斐波那契数列

合集下载

斐波那契数列

斐波那契数列

阅读与思考----关于斐波那契数列山西省长治市武乡中学魏春妍高中数学必修五《数列》一章中有一篇阅读与思考---斐波那契数列。

斐波那契数列也称“兔子数列”,这是一个非常有趣的数列,它是自然界中经过长期的适应和进化隐藏着的神秘的数学规律,而且在现代物理、化学、经济等领域都有直接的应用。

为此,笔者对斐波那契数列进行了粗浅的收集整理,以供学生参考学习。

一、斐波那契数列1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...二、相关公式(1)递推公式,,(n>=3,n∈N*)(2)前n项和公式:Sn=a1+a2+a3+……+an=1+a1+a2+a3+……+an-1=a2+a1+a2+a3+……+an-1=a3+a2+a3+……+an-1=a4+a3+……+an-1……=an+an-1+an-1=2an+an-1-1(3)通项公式:三、斐波那契数列的由来兔子繁殖问题:斐波那契数列又因数学家斐波那契以兔子繁殖为例引入,故又称为“兔子数列”。

问题:一般而言,若一对成年兔子每个月恰好生下一对小兔子(一雌一雄)。

在年初时,只有一对小兔子。

在第一个月结束时,他们成长为成年兔子,并且第二个月结束时,这对成年兔子将生下一对小兔子。

这种成长与繁殖的过程会一直持续下去,并假设生下的小兔子都不会死,那么一年之后共可有多少对小兔子?繁殖的过程可以通过一棵“家族树”来表示:让我们来推算一下在第五个月结束时兔子的总数:第1个月:只有1对兔子;第2个月:兔子没有长成,仍然只有1对兔子;第3个月:这对兔子生了1对小兔子,这时共有2对小兔子;第4个月:老兔子又生了1对小兔子,而上个月出生的兔子还未成熟,这时共有3对兔子;第5个月:这时已有2对兔子可以生殖,于是生了2对兔子,这时共有5对兔子;如此推算下去,我们不难得出下面的结果(如下表):从表中可知,一年后(第13个月时)共有233对兔子。

这就是说,在短短的一年时间,一对兔子就能自由地繁殖成233对兔子,这是多么惊人的繁衍速度啊!如此往复继续下去,是否要一直这样麻烦地推算下去呢?不妨让我们仔细寻找一下这些数字之间的关系吧:即:“第n个月的兔子总数=第(n-1)个月的兔子总数+第(n-2)个月的兔子总数”四、有趣的关系(1)与黄金分割的关系:在斐波那契数列中,这样一个完全是自然数的数列,通项公式却是用无理数来表达的。

斐波那契数

斐波那契数

斐波那契数
斐波那契数,亦称之为斐波那契数列,又称黄金分割数列、费波那西数列、费波拿契数、费氏数列,指的是这样一个数列:0、1、1、2、3、5、8、13、21、……在数学上,斐波纳契数列以如下被以递归的方法定义:F0=0,F1=1,F n=F n-1+F n-2(n>=2,n∈N*),用文字来说,就是斐波那契数列列由0 和1 开始,之后的斐波那契数列系数就由之前的两数相加。

此级数中任何相邻的两个数,次第相除,其比率都最为接近0.618034……这个值,它的极限就是所谓的"黄金分割数"。

特别指出:0不是第一项,而是第零项。

在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1960年代起出版了《斐波纳契数列》季刊,专门刊载这方面的研究成果。

斐波那契数1、1、2、3、5、8、13、21、……
一、将前几项除以3,得余数为:1,2,0,2,2,1,0,1,1,2,0,2—1,2,0,2,2…
因此余数以8为1个周期,所以第2017项余数与第5项相等,为2。

即2017÷8=251 (5)
二、将前几项除以5,得余数为:1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0—1,1,2,3,0…
因此余数以20为1个周期,所以第2017项余数与第17项相等,为2。

即2017÷20=100 (17)
三、将前几项除以8,得余数为:1,1,2,3,5,0,5,5,2,7,1,0—1,1,2,3…
因此余数以12为1个周期,所以第2017项余数1与第1项相等,为1。

