD 的什么位置,都有11AC BE ⊥D .若异面直线1BE 与AD 所成的角为θ,则cos θ的最大值为6310.已知正方体1111ABCD A B C D -,点P 是棱1CC 的中点,设直线AB 为a ,直线11A D 为b ,则下列判断正确的是( )A .过点P 有且只有一条直线l 与a ,b 都相交B .过点P 有且只有一条直线l 与a ,b 都垂直C .过点P 只有两条直线与a ,b 都成45︒角D .过点P 只有两条直线与a ,b 都成60︒角11.将正方形ABCD 沿对角线BD 折成直二面角A BD C --,有如下四个结论: ①AC BD ⊥;②ACD ∆是等边三角形;③AB 与平面BCD 所成的角为60︒; ④AB 与CD 所成的角为60︒. 其中正确的结论是( ) A .①B .②C .③D .④12.如图,边长为1的正方形ABCD 所在平面与正方形ABEF 所在平面互相垂直,动点M ,N 分别在正方形对角线AC 和BF 上移动,且(02)CM BN a a ==<<.则下列结论中正确的有( )A .当12a =时,ME 与CN 相交 B .MN 始终与平面BCE 平行C .异面直线AC 与BF 所成的角为45︒D .当22a =时,MN 的长最小,最小为22三.填空题13.已知空间中的一个平面与一个正方体的12条棱的夹角都等于α,则cos α= . 14.如图甲,将三棱锥P ABC -沿三条侧棱剪开后,展开成如图乙所示的形状,其中点1P ,A ,3P 共线,点1P ,B ,2P 共线,点2P ,C ,3P 共线,且1223PP P P =,则在如图甲所示的三棱锥P ABC -中,PA 与BC 所成角的大小为 .15.如图,在直三棱柱111ABC A B C -中,90BAC ∠=︒,111114AA A B AC ===,点E 是棱1CC 上一点,且113C E CE =,则异面直线1A B 与AE 所成角的余弦值为 .16.如图,1111ABCD A B C D -是正方体,E ,F 分别是AB ,1BB 的中点,则异面直线1A E 与1C F 所成角的余弦值为 .四.解答题17.在三棱锥?P ABC 中,M ,N 分别是PA ,BC 的中点,已知2AC PB ==,3MN 求异面直线AC ,PB 所成角的大小.18.如图,在平行六面体1111ABCD A B C D -中,底面是边长为1的正方形,若01160A AB A AD ∠=∠=,且13A A =,若M 是1AA 的中点. (Ⅰ)求证:1//A C 平面MBD ; (Ⅱ)求1A C 的长为;(Ⅲ)求直线1A C 与直线DM 所成角的余弦值.专题9.5—立体几何—异面直线所成的角1答案1.解:如图所示,连接有关线段.设M ,N 为AC ,11A C 的中点,即为上下底面的中心, MN 的中点为O ,则1AC 的中点也是O ,又1DE B F =,由对称性可得O 也是EF 的中点, 所以1AC 与EF 交于点O ,故不是异面直线,故A 错误;由正四棱柱的性质结合线面垂直的判定定理易得AC ⊥平面11BB D D , 因为EF ⊂平面11BB D D ,AC EF ∴⊥,故B 错误; 设AB a =,则12AA a =,设1DE B F x ==,02x a <<, 易得222AE a x =+,22222(2)54AF a a x a ax x =+-=-+,222222(22)684EF a a x a ax x =+-=-+,因为2222422(2)0AE AF EF ax x x a x +-=-=->, 则EAF ∠为锐角;因为2222222422()0AE EF AF a ax x a x +-=-+=->, 则AEF ∠为锐角,因为2222210124AF EF AE a ax x +-=-+,当32x a =时取得最小值为2222101890a a a a -+=>,则AFE ∠为锐角,故AEF ∆为锐角三角形,故C 错误; 三棱锥A EFC -也可以看做F AOC -和E AOC -的组合体, 由于AOB ∆是固定的,E ,F 到平面AOC 的距离是不变的 (易知1BB ,1DD 平行与平面11)ACC A ,故体积不变,故D 正确. 故选:D .2.解:对于A ,11D B 不垂直1A D ,故A 错,对于B ,11//EF D C ,11D B 和11D C 所成的角是45︒,异面直线11D B 所成的角45︒,故B 错误, 对于C ,11D B 于EF 不垂直,由此可知11D B 于平面1B EF 不垂直,故C 错, 对于D ,三棱锥11D B EF -的体积为 11113D EFV SB C =⋅1122132=⨯⨯⨯⨯ 23=,为定值, 故D 对, 故选:D .3.解:建立如图所示的空间直角坐标系, 不妨设1DA =,则有:(0D ,0,0),(1A ,0,0),1(0D ,0,1(1B ,1, 所以1(1DB =,1,1((1AD =-,0, 设1DB ,1AD 的夹角为θ, 则11115cos 5||||DB AD DB AD θ⋅==⋅, 即异面直线1AD 与1DB , 故选:A .4.解:如图,取1BB 的中点F ,连接EF ,则1//EF A B ,DEF ∴∠(或其补角)即为1A B 与DE 所成角,连接DF ,设正方体的棱长为2,则2EF =,2222213DF =++=,2222213DE =++=,2229292cos 26232DE EF DF DEF DE EF +-+-∴∠===⨯⨯⨯⨯. 1A B ∴与DE 所成角的余弦值为26. 故选:B .5.解:如图,取AB 的中点E ,连接DE ,则1//DE AB ,则1C DE ∠(或其补角)为异面直线1C D 与直线1AB 所成的角, 1122DE AB ==,12C D =,22211126C E =++=, 12261cos 2222C DE +-∠==-⨯⨯,∴异面直线1C D 与直线1AB 所成的角大小为3π. 故选:C . 6.解:如图,以C 为坐标原点,分别以CA 、CB 、1CC 所在直线为x 、y 、z 轴建立空间直角坐标系. 设12CA CB CC ===,则(0C ,0,0),(2A ,0,0),1(1E ,0,2),1(0D ,1,2). 1(1,0,2)AE =-,1(0,1,2)CD =.11111144cos ,5||||55AE CD AE CD AE CD ⋅∴<>===⋅⨯. 1AE ∴与1CD 所成角的余弦值为45. 故选:D .7.解:以D 为坐标原点距离如图所示空间直角坐标系,则(0D ,0,0),(0C ,3,0),(2B ,3,0),(0F ,1,2),∴(0,3,0)DC =,(2,2,2)FB =-,63cos ,3||||332DC FB DC FB DC FB ⋅∴<>===⋅⨯.即异面直线CD 与BF 所成角的余弦值为33. 故选:B .8.解:取AD 的中点M ,连接MF ,MC 交ED 于N ,A .由题意可知N 为ED 的中点,所以//FM AP ,//FN PE ,所以平面//PAE 平面MFC ,所以A 正确;B .因为FMC PAE ∠=∠(定值),12FM AP =(定值),MC AE =(定值),在MFC ∆中由余弦定理可知CF 的长是定值,所以B 正确.C .若AB BE =,则MA ME MD ==,所以90AED ∠=︒,所以AE ED ⊥,若AE DP ⊥,又DEDP D =,则有AE ⊥面PED ,所以有AE PE ⊥,这与AE 不垂直于PE 相矛盾,所以C 不正确;D .由B 知在翻折过程中MFC ∆的形状不变,点N 的位置也不会发生改变,所以NFC ∠大小不变,又易证//FN PE ,所以NFC ∠是异面直线CF 与PE 所成的角,所以异面直线CF 与PE 所成角的大小恒定不变,故D 正确.故选:C .9.解:当点E 与点1D 重合时,1//B E BD ,因为AC BD ⊥,1B E AC ∴⊥,∴选项A 正确; 当点E 与线段1CD 的中点重合时,E 是1CD 的中点,1B E 与1AC 都在平面11AB C D 内,1B E 与1AC 相交,∴选项B 错误;建立如图所示的直角坐标系,设正方体棱长为1,则(0A ,0,0),1(1C ,1,1),1(1B ,0,1),(0D ,1,0), 设(1E a -,1,)a ,01a ,则1(,1,1)B E a a =--,1(1,1,1)AC =,∴11110B E AC a a ⋅=-++-=,11AC B E ∴⊥,∴选项C 正确;(0,1,0)AD =,设异面直线1B E 与AD 所成角为θ,则122221||11cos ||||131(1)2()22B E AD B E AD a a a θ⋅===⋅++--+,当12a =时,cos θ有最大值63,此时点E 是线段1CD 的中点,∴选项D 正确,故选:ACD .10.解:直线AB 与11A D 是两条互相垂直的异面直线, 点P 不在这两条异面直线中的任何一条上,如图所示, 取1BB 的中点Q ,则11//PQ A D ,且11PQ A D =, 设1A Q 与AB 交于点E , 则点1A ,1D ,Q ,E ,P 共面, 直线EP 必与11A D 相交于某点F ,由于直线a 与平面11A QPD 仅交于点E ,两点确定一条直线, 则过点P 有且只有一条直线l 与a ,b 都相交, 故选项A 正确;过点P 有且只有一条直线1C C 都与a ,b 成90︒角, 故选项B 正确;分别平移a ,b ,使a 与b 均经过点P ,则有两条互相垂直的直线与a ,b 都成45︒角, 故选项C 正确;假设平面内与a ,b 成60︒角的直线为1l ,2l ,把1l ,2l 绕点P 逐渐竖起,则与a ,b 成60︒角的直线有4条, 故选项D 错误. 故选:ABC .11.解:取BD 中点,连接AO 、OC ,OA ',设正方形ABCD 边长为a , 对于①,因为BD OA ⊥,BD OC ⊥,所以BD ⊥平面AOC ,所以BD AC ⊥,所以①对;对于②,因为二面角A BD C --为直二面角,所以AO OC ⊥, 又因为22OA OC a ==,所以AC a =,又因为AD AC a ==,所以②对; 对于③,因为OB 为AB 在平面BCD 内投影,AB 与平面BCD 所成的角4560ABO ∠=︒≠︒, 所以③错;对于④,因为//CD A B ',所以AB 与CD 所成的角为60A BA ∠'=︒,所以④对. 故选:ABD .12.解:由题意,以B 为坐标原点,BA ,BE ,BC 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系,如图所示, 由正方形ABCD ,ABFE 的边长1,所以(1A ,0,0),(0B ,0,0),(0C ,0,1),(1D ,0,1),(0E ,1,0),(1F ,1,0), CM BN a ==,所以(2M ,0,12,(2N 2,0),对于A ,若ME 与CN 相交, 则M 、E 、C 、N 四点共面,故M 、E 、C 、N 四点都在平面ACE 内, 故点N 为AE 与BF 的交点,此时2a ,故A 错误; 对于B ,(0MN =21)2-,平面BCE 的法向量为(1BA =,0,0),所以0000MN BA ⋅=++=,又MN ⊂/平面BDE ,所以MN 与平面BDE 平行,故B 正确; 对于C ,(1AC =-,0,1),(1BF =,1,0),所以cos AC <,10012||||22AC BF BF AC BF ⋅-++>===-⋅,所以AC <,23BF π>=, 所以异面直线AC 与BF 所成的角为3π,故C 错误; 对于D ,22221||()(1)()2222a a MN a =+-=-+, 故所以当22a =时,MN 的长度最小,最小值为22,故D 正确. 故选:BD .13.解:棱1A A ,11A B ,11A D 与平面11AB D 所成的角相等,∴平面11AB D 就是与正方体的12条棱的夹角均为α的平面.则1A AO α∠=,设棱长为2,12AA =,12A O =,426AO =+=,26cos 36α==, 故答案为:63.14解:13P A P A =,A ∴是13PP 的中点, 同理可知B 是12P P 的中点,C 是23P P 的中点, 2312AB P P ∴=,1212AC PP =,又1223PP P P =,AB AC ∴=,PB PC =, 在图甲中,取BC 的中点D ,连接AD ,PD , 则AD BC ⊥,PD BC ⊥,又ADPD D =,BC ∴⊥平面PAD ,又PA ⊂平面PAD ,BC PA ∴⊥,PA ∴与BC 所成角的大小为90︒.故答案为:90︒.15.解:以点1A 为原点,建立如图所示的空间直角坐标系1A xyz -, 则1(0A ,0,0),(4B ,0,4),(0A ,0,4),(0E ,4,4)3,则1(4A B =,0,4),(0AE =,4,8)3-,1cos A B <,112613A B AE AE A B AE⋅->==-⨯, 所以异面直线1A B 与AE 所成角的余弦值为2613, 故答案为:2613.16.解:在正方体1111ABCD A B C D -中,E 、F 是AB 、1BB 的中点,设4AB = 取11A B 的中点H ,1HB 的中点G ,连结GF ,1GC , GF 、1FC 所成的角即为1A E 与1C F 所成的角.利用勾股定理得:5GF ,125C F =,117GC = 在△1C FG 中,利用余弦定理1520172cos 52525GFC +-∠==⋅⋅. 故答案为:25.17.解:取AB (或)PC 中点Q ,连接QM .QN ,Q 是AB 中点,N 是BC 中点,//QN AC ⇒,QN =三112AC =, 同理,可得//QM BP ,112QM PB ==, 所以MQN ∠就是异面直线AC 、PB 所成的角或其补角, 在MQN ∆中,1QM QN ==,3MN = 22211(3)1cos 2MQN +-∠=-,120MQN ∠=︒,∴异面直线AC ,PB 所成的角的大小为60︒.18.解:(Ⅰ)如图:连接AC 交BD 于点O ,连接MO ,因为四边形ABCD 为正方形,所以O 为AC 中点, 又因为M 为1AA 中点,所以OM 为△1AAC 的中位线, 所以1//MO AC ,因为MO ⊂面MBD ,所以1//A C 面MBD , (Ⅱ)在平行六面体1111ABCD A B C D -中,1160A AB A AD ∠=∠=︒,所以11120BCC DCC ∠=∠=︒,又13AA =,1BC DC ==,∴1113||||cos1202CB CC CD CC CD CC ⋅=⋅=︒=-., ||||cos900CB CD CB CD ⋅=︒=,11CA CB CD CC =++,∴2222211111||()222CA CB CD CC CB CD CC CB CC CD CC CB CD =++=+++⋅+⋅+⋅22231132()2052=+++⨯-⨯+=,∴15AC = (Ⅲ)设直线1A C 与直线DM 所成角为θ, 则111cos |cos ,|||||||A C DM A C DM A C DM θ⋅=<>=,11A C AA AB AD =-++,1||5A C =112DM DA AA =+,2117||()22DM DA AA =+=, ∴11115()()22AC DM AA AB AD DA AA ⋅=-++⋅+=-, ∴5352cos |752θ-==⨯所以直线1A C 与直线DM 35。