即2017÷12=168 (1)。

斐波那契额数列的通项公式

斐波那契额数列的通项公式

斐波那契额数列的通项公式
斐波那契数列是指这样一个数列:0、1、1、2、3、5、8、13、21、34……在数学上,斐波那契数列以如下被以递推的方法定义:
F(0)=0,F(1)=1, F(n)=F(n-1)+F(n-2)(n>=2,n∈N*)。

斐波那契数列的通项公式是:
F(n) = (1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n} 其中,√5表示5的正平方根。

这个公式可以用来求解斐波那契数列中任意一个项的值,不需要递推。

这个公式的推导过程比较复杂,可以用数学归纳法和求解一元二次方程的方法来证明。

但是,这里不再详细阐述。

总之,斐波那契数列的通项公式是一个十分有用和重要的公式,在数学和计算机科学等领域都有广泛的应用。

- 1 -。

斐波拉契数列

斐波拉契数列

斐波拉契数列的简介斐波拉契数列(又译作“斐波那契数列”或“斐波那切数列”)是一个非常美丽、和谐的数列,它的形状可以用排成螺旋状的一系列正方形来说明(如右词条图),起始的正方形(图中用灰色表示)的边长为1,在它左边的那个正方形的边长也是1 ,在这两个正方形的上方再放一个正方形,其边长为2,以后顺次加上边长为3、5、8、13、2l……等等的正方形。

这些数字每一个都等于前面两个数之和,它们正好构成了斐波那契数列。

“斐波那契数列”的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci,生于公元1170年,卒于1240年。

籍贯大概是比萨)。

他被人称作“比萨的列昂纳多”。

1202年,他撰写了《珠算原理》(Liber Abaci)一书。

他是第一个研究了印度和阿拉伯数学理论的欧洲人。

他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。

他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯研究数学。

斐波那契数列指的是这样一个数列:1,1,2,3,5,8,13,21,34……这个数列从第三项开始,每一项都等于前两项之和。

它的通项公式为:(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}(√5表示5的算术平方根)(19世纪法国数学家敏聂(Jacques Phillipe Marie Binet 1786-1856)很有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。

■斐波拉契数列的出现13世纪初,欧洲最好的数学家是斐波拉契;他写了一本叫做《算盘书》的著作,是当时欧洲最好的数学书。

书中有许多有趣的数学题,其中最有趣的是下面这个题目:“如果一对兔子每月能生1对小兔子,而每对小兔在它出生后的第3个月裏,又能开始生1对小兔子,假定在不发生死亡的情况下,由1对初生的兔子开始,1年后能繁殖成多少对兔子?”斐波拉契把推算得到的头几个数摆成一串:1,1,2,3,5,8……这串数里隐含着一个规律:从第3个数起,后面的每个数都是它前面那两个数的和。

费波那契数列

费波那契数列

斐波拉契数列(又译作“斐波那契数列”或“斐波那切数列”)是一个非常美丽、和谐的数列,它的形状可以用排成螺旋状的一系列正方形来说明(如右词条图),起始的正方形(图中用灰色表示)的边长为1,在它左边的那个正方形的边长也是1 ,在这两个正方形的上方再放一个正方形,其边长顺次加上边长为3、5、8、13、21……等等的正方形。

这些数字每一个都等于前面两个数之和,它们正好构成了斐波那契数列。

斐波拉契数列的简介:“斐波那契数列”的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci,生于公元1170年,卒于1240年。

籍贯大概是比萨)。

他被人称作“比萨的列昂纳多”。

1202年,他撰写了《珠算原理》(Liber Abaci)一书。

他是第一个研究了印度和阿拉伯数学理论的欧洲人。

他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。

他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯研究数学。

斐波那契数列指的是这样一个数列:1,1,2,3,5,8,13,21,34……这个数列从第三项开始,每一项都等于前两项之和。

它的通项公式为:(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}(√5表示5的算术平方根)(19世纪法国数学家敏聂(Jacques Phillipe Marie Binet 1786-1856) 很有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。