高中数学一轮复习:第八章 立体几何(必修2)课后跟踪训练46

高中数学一轮复习:第八章 立体几何(必修2)课后跟踪训练46

课后跟踪训练(四十六)基础巩固练一、选择题1.和两条异面直线都相交的两条直线的位置关系是()A.异面B.相交C.平行D.异面或相交[解析]当两条直线无公共点时,可知两直线异面;当两异面直线中的一条直线与两条直线交于一点时,可知两直线相交,故选D.[答案] D2.如图,α∩β=l,A,B∈α,C∈β,且C∉l,直线AB∩l=M,过A,B,C三点的平面记作γ,则γ与β的交线必通过()A.点A B.点BC.点C但不过点M D.点C和点M[解析]∵AB⊂γ,M∈AB,∴M∈γ.又C∈γ,M、C∈β,∴γ与β的交线必通过点C和点M.故选D.[答案] D3.已知正方体ABCD-A1B1C1D1中,O是BD1的中点,直线A1C 交平面AB1D1于点M,则下列结论错误的是()A.A1、M、O三点共线B.M、O、A1、A四点共面C.A、O、C、M四点共面D.B、B1、O、M四点共面[解析]因为O是BD1的中点.由正方体的性质知,O也是A1C 的中点,所以点O在直线A1C上,又直线A1C交平面AB1D1于点M,则A1、M、O三点共线,A正确.又直线与直线外一点确定一个平面,所以B、C正确.故选D.[答案] D4.以下四个命题中,正确命题的个数是()①不共面的四点中,其中任意三点不共线;②若点A,B,C,D 共面,点A,B,C,E共面,则A,B,C,D,E共面;③若直线a,b共面,直线a,c共面,则直线b,c共面;④依次首尾相接的四条线段必共面.A.0 B.1C.2 D.3[解析]对于①,不共面的四点中,其中任意三点不共线,故①正确;对于②,若A,B,C共线时,A,B,C,D,E不一定共面,故②不正确;对于③,b,c也可异面,故③不正确;④是错误的.故选B.[答案] B5.在正四棱柱ABCD-A1B1C1D1中,AA1=2AB,则异面直线A1B与AD 1所成角的余弦值为( )A.15B.25C.35D.45[解析] 如图,连接BC 1,易证BC 1∥AD 1,则∠A 1BC 1即为异面直线A 1B 与AD 1所成的角或其补角.连接A 1C 1,设AB =1,则AA 1=2,A 1C 1=2,A 1B =BC 1=5,故cos ∠A 1BC 1=5+5-22×5×5=45.故选D. [答案] D二、填空题6.(2019·陕西汉中调研)若直线a ⊥b ,且直线a ∥平面α,则直线b 与平面α的位置关系是________.[解析] 如图,在正方体中可知,b 与α相交或b ⊂α或b ∥α.[答案] b 与α相交或b ⊂α或b ∥α7.(2019·广东华山模拟)如图所示,在正三棱柱ABC -A 1B 1C 1中,D是AC的中点,AA1∶AB=2∶1,则异面直线AB1与BD所成的角为________.[解析]取A1C1的中点E,连接B1E,ED,AE,在Rt△AB1E中,∠AB1E即为所求.设AB=1,则A1A=2,AB1=3,B1E=32,AE=32,故∠AB1E=60°.[答案]60°8.(2019·江西上饶月考)如图所示,在正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线MN与AC所成的角为60°.其中正确的结论为________(注:把你认为正确的结论号都填上) [解析]由题图可知AM与CC1是异面直线,AM与BN是异面直线,BN与MB1为异面直线.因为D1C∥MN,所以直线MN与AC所成的角就是D1C与AC所成的角,且角为60°.[答案]③④三、解答题9.已知正方体ABCD-A1B1C1D1中,E,F分别为D1C1,C1B1的中点,AC∩BD=P,A1C1∩EF=Q.求证:(1)D,B,E,F四点共面;(2)若A1C交平面DBFE于R点,则P,Q,R三点共线.[证明](1)如图所示,因为EF是△D1B1C1的中位线,所以EF∥B1D1.在正方体AC1中,B1D1∥BD,所以EF∥BD.所以EF,BD确定一个平面.即D,B,F,E四点共面.(2)在正方体ABCD-A1B1C1D1中,设平面A1ACC1确定的平面为α,又设平面BDEF为β.因为Q∈A1C1,所以Q∈α.又Q∈EF,所以Q∈β.则Q是α与β的公共点,同理,P点也是α与β的公共点.所以α∩β=PQ.又A1C∩β=R,所以R∈A1C,R∈α且R∈β.则R∈PQ,故P,Q,R三点共线.10.(2019·河南许昌模拟)如图所示,在三棱锥P -ABC 中,P A ⊥底面ABC ,D 是PC 的中点.已知∠BAC =π2,AB =2,AC =23,P A =2.求:(1)三棱锥P -ABC 的体积;(2)异面直线BC 与AD 所成角的余弦值.[解] (1)S △ABC =12×2×23=23,三棱锥P -ABC 的体积为V =13S △ABC ·P A =13×23×2=43 3.(2)如图,取PB 的中点E ,连接DE ,AE ,则ED ∥BC ,所以∠ADE 是异面直线BC 与AD 所成的角(或其补角).在△ADE 中,DE =2,AE =2,AD =2,cos ∠ADE =22+22-22×2×2=34. 故异面直线BC 与AD 所成角的余弦值为34.能力提升练11.两条异面直线在同一个平面上的正投影不可能是( )A .两条相交直线B .两条平行直线C.两个点D.一条直线和直线外一点[解析]如图,在正方体ABCD-EFGH中,M,N分别为BF,DH的中点,连接MN,DE,CF,EG.当异面直线为EG,MN所在直线时,它们在底面ABCD内的射影为两条相交直线;当异面直线为DE,GF所在直线时,它们在底面ABCD内的射影分别为AD,BC,是两条平行直线;当异面直线为DE,BF所在直线时,它们在底面ABCD内的射影分别为AD和点B,是一条直线和一个点,故选C.[答案] C12.如图,平面α与平面β交于直线l,A,C是平面α内不同的两点,B,D是平面β内不同的两点,且A,B,C,D不在直线l上,M,N分别是线段AB,CD的中点,下列判断正确的是() A.若AB与CD相交,且直线AC平行于l时,则直线BD与l 可能平行也有可能相交B.若AB,CD是异面直线时,则直线MN可能与l平行C.若存在异于AB,CD的直线同时与直线AC,MN,BD都相交,则AB,CD不可能是异面直线D.M,N两点可能重合,但此时直线AC与l不可能相交[解析]对于A,直线BD与l只能平行;对于B,直线MN与l 异面;对于C,AB与CD可能为异面直线.当直线AB与CD的中点M,N重合时,必有直线AC∥l,故不可能相交,综上所述,故选D.[答案] D13.如图所示,在四面体ABCD中,E,F分别为AB,CD的中点,过EF任作一个平面α分别与直线BC,AD相交于点G,H,则下列结论正确的是__________.①对于任意的平面α,都有直线GF,EH,BD相交于同一点;②存在一个平面α0,使得GF∥EH∥BD;③存在一个平面α0,使得点G在线段BC上,点H在线段AD的延长线上.[解析]当H,G分别为AD,BC的中点时,直线GF,EH,BD 平行,所以①错,②正确;若存在一个平面α0,使得点G在线段BC 上,点H在线段AD的延长线上,则平面α0与CD的交点不可能是CD的中点,故③错.[答案]②14.如图,在四棱锥O-ABCD中,底面ABCD是边长为2的正方形,OA⊥底面ABCD,OA=2,M为OA的中点.(1)求四棱锥O-ABCD的体积;(2)求异面直线OC与MD所成角的正切值的大小.[解] (1)由已知可求得,正方形ABCD 的面积S =4,所以,四棱锥O -ABCD 的体积V =13×4×2=83.(2)连接AC ,设线段AC 的中点为E ,连接ME ,DE ,则∠EMD 为异面直线OC 与MD 所成的角(或其补角),由已知,可得DE =2,EM =3,MD =5,∵(2)2+(3)2=(5)2,∴△DEM 为直角三角形,∴tan ∠EMD =DE EM =23=63. 拓展延伸练15.(2018·全国卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( ) A.334 B.233 C.324 D.32[解析]记该正方体为ABCD -A ′B ′C ′D ′,正方体的每条棱所在直线与平面α所成的角都相等,即共点的三条棱A ′A ,A ′B ′,A ′D ′与平面α所成的角都相等.如图,连接AB ′,AD ′,B ′D ′,因为三棱锥A ′-AB ′D ′是正三棱锥,所以A ′A ,A ′B ′,A ′D ′与平面AB ′D ′所成的角都相等.分别取C ′D ′,B ′C ′,BB ′,AB ,AD ,DD ′中点的E ,F ,G ,H ,I ,J ,连接EF ,FG ,GH ,IH ,IJ ,JE ,易得E ,F ,G ,H ,I ,J 六点共面,平面EFGHIJ 与平面AB ′D ′平行,且截正方体所得截面的面积最大.又EF =FG =GH =IH =IJ=JE =22,所以该正六边形的面积为6×34×⎝ ⎛⎭⎪⎫222=334,所以α截此正方体所得截面面积的最大值为334,故选A.[答案] A16.(2017·全国卷Ⅲ)a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB ,以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60°角时,AB 与b 成30°角;②当直线AB 与a 成60°角时,AB 与b 成60°角;③直线AB 与a 所成角的最小值为45°;④直线AB 与a 所成角的最大值为60°.其中正确的是________.(填写所有正确结论的编号)[解析]由题意知,AB 是以AC 为轴,BC 为底面半径的圆锥的母线,又AC ⊥a .AC ⊥b ,AC ⊥圆锥底面,所以在底面内可以过点B ,作BD ∥a ,交底面圆C 于点D ,如图所示,连接DE ,则DE ⊥BD ,所以DE ∥b ,连接AD ,设BC =1,在等腰△ABD 中,AB =AD =2,当直线AB 与a成60°角时,∠ABD=60°,故BD=2,又在Rt△BDE中,BE=2,所以DE=2,过点B作BF∥DE,交圆C于点F,连接AF,EF,所以BF=DE=2,所以△ABF为等边三角形,所以∠ABF=60°,即AB与b成60°角,故②正确,①错误.由最小角定理可知③正确;很明显,可以满足平面ABC⊥直线a,所以直线AB与a所成角的最大值为90°,④错误.所以正确的结论为②③.[答案]②③。

立体几何 大题-2023届高三数学一轮复习

立体几何 大题-2023届高三数学一轮复习

立体几何复习1.(多选)如图,四棱锥P ABCD -中,平面PAD ⊥底面ABCD ,PAD △是等边三角形,底面ABCD 是菱形,且60BAD ∠=︒,M 为棱PD 的中点,N 为菱形ABCD 的中心,下列结论正确的有( ) A .直线PB 与平面AMC 平行 B .直线PB 与直线AD 垂直C .线段AM 与线段CM 长度相等D .PB 与AM 所成角的余弦值为24 2.(多选)如图,在长方体ABCD —A 1B 1C 1D 1中,AB =4,BC =BB 1=2,E 、F 分别为棱AB 、A 1D 1的中点,则下列说法中正确的有( )A .DB 1⊥CEB .三棱锥D —CEF 的体积为83C .若P 是棱C 1D 1上一点,且D 1P =1,则E 、C 、P 、F 四点共面D .平面CEF 截该长方体所得的截面为五边形3.(多选)已知菱形ABCD 的边长为2, ∠ABC=3π,将ΔDAC 沿着对角线AC 折起至ΔD'AC,连接BD'.设二面角D'-AC-B 的大小为θ,则下列说法正确的是( )A.若四面体D'ABC 为正四面体,则θ=3π B.四面体D'ABC 的体积最大值为1 C.四面体D'ABC 的表面积最大值为2(3+2) D.当θ=23π时,四面体D'ABC 的外接球的半径为2134.如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l . (1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.5.如图,点C 是以AB 为直径的圆上的动点(异于,A B ),已知2AB =,2AC =,AE =BEDC 为矩形,平面ABC ⊥平面BEDC .设平面EAD 与平面ABC 的交线为l .(1)证明:l BC ;(2)求平面ADE 与平面ABC 所成的锐二面角的余弦值.6.7. 在如图所示的几何体中,四边形ABCD 为正方形,PA ⊥平面ABCD ,//PA BE ,2BE =,4AB PA ==.(1)求证://CE 平面PAD ;(2)在棱AB 上是否存在一点F ,使得二面角E PC F --的大小为60︒?如果存在,确定点F 的位置;如果不存在,说明理由.8.如图,四棱锥P -ABCD 中,底面ABCD 是直角梯形,AB ∥DC ,∠BAD =90°,PD =DC =BC =2PA =2AB =2,PD ⊥DC .(1)求证:PA ⊥平面ABCD ;(2)设BM =BD λ(0<λ<1),当二面角A-PM-B 的余弦值为77时,求λ的值.9.如图,四棱锥P ABCD -中,四边形ABCD 是菱形,PA PC =,BD PA ⊥,E 是BC 上一点,且3EC BE =,设AC BD O =.(1)证明:PO ⊥平面ABCD ;(2)若60BAD ∠=︒,PA PE ⊥,求二面角A PE C --的余弦值.10.如图,在四棱锥P ABCD -中,底面ABCD 是菱形,PA ⊥平面ABCD .(1)求证:平面PAC ⊥平面PBD ;(2)若2AP AB ==,60BAD ∠=︒,求二面角A PB D --的余弦值.11.如图,在三棱柱ABC-A 1B 1C 1中,ΔABC 是边长为2的等边三角形,平面ABC ⊥平面AA 1B 1B,A 1A=A 1B,∠A 1AB=60°,O 为AB 的中点,M 为A 1C 1的中点. (1)求证:OM//平面BB 1C 1C;(2)求二面角C 1-BA 1-C 的正弦值.12.如图,在五面体ABCDEF 中,四边形ABEF 为正方形,平面ABEF ⊥平面CDFE ,CD ∥EF ,DF ⊥EF , EF =2CD =2.(1)若DF =2,求二面角A -CE -F 的正弦值;(2)若平面ACF ⊥平面BCE ,求DF 的长.13.如图,在斜三棱柱111ABC A B C -中,底面是边长为3的等边三角形,12A A =,点1A 在下底面上的射影是ABC ∆的中心O .(1)求证:平面1A AO ⊥平面11BCC B ;(2)求二面角1C AB C --的余弦值.14.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,AD CD ⊥,//AD BC ,2PA AD CD ===,3BC =.E为PD的中点,点F在PC上,且13 PFPC=.(Ⅰ)求证:CD⊥平面PAD;(Ⅱ)求二面角F AE P--的余弦值;(Ⅲ)设点G在PB上,且23PGPB=.判断直线AG是否在平面AEF内,说明理由.15.如图,在三棱锥A-BCD中,△ABD与△BCD都为等边三角形,平面ABD⊥平面BCD,M,O分别为AB,BD 的中点,AO∩DM=G,N在棱CD上且满足2CN=ND,连接MC,GN.(1)证明:GN∥平面ABC;(2)求直线AC和平面GND所成角的正弦值.16.在多面体ABCDE中,平面ACDE⊥平面ABC,四边形ACDE为直角梯形,CD∥AE,AC⊥AE,AB⊥BC,CD=1,AE=AC=2,F为DE的中点,且点E满足EB4EG=.(1)证明:GF∥平面ABC;(2)当多面体ABCDE的体积最大时,求二面角A—BE—D的余弦值.17一副标准的三角板(图1)中,∠ABC为直角,∠A=60°,∠DEF为直角,DE=EF,BC=DF.把BC与DF重合,拼成一个三棱锥(图2)。设M是AC的中点,N是BC的中点。(1)求证:平面ABC⊥平面EMN;(2)若AC=4,二面角E-BC-A为直二面角,求直线EM与平面ABE所成的正弦18.如图四边形ABCD为梯形,AD∥BC,BM⊥AD于M,CN⊥AD于N,∠A=45°,AD=4BC=4,AB=2,现沿CN将△CDN折起,使△ADN为正三角形,且平面AND⊥平面ABCN,过BM的平面与线段DN、DC分别交于E、F.(1)求证:EF⊥DA;(2)在棱DN上(不含端点)是否存在点E,使得直线DB与平面BMEF所成角的正弦值为34,若存在,请确定E点的位置;若不存在,说明理由.19.如图,在四棱锥P—ABCD中,底面ABCD为正方形,PD⊥底面ABCD,M为线段PC的中点,PD=AD,N为线段BC上的动点.(1)证明:平面MND⊥平面PBC;(2)当点N在线段BC的何位置时,平面MND与平面PAB所成锐二面角的大小为30°?指出点N的位置,并说明理由.。

高考数学一轮复习第七章立体几何阶段检测试题(含解析)文(new)

高考数学一轮复习第七章立体几何阶段检测试题(含解析)文(new)

第七章立体几何阶段检测试题时间:120分钟分值:150分一、选择题(每小题5分,共60分)1.关于空间几何体的结构特征,下列说法不正确的是()A.棱柱的侧棱长都相等B.棱锥的侧棱长都相等C.三棱台的上、下底面是相似三角形D.有的棱台的侧棱长都相等解析:根据棱锥的结构特征知,棱锥的侧棱长不一定都相等.答案:B2.在正方体ABCD-A1B1C1D1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是()A.相交B.异面C.平行D.垂直解析:由BC綊AD,AD綊A1D1知,BC綊A1D1,从而四边形A1BCD1是平行四边形,所以A1B∥CD1,又EF⊂平面A1C,EF∩D1C=F,则A1B与EF相交.答案:A3.(2017·嘉兴月考)对于空间的两条直线m,n和一个平面α,下列命题中的真命题是( )A.若m∥α,n∥α,则m∥nB.若m∥α,n⊂α,则m∥nC.若m∥α,n⊥α,则m∥nD.若m⊥α,n⊥α,则m∥n解析:对A,直线m,n可能平行、异面或相交,故选项A错误;对B,直线m与n可能平行,也可能异面,故选项B错误;对C,m与n垂直而非平行,故选项C错误;对D,垂直于同一平面的两直线平行,故选项D正确.答案:D4.设P是异面直线a,b外的一点,则过点P与a,b都平行的平面()A.有且只有一个B.恰有两个C.不存在或只有一个D.有无数个解析:过点P作a1∥a,b1∥b,若过a1,b1的平面不经过a,b,则存在一个平面同时与a,b平行;若过a,b1的平面经过a或b,则不存在这样的平面同时与a,b平行.1答案:C5.若平面α∥平面β,点A,C∈α,B,D∈β,则直线AC∥直线BD的充要条件是()A.AB∥CD B.AD∥CBC.AB与CD相交D.A,B,C,D四点共面解析:由平面α∥平面β知,直线AC与BD无公共点,则直线AC∥直线BD的充要条件是A,B,C,D四点共面.答案:D6.已知a,b为两条不同的直线,α,β为两个不同的平面,且a⊥α,b⊥β,则下列命题中的假命题是()A.若a∥b,则α∥βB.若α⊥β,则a⊥bC.若a,b相交,则α,β相交D.若α,β相交,则a,b相交解析:若α,β相交,则a,b可能相交,也可能异面,故D为假命题.答案:D7.一个几何体的侧视图和俯视图如图所示,若该几何体的体积为错误!,则它的正视图为()解析:由几何体的侧视图和俯视图,可知几何体为组合体,由几何体的体积为错误!,可知上方为棱锥,下方为正方体.由俯视图可得,棱锥顶点在底面上的射影为正方形一边上的中点,顶点到正方体上底面的距离为1,所以选B.答案:B8.已知一个几何体的三视图如图所示,则该几何体的体积为()A.27-错误!B.18-错误!C.27-3πD.18-3π解析:由几何体的三视图可知该几何体可以看成是底面是梯形的四棱柱挖去了半个圆柱,所以所求体积为错误!×(2+4)×2×3-错误!π×12×3=18-错误!。

高三数学一轮复习:1218高考中的立体几何问题

高三数学一轮复习:1218高考中的立体几何问题

所成角的正弦值的最大值为
6 3
3.二面角的棱上有 A,B 两点,直线 AC,BD 分别在这个二面角的两个半平面内,且都垂 直于 AB.已知 AB=4,AC=6,BD=8,CD=2 17.则该二面角的大小为________.
5.如图所示,在菱形 ABCD 中,∠ABC=60°,AC 与 BD 相交于点 O,AE⊥平面 ABCD,CF∥AE,AB=AE=2.
例 2 (2020·新高考全国Ⅰ)如图,四棱锥 P-ABCD 的底面为正方形,PD⊥底面 ABCD.设平 面 PAD 与平面 PBC 的交线为 l. (1)证明:l⊥平面 PDC; (2)已知 PD=AD=1,Q 为 l 上的点, 求 PB 与平面 QCD 所成角的正弦值的最大值.
例 3 (2020·全国Ⅰ)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE= AD.△ABC 是底面的内接正三角形,P 为 DO 上一点,PO= 66DO. (1)证明:PA⊥平面 PBC; (2)求二面角 B-PC-E 的余弦值.
例 4 (2021·全国高考真题)在正三棱柱 ABC A1B1C1 中, AB AA1 1 ,点 P 满足
BP BC BB1 ,其中 0,1, 0,1 ,则( )
A.当 1时, △AB1P 的周长为定值
B.当 1时,三棱锥 P A1BC 的体积为定值
C.当
1 2
时,有且仅有一个点
高考中的立体几何问题
作业讲评 2.(多选)如图,在正方体 ABCD-A1B1C1D1 中,点 P 在线段 B1C 上运动,则( )
A.直线 BD1⊥平面 A1C1D B.三棱锥 P-A1C1D 的体积为定值
C.异面直线 AP 与 A1D 所成角的取值范围是π4 ,π2

2023届高考一轮复习试卷(立体几何)

2023届高考一轮复习试卷(立体几何)

2023届高考一轮复习试卷(立体几何)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知圆锥的侧面展开图是一个半径为2的半圆,则该圆锥的体积为A .3πB .3π3C .3πD .2π2.金刚石的成分为纯碳,是自然界中天然存在的最坚硬物质,它的结构是由8个等边三角形组成的如图所示的正八面体.若某金刚石的棱长为2,则它的表面积为A .8B .82C .83D .1633.如图,用斜二测画法作水平放置的正三角形111A B C 的直观图,则正确的图形是A .B .C .D .4.已知两条不同直线,l m 与两个不同平面,αβ,下列命题正确的是A .若//,l l m α⊥,则m α⊥B .若,//l l αβ⊥,则αβ⊥C .若//,//l m αα,则//l m D .若//,//m αβα,则//m β5.如图,平行六面体1111ABCD A B C D -的体积为482,11A AB A AD ∠=∠,16AA =,底面边长均为4,且π3DAB ∠=,M ,N ,P 分别为AB ,1CC ,11C D 的中点,则A .//MN APB .1AC ⊥平面BDN C .1AP AC ⊥D .//AP 平面MNC6.如图所示,在正方体1111ABCD A B C D -中,点E 是棱1CC 上的一个动点,平面1BED 交棱1AA 于点.F 则下列结论中错误..的是A .存在点E ,使得11//AC 平面1BED FB .存在点E ,使得1B D ⊥平面1BED FC .对于任意的点E ,平面11ACD ⊥平面1BED FD .对于任意的点E ,四棱锥11B BEDF -的体积均不变7.足球运动成为当今世界上开展最广、影响最大、最具魅力、拥有球迷数最多的体育项目之一,2022年卡塔尔世界杯是第22届世界杯足球赛.比赛于2022年11月21日至12月18日在卡塔尔境内7座城市中的12座球场举行.已知某足球的表面上有四个点A ,B ,C ,D 满足2dm AB BC AD BD CD =====,二面角A BD C --的大小为23π,则该足球的体积为A .3742dm 27πB .3352dm 27πC .314dm 27πD .3322dm 27π8.一个长方体的盒子内装有部分液体(液体未装满盒子),以不同的方向角度倾斜时液体表面会呈现出不同的变化,则下列说法中错误的个数是①当液面是三角形时,其形状可能是钝角三角形②在一定条件下,液面的形状可能是正五边形③当液面形状是三角形时,液体体积与长方体体积之比的范围是150,,166⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭④当液面形状是六边形时,液体体积与长方体体积之比的范围是13,44⎛⎫ ⎪⎝⎭A .1个B .2个C .3个D .4个二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列关于空间向量的命题中,正确的是A .若空间向量,a b ,满足a b =r r ,则a b= B .若非零向量,,a b c ,满足,a b b c ⊥⊥ ,则有a c∥ C .若,,OA OB OC 是空间的一组基底,且111333OD OA OB OC =++ ,则,,,A B C D 四点共面D .若向量,,a b b c c a +++ 是空间的一组基底,则,,a b c 也是空间的一组基底10.如图,若正方体的棱长为1,点M 是正方体1111ABCD A B C D -的侧面11ADD A上的一个动点(含边界),P 是棱1CC 的中点,则下列结论正确的是A .沿正方体的表面从点A 到点P 的最短路程为132B .若保持2PM =,则点M 在侧面内运动路径的长度为π3C .三棱锥1B C MD -的体积最大值为16D .若M 在平面11ADD A 内运动,且111MD B B D B ∠=∠,点M 的轨迹为线段11.已知a ,b ,c 为三条不同的直线,α,β,γ为三个不同的平面,则下列说法错误的是A .若a b ∥,b α⊂,则a αP B .若a αβ⋂=,b βγ= ,c αγ⋂=,a b ∥,则b c ∥C .若b β⊂,c β⊂,a b ⊥r r ,a c ⊥,则a β⊥D .若a α⊂,b β⊂,a b ∥,则αβ∥12.如图,已知二面角l αβ--的棱l 上有A ,B 两点,C α∈,AC l ⊥,D β∈,BD l ⊥,若2AC AB BD ===,22CD =,则A .直线AB 与CD 所成角的大小为45°B .二面角l αβ--的大小为60°C .三棱锥A BCD -的体积为23D .直线CD 与平面β所成角的正弦值为64三、填空题:本题共4小题,每小题5分,共20分.13.在空间直角坐标系中,已知()3,2,1OA = ,()1,0,5OB = ,()1,2,1OC =-- ,点M 为线段AB 的中点,则CM = .14.用一个平面将圆柱切割成如图的两部分.将下半部分几何体的侧面展开,平面与圆柱侧面所形成的交线在侧面展开图中对应的函数表达式为 1.52cos y x =+.则平面与圆柱底面所形成的二面角的正弦值是.15.“云南十八怪”描述的是由云南独特的地理位置、民风民俗所产生的一些特有的现象或生活方式,是云南多元民族文化的写照.“云南十八怪”中有一怪“摘下草帽当锅盖”所指的锅盖是用秸秆或山茅草编织成的,因其形状酷似草帽而传为佳话.一种草帽锅盖呈圆锥形,其母线长为6dm ,侧面积为2183dm π,若此圆锥的顶点和底面圆都在同一个球面上,则该球体的表面积等于2dm .16.在直四棱柱1111ABCD A B C D -中,底面ABCD 为正方形,122AA AB ==.点P 在侧面11BCC B 内,满足1A C ⊥平面BDP ,设点P 到平面ABCD 的距离为1h ,到CD 的距离为2h ,则12h h +的最小值为.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.如图所示,在四棱锥P ABCD -中,底面ABCD 是边长为4的正方形,4,PA PD PB ==,点E 在线段PA 上,3,PE EA BE AD =⊥,点,F G 分别是线段,BC CD 的中点.(1)证明:PA ⊥平面ABCD ;(2)求三棱锥P EFG -的体积.18.三棱锥P ABC -中,PA PB PC BC a ====,且PB 与底面ABC 成60°角.(1)设点P 在底面ABC 的投影为H ,求BH 的长;(2)求证:ABC △是直角三角形;(3)求该三棱锥体积的最大值.19.故宫太和殿是中国形制最高的宫殿,其建筑采用了重檐庑殿顶的屋顶样式,庑殿顶是“四出水”的五脊四坡式,由一条正脊和四条垂脊组成,因此又称五脊殿.由于屋顶有四面斜坡,故又称四阿顶.如图,某几何体ABCDEF 有五个面,其形状与四阿顶相类似.已知底面ABCD 为矩形,AB =2AD =2EF =8,EF ∥底面ABCD ,EA =ED =FB =FC ,M ,N 分别为AD ,BC 的中点.(1)证明:EF ∥AB 且BC ⊥平面EFNM .(2)若二面角E AD B --为4π,求CF 与平面ABF 所成角的正弦值.20.如图,已知ABCD 和CDEF 都是直角梯形,//AB DC ,//DC EF ,5AB =,3DC =,1EF =,60BAD CDE ∠=∠=︒,二面角F DC B --的平面角为60︒.设M ,N 分别为,AE BC 的中点.(1)证明:FN AD ⊥;(2)求直线BM 与平面ADE 所成角的正弦值.21.《瀑布》(图1)是埃舍尔最为人所知的作品之一,图中的瀑布会源源不断地落下,落下的水又逆流而上,荒唐至极,但又会让你百看不腻.画面下方还有一位饶有兴致的观察者,似乎他没发现什么不对劲.此时,他既是画外的观看者,也是埃舍尔自己.画面两座高塔各有一个几何体,左塔上方是著名的“三立方体合体”由三个正方体构成,右塔上的几何体是首次出现,后称“埃舍尔多面体”(图2)埃舍尔多面体可以用两两垂直且中心重合的三个正方形构造,设边长均为2,定义正方形,1,2,3n n n n A B C D n =的顶点为“框架点”,定义两正方形交线为“极轴”,其端点为“极点”,记为,n n P Q ,将极点11,P Q ,分别与正方形2222A B C D 的顶点连线,取其中点记为,,,1,2,3,4m m E F m =,如(图3).埃舍尔多面体可视部分是由12个四棱锥构成,这些四棱锥顶点均为“框架点”,底面四边形由两个“极点”与两个“中点”构成,为了便于理解,图4我们构造了其中两个四棱锥11122A PE P E -与22131A P E P F -.(1)求异面直线12P A 与12Q B 成角余弦值(2)求平面111PA E 与平面122AE P 的夹角余弦值(3)若埃舍尔体的表面积与体积(直接写出答案)22.在长方体1111ABCD A B C D -中,(1)已知P 、Q 分别为棱AB 、1CC 的中点(如图1),做出过点1D ,P ,Q 的平面与长方体的截面.保留作图痕迹,不必说明理由;(2)如图2,已知13AB =,5AD =,112AA =,过点A 且与直线CD 平行的平面α将长方体分成两部分.现同时将两个球分别放入这两部分几何体内,则在平面α变化的过程中,求这两个球的半径之和的最大值.。