斐波拉契数列之闻名,可能还跟美国悬疑作家丹·布朗有关,他在他的小说《达芬奇密码》之中巧妙地运用了该数列。

其实,我国现行的高中教材中提及了杨辉三角,斐波拉契数列可在其中寻得。

13世纪初,欧洲最好的数学家是斐波拉契;他写了一本叫做《算盘书》的著作,是当时欧洲最好的数学书。

书中有许多有趣的数学题,其中最有趣的是下面这个题目:“如果一对兔子每月能生1对小兔子,而每对小兔在它出生后的第3个月裏,又能开始生1对小兔子,假定在不发生死亡的情况下,由1对初生的兔子开始,1年后能繁殖成多少对兔子?”斐波拉契把推算得到的头几个数摆成一串:1,1,2,3,5,8……这串数里隐含着一个规律:从第3个数起,后面的每个数都是它前面那两个数的和。

斐波那契数列

斐波那契数列

斐波那契数列斐波纳契数列即斐波那契数列。

斐波那契数列,又称黄金分割数列,指的是这样一个数列:1、1、2、3、5、8、13、21、……在数学上,斐波纳契数列以如下被以递归的方法定义:F1=,F2=1,Fn=F(n-1)+F(n-2)(n>=2,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。

中文名斐波那契数列外文名Fibonacci Sequence别名黄金分割数列所属学科数论目录1定义2通项公式▪递推公式▪通项公式▪通项公式的推导3与黄金分割▪关系▪证明4特性▪平方与前后项▪与集合子集▪奇数项求和▪偶数项求和▪平方求和▪隔项关系▪两倍项关系▪其他公式5应用▪生活中斐波那契▪黄金分割▪杨辉三角▪质数数量▪尾数循环▪自然界中巧合▪数字谜题6推广▪斐波那契—卢卡斯数列▪广义斐波那契数列7相关数学▪排列组合▪兔子繁殖问题▪数列与矩阵8前若干项9斐波那契弧线10社会文明▪艾略特波浪理论▪人类文明的斐波那契演进11程序实现▪ Java语言▪用C语言输出菲波那契数列第a项1定义编辑斐波那契数列指的是这样一个数列1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...特别指出:第一个1是第0项,不是第1项。

这个数列从第二项开始,每一项都等于前两项之和。

斐波那契数列的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci),自然中的斐波那契数列生于公元1170年,卒于1250年,籍贯是比萨。

他被人称作“比萨的列昂纳多”。

1202年,他撰写了《算盘全书》(Liber Abacci)一书。

他是第一个研究了印度和阿拉伯数学理论的欧洲人。

他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。

斐波那契额数列

斐波那契额数列

斐波那契数列
斐波那契数列是一种数学构造,由一组数字组成,每个数字都是前两个数字的和。

斐波那契数列的通项公式为:
F(n) = F(n-1) + F(n-2) (n >= 2)
其中,F(0) = 0,F(1) = 1。

斐波那契数列的前几项通常为:0、1、1、2、3、5、8、13、21、34……
斐波那契数列在许多领域都有广泛应用,例如递推算法、图论、生物学等。

斐波那契数列也有许多有趣的性质,例如:
1.斐波那契数列的数字之和为斐波那契数。

2.斐波那契数列的每一项都是前两项的平方之和。

3.斐波那契数列的数列中,任意一项都是前两项的比值的近似值。

斐波那契数列还有许多其他性质,这里只列举了几个。

斐波那契数列是一个非常有趣的数学构造,值得进一步研究。

1-300项斐波那契数列

1-300项斐波那契数列
弧线:
第一,此趋势线以二个端点为准而画出,例如,最低点反向到最高点线上的两个点。然后通过第二点画出一条“无形的(看不见的)”垂直线。然后,从第一个点画出第三条趋势线:38.2%, 50%和61.8%的无形垂直线交叉。
斐波纳契弧线,是潜在的支持点和阻力点水平价格。斐波纳契弧线和斐波纳契扇形线常常在图表里同时绘画出。支持点和阻力点就是由这些线的交汇点得出。
1-300项斐波那契数列
指的是这样一个数列:1、1、2、3、5、8、13、21、34、55、89、144……
数列中的每一项称为斐波那契数,从第3项开始,每1项都等于前两项之和。
在数学上,斐波那契数列以如下被以递推的方法定义:
F(1)=1,
F(2)=1,
F(n)=F(n - 1)+F(n - 2)(n ≥ 3,n ∈ N*)