高考数学一轮复习 第七篇 立体几何与空间向量 专题7.3 直线、平面平行的判定及性质练习(含解析)-

高考数学一轮复习 第七篇 立体几何与空间向量 专题7.3 直线、平面平行的判定及性质练习(含解析)-

专题7.0 直线、平面平行的判定及性质【考试要求】1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理;2.能运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题.【知识梳理】1.直线与平面平行(1)直线与平面平行的定义直线l与平面α没有公共点,则称直线l与平面α平行.(2)判定定理与性质定理文字语言图形表示符号表示判定定理平面外一条直线与此平面内的一条直线平行,则该直线平行于此平面a⊄α,b⊂α,a∥b⇒a∥α性质定理一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行a∥α,a⊂β,α∩β=b⇒a∥b2.平面与平面平行(1)平面与平面平行的定义没有公共点的两个平面叫做平行平面.(2)判定定理与性质定理文字语言图形表示符号表示判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行a⊂α,b⊂α,a∩b=P,a∥β,b∥β⇒α∥β性质定理两个平面平行,则其中一个平面内的直线平行于另一个平面α∥β,a⊂α⇒a∥β如果两个平行平面同时和第三个平面相交,那么它们的交线平行α∥β,α∩γ=a,β∩γ=b⇒a∥b平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.(2)平行于同一平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.(3)两个平面平行,则其中任意一个平面内的直线与另一个平面平行.【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”)(1)若一条直线和平面内一条直线平行,那么这条直线和这个平面平行.( )(2)若直线a∥平面α,P∈α,则过点P且平行于直线a的直线有无数条.( )(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.( )(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.( )【答案】(1)×(2)×(3)×(4)√【解析】(1)若一条直线和平面内的一条直线平行,那么这条直线和这个平面平行或在平面内,故(1)错误.(2)若a∥α,P∈α,则过点P且平行于a的直线只有一条,故(2)错误.(3)如果一个平面内的两条直线平行于另一个平面,则这两个平面平行或相交,故(3)错误.【教材衍化】2.(必修2P61A1(2)改编)下列说法中,与“直线a∥平面α”等价的是( )A.直线a上有无数个点不在平面α内B.直线a与平面α内的所有直线平行C.直线a与平面α内无数条直线不相交D.直线a与平面α内的任意一条直线都不相交【答案】 D【解析】因为a∥平面α,所以直线a与平面α无交点,因此a和平面α内的任意一条直线都不相交,故选D.3.(必修2P61A1(1)改编)下列命题中正确的是( )A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α【答案】 D【解析】根据线面平行的判定与性质定理知,选D.【真题体验】4.(2018·某某模拟)已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是( )A.m∥α,n∥α,则m∥nB.m∥n,m∥α,则n∥αC.m⊥α,m⊥β,则α∥βD.α⊥γ,β⊥γ,则α∥β【答案】 C【解析】A中,m与n平行、相交或异面,A不正确;B中,n∥α或n⊂α,B不正确;根据线面垂直的性质,C正确;D中,α∥β或α与β相交,D错.5.(2019·某某月考)若平面α∥平面β,直线a∥平面α,点B∈β,则在平面β内且过B点的所有直线中( )A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一与a平行的直线【答案】 A【解析】当直线a在平面β内且过B点时,不存在与a平行的直线,故选A.6.(2019·十八中开学考试)如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH 的形状为________.【答案】平行四边形【解析】∵平面ABFE∥平面DCGH,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG,∴EF∥HG.同理EH∥FG,∴四边形EFGH是平行四边形.【考点聚焦】考点一与线、面平行相关命题的判定【例1】 (1)在空间中,a,b,c是三条不同的直线,α,β是两个不同的平面,则下列命题中的真命题是( )A.若a⊥c,b⊥c,则a∥bB.若a⊂α,b⊂β,α⊥β,则a⊥bC.若a∥α,b∥β,α∥β,则a∥bD.若α∥β,a⊂α,则a∥β(2)(2019·聊城模拟)下列四个正方体中,A,B,C为所在棱的中点,则能得出平面ABC∥平面DEF的是( )【答案】(1)D (2)B【解析】(1)对于A,若a⊥c,b⊥c,则a与b可能平行、异面、相交,故A是假命题;对于B,设α∩β=m,若a,b均与m平行,则a∥b,故B是假命题;对于C,a,b可能平行、异面、相交,故C是假命题;对于D,若α∥β,a⊂α,则a与β没有公共点,则a∥β,故D是真命题.(2)在B中,如图,连接MN,PN,∵A,B,C为正方体所在棱的中点,∴AB∥MN,AC∥PN,∵MN∥DE,PN∥EF,∴AB∥DE,AC∥EF,∵AB∩AC=A,DE∩EF=E,AB,AC⊂平面ABC,DE,EF⊂平面DEF,∴平面ABC∥平面DEF.【规律方法】 1.判断与平行关系相关命题的真假,必须熟悉线、面平行关系的各个定义、定理,无论是单项选择还是含选择项的填空题,都可以从中先选出最熟悉最容易判断的选项先确定或排除,再逐步判断其余选项.2.(1)结合题意构造或绘制图形,结合图形作出判断.(2)特别注意定理所要求的条件是否完备,图形是否有特殊情况,通过举反例否定结论或用反证法推断命题是否正确.【训练1】 (1)下列命题正确的是( )A.若两条直线和同一个平面平行,则这两条直线平行B.若一条直线与两个平面所成的角相等,则这两个平面平行C.若一条直线与两个相交平面都平行,则这条直线与这两个平面的交线平行D.若两个平面垂直于同一个平面,则这两个平面平行(2)在正方体ABCD -A 1B 1C 1D 1中,M ,N ,Q 分别是棱D 1C 1,A 1D 1,BC 的中点,点P 在BD 1上且BP =23BD 1,则下面说法正确的是________(填序号).①MN ∥平面APC ;②C 1Q ∥平面APC ;③A ,P ,M 三点共线;④平面MNQ ∥平面APC . 【答案】 (1)C (2)②③【解析】 (1)A 选项中两条直线可能平行也可能异面或相交;对于B 选项,如图,在正方体ABCD -A 1B 1C 1D 1中,平面ABB 1A 1和平面BCC 1B 1与B 1D 1所成的角相等,但这两个平面垂直;D 选项中两平面也可能相交.C 正确.(2)如图,对于①,连接MN ,AC ,则MN ∥AC ,连接AM ,,易得AM ,交于点P ,即MN ⊂平面APC ,所以MN∥平面APC 是错误的. 对于②,由①知M ,N 在平面APC 内,由题易知AN∥C 1Q ,且AN ⊂平面APC , C 1Q ⊄平面APC.所以C 1Q ∥平面APC 是正确的.对于③,由①知,A ,P ,M 三点共线是正确的.对于④,由①知MN ⊂平面APC ,又MN ⊂平面MNQ ,所以平面MNQ ∥平面APC 是错误的. 考点二 直线与平面平行的判定与性质 角度1 直线与平面平行的判定【例2-1】 (2019·东北三省四市模拟)在如图所示的几何体中,四边形ABCD 是正方形,PA ⊥平面ABCD ,E ,F 分别是线段AD ,PB 的中点,PA =AB =1.【答案】见解析【解析】(1)证明:EF ∥平面PDC ; (2)求点F 到平面PDC 的距离.(1)证明 取PC 的中点M ,连接DM ,MF ,∵M,F 分别是PC ,PB 的中点,∴MF∥CB,MF =12CB ,∵E 为DA 的中点,四边形ABCD 为正方形, ∴DE∥CB,DE =12CB ,∴MF∥DE,MF =DE ,∴四边形DEFM 为平行四边形, ∴EF∥DM,∵EF ⊄平面PDC ,DM ⊂平面PDC , ∴EF ∥平面PDC . (2)解 ∵EF ∥平面PDC ,∴点F 到平面PDC 的距离等于点E 到平面PDC 的距离.∵PA ⊥平面ABCD ,∴PA ⊥DA ,在Rt△PAD 中,PA =AD =1,∴DP = 2. ∵PA ⊥平面ABCD ,∴PA ⊥CB ,∵CB ⊥AB ,PA ∩AB =A ,∴CB ⊥平面PAB , ∴CB ⊥PB ,则PC =3,∴PD 2+DC 2=PC 2, ∴△PDC 为直角三角形, ∴S △PDC =12×1×2=22.连接EP ,EC ,易知V E -PDC =V C -PDE ,设E 到平面PDC 的距离为h , ∵CD ⊥AD ,CD ⊥PA ,AD ∩PA =A ,∴CD ⊥平面PAD , 则13×h ×22=13×1×12×12×1,∴h =24, ∴点F 到平面PDC 的距离为24. 角度2 直线与平面平行性质定理的应用【例2-2】 (2018·某某模拟)如图所示,在正方体ABCD -A 1B 1C 1D 1中,棱长为2,E ,F 分别是棱DD 1,C 1D 1的中点.(1)求三棱锥B 1-A 1BE 的体积;(2)试判断直线B 1F 与平面A 1BE 是否平行,如果平行,请在平面A 1BE 上作出与B 1F 平行的直线,并说明理由. 【答案】见解析【解析】(1)如图所示,V B 1-A 1BE =V E -A 1B 1B =13S △A 1B 1B · DA =13×12×2×2×2=43.(2)B 1F ∥平面A 1BE .延长A 1E 交AD 延长线于点H ,连BH 交CD 于点G ,则BG 就是所求直线.证明如下: 因为BA 1∥平面CDD 1C 1,平面A 1BH ∩平面CDD 1C 1=GE ,所以A 1B ∥GE . 又A 1B ∥CD 1,所以GE ∥CD 1.又E 为DD 1的中点,则G 为CD 的中点. 故BG ∥B 1F ,BG 就是所求直线.【规律方法】 1.利用判定定理判定线面平行,关键是找平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线.2.在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而在应用性质定理时,其顺序恰好相反.【训练2】 (2017·某某卷)如图,在三棱锥A -BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ; (2)AD ⊥AC . 【答案】见解析【解析】证明 (1)在平面ABD 内,AB⊥AD,EF⊥AD, 则AB∥EF.∵AB ⊂平面ABC ,EF ⊄平面ABC ,∴EF∥平面ABC.(2)∵BC⊥BD,平面ABD∩平面BCD=BD,平面ABD⊥平面BCD,BC⊂平面BCD,∴BC⊥平面ABD.∵AD⊂平面ABD,∴BC⊥AD.又AB⊥AD,BC,AB⊂平面ABC,BC∩AB=B,∴AD⊥平面ABC,又因为AC⊂平面ABC,∴AD⊥AC.考点三面面平行的判定与性质【例3】 (经典母题)如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EFA1∥平面BCHG.【答案】见解析【解析】证明(1)∵G,H分别是A1B1,A1C1的中点,∴GH是△A1B1C1的中位线,则GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E,F分别为AB,AC的中点,∴EF∥BC,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.又G,E分别为A1B1,AB的中点,A1B1平行且等于AB,∴A1G平行且等于EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.又∵A1E∩EF=E,∴平面EFA1∥平面BCHG.【迁移探究1】在本例中,若将条件“E,F,G,H分别是AB,AC,A1B1,A1C1的中点”变为“D1,D分别为B1C1,BC的中点”,求证:平面A1BD1∥平面AC1D.【答案】见解析【解析】证明 如图所示,连接A 1C 交AC 1于点M , ∵四边形A 1ACC 1是平行四边形, ∴M 是A 1C 的中点,连接MD , ∵D 为BC 的中点, ∴A 1B∥DM. ∵A 1B ⊂平面A 1BD 1, DM ⊄平面A 1BD 1, ∴DM∥平面A 1BD 1,又由三棱柱的性质知,D 1C 1平行且等于BD , ∴四边形BDC 1D 1为平行四边形, ∴DC 1∥BD 1.又DC 1⊄平面A 1BD 1,BD 1⊂平面A1BD1, ∴DC 1∥平面A 1BD 1,又DC 1∩DM=D ,DC 1,DM ⊂平面AC1D , 因此平面A 1BD 1∥平面AC 1D .【迁移探究2】 在本例中,若将条件“E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点”变为“点D ,D 1分别是AC ,A 1C 1上的点,且平面BC 1D ∥平面AB 1D 1”,试求AD DC的值. 【答案】见解析【解析】连接A 1B 交AB 1于O ,连接OD 1.由平面BC 1D ∥平面AB 1D 1,且平面A 1BC 1∩平面BC 1D =BC 1,平面A 1BC 1∩平面AB 1D 1=D 1O ,所以BC 1∥D 1O ,则A 1D 1D 1C 1=A 1OOB=1.又由题设A 1D 1D 1C 1=DC AD, ∴DC AD =1,即ADDC=1. 【规律方法】 1.判定面面平行的主要方法 (1)利用面面平行的判定定理.(2)线面垂直的性质(垂直于同一直线的两平面平行). 2.面面平行条件的应用(1)两平面平行,分析构造与之相交的第三个平面,交线平行. (2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行.【提醒】 利用面面平行的判定定理证明两平面平行,需要说明是在一个平面内的两条直线是相交直线. 【训练3】 (2019·某某二模)如图,四棱锥P -ABCD 中,底面ABCD 是直角梯形,AB ∥CD ,AB ⊥AD ,AB =2CD =2AD =4,侧面PAB 是等腰直角三角形,PA =PB ,平面PAB ⊥平面ABCD ,点E ,F 分别是棱AB ,PB 上的点,平面CEF ∥平面PAD .(1)确定点E ,F 的位置,并说明理由; (2)求三棱锥F -DCE 的体积. 【答案】见解析【解析】(1)因为平面CEF ∥平面PAD ,平面CEF ∩平面ABCD =CE , 平面PAD ∩平面ABCD =AD , 所以CE ∥AD ,又AB ∥DC , 所以四边形AECD 是平行四边形, 所以DC =AE =12AB ,即点E 是AB 的中点.因为平面CEF ∥平面PAD ,平面CEF ∩平面PAB =EF ,平面PAD ∩平面PAB =PA , 所以EF ∥PA ,又点E 是AB 的中点, 所以点F 是PB 的中点.综上,E ,F 分别是AB ,PB 的中点.(2)连接PE ,由题意及(1)知PA =PB ,AE =EB ,所以PE ⊥AB ,又平面PAB ⊥平面ABCD ,平面PAB ∩平面ABCD =AB ,所以PE ⊥平面ABCD . 又AB ∥CD ,AB ⊥AD ,所以V F -DEC =12V P -DEC =16S △DEC ×PE =16×12×2×2×2=23. 【反思与感悟】1.转化思想:三种平行关系之间的转化其中线面平行是核心,线线平行是基础,要注意它们之间的灵活转化.2.直线与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)面面平行的性质.3.平面与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)推论;(4)a⊥α,a⊥β⇒α∥β.【易错防X 】1.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.2.面面平行的判定中易忽视“面内两条相交线”这一条件.3.如果一个平面内有无数条直线与另一个平面平行,易误认为这两个平面平行,实质上也可以相交.4.运用性质定理,要遵从由“高维”到“低维”,但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.【分层训练】【基础巩固题组】(建议用时:40分钟)一、选择题1.若直线l 不平行于平面α,且l ⊄α,则( )A.α内的所有直线与l 异面B.α内不存在与l 平行的直线C.α与直线l 至少有两个公共点D.α内的直线与l 都相交【答案】 B【解析】 因为l ⊄α,直线l 不平行于平面α,所以直线l 只能与平面α相交,于是直线l 与平面α只有一个公共点,所以平面α内不存在与l 平行的直线.2.(2019·某某双基测试)已知直线l ,m ,平面α,β,γ,则下列条件能推出l∥m 的是( )A.l ⊂α,m ⊂β,α∥β B .α∥β,α∩γ=l ,β∩γ=mC.l∥α,m⊂αD.l⊂α,α∩β=m【答案】 B【解析】选项A中,直线l,m也可能异面;选项B中,根据面面平行的性质定理,可推出l∥m,B正确;选项C中,直线l,m也可能异面;选项D中,直线l,m也可能相交.故选B.3.(2018·长郡中学质检)如图所示的三棱柱ABC-A1B1C1中,过A1B1的平面与平面ABC交于DE,则DE与AB 的位置关系是( )A.异面B.平行C.相交D.以上均有可能【答案】 B【解析】在三棱柱ABC-A1B1C1中,AB∥A1B1,∵AB⊂平面ABC,A1B1⊄平面ABC,∴A1B1∥平面ABC,∵过A1B1的平面与平面ABC交于DE.∴DE∥A1B1,∴DE∥AB.4.(2018·某某六校联考)设a,b是两条不同的直线,α,β是两个不同的平面,则α∥β的一个充分条件是( )A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α【答案】 D【解析】对于选项A,若存在一条直线a,a∥α,a∥β,则α∥β或α与β相交,若α∥β,则存在一条直线a,使得a∥α,a∥β,所以选项A的内容是α∥β的一个必要条件;同理,选项B、C的内容也是α∥β的一个必要条件而不是充分条件;对于选项D,可以通过平移把两条异面直线平移到一个平面中,成为相交直线,则有α∥β,所以选项D的内容是α∥β的一个充分条件.故选D.5.(2019·某某模拟)若平面α截三棱锥所得截面为平行四边形,则该三棱锥与平面α平行的棱有( )A.0条B.1条C.2条D.1条或2条【答案】 C【解析】如图所示,四边形EFGH为平行四边形,则EF∥GH.∵EF⊄平面BCD,GH⊂平面BCD,∴EF∥平面BCD.又∵EF⊂平面ACD,平面BCD∩平面ACD=CD,∴EF∥CD.又EF⊂平面EFGH,CD⊄平面EFGH.∴CD∥平面EFGH,同理,AB∥平面EFGH,所以与平面α(面EFGH)平行的棱有2条.二、填空题6.(2018·某某模拟)如图,在正方体ABCD-A1B1C1D1中,AB=2,E为AD的中点,点F在CD上,若EF∥平面AB1C,则EF=________.【答案】 2【解析】根据题意,因为EF∥平面AB1C,所以EF∥AC.又E是AD的中点,所以F是CD的中点.因为在Rt△DEF中,DE=DF=1,故EF= 2.7.如图,平面α∥平面β,△ABC,△A′B′C′分别在α,β内,线段AA′,BB′,CC′共点于O,O在α,β之间,若AB=2,AC=1,∠BAC=60°,OA∶OA′=3∶2,则△A′B′C′的面积为________.【答案】23 9【解析】相交直线AA′,BB′所在平面和两平行平面α,β相交于AB,A′B′,所以AB∥A′B′.同理BC∥B′C′,CA∥C′A′.所以△ABC与△A′B′C′的三内角相等,所以△ABC∽△A′B′C′,A′B′AB=OA ′OA =23.S △ABC =12×2×1×32=32,所以S △A ′B ′C ′=32×⎝ ⎛⎭⎪⎫232=32×49=239. 8.(2019·某某调研)设m ,n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题: ①若m ⊂α,n ∥α,则m ∥n ;②若α∥β,β∥γ,m ⊥α,则m ⊥γ;③若α∩β=n ,m ∥n ,m ∥α,则m ∥β;④若m ∥α,n ∥β,m ∥n ,则α∥β.其中是真命题的是________(填上正确命题的序号).【答案】 ②【解析】①m ∥n 或m ,n 异面,故①错误;易知②正确;③m ∥β或m ⊂β,故③错误;④α∥β或α与β相交,故④错误.三、解答题9.(2019·某某模拟)已知四棱锥P -ABCD 的底面ABCD 是平行四边形,侧面PAB ⊥平面ABCD ,E 是棱PA 的中点.(1)求证:PC ∥平面BDE ;(2)平面BDE 分此棱锥为两部分,求这两部分的体积比.【答案】见解析【解析】(1)证明 在平行四边形ABCD 中,连接AC ,设AC ,BD 的交点为O ,则O 是AC 的中点. 又E 是PA 的中点,连接EO ,则EO 是△PAC 的中位线,所以PC∥EO,又EO ⊂平面EBD ,PC ⊄平面EBD ,所以PC∥平面EBD.(2)解 设三棱锥E -ABD 的体积为V 1,高为h ,四棱锥P -ABCD 的体积为V ,则三棱锥E -ABD 的体积V 1=13×S △ABD ×h , 因为E 是PA 的中点,所以四棱锥P -ABCD 的高为2h ,所以四棱锥P -ABCD 的体积V =13×S 四边形ABCD ×2h =4×13S △ABD ×h =4V 1, 所以(V -V 1)∶V 1=3∶1,所以平面BDE 分此棱锥得到的两部分的体积比为3∶1或1∶3.10.如图,ABCD 与ADEF 均为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点.求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.【答案】见解析【解析】证明(1)连接AE,则AE必过DF与GN的交点O,连接MO,则MO为△ABE的中位线,所以BE∥MO.又BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN,又DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.又M为AB的中点,所以MN为△ABD的中位线,所以BD∥MN,又MN⊂平面MNG,BD⊄平面MNG,所以BD∥平面MNG,又DE,BD⊂平面BDE,DE∩BD=D,所以平面BDE∥平面MNG.【能力提升题组】(建议用时:20分钟)11.(2019·某某模拟)过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有( )A.4条B.6条C.8条D.12条【答案】 B【解析】如图,H,G,F,I是相应线段的中点,故符合条件的直线只能出现在平面HGFI中,有FI,FG,GH,HI,HF,GI共6条直线.12.已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面【答案】 D【解析】A项,α,β可能相交,故错误;B项,直线m,n的位置关系不确定,可能相交、平行或异面,故错误;C项,若m⊂α,α∩β=n,m∥n,则m∥β,故错误;D项,假设m,n垂直于同一平面,则必有m∥n与已知m,n不平行矛盾,所以原命题正确,故D项正确.13.在正四棱柱ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,则点Q满足条件________时,有平面D1BQ∥平面PAO.【答案】Q为CC1的中点【解析】如图所示,设Q为CC1的中点,因为P为DD1的中点,所以QB∥PA.连接DB,因为P,O分别是DD1,DB的中点,所以D1B∥PO,又D1B⊄平面PAO,QB⊄平面PAO,PO⊂平面PAO,PA⊂平面PAO,所以D1B∥平面PAO,QB∥平面PAO,又D1B∩QB=B,所以平面D1BQ∥平面PAO.故Q为CC1的中点时,有平面D1BQ∥平面PAO.14.(2018·某某六市三模)已知空间几何体ABCDE中,△BCD与△CDE均是边长为2的等边三角形,△ABC是腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD.(1)试在平面BCD内作一条直线,使得直线上任意一点F与E的连线EF均与平面ABC平行,并给出证明;(2)求三棱锥E-ABC的体积.【答案】见解析【解析】(1)如图所示,取DC的中点N,取BD的中点M,连接MN,则MN即为所求.证明:连接EM,EN,取BC的中点H,连接AH,∵△AB C是腰长为3的等腰三角形,H为BC的中点,∴AH⊥BC,又平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,AH⊂平面ABC,∴AH⊥平面BCD,同理可证EN⊥平面BCD,∴EN∥AH,∵EN⊄平面ABC,AH⊂平面ABC,∴EN∥平面ABC.又M,N分别为BD,DC的中点,∴MN∥BC,∵MN⊄平面ABC,BC⊂平面ABC,∴MN∥平面ABC.又MN∩EN=N,MN⊂平面EMN,EN⊂平面EMN,∴平面EMN∥平面ABC,又EF⊂平面EMN,∴EF∥平面ABC,即直线MN上任意一点F与E的连线EF均与平面ABC平行.(2)连接DH,取CH的中点G,连接NG,则NG∥DH,由(1)可知EN∥平面ABC,∴点E到平面ABC的距离与点N到平面ABC的距离相等,又△BCD 是边长为2的等边三角形, ∴DH⊥BC, 又平面ABC⊥平面BCD ,平面ABC∩平面BCD =BC ,DH ⊂平面BCD ,∴DH ⊥平面ABC ,∴NG ⊥平面ABC ,易知DH =3,又N 为CD 中点,∴NG =32, 又AC =AB =3,BC =2,∴S △ABC =12·BC ·AH =12×2×32-12=22, ∴V E -ABC =V N -ABC =13·S △ABC ·NG =63. 【新高考创新预测】15.(【答案】不唯一型)如图所示,在正四棱柱ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别是棱CC 1,C 1D 1,D 1D ,DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 只需满足条件________时,就有MN ∥平面B 1BDD 1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)【答案】 点M 在线段FH 上(或点M 与点H 重合)【解析】 连接HN ,FH ,FN ,则FH∥DD 1,HN∥BD,易知平面FHN∥平面B1BDD 1,只需M∈FH,则MN ⊂平面FHN ,∴MN∥平面B 1BDD 1.。

高考数学一轮复习立体几何多选题知识点总结及解析

高考数学一轮复习立体几何多选题知识点总结及解析

高考数学一轮复习立体几何多选题知识点总结及解析一、立体几何多选题1.已知图1中,A 、B 、C 、D 是正方形EFGH 各边的中点,分别沿着AB 、BC 、CD 、DA 把ABF 、BCG 、CDH △、DAE △向上折起,使得每个三角形所在的平面都与平面ABCD 垂直,再顺次连接EFGH ,得到一个如图2所示的多面体,则( )A .AEF 是正三角形B .平面AEF ⊥平面CGHC .直线CG 与平面AEF 2D .当2AB =时,多面体ABCD EFGH -的体积为83【答案】AC 【分析】取CD 、AB 的中点O 、M ,连接OH 、OM ,证明出OH ⊥平面ABCD ,然后以点O 为坐标原点,OM 、OC 、OH 所在直线分别为x 、y 、z 轴建立空间直角坐标系,求出EF ,可判断A 选项的正误,利用空间向量法可判断BC 选项的正误,利用几何体的体积公式可判断D 选项的正误. 【详解】取CD 、AB 的中点O 、M ,连接OH 、OM , 在图1中,A 、B 、C 、D 是正方形EFGH 各边的中点,则1122CH GH EH DH ===,O 为CD 的中点,OH CD ∴⊥,平面CDH ⊥平面ABCD ,平面CDH 平面ABCD CD =,OH ⊂平面CDH ,OH ∴⊥平面ABCD ,在图1中,设正方形EFGH 的边长为()220a a >,可得四边形ABCD 的边长为2a , 在图1中,ADE 和ABF 均为等腰直角三角形,可得45BAF DAE ∠=∠=, 90BAD ∴∠=,∴四边形ABCD 是边长为2a 的正方形,O 、M 分别为CD 、AB 的中点,则//OC BM 且OC BM =,且90OCB ∠=,所以,四边形OCBM 为矩形,所以,OM CD ⊥,以点O 为坐标原点,OM 、OC 、OH 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则()2,,0A a a -、()2,,0B a a 、()0,,0C a 、()0,,0D a -、(),,E a a a -、()2,0,F a a 、(),,G a a a 、()0,0,H a .对于A 选项,由空间中两点间的距离公式可得2AE AF EF a ===,所以,AEF 是正三角形,A 选项正确;对于B 选项,设平面AEF 的法向量为()111,,m x y z =,(),0,AE a a =-,()0,,AF a a =,由11110m AE ax az m AF ay az ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,取11z =,则11x =,11y =-,则()1,1,1m =-,设平面CGH 的法向量为()222,,n x y z =,(),0,CG a a =,()0,,CH a a =-, 由222200n CG ax az n CH ay az ⎧⋅=+=⎪⎨⋅=-+=⎪⎩,取21z =-,可得21x =,21y =-,则()1,1,1n =--,()22111110m n ⋅=+--⨯=≠,所以,平面AEF 与平面CGH 不垂直,B 选项错误;对于C 选项,6cos ,23CG m CG m a CG m⋅<>===⨯⋅, 设直线CG 与平面AEF 所成角为θ,则sin 6θ=,23cos 1sin θθ=-=,所以,sin tan 2cos θθθ==,C 选项正确; 对于D 选项,以ABCD 为底面,以OH 为高将几何体ABCD EFGH -补成长方体1111ABCD A B C D -,则E 、F 、G 、H 分别为11A D 、11A B 、11B C 、11C D 的中点,因为2AB =,即1a =,则1OH =,长方体1111ABCD A B C D -的体积为2214V =⨯=,11211111113326A A EF A EF V S AA -=⋅=⨯⨯⨯=△,因此,多面体ABCD EFGH -的体积为111044463ABCD EFGH A A EF V V V --=-=-⨯=, D 选项错误. 故选:AC. 【点睛】方法点睛:计算线面角,一般有如下几种方法:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin hlθ=(l 为斜线段长),进而可求得线面角; (3)建立空间直角坐标系,利用向量法求解,设a 为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=<>.2.已知三棱锥A BCD -的三条侧棱AB ,AC ,AD 两两垂直,其长度分别为a ,b ,c .点A 在底面BCD 内的射影为O ,点A ,B ,C ,D 所对面的面积分别为A S ,B S ,C S ,D S .在下列所给的命题中,正确的有( ) A .2A BCO D S SS ⋅=; B .3333A B C D S S S S <++;C .若三条侧棱与底面所成的角分别为1α,1β,1γ,则222111sin sin sin 1αβγ++=;D .若点M 是面BCD 内一个动点,且AM 与三条侧棱所成的角分别为2α,2β,2γ,则22cos α+2222cos cos 1βγ+=.【答案】ACD 【分析】由Rt O OA '与Rt O AD '相似,得边长关系,进而判断A 正确;当M 与O 重合时,注意线面角与线线角的关系,即可得C 正确;构造长方体,建立直角坐标系,代入夹角公式计算可得D 正确;代入特殊值,可得B 错误. 【详解】由三棱锥A BCD -的三条侧棱AB ,AC ,AD 两两垂直,则将三棱锥A BCD -补成长方体ABFC DGHE -,连接DO 并延长交BC 于O ', 则AO BC ⊥.对A :由Rt O OA '与Rt O AD '相似,则2O A O O O D '''=⨯又12A S BC O D '=⋅,12BCOS BC O O '=⋅, 22221124DS BC O A BC O A ⎛⎫''=⋅=⋅ ⎪⎝⎭所以2A BCOD S SS ⋅=,故A 正确.对B :当1a b c ===时,33318B C D S S S ===,则33338B C D S S S ++=,而332333322288A S ⎛⎫=⨯⨯=> ⎪ ⎪⎝⎭,此时3333A B C D S S S S >++,故B 不正确. 对D :分别以AB ,AC ,AD 为x ,y ,z 轴,建立空间直角坐标系. 设(),,M x y z ,则(),,AM x y z =,222AM x y z =++,(),0,0AB a =,()0,,0AC b =,()0,0,AD c =所以222222222cos cos cos AM AB AM AC AM AD AM ABAM ACAM ADαβγ⎛⎫⎛⎫⎛⎫⋅⋅⋅++=++ ⎪ ⎪ ⎪ ⎪⎪⎪⋅⋅⋅⎝⎭⎝⎭⎝⎭2222221x y z AMAMAM=++=,所以D 正确.对C :当M 与O 重合时,AO ⊥面BCD ,由D 有222222cos cos cos 1αβγ++=,由各侧棱与底面所成角与侧棱与所AO 成角互为余角,可得C 正确. 故选:ACD.【点睛】关键点睛:本题考查空间线面角、线线角、面积关系的问题,计算角的问题关键是建立空间直角坐标系,写出点的坐标,利用数量积的公式代入计算,解决这道题目还要结合线面角与线线角的关系判断.3.如图所示,正三角形ABC中,D,E分别为边AB,AC的中点,其中AB=8,把△ADE 沿着DE翻折至A'DE位置,使得二面角A'-DE-B为60°,则下列选项中正确的是()A.点A'到平面BCED的距离为3B.直线A'D与直线CE所成的角的余弦值为5 8C.A'D⊥BDD.四棱锥A'-BCED237【答案】ABD【分析】作AM⊥DE,交DE于M,延长AM交BC于N,连接A'M,A'N.利用线面垂直的判定定理判定CD⊥平面A'MN,利用面面垂直的判定定理与性质定理得到'A到平面面BCED的高A'H,并根据二面角的平面角,在直角三角形中计算求得A'H的值,从而判定A;根据异面直线所成角的定义找到∠A'DN就是直线A'D与CE所成的角,利用余弦定理计算即可判定B;利用勾股定理检验可以否定C;先证明底面的外接圆的圆心为N,在利用外接球的球心的性质进行得到四棱锥A'-BCED的外接球的球心为O,则ON⊥平面BCED,且OA'=OC,经过计算求解可得半径从而判定D.【详解】如图所示,作AM⊥DE,交DE于M,延长AM交BC于N,连接A'M,A'N.则A'M⊥DE,MN⊥DE, ,∵'A M∩MN=M,∴CD⊥平面A'MN,又∵CD⊂平面ABDC,∴平面A'MN⊥平面ABDC,在平面A'MN中作A'H⊥MN,则A'H⊥平面BCED,∵二面角A'-DE-B为60°,∴∠A'EF=60°,∵正三角形ABC中,AB=8,∴AN=43∴A'M3,∴A'H=A'M sin60°=3,故A正确;连接DN,易得DN‖EC,DN=EC=4,∠A'DN就是直线A'D与CE所成的角,DN=DA'=4,A'N=A'M3,cos∠A'DN=22441252448+-=⨯⨯,故B正确;A'D =DB =4,A'B=22121627A N BN +=+=',∴222A D DB A B '≠'+,∴A'D 与BD 不垂直,故C 错误’ 易得NB =NC =ND =NG =4,∴N 为底面梯形BCED 的外接圆的圆心, 设四棱锥A'-BCED 的外接球的球心为O ,则ON ⊥平面BCED ,且OA'=OC , 若O 在平面BCED 上方,入图①所示:设ON =x ,外接球的半径为R ,过O 作A'H 的垂线,垂足为P ,则HP =x ,易得()()22222433x x R +=-+=,解得23x =-,舍去;故O 在平面BCED 下方,如图②所示:设ON =x ,外接球的半径为R ,过O 作A'H 的垂线,垂足为P , 则HP =x ,易得()()22222433x x R +=++=, 解得23x =, ∴244371699R ⨯=+=,237R ∴=,故D 正确. 故选:ABD .【点睛】本题考查立体几何中的折叠问题,涉及二面角问题,异面直线所成的角,用到线面、面面垂直的判定与性质及外接球的球心的性质和有关计算,余弦定理等,属综合性较强的题目,关键是利用线面垂直,面面垂直的判定和性质进行空间关系和结构的判定,注意球心在四棱锥的底面上方和下方的讨论与验证.4.在棱长为1的正方体1111ABCD A B C D -中,P 为底面ABCD 内(含边界)一点.( ) A .若13A P P 点有且只有一个 B .若12A P ,则点P 的轨迹是一段圆弧 C .若1//A P 平面11B D C ,则1A P 2D .若12A P 且1//A P 平面11B DC ,则平面11A PC 截正方体外接球所得截面的面积为23π【答案】ABD 【分析】选项A ,B 可利用球的截面小圆的半径来判断;由平面1//A BD 平面11B D C ,知满足1//A P 平面11B D C 的点P 在BD 上,1A P 2P 与B 或D 重合,利用12sin 60A P r =︒,求出6r =,进而求出面积. 【详解】对A 选项,如下图:由13A P =P 在以1A 3的球上,又因为P 在底面ABCD 内(含边界),底面截球可得一个小圆,由1A A ⊥底面ABCD ,知点P 的轨迹是在底面上以A 为圆心的小圆圆弧,半径为22112r A P A A =-=C满足,故A 正确;对B 选项,同理可得点P 在以A 为圆心,半径为22111r A P A A =-=的小圆圆弧上,在底面ABCD 内(含边界)中,可得点P 轨迹为四分之一圆弧BD .故B 正确;对C 选项,移动点P 可得两相交的动直线与平面11B D C 平行,则点P 必在过1A 且与平面11B D C 平行的平面内,由平面1//A BD 平面11B D C ,知满足1//A P 平面11B D C 的点P 在BD上,则1A P 长的最大值为12A B =,则C 不正确; 对选项D ,由以上推理可知,点P 既在以A 为圆心,半径为1的小圆圆弧上,又在线段BD 上,即与B 或D 重合,不妨取点B ,则平面11A PC 截正方体外接球所得截面为11A BC 的外接圆,利用2126622,,sin 60333A B r r S r ππ==∴=∴==︒.故D 正确.故选:ABD 【点睛】(1)平面截球所得截面为圆面,且满足222=R r d +(其中R 为球半径,r 为小圆半径,d 为球心到小圆距离);(2)过定点A 的动直线平行一平面α,则这些动直线都在过A 且与α平行的平面内.5.已知四面体ABCD 的所有棱长均为2,则下列结论正确的是( ) A .异面直线AC 与BD 所成角为60︒B .点A 到平面BCD 的距离为3C .四面体ABCDD .动点P 在平面BCD 上,且AP 与AC 所成角为60︒,则点P 的轨迹是椭圆 【答案】BC 【分析】在正四面体中通过线面垂直可证得AC ⊥BD ,通过计算可验证BC,通过轨迹法可求得P 的轨迹为双曲线方程即可得D 错误. 【详解】取BD 中点E ,连接,AE CE ,可得BD ⊥面ACE ,则AC ⊥BD ,故A 错误;在四面体ABCD 中,过点A 作AF ⊥面BCD 于点F ,则F 为为底面正三角形BCD 的重心,因为所有棱长均为2,AF ==即点A 到平面BCD ,故B 正确;设O 为正四面体的中心则OF 为内切球的半径,OA 我外接球的半径, 因为11433A BCD BCD BCD V S AF S OF -=⋅=⨯⋅△△,所以4AF OF =,即OF AO =所以四面体ABCD 的外接球体积334433V R OA ππ===,故C 正确;建系如图:0,0,,0,,033A C ⎛⎛⎫⎪ ⎪⎝⎭⎝⎭,设(,,0)P x y ,则,,AP x y AC →→⎛⎛== ⎝⎭⎝⎭,因为cos 60AP AC AP AC →→→→⋅=24192y +=,即833y +,平方化简可得:2240039y x y ---,可知点P 的轨迹为双曲线,故D 错误. 