斐波那契数列及其特点

斐波那契数列及其特点

斐波那契数列及其特点斐波那契数列是数学中一列相邻两项之和等于后一项的数列,以0和1作为起始项的斐波那契数列如下所示:0, 1, 1, 2, 3, 5, 8, 13, 21,34, ...斐波那契数列最早出现在12世纪的西方数学和艺术领域,由意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci)发现并命名。

斐波那契数列的特点使其在数学、自然科学、计算机科学等领域具有广泛的应用。

斐波那契数列的特点:1. 递推关系:斐波那契数列的第n项等于前两项之和,即F(n) =F(n-1) + F(n-2),其中F(0)=0,F(1)=1。

这种递推关系定义了斐波那契数列的生成规则,使得我们可以通过计算前两项的和得到后一项。

2. 黄金比例:斐波那契数列中,相邻两项的比例趋于黄金比例φ(约等于1.61803)。

当n趋于无穷大时,F(n)/F(n-1)将趋近于φ。

这一特性使得斐波那契数列与黄金分割点在数学和美学上具有广泛的应用。

3. 自然界中的应用:斐波那契数列在自然界中有许多应用。

例如,植物的花瓣数、种子排列、螺旋状物体的形态等都与斐波那契数列相关。

许多花朵的花瓣数目就是斐波那契数列中的某个数。

4. 黄金矩形:斐波那契数列还与黄金矩形密切相关。

黄金矩形是指矩形的长宽比接近黄金比例φ。

斐波那契数列的性质使得将正方形按照斐波那契数列依次放大,得到的长方形就是黄金矩形。

5. 近似无理数:斐波那契数列中的项数随着n的增大而趋近于无穷大,使得斐波那契数列中的每一项都是近似无理数。

虽然每一项不是真正的无理数,但它们可以无限接近黄金比例,从而在实际应用中具有重要价值。

总结起来,斐波那契数列是一种具有递推关系的数列,其中相邻两项的比例趋近于黄金比例。

斐波那契数列不仅在数学领域有重要应用,还广泛应用于自然科学、美学和计算机科学等领域。

通过了解斐波那契数列的特点,我们可以更好地理解和应用这一数列。

斐波那契数列

斐波那契数列

斐波那契数列与黄金分割
黄金分割
黄金分割是一种比例关系,即将一条线段分为两部分,使得较长部分与原线段的比例等于较短部分与较长部分 的比。在斐波那契数列中,每一项都是前一项与前前一项的比值,这个比值趋近于黄金分割的比值(√5 - 1) /2约等于0.618034。
应用
斐波那契数列和黄金分割在艺术、音乐、建筑等领域都有广泛的应用,如绘画、雕塑、音乐节奏等。
• 优点:可以适用于较大的n值,且代码相对简洁。 • 缺点:相对于递归和迭代算法,其计算效率较低。 • 示例代码 • function fibonacci(n) • A = {{0, 1}, {1, 1}} • x = {0, 1} • for i from 2 to n do • x = {x[1] + x[2], x[0]} • return x[0] • · 矩阵乘法算法是通过将斐波那契数列视为矩阵的方式来计算的。矩阵乘法算法的时间复杂度为O(n^2),相
2023
斐波那契数列
汇报人:
目录
• 斐波那契数列简介 • 斐波那契数列的算法 • 斐波那契数列的数学性质 • 斐波那契数列的计算机实现 • 斐波那契数列的优化与扩展 • 斐波那契数列的相关问题与挑战
01
斐波那契数列简介
定义与特性
特性
除了前两个数字外,每个数字都 是正整数。
定义:斐波那契数列是一系列数 字,从0和1开始,后面的每个数 字是前两个数字的和。
矩阵乘法的优化
要点一
矩阵乘法优化概述
要点二
分布式计算
矩阵乘法是计算量较大的运算之一, 因此对其进行优化可以提高计算效率 。
使用分布式计算框架如Apache Spark,将矩阵乘法运算分布到多个 计算节点上,从而加快计算速度。