故选:BC .【点睛】方法点睛:立体几何中动点轨迹的求解问题,解决此类问题可采用空间向量法,利用空间向量法表示出已知的角度或距离的等量关系,从而得到轨迹方程.6.如图,已知四棱锥P ABCD -所有棱长均为4,点M 是侧棱PC 上的一个动点(不与点,P C 重合),若过点M 且垂直于PC 的截面将该四棱锥分成两部分,则下列结论正确的是( )A .截面的形状可能为三角形、四边形、五边形B .截面和底面ABCD 所成的锐二面角为4π C .当1PM =时,截面的面积为52D .当2PM =时,记被截面分成的两个几何体的体积分别为()1212,>V V V V ,则123=V V 【答案】BCD 【分析】点M 是侧棱PC 上的一个动点,根据其不同位置,对选项逐一进行判断即可. 【详解】A 选项中,如图,连接BD ,当M 是PC 中点时,2MC =,由题意知三角形PDC 与三角形PBC 都是边长为4的正三角形,所以DM PC ⊥,BM BC ⊥,又DM ,BM 在面MBD 内,且相交,所以PC ⊥平面PBD ,三角形MBD 即为过点M 且垂直于PC 的截面,此时是三角形,点M 向下移动时,2MC <,如图,仍是三角形;若点M 由中点位置向上移动,2MC >,在平面PDC 内作EM PC ⊥,交PD 于E ,在平面PBC 内作FM PC ⊥交PB 于F ,平面MEF 交平面PAD 于EG ,交PAB 于FH ,即交平面ABCD 于GH ,则五边形MEGHF 即为过点M 且垂直于PC 的截面,此时是五边形; 故截面的形状可能为三角形、五边形,A 错误;B 选项中,因为截面总与PC 垂直,所以不同位置的截面均平行,截面与平面ABCD 所成的锐角为定值,不妨取M 是中点,连接AC ,BD ,MB ,MD ,设AC ,BD 交点是N ,连接PN ,由题意知,四边形ABCD 是边长为4的菱形,BD AC ⊥,因为MB =MD ,所以MN BD ⊥,故MNC ∠是截面与平面ABCD 所成的锐角,过点M 作MQ AC ⊥,垂足Q.在三角形PAC中,MN =2,NQ=2,故在直角三角形MNQ 中,2cos 2NQ MNC MN ∠==,故4MNC π∠=,故B 正确;C 选项中,当PM =1时,M 是PC 中点,如图,五边形MEGHF 即为过点M 且垂直于PC 的截面,依题意,直角三角形PME 中,2cos PMPE EPM==∠,故E 为PD 的中点,同理,F是PB 的中点,则EF 是三角形PBD 的中位线,1222EF BD ==,G ,H 分别在,AD AB 的中点上,证明如下,当G ,H ,也是中点时,1//,2GH BD GH BD =,有//,22GH EF GH EF ==,四边形EFHG 是平行四边形.依题意,三角形PAC 中4,42PA PC AC ===,故PA PC ⊥,故PC GE ⊥,易见,正四棱锥中BD ⊥平面PAC ,故BD PC ⊥,GH PC ∴⊥,因为 ,GE GH 均在平面EFHG 内,且相交,所以PC ⊥平面EFHG ,故此时平面EFHG 和平面MEF 即同一平面.又BD ⊥平面PAC ,有GH ⊥面平面PAC ,GH GM ⊥,根据对称性有GH GE ⊥,四边形EFHG 是矩形. 即五边形MEGHF 即为过点M 且垂直于PC 的截面,平面图如下:依题意,22GH EF ==2EG FG ==,三角形高为()()22321h =-=,面积是122122⨯=,四边形面积是22242=,故截面面积是52 故C 正确;D 选项中,若PM =2,看B 选项中的图可知,21124M BCD P BCD P ABCD V V V V ---===,故剩余部分134P ABCD V V -=,所以123=V V ,故D 正确.故选:BCD. 【点睛】本题考查了棱锥的截面问题,考查了二面角、体积等计算问题,属于难题.7.已知棱长为1的正方体1111ABCD A B C D -,过对角线1BD 作平面α交棱1AA 于点E ,交棱1CC 于点F ,以下结论正确的是( ) A .四边形1BFD E 不一定是平行四边形 B .平面α分正方体所得两部分的体积相等 C .平面α与平面1DBB 不可能垂直 D .四边形1BFD E 面积的最大值为2 【答案】BD 【分析】由平行平面的性质可判断A 错误;利用正方体的对称性可判断B 正确;当E 、F 为棱中点时,通过线面垂直可得面面垂直,可判断C 错误;当E 与A 重合,F 与1C 重合时,四边形1BFD E 的面积最大,且最大值为2,可判断D 正确. 【详解】 如图所示,对于选项A,因为平面1111//ABB A CC D D ,平面1BFD E 平面11ABB A BE =,平面1BFD E平面111CC D D D F =,所以1//BE D F ,同理可证1//D E BF ,所以四边形1BFD E 是平行四边形,故A 错误; 对于选项B,由正方体的对称性可知,平面α分正方体所得两部分的体积相等,故B 正确; 对于选项C,在正方体1111ABCD A B C D -中,有1,AC BD AC BB ⊥⊥, 又1BD BB B ⋂=,所以AC ⊥平面1BB D , 当E 、F 分别为棱11,AA CC 的中点时, 有//AC EF ,则EF ⊥平面1BB D , 又因为EF ⊂平面1BFD E ,所以平面1BFD E ⊥平面1BB D ,故C 错误;对于选项D,四边形1BFD E 在平面ABCD 内的投影是正方形ABCD , 当E 与A 重合,F 与1C 重合时,四边形1BFD E 的面积有最大值,此时1212S D E BE =⋅=⋅=,故D 正确; 故选:BD. 【点睛】本题考查了正方体的几何性质与应用问题,也考查了点线面的位置关系应用问题,属于中档题.8.如图,矩形ABCD 中,M 为BC 的中点,将ABM 沿直线AM 翻折成1AB M ,连结1B D ,N 为1B D 的中点,则在翻折过程中,下列说法中所有正确的是( )A .存在某个位置,使得CN AB ⊥ B .翻折过程中,CN 的长是定值C .若AB BM =,则1AM BD ⊥D .若1AB BM ==,当三棱锥1B AMD -的体积最大时,三棱锥1B AMD -的外接球的表面积是4π 【答案】BD 【分析】对于选项A ,取AD 中点E ,取1AB 中点K ,连结KN ,BK ,通过假设CN AB ⊥,推出AB ⊥平面BCNK ,得到AB BK ⊥,则22AK AB BK AB =+>,即可判断;对于选项B ,在判断A 的图基础上,连结EC 交MD 于点F ,连结NF ,易得1NEC MAB ∠=∠,由余弦定理,求得CN 为定值即可;对于选项C ,取AM 中点O ,1B O ,DO ,由线面平行的性质定理导出矛盾,即可判断; 对于选项D ,易知当平面1AB M 与平面AMD 垂直时,三棱锥1B AMD -的体积最大,说明此时AD 中点E 为外接球球心即可. 【详解】如图1,取AD 中点E ,取1AB 中点K ,连结EC 交MD 于点F ,连结NF ,KN ,BK ,则易知1//NE AB ,1//NF B M ,//EF AM ,//KN AD ,112NE AB =,EC AM = 由翻折可知,1MAB MAB ∠=∠,1AB AB =,对于选项A ,易得//KN BC ,则K 、N 、C 、B 四点共面,由题可知AB BC ⊥,若CN AB ⊥,可得AB ⊥平面BCNK ,故AB BK ⊥,则22AK AB BK AB =+>,不可能,故A 错误;对于选项B ,易得1NEC MAB ∠=∠,在NEC 中,由余弦定理得222cos CN CE NE NE CE NEC =+-⋅⋅∠,整理得222212422AB AB AB CN AM AM BC AB AM =+-⋅⋅=+, 故CN 为定值,故B 正确;如图2,取AD 中点E ,取AM 中点O ,连结1B E ,OE ,1B O ,DO ,,对于选项C ,由AB BM =得1B O AM ⊥,若1AM B D ⊥,易得AM ⊥平面1B OD ,故有AM OD ⊥,从而AD MD =,显然不可能,故C 错误;对于选项D ,由题易知当平面1AB M 与平面AMD 垂直时,三棱锥B 1﹣AMD 的体积最大,此时1B O ⊥平面AMD ,则1B O OE ⊥,由1AB BM ==,易求得122BO =,2DM =22221122122B E OB OE ⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,因此1EB EA ED EM ===,E 为三棱锥1B AMD -的外接球球心,此外接球半径为1,表面积为4π,故D 正确. 故选:BD. 【点睛】本题主要考查了立体几何中的翻折问题以及空间图形的位置关系,考查了空间想象能力,属于较难题.9.已知正四棱柱1111ABCD A B C D -的底面边长为2,侧棱11AA =,P 为上底面1111D C B A 上的动点,给出下列四个结论中正确结论为( )A .若3PD =,则满足条件的P 点有且只有一个B .若3PD =,则点P 的轨迹是一段圆弧C .若PD ∥平面1ACB ,则DP 长的最小值为2D .若PD ∥平面1ACB ,且3PD =,则平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形的面积为94π 【答案】ABD 【分析】若3PD =,由于P 与1B 重合时3PD =,此时P 点唯一;()313PD =∈,,则12PD =,即点P 的轨迹是一段圆弧;当P 为11A C 中点时,DP 有最小值为3=,可判断C ;平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形为外接球的大圆,其半径为32=,可得D . 【详解】 如图:∵正四棱柱1111ABCD A B C D -的底面边长为2, ∴1122B D =11AA =, ∴()2212213DB =+=,则P 与1B 重合时3PD =,此时P 点唯一,故A 正确;∵()313PD =∈,,11DD =,则12PD =,即点P 的轨迹是一段圆弧,故B 正确; 连接1DA ,1DC ,可得平面11//A DC 平面1ACB ,则当P 为11A C 中点时,DP 有最小值为()22213+=,故C 错误;由C 知,平面BDP 即为平面11BDD B ,平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形为外接球的大圆,其半径为2221322122++=,面积为94π,故D 正确. 故选:ABD . 【点睛】本题考查了立体几何综合,考查了学生空间想象,逻辑推理,转化划归,数学运算的能力,属于较难题.10.如图,1111ABCD A B C D -为正方体,下列结论中正确的是( )A .11A C ⊥平面11BB D D B .1BD ⊥平面1ACBC .1BD 与底面11BCC B 2 D .过点1A 与异面直线AD 与1CB 成60角的直线有2条 【答案】ABD 【分析】由直线与平面垂直的判定判断A 与B ;求解1BD 与底面11BCC B 所成角的正切值判断C ;利用空间向量法可判断D . 【详解】对于A 选项,如图,在正方体1111ABCD A B C D -中,1BB ⊥平面1111D C B A ,11A C ⊂平面1111D C B A ,则111BB A C ⊥, 由于四边形1111D C B A 为正方形,则1111AC B D ⊥, 1111BB B D B =,因此,11A C ⊥平面11BB D D ,故A 正确;对于B 选项,在正方体1111ABCD A B C D -中,1DD ⊥平面ABCD ,AC ⊂平面ABCD ,1AC DD ∴⊥,因为四边形ABCD 为正方形,所以,AC BD ⊥,1D DD BD =,AC ∴⊥平面11BB D D , 1BD ⊂平面11BB D D ,1AC BD ∴⊥,同理可得11BD B C ⊥,1ACB C C =,1BD ∴⊥平面1ACB ,故B 正确;对于C 选项,由11C D ⊥平面11BCC B ,得11C BD ∠为1BD 与平面11BCC B 所成角, 且111112tan 2C D C BD BC ∠==,故C 错误; 对于D 选项,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,设正方体的棱长为1,则()1,0,0A 、()0,0,0D 、()0,1,0C 、()11,1,1B ,()1,0,0DA =,()11,0,1CB =,设过点1A 且与直线DA 、1CB 所成角的直线的方向向量为()1,,m y z =, 则221cos ,21DA m DA m DA my z ⋅<>===⋅++, 1122111cos ,221CB m zCB m CB my z ⋅+<>===⋅⋅++, 整理可得2222341y z y z z ⎧+=⎨=++⎩,消去y 并整理得2210z z +-=,解得12z =-12z =-由已知可得3z ≤,所以,12z =-+22y =± 因此,过点1A 与异面直线AD 与1CB 成60角的直线有2条,D 选项正确. 故选:ABD. 【点睛】方法点睛:证明线面垂直的方法: 一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面),解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.。

2022年高考数学一轮复习专题 专题35 立体几何初步基础巩固检测题(解析版)

2022年高考数学一轮复习专题 专题35 立体几何初步基础巩固检测题(解析版)
根据斜二测画法的方法:平行于 y 轴的线段长度减半,水平长度不变即可判断..
【详解】 由于直角在直观图中有的成为 45°,有的成为 135°; 当线段与 x 轴平行时,在直观图中长度不变且仍与 x 轴平行,
当线段与 x 轴平行时,线段长度减半,
直角坐标系变成斜坐标系,而平行关系没有改变. 故选:B. 11.侧面都是等腰直角三角形的正三棱锥,底面边长为 a 时,该三棱锥的表面积是( )
试卷第 3页,总 16页
【分析】 根据面面平行的知识对选项逐一分析,由此确定正确选项. 【详解】 对于 A 选项,这两个平面可能相交,故 A 选项错误. 对于 B 选项,如果一个平面内任何一条直线都平行于另一个平面,那么这两个平面平行, 正确,故 B 选项正确. 对于 C 选项,这两个平面可能相交,故 C 选项错误. 对于 D 选项,这两个平面可能相交,故 D 选项错误. 故选:B
A. ,
B. ,
C. ,
D. ,
【答案】B 【分析】
根据角的定义作出 , , ,再利用三角函数的单调性比较.
【详解】 如图所示:
设 M 在底面 ABCD 内的射影为 H ,过 H 作 AC 的垂线 HE ,垂足为 E ,过 M 作 CD 的垂线 MF ,垂足为 F ,连接 ME , HC ,
A. 3 3 a2 4
B. 3 a2 4
C. 3 3 a2 2
D. 6 3 a2 4
【答案】A 【分析】
先求出侧棱长,即可求出表面积. 【详解】
如图,PA,PB,PC 两两垂直且 PA=PB=PC,
△ABC 为等边三角形,AB=a,
试卷第 5页,总 16页
∴ PA PB PC 2 a , 2
(1)B,C,H,G 四点共面;

高考数学总复习《立体几何》部分试题及答案

高考数学总复习《立体几何》部分试题及答案

高考数学总复习试卷立体几何综合训练第 I 卷(选择题共60分)一、选择题(本大题共 12 个小题,每题 5 分,共 60 分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的)1.以下命题正确的选项是()A .直线 a, b 与直线 l 所成角相等,则a//bB.直线 a,b 与平面α成相等角,则a//bC.平面α,β与平面γ所成角均为直二面角,则α// βD.直线 a, b 在平面α外,且a⊥α, a⊥b,则 b//α2.空间四边形ABCD , M , N 分别是 AB 、 CD 的中点,且AC=4 , BD=6 ,则()A . 1<MN<5B . 2<MN<10C. 1≤ MN ≤ 5 D . 2<MN<53.已知 AO 为平面α的一条斜线,O 为斜足, OB 为 OA 在α内的射影,直线OC 在平面α内,且∠AOB=∠ BOC=45 °,则∠ AOC 等于()A . 30°B. 45°C.60°D.不确立4.甲烷分子构造是:中心一个碳原子,外头四个氢原子组成四周体,中心碳原子与四个氢原子等距离,且连成四线段,两两所成角为θ,则cosθ值为()A .1B.111 33C.D.225.对已知直线 a,有直线 b 同时知足下边三个条件:①与 a 异面;②与 a 成定角;③与 a 距离为定值 d,则这样的直线 b 有()A.1 条B.2 条C.4条D.无数条6.α,β是不重合两平面,l, m 是两条不重合直线,α//β的一个充足不用要条件是()A .l, m,且 l// β, m// βB .l,m,且 l//mC. l ⊥α, m⊥β,且 l//m D .l// α, m//β,且 l//m7.如图正方体ABCD A B C D中, E, F 分别为 AB ,CC的中点,则异面直线A C 与EF所成角的余111111弦值为()A .3B.2C.1D .133368.关于任一个长方体,都必定存在一点:①这点到长方体的各极点距离相等;②这点到长方体的各条棱距离相等;③这点到长方体的各面距离相等,以上三个结论中正确的选项是()A .①②B.①C.②D.①③9.在斜棱柱的侧面中,矩形最多有几个?A.2B.3C.4D.610.正六棱柱的底面边长为2,最长的一条对角线长为 2 5 ,则它的侧面积为()A.24B.12C.242D.12211.异面直线a,b 成 80°角, P 为 a,b 外的一个定点,若过P 有且仅有 2 条直线与a, b 所成的角相等且等于α,则角α属于会合()A . { α|0° <α <40° }B. { α |40° <α <50 ° }C. { α |40° <α <90° } D . { α |50°<α <90 ° }12.从水平搁置的球体容器的顶部的一个孔向球内以同样的速度灌水,容器中水面的高度与灌水时间t 之间的关系用图象表示应为()第 II 卷(非选择题共90分)二、填空题(本大题共 4 个小题,每题 4 分,共 16 分,把答案填在题中横线上)13.正四棱锥S-ABCD 侧棱长与底面边长相等, E 为 SC 中点,BE 与 SA 所成角的余弦值为_____________ 。

高考数学一轮复习《空间几何体》练习题(含答案)

高考数学一轮复习《空间几何体》练习题(含答案)

高考数学一轮复习《空间几何体》练习题(含答案)一、单选题1.降水量(precipitation[amount]):从天空降落到地面上的液态或固态(经融化后)水,未经蒸发、渗透、流失,而在水平面上积聚的深度.降水量以mm 为单位,气象观测中一般取一位小数,现某地10分钟的降雨量为13.1mm ,小王在此地此时间段内用口径为10cm 的圆柱型量筒收集的雨水体积约为( )(其中π 3.14≈)A .331.0210mm ⨯B .331.0310mm ⨯C .531.0210mm ⨯D .531.0310mm ⨯2.某几何体的三视图如图所示(单位:cm ),则该几何体的表面积(单位:2cm )是( )A .()256122cm +B .()248162cm + C .()280122cm + D .()272162cm + 3.阿基米德(Archimedes ,公元前287年-公元前212年)是古希腊伟大的数学家,物理学家和天文学家,在他墓碑上刻着的一个圆柱容器里放了一个球,该球与圆柱的两个底面及侧面均相切,如图所示,则在该几何体中,圆柱表面积与球表面积的比值为( )A .32B .43C .32或23D .234.已知一个几何体的三视图如图所示,则这个几何体的表面积为( )A .33πB .2πC .3πD .4π5.某圆锥的母线长为2,高为423,其三视图如下图所示,圆锥表面上的点M 在正视图上的对应点为A ,圆锥表面上的点N 在侧视图上的对应点为B ,则在此圆锥侧面上,从M 到N 的路径中,最短路径的长度为A .2B .22C .823+D .223- 6.已知某空间几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .323B .163C .4D .87.已知正方体的六个面的中心可构成一个正八面体,现从正方体内部任取一个点,则该点落在这个正八面体内部的概率为( )A .12B .13C .16D .1128.某几何体的三视图如图所示,则该几何体的表面积为( )A .810+16B .40C .810++24D .489.棱长为1的正方体1111ABCD A B C D -中,点E 是侧面11CC B B 上的一个动点(包含边界),则下面结论正确的有( )①若点E 满足1AE B C ⊥,则动点E 的轨迹是线段;②若点E 满足130EA C ∠=,则动点E 的轨迹是椭圆的一部分;③在线段1BC 上存在点E ,使直线1A E 与CD .所成的角为30;④当E 在棱1BB 上移动时,1EC ED +的最小值是352+. A .1个 B .2个 C .3个 D .4个10.某锥体的正视图和侧视图均为如图所示的等腰三角形,则该几何体的体积最小值为A .4πB .12C .1D .211.已知四棱锥S ABCD -的所有顶点都在同一球面上,底面ABCD 是正方形且和球心O 在同一平面内,当此四棱锥体积取得最大值时,其表面积等于443+,则球O 的体积等于( )A .3223πB .1623πC .823πD .423π 12.一个长方体被一平面截去一部分后,所剩几何体的三视图如图所示,则该几何体的体积为A .36B .48C .64D .72二、填空题13.如果用半径为r 的半圆形铁皮卷成一个圆锥筒,那么这个圆锥筒的高等于____. 14.点A ,B ,C ,D 在同一个球的球面上,3AB BC AC ==,若四面体ABCD 体积的3________.15.“方锥”,在《九章算术》卷商功中解释为正四棱锥.现有“方锥”S ABCD -,其中4AB =,SA 与平面ABCD 32,则此“方锥”的外接球表面积为________. 16.棱长为6的正方体内有一个棱长为x 的正四面体,正四面体的中心(正四面体的中心就是该四面体外接球的球心)与正方体的中心重合,且该四面体可以在正方体内任意转动,则x 的最大值为______.三、解答题17.如图,已知直三棱柱111ABC A B C ,其底面是等腰直角三角形,且22AB BC ==14AC AA ==.(1)求该几何体的表面积;(2)若把两个这样的直三棱柱拼成一个大棱柱,求拼得的棱柱表面积的最小值.18.如图是一个以111A B C为底面的直三棱柱被一平面所截得到的几何体,截面为ABC,已知11112A B B C==,11190A B C∠=︒,14AA=,13BB=,12CC=,求该几何体的体积.19.如图是某几何体的三视图,请你指出这个几何体的结构特征,并求出它的表面积与体积.(单位:cm)20.如图所示,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,底面ABCD 是矩形,2PA AB ==,2AD =,过点B 作BE ⊥AC ,交AD 于点E ,点F ,G 分别为线段PD ,DC 的中点.(1)证明:AC ⊥平面BEF ;(2)求三棱锥F -BGE 的体积.21.如图,多面体ABCDEF 中,四边形ABCD 是边长为2的菱形,AC =23,△ADE 为等腰直角三角形,∠AED =90°,平面ADE ⊥平面ABCD ,且EF //AB ,EF =1.(1)证明:AC ⊥平面BDF ;(2)若G 为棱BF 的中点,求三棱锥G —DEF 的体积.22.如图,在三棱锥-P ABC 中,2AB BC ==,22PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且MC =2MB ,求点C 到平面POM 的距离.23.如图,在三棱锥S -ABC 中,SA =SC ,D 为AC 的中点,SD ⊥AB .(1)证明:平面SAC ⊥平面ABC ;(2)若△BCD 是边长为3的等边三角形,点P 在棱SC 上,PC =2SP ,且932S ABC V -=,求三棱锥A -PBC 的体积.24.如图,在四棱锥P ABCD -中,底面ABCD 是边长为4的菱形,60DAB ∠=︒,7PA PD ==,O F 、分别为AD AB 、的中点,PF AC ⊥.(1)求证:面POF ⊥面ABCD ;(2)求三棱锥B PCF -的体积。

高中数学一轮复习 第八章 立体几何

高中数学一轮复习 第八章 立体几何

第八章 立体几何考点1 空间几何体的结构及其三视图与直观图1.(2016·全国Ⅲ,9)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A.18+365B.54+185C.90D.812.(2016·全国Ⅱ,6)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A.20πB.24πC.28πD.32π3.(2016·北京,6)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.16B.13C.12 D.14.(2016·山东,5)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23πB.13+23πC.13+26πD.1+26π5.(2015·广东,8)若空间中n 个不同的点两两距离都相等,则正整数n 的取值( ) A.大于5 B.等于5 C.至多等于4 D.至多等于36.(2015·北京,5)某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A.2+ 5B.4+ 5C.2+2 5D.57.(2015·浙江,2)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( ) A.8 cm 3 B.12 cm 3 C.323cm 3 D.403 cm 38.(2015·新课标全国Ⅰ,11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A.1B.2C.4D.89.(2014·福建,2)某空间几何体的正视图是三角形,则该几何体不可能是( ) A.圆柱 B.圆锥 C.四面体 D.三棱柱10.(2014·江西,5)一几何体的直观图如图,下列给出的四个俯视图中正确的是( )11.(2014·湖北,5)在如图所示的空间直角坐标系Oxyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①、②、③、④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②12.(2014·新课标全国Ⅰ,12)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6 2B.4 2C.6D.413.(2015·天津,10)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m3.考点2 空间几何体的表面积和体积1.(2016·全国Ⅲ,10)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) A.4π B.9π2 C.6π D.32π32.(2016·全国Ⅰ,6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A.17πB.18πC.20πD.28π3.(2015·陕西,5)一个几何体的三视图如图所示,则该几何体的表面积为( )A.3πB.4πC.2π+4D.3π+44.(2015·安徽,7)一个四面体的三视图如图所示,则该四面体的表面积是( )A.1+ 3B.2+ 3C.1+2 2D.2 25.(2015·新课标全国Ⅱ,9)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点,若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为( ) A.36π B.64π C.144π D.256π6.(2015·山东,7)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3 B.4π3 C.5π3 D.2π7.(2015·重庆,5)某几何体的三视图如图所示,则该几何体的体积为( )A.13+πB.23+πC.13+2πD.23+2π8.(2015·新课标全国Ⅱ,6)一个正方体被一个平面截去一部分后,剩余部分的三视图如图所示,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.159.(2015·湖南,10)某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积原工件的体积)( )A.89πB.169π C.4(2-1)3π D.12(2-1)3π10.(2014·重庆,7)某几何体的三视图如图所示,则该几何体的表面积为( )A.54B.60C.66D.7211.(2014·浙江,3)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是( )A.90 cm 2B.129 cm 2C.132 cm 2D.138 cm 212.(2014·大纲全国,8)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( ) A.81π4 B.16π C.9π D.27π413.(2014·安徽,7)一个多面体的三视图如图所示,则该多面体的表面积为( )A.21+ 3B.18+ 3C.21D.1814.(2014·陕西,5)已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( ) A.32π3 B.4π C.2π D.4π315.(2014·湖北,8)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈136L 2h .它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V ≈275L 2h 相当于将圆锥体积公式中的π近似取为( )A.227B.258C.15750D.35511316.(2014·新课标全国Ⅱ,6)如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.1317.(2016·四川,13)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是________.18.(2016·浙江,14)如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD 的体积的最大值是________.19.(2015·江苏,9)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为________.20.(2014·江苏,8)设甲、乙两个圆柱的底面积分别为S 1,S 2,体积分别为V 1,V 2,若它们的侧面积相等,且S 1S 2=94,则V 1V 2的值是________.考点3 点、线、面的位置关系1. (2016·全国Ⅰ,11)平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为()A.32 B.22 C.33 D.132.(2015·安徽,5)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面3.(2014·辽宁,4)已知m,n表示两条不同直线,α表示平面.下列说法正确的是()A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α4.(2015·浙江,13)如图,三棱锥ABCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是________.考点4 线面平行的判定与性质1.(2016·山东,17)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,FB 是圆台的一条母线.(1)已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC ;(2)已知EF =FB =12AC =23,AB =BC ,求二面角F -BC -A 的余弦值.2.(2016·全国Ⅲ,19)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明MN ∥平面P AB ;(2)求直线AN 与平面PMN 所成角的正弦值.3.(2015·江苏,16)如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.4.(2014·江苏,16)如图,在三棱锥P ABC中,D,E,F分别为棱PC,AC,AB的中点.已知P A⊥AC,P A=6,BC=8,DF=5. 求证:(1)直线P A∥平面DEF;(2)平面BDE⊥平面ABC.5.(2014·新课标全国Ⅱ,18)如图,四棱锥P-ABCD中,底面ABCD为矩形,P A⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角DAEC为60°,AP=1,AD=3,求三棱锥EACD的体积.6.(2014·湖北,19)如图,在棱长为2的正方体ABCDA1B1C1D1中,E,F,M,N分别是棱AB,AD,A1B1,A1D1的中点,点P,Q分别在棱DD1,BB1上移动,且DP=BQ=λ(0<λ<2).(1)当λ=1时,证明:直线BC1∥平面EFPQ;(2)是否存在λ,使面EFPQ与面PQMN所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.考点5 线面垂直的判定与性质1.(2016·浙江,2)已知互相垂直的平面α,β交于直线l.若直线m,n满足m∥α,n⊥β,则()A.m∥lB.m∥nC.n⊥lD.m⊥n2.(2015·浙江,8)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD翻折成△A′CD,所成二面角A′CDB的平面角为α,则()A.∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α3.(2014·广东,7)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定4.(2016·全国Ⅱ,14)α,β是两个平面,m,n是两条直线,有下列四个命题:(1)如果m⊥n,m⊥α,n∥β,那么α⊥β.(2)如果m⊥α,n∥α,那么m⊥n.(3)如果α∥β,m⊂α,那么m∥β.(4)如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有________(填写所有正确命题的编号).5.(2016·全国Ⅰ,18)如图,在以A,B,C,D,E,F为顶点的五面体中,平面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D-AF-E与二面角C-BE-F都是60°.(1)证明:平面ABEF⊥EFDC;(2)求二面角E-BC-A的余弦值.6.(2016·江苏,16)如图,在直三棱柱ABC-A 1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.7.(2015·新课标全国Ⅱ,19)如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E =D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.8.(2015·新课标全国Ⅰ,18)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(1)证明:平面AEC⊥平面AFC,(2)求直线AE与直线CF所成角的余弦值.9.(2014·新课标全国Ⅰ,19)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(1)证明:AC=AB1;(2)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角AA1B1C1的余弦值.10.(2014·广东,18)如图,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF;(2)求二面角DAFE的余弦值.11.(2014·辽宁,19)如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F分别为AC,DC的中点.(1)求证:EF⊥BC;(2)求二面角EBFC的正弦值.12.(2014·江西,19)如图,四棱锥P-ABCD中,ABCD为矩形,平面P AD⊥平面ABCD.(1)求证:AB⊥PD;(2)若∠BPC=90°,PB=2,PC=2,问AB为何值时,四棱锥P ABCD的体积最大?并求此时平面BPC与平面DPC夹角的余弦值.13.(2014·湖南,19)如图,四棱柱ABCD-A1B1C1D1的所有棱长都相等,AC∩BD=O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.(1)证明:O1O⊥底面ABCD;(2)若∠CBA=60°,求二面角C1-OB1-D的余弦值.考点6 空间向量与立体几何1.(2014·广东,5)已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( ) A.(-1,1,0) B.(1,-1,0) C.(0,-1,1) D.(-1,0,1)2.(2014·四川,8)如图,在正方体ABCD -A 1B 1C 1D 1中,点O 为线段BD 的中点.设点P 在线段CC 1上,直线OP 与平面A 1BD 所成的角为α,则sin α的取值范围是( ) A.⎣⎡⎦⎤33,1 B.⎣⎡⎦⎤63,1 C.⎣⎡⎦⎤63,223 D.⎣⎡⎦⎤223,13.(2014·新课标全国Ⅱ,11)直三棱柱ABCA 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( ) A.110 B.25 C.3010 D.224.(2014·江西,10)如图,在长方体ABCD-A 1B 1C 1D 1中,AB =11,AD =7,AA 1=12.一质点从顶点A 射向点E (4,3,12),遇长方体的面反射(反射服从光的反射原理),将第i -1次到第i 次反射点之间的线段记为L i (i =2,3,4),L 1=AE ,将线段L 1,L 2,L 3,L 4竖直放置在同一水平线上,则大致的图形是( )5.(2015·四川,14)如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E 、F 分别为AB 、BC 的中点.设异面直线EM 与AF 所成的角为θ,则cos θ的最大值为________.6.(2016·全国Ⅱ,19)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上, AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置.OD ′=10.(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B -D ′A -C 的正弦值.7.(2015·陕西,18)如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值.8.(2015·天津,17)如图,在四棱柱ABCD-A 1B 1C 1D 1中,侧棱A 1A ⊥底面ABCD ,AB ⊥AC ,AB =1,AC =AA 1=2,AD =CD =5,且点M 和N 分别为B 1C 和D 1D 的中点. (1)求证:MN ∥平面ABCD ; (2)求二面角D 1-AC -B 1的正弦值;(3)设E 为棱A 1B 1上的点,若直线NE 和平面ABCD 所成角的正弦值为13,求线段A 1E 的长.9.(2015·安徽,19)如图所示,在多面体A1B1D1-DCBA,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(1)证明:EF∥B1C.(2)求二面角E-A1D-B1的余弦值.10.(2015·重庆,19)如图,三棱锥P ABC中,PC⊥平面ABC,PC=3,∠ACB=π2.D,E分别为线段AB,BC上的点,且CD=DE=2,CE=2EB=2.(1)证明:DE⊥平面PCD;(2)求二面角APDC的余弦值.11.(2015·北京,17)如图,在四棱锥AEFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.(1) 求证:AO⊥BE;(2) 求二面角F AEB的余弦值;(3)若BE⊥平面AOC,求a的值.12.(2015·四川,18)一个正方体的平面展开图及该正方体的直观图的示意图如图所示,在正方体中,设BC 的中点为M ,GH 的中点为N .(1)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由); (2)证明:直线MN ∥平面BDH ; (3)求二面角AEGM 的余弦值.13.(2015·江苏,22)如图,在四棱锥P ABCD 中,已知P A ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC =∠BAD =π2,P A =AD =2,AB =BC =1.(1)求平面P AB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长.14.(2015·山东,17)如图,在三棱台DEF-ABC中,AB=2DE,G,H分别为AC,BC的中点.(1)求证:BD∥平面FGH;(2)若CF⊥平面ABC,AB⊥BC,CF=DE, ∠BAC=45°,求平面FGH与平面ACFD所成的角(锐角)的大小.15.(2014·陕西,17)四面体ABCD及其三视图如图所示,过棱AB的中点E作平行于AD,BC的平面分别交四面体的棱BD,DC,CA于点F,G,H.(1)证明:四边形EFGH是矩形;(2)求直线AB与平面EFGH夹角θ的正弦值.16.(2014·天津,17)如图,在四棱锥P ABCD中,P A⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC 的中点.(1)证明:BE⊥DC;(2)求直线BE与平面PBD所成角的正弦值;(3)若F为棱PC上一点,满足BF⊥AC,求二面角F ABP的余弦值.17.(2014·四川,18)三棱锥A-BCD及其侧视图、俯视图如图所示.设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A-NP-M的余弦值;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