斐波那契数列

斐波那契数列

“斐波那契数列”的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci,生于公元11 70年,卒于1240年。

籍贯大概是比萨)。

他被人称作“比萨的列昂纳多”。

1202年,他撰写了《珠算原理》(Liber Abaci)一书。

他是第一个研究了印度和阿拉伯数学理论的欧洲人。

他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。

他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯研究数学。

斐波那契数列指的是这样一个数列:1,1,2,3,5,8,13,21……这个数列从第三项开始,每一项都等于前两项之和。

它的通项公式为:(1/√5)*{[(1+√5)/2]^n - [(1 -√5)/2]^n}(又叫“比内公式”,是用无理数表示有理数的一个范例。

)【√5表示根号5】很有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。

[编辑本段]【该数列有很多奇妙的属性】比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887……如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到。

5、-2.4、2.6、0.2、2.8、3、5.8、8.8、14.6……等,你将发现随着数列的发展,前后两项之比也越来越逼近黄金分割,且某一项的平方与前后两项之积的差值也交替相差某个值。

如果所有的数都要求是自然数,能找出被任意正整数整除的项的此类如果任意挑两个数为起始,比如5、-2.4,然后两项两项地相加下去,形成数列,必然是斐波那契数列的某项开始每一项的倍数,如4,6,10,16,2 6……(从2开始每个数的两倍)。

斐波那契数列

斐波那契数列

斐波那契数列的探究如果一对兔子每月能生1对小兔子(一雄一雌),而每1对小兔子在它出生后的第三个月里,又能生1对小兔子.假定在不发生死亡的情况下,由1对出生的小兔子开始,50个月后会有多少对兔子?每月底兔子对数是:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ……, 50个月后是12586269025 对.这就是著名的斐波那契数列.斐波那契数列:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ……●观察斐波那契数列项数之间有什么关系?从第三项开始每一项等于其前两项的和,即若用F n 表示第n 项,则有F n =F n -1+F n-2(n ≥3).通过递推关系式121(1,2)(3)n n n n F F F n --=⎧=⎨+≥⎩,可算出任意项,不过,当n 很大时,推算是很费事的.必须找到更为科学的计算方法.能否找到通项公式,并给予证明? 1730年法国数学家棣莫弗给出其通项表达式n a =n )251(+-n )251(-],19世纪初另一位法国数学家比内首先证明这一表达式,现在称之为——比内公式.1.下面研究一下该通项公式的来历已知:数列{a n }满足a 1=a 2=1, a 3=2,且a n+2 = a n+1+ a n (n≥3),求a n 证明:(利用等比数列性质求解)构造常数A 、B ,使之211()n n n n a Aa B a Aa +++-=-整理得:21()n n n a A B a ABa ++=+-与21n n n a a a ++=+比较得⎩⎨⎧=-=+11AB B A 解之得:A=251±、 B=251μ 不妨取A=251+、 B=251-得:211111()222n n n n a a a a +++++-=-∴1n n a +⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭是以21a -=251-为公比的等比数列。

斐波那契数列的几条性质及其证明

斐波那契数列的几条性质及其证明

斐波那契数列的几条性质及其证明斐波那契数列也叫兔子数列,它的前几项是1、1、2、3、5、8、13、21、34、55……,递推公式是:n a =1-n a +2-n a ,其中1a =2a =1。

1、斐波那契数列前n 项的和等于第n +2项的值减去1。

即:1a +2a +…+1-n a +n a =2+n a -1证明:左边=2a +1a +2a +…+1-n a +n a -2a=(2a +1a )+2a +…+1-n a +n a -2a根据递推公式n a =1-n a +2-n a 得:上式 =(3a +2a )+…+1-n a +n a -2a 以此类推最后得:左边=1+n a +n a -2a =2+n a -2a =2+n a -1。

等式得证。

2、斐波那契数列前n 项的平方和等于第n 项和第n +1项的值乘积。

即:21a +22a +……+2n a =n a 1+n a证明:根据递推公式n a =1-n a +2-n a 得,左边=21a +2a (3a -1a )+3a (4a -2a )+……+n a (1+n a -1-n a )=21a +2a 3a - 1a 2a +3a 4a -2a 3a +……+n a 1+n a -1-n a n a因为21a =1a 2a ,所以合并同类项后得,左边=n a 1+n a 。

等式得证。

3、斐波那契数列前n 项相邻两项乘积之和,当n 是奇数时等于第n +1项的值的平方,当n 是偶数时等于第n 项和第n +2项的值之积。

即:1a 2a +2a 3a +……+n a 1+n a 当n 是奇数时等于21+n a ,当n 是偶数时等于n a 2+n a 。

证明:(1)、当n 是奇数时,1a 2a +2a 3a +……+n a 1+n a =21+n a左边=1a 2a +2a (4a -2a )+3a 4a +4a (6a -4a )+……+1-n a (1+n a -1-n a )+n a 1+n a =1a 2a +2a 4a -2a 2a +3a 4a +4a 6a -4a 4a +……+1-n a 1+n a -1-n a 1-n a +n a 1+n a 因为1a 2a =2a 2a ,所以上式=2a 4a +3a 4a +4a 6a -4a 4a +……+1-n a 1+n a -1-n a 1-n a +n a 1+n a =(2a +3a )4a -4a 4a +(4a +5a )6a -6a 6a +……-1-n a 1-n a +(1-n a +n a )1+n a根据递推公式n a =1-n a +2-n a 得:上式 =4a 4a -4a 4a +6a 6a -6a 6a +……+1-n a 1-n a -1-n a 1-n a +1+n a 1+n a=21+n a等式得证。

斐波那契数列常用结论

斐波那契数列常用结论

斐波那契数列常用结论
1斐波那契数列
斐波那契数列又称黄金分割数列,是指从0和1开始,之后的每一项都是前两项之和的自然数序列,即:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n>1,n∈N*),那么形成了如下数列:0,1,1,2,3,5,8,13,21,34,55,89,144,……
斐波那契数列可以用来表示各种有规律变化的现象,如天文学中行星轨道运行的规律、物理学中光衍射和电磁波传播的规律、生物学中由细胞分裂形成的规律等。

2常用结论
1.黄金比例
斐波那契数列中的两个相邻数的比值,比如5和8的比为8/5等于1.618,34和55的比为55/34也等于1.618。

这就是著名的黄金分割比例,也常被称为黄金比例,具有美观耐看性,在艺术、建筑中广泛应用。

2.斐波那契数列的通项公式
从斐波那契数列的定义可以发现,任何一项的斐波那契数都可以用前两项来计算出来,比如F(5)=F(4)+F(3),那么我们可以用下面这个公式来表示斐波那契数列的每一项:F(n)=F(n-1)+F(n-2),这就可以用来计算出任意的项的斐波那契数了。

3.斐波那契数列的正则表达式
斐波那契数列可以用下面的正则表达式完美地描述出来:
F(n)=2*F(n-1)+F(n-2),用此正则表达式可以轻松实现斐波那契数列的自动构建。

4.完美数
斐波那契数列中的完美数是指那些满足F(n)=2^n-1的斐波那契数,即F(0)=0,F(1)=1,F(2)=3,F(3)=7,F(4)=15,F(5)=31,如果除了0和1外,它们都等于2的次方数减1,都称之为完美数。