101. C B A '''∆是△ABC 在平面α上的射影,那么C B A '''∠和∠ABC 的大小关系是( )(A) C B A '''∠<∠ABC (B) C B A '''∠>∠ABC (C) C B A '''∠≥∠ABC (D) 不能确定解析:D一个直角,当有一条直角边平行于平面时,则射影角可以等于原角大小,但一般情况不等. 102. 已知: 如图, △ABC 中, ∠ACB = 90︒, CD ⊥平面α, AD , BD 和平面α所成的角分别为30︒和45︒, CD = h , 求: D 点到直线AB 的距离。

解析:1、先找出点D 到直线AB 的距离, 即过D 点作 DE ⊥AB , 从图形以及条件可知, 若把DE 放在△ABD 中不易求解。

2、由于CD ⊥平面α, 把DE 转化到直角三角形中求解, 从而转化为先求DE 在平面α内的射影长。

解: 连AC , BC , 过D 作DE ⊥AB , 连CE , 则DE 为D 到直线AB 的距离。

∵CD ⊥α∴AC , BC 分别是AD , BD 在α内的射影。

∴∠DAC , ∠DBC 分别是AD 和BD 与平面α所成的角∴∠DAC = 30︒, ∠DBC = 45︒在Rt △ACD 中,∵CD = h , ∠DAC = 30︒∴AC = 3h 在Rt △BCD 中∵CD = h , ∠DBC = 45︒∴BC = h∵CD ⊥α, DE ⊥AB∴CE ⊥AB 在Rt △ACB 中 AB AC BC h =+=222 S AC BC AB CE =⨯=1212· ∴CE AC BC AB h h h h =⨯==3232· ∴在Rt △DCE 中, DE DC CE h h h =+=+=22223272() ∴点D 到直线AB 的距离为72h 。

103. 已知a 、b 、c 是平面α内相交于一点O 的三条直线,而直线l 和α相交,并且和a 、b 、c 三条直线成等角.求证:l ⊥α证法一:分别在a 、b 、c 上取点A 、B 、C 并使AO = BO = CO .设l 经过O ,在l 上取一点P ,在△POA 、△POB 、△POC 中,∵ PO 公用,AO = BO = CO ,∠POA =∠POB =∠POC ,∴ △POA ≌△POB ≌△POC∴ PA = PB = PC .取AB 中点D .连结OD 、PD ,则OD ⊥AB ,PD ⊥AB ,∵ D OD PD =I∴ AB ⊥平面POD∵ PO ⊂平面POD .∴ PO ⊥AB .同理可证 PO ⊥BC∵ α⊂AB ,α⊂BC ,B BC AB =I∴ PO ⊥α,即l ⊥α若l 不经过O 时,可经过O 作l '∥l .用上述方法证明l '⊥α,∴ l ⊥α.证法二:采用反证法假设l 不和α垂直,则l 和α斜交于O .同证法一,得到PA = PB = PC .过P 作α⊥'O P 于O ',则O C O B O A '='=',O 是△ABC 的外心.因为O 也是△ABC 的外心,这样,△ABC 有两个外心,这是不可能的.∴ 假设l 不和α垂直是不成立的.∴ l ⊥α若l 不经过O 点时,过O 作l '∥l ,用上述同样的方法可证l '⊥α,∴ l ⊥α评述:(1)证明线面垂直时,一般都采用直接证法(如证法一),有时也采用反证法(如证法二)或同一法.104. P 是△ABC 所在平面外一点,O 是点P 在平面α上的射影.(1)若PA = PB = PC ,则O 是△ABC 的____________心.(2)若点P 到△ABC 的三边的距离相等,则O 是△ABC _________心.(3)若PA 、PB 、PC 两两垂直,则O 是△ABC _________心.(4)若△ABC 是直角三角形,且PA = PB = PC 则O 是△ABC 的____________心.(5)若△ABC 是等腰三角形,且PA = PB = PC ,则O 是△ABC 的____________心.(6)若P A 、PB 、PC 与平面ABC 所成的角相等,则O 是△ABC 的________心;解析:(1)外心.∵ P A =PB =PC ,∴ OA =OB =OC ,∴ O 是△ABC 的外心.(2)内心(或旁心).作OD ⊥AB 于D ,OE ⊥BC 于E ,OF ⊥AC 于F ,连结PD 、PE 、PF .∵ PO ⊥平面ABC ,∴ OD 、OE 、OF 分别为PD 、PE 、PF 在平面ABC 内的射影,由三垂线定理可知,PD ⊥AB ,PE ⊥BC ,PF ⊥AC .由已知PD =PE =PF ,得OD =OE =OF ,∴ O 是△ABC 的内心.(如图答9-23)(3)垂心.(4)外心.(5)外心(6)外心.P A 与平面ABC 所成的角为∠P AO ,在△P AO 、△PBO 、△PCO 中,PO 是公共边,∠POA =∠POB =∠POC =90°,∠P AO =∠PBO =∠PCO ,∴ △P AO ≌△PBO ≌△PCO ,∴ OA =OB =OC ,∴ O 为△ABC 的外心.(此外心又在等腰三角形的底边高线上).105. 将矩形ABCD 沿对角线BD 折起来,使点C 的新位置C '在面ABC 上的射影E 恰在AB 上.求证:C B C A '⊥'分析:欲证C B C A '⊥',只须证C B '与C A '所在平面D C A '垂直;而要证C B '⊥平面D C A ',只须证C B '⊥D C '且C B '⊥AD .因此,如何利用三垂线定理证明线线垂直就成为关键步骤了.证明:由题意,C B '⊥D C ',又斜线C B '在平面ABCD 上的射影是BA ,∵ BA ⊥AD ,由三垂线定理,得AD B C ⊥',D DA D C ='I .∴ C B '⊥平面AD C ',而A C '⊂平面AD C '∴ C B '⊥C A '106. 已知异面直线l 1和l 2,l 1⊥l 2,MN 是l 1和l 2的公垂线,MN = 4,A ∈l 1,B ∈l 2,AM = BN = 2,O 是MN 中点.① 求l 1与OB 的成角.②求A 点到OB 距离.分析:本题若将条件放入立方体的“原型”中,抓住“一个平面四条线”的图形特征及“直线平面垂直”的关键性条件,问题就显得简单明了.解析:(1)如图,画两个相连的正方体,将题目条件一一标在图中.OB 在底面上射影NB ⊥CD ,由三垂线定理,OB ⊥CD ,又CD ∥MA ,∴ OB ⊥MA 即OB 与l 1成90°(2)连结BO 并延长交上底面于E 点.ME = BN , ∴ ME = 2,又 ON = 2∴ 22==OE OB . 作AQ ⊥BE ,连结MQ .对于平面EMO 而言,AM 、AQ 、MQ 分别为垂线、斜线、斜线在平面内的射影,由三垂线逆定理得MQ ⊥EO .在Rt △MEO 中,22222=⨯=⋅=EO MO ME MQ . 评述:又在Rt △AMQ 中,62422=+=+=MQ AM AQ ,本题通过补形法使较困难的问题变得明显易解;求点到直线的距离,仍然是利用直线与平面垂直的关键条件,抓住“一个面四条线”的图形特征来解决的.107. 已知各棱长均为a 的正四面体ABCD ,E 是AD 边的中点,连结CE .求CE 与底面BCD 所成角的正弦值.解析:作AH ⊥底面BCD ,垂足H 是正△BCD 中心,∥连DH 延长交BC 于F ,则平面AHD ⊥平面BCD ,作EO ⊥HD 于O ,连结EC ,则∠ECO 是EC 与底面BCD 所成的角则EO ⊥底面BCD .a a DF HD 33233232=⨯== a a a HD AD AH 3632222=-=-= a a AH EO 66362121=⨯==,a CE 23= ∴ 322366sin ===∠a a EC EO ECO 108. 已知四面体S -ABC 中,SA ⊥底面ABC ,△ABC 是锐角三角形,H 是点A 在面SBC 上的射影.求证:H 不可能是△SBC 的垂心.分析:本题因不易直接证明,故采用反证法.证明:假设H 是△SBC 的垂心,连结BH ,并延长交SC 于D 点,则BH ⊥SC ∵ AH ⊥平面SBC ,∴ BH 是AB 在平面SBC 内的射影∴ SC ⊥AB (三垂线定理)又∵ SA ⊥底面ABC ,AC 是SC 在面内的射影∴ AB ⊥AC (三垂线定理的逆定理)∴ △ABC 是Rt △与已知△ABC 是锐角三角形相矛盾,于是假设不成立.故H 不可能是△SBC 的垂心.109. 已知ABCD 是边长为4的正方形,E 、F 分别是AB 、AD 的中点,GC 垂直于ABCD 所在的平面,且GC =2.求点B 到平面EFG 的距离. A B CH D S解析:如图,连结EG 、FG 、EF 、BD 、AC 、EF 、BD 分别交AC 于H 、O . 因为ABCD 是正方形,E 、F 分别为AB 和AD 的中点,故EF ∥BD ,H 为AO 的中点.BD 不在平面EFG 上.否则,平面EFG 和平面ABCD 重合,从而点G 在平面的ABCD 上,与题设矛盾.由直线和平面平行的判定定理知BD ∥平面EFG ,所以BD 和平面EFG 的距离就是点B 到平面EFG 的距离. ——4分∵ BD ⊥AC ,∴ EF ⊥HC .∵ GC ⊥平面ABCD ,∴ EF ⊥GC ,∴ EF ⊥平面HCG .∴ 平面EFG ⊥平面HCG ,HG 是这两个垂直平面的交线. ——6分 作OK ⊥HG 交HG 于点K ,由两平面垂直的性质定理知OK ⊥平面EFG ,所以线段OK 的长就是点B 到平面EFG 的距离. ——8分 ∵ 正方形ABCD 的边长为4,GC =2,∴ AC=42,HO =2,HC =32.∴ 在Rt △HCG 中,HG =()2222322=+.由于Rt △HKO 和Rt △HCG 有一个锐角是公共的,故Rt △HKO ∽△HCG .∴ OK =111122222=⨯=⋅HG GC HO . 即点B 到平面EFG 的距离为11112. ——10分 注:未证明“BD 不在平面EFG 上”不扣分.110.已知:AB与CD为异面直线,AC=BC,AD=BD.求证:AB⊥CD.说明:(1)应用判定定理,掌握线线垂直的一般思路.(2)思路:欲证线线垂直,只需证线面垂直,再证线线垂直,而由已知构造线线垂直是关键.(3)教学方法,引导学生分析等腰三角形三线合一的性质构造图形,找到证明方法.证明:如图,取AB中点E,连结CE、DE∵AC=BC,E为AB中点.∴CE⊥AB同理DE⊥AB,又CE∩DE=E,且CE⊂平面CDE,DE⊂平面CDE.∴AB⊥平面CDE又CD⊂平面CDE∴AB⊥CD.。

相关文档
最新文档