从上面几条结论来看,斐波那契数列不仅应用于数学领域,在多个领域也有着广泛的应用,对于研究具有重要意义。

斐波那契数列知识总结

斐波那契数列知识总结

斐波那契数列是一系列数字,其中每个数字都是前两个数字的总和,通常以0 和1 开头。

它以意大利数学家比萨的莱昂纳多的名字命名,他也被称为斐波那契。

斐波那契数列出现在许多自然现象中,例如树的分枝和叶子在茎上的排列。

在数学术语中,斐波那契数列可以定义为递归关系,其中数列中的每个数都是前两个数的和,初始条件为F0 = 0 和F1 = 1。

数学上该数列定义为递归关系:
Fn = Fn-1 + Fn-2
其中n 是序列中的位置,F 是该位置的斐波那契数。

斐波那契数列有许多有趣的特性,包括:
•随着数字变大,连续斐波那契数的比率接近黄金比例(大约1.6180339887)
•斐波那契数与斐波那契螺旋有关,可以在许多自然物体的形状中找到它。

•斐波那契数列已被用于模拟人口增长和金融市场。

斐波那契数列还与斐波那契螺线有关,斐波那契螺线出现在许多自然现象中,例如贝壳、松果、菠萝的形状。

总的来说,斐波那契数列有很多实际应用,包括计算机科学、生物学和金融学。

有许多方法可以计算斐波那契数列,例如使用递归函数、封闭式公式或矩阵求幂。

计算斐波那契数列中大数的最有效方法是使用矩阵求幂,这需要O(log n) 时间。

总的来说,斐波那契数列是一个迷人而美丽的数学概念,出现在许多自然现象中。

它具有许多有趣的特性和广泛的实际应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“凡事预则立,不预则废”,所有的止损必须在进场之前 设定。做黄金投资,必须养成一种良好的习惯,就是在建 仓的时候就设置好止损,而在亏损出现时再考虑使用什么 标准常为时已晚。 止损要与趋势相结合。趋势有三种:上涨、下跌和盘整。 在盘整阶段,价格在某一范围内止损的错误性的概率要大, 因此,止损的执行要和趋势相结合。在实践中,笔者以为 盘整可视作看不懂的趋势,投资者可以休养生息。 选择交易工具来把握止损点位。这要因人而异,可以是均 线、趋势线、形态及其他工具,但必须是适合自己的,不 要因为别人用得好你就盲目拿来用。交易工具的确定非常 重要,而运用交易工具的能力则会导致完全不同的交易结 果。
止损的方法
A.定额止损法 B.技术止损法:在关键的支撑主力位置外侧 设置止损,通常而言就是在做多的时候将 止损位置设置在压力线的下侧,做空的时 候将止盈设置在支撑线的上侧。 C.无条件止损法:当事件发展到超出操作者 的能力之外时,止损就必须实施了。(基 本面发生根本性变化)
看涨形态 A. 看涨吞没 B. 早晨之星 C. 双底形态 D. 看跌形态 E. 看跌吞没 F. 乌云盖顶 G. 双顶形态
为何要止损
1. 盈利率11.1%。10→7,亏损率30%,赢
利率42.9%。10→5,亏损率50%,赢利率100%。
止损要注意的问题
• • • • • • • •
斐波那契数列 截取一段讲解(21 34 55 89) 0.382,---21/55 0.500, 0.618,---21/34 0.786,---0.618的平方根 1.272,---1.618的平方根 1.618,---34/21

斐波那契进出场点位交易法
K线形态
斐波那契数列
• 在黄金市场经历的越多,越会让你对这个市场心存敬畏, 因为你会感受到“市场不可预测的”这个最无情的现实。 很多人都试图去预测市场,但是任何一个在投资市场上长 期从事交易的人都是知道,这个不可能!所以我今天不会 让你们走这条不现实的路,我会告诉你们一些神奇的数字。 • 一个刚入门的黄金交易者上来就会问涨跌如何。一个三流 的交易者会问市场趋势如何。一个二流的交易者会问进场 位置在何处;一个一流的交易者则会问出场位置在哪里。 掌握这套技术只能让你们日益敬畏你所面对的市场。这个 市场没有专家,只有赢家和输家,赢家是那些深知自己能 力有限的人。输家是那些搞不清楚自己的人。一个伟大的 黄金交易员最为明显的特征是自知和自制,其次才是智慧。
相关文档
最新文档