九年级数学上册-随机事件与概率25.1.1随机事件学案2(新版)新人教版
秋九年级数学上册 25.1 随机事件与概率教案 (新版)新人教版-(新版)新人教版初中九年级上册数学
25.1 随机事件与概率随机事件了解必然发生的事件、不可能发生的事件、随机事件的特点.了解随机事件发生的可能性是有大有小的,不同的随机事件发生的可能性的大小不同.重点随机事件的特点.难点判断现实生活中哪些事件是随机事件.一、情境引入分析说明下列事件能否一定发生:①今天不上课;②煮熟的鸭子飞了;③明天地球还在转动;④木材燃烧会放出热量;⑤掷一枚硬币,出现正面朝上.二、自主探究1.提出问题教师事先准备的三个袋子中分别装有10个白色的乒乓球;5个白色的乒乓球和5个黄色的乒乓球;10个黄色的乒乓球,分组讨论从这三个袋子里摸出黄色乒乓球的情况.学生积极参加,通过操作和观察,归纳猜测出在第1个袋子中摸出黄色球是不可能的,在第2个袋子中能否摸出黄色球是不确定的,在第3个袋子中摸出黄色球是必然的.2.概念得出从上面的事件可看出,对于任何事件发生的可能性有三种情况:(1)必然事件:在一定条件下必然要发生的事件;(2)不可能事件:在一定条件下不可能发生的事件;(3)随机事件:在一定条件下可能发生也可能不发生的事件.3.随机事件发生的可能性有大小袋子中有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的情况下,随机地从袋子中摸出一个球.(1)是白球还是黑球?(2)经过多次试验,摸出的黑球和白球哪个次数多?说明了什么问题?结论:一般地,随机事件发生的可能性有大小,不同的随机事件发生的可能性的大小有可能不同.三、巩固练习教材第128页练习四、课堂小结(学生归纳,老师点评)本节课应掌握:(1)必然事件,不可能事件,随机事件的概念.(2)一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.五、作业布置教材第129页练习1,2.25. 概 率1.在具体情境中了解概率的意义,体会事件发生的可能性大小与概率的值的关系.2.理解概率的定义及计算公式P(A)=m n,明确概率的取值X 围,能求简单的等可能性事件的概率.重点在具体情境中了解概率的意义,理解概率定义及计算公式P(A)=m n.难点了解概率的定义,理解概率计算的两个前提条件.活动1 创设情境(1)事件可以分为哪几类?什么是随机事件?随机事件发生的可能性一样吗?(2)在同样的条件下,某一随机事件可能发生也可能不发生,那么它发生的可能性究竟有多大?能否用数值进行刻画呢?这节课我们就来研究这个问题.活动2 试验活动试验1:每位学生拿出课前准备好的分别标有1,2,3,4,5号的5根纸签,从中随机地抽取一根,观察上面的数字,看看有几种可能.(如此多次重复)试验2:教师随意抛掷一枚质地均匀的骰子,请学生观察骰子向上一面的点数,看看有几种不同的可能.(如此可重复多次)(1)试验1中共出现了几种可能的结果?你认为这些结果出现的可能性大小相等吗?如果相等,你认为它们的可能性各为多少?(2)试验2中共出现了几种可能的结果?你认为这些结果出现的可能性大小相等吗?如果相等,你认为它们的可能性各为多少?活动3 引出概率1.从数量上刻画一个随机事件A 发生的可能性的大小,我们把它叫做这个随机事件A 的概率,记为P(A).2.概率计算必须满足的两个前提条件:(1)每一次试验中,可能出现的结果只有有限个;(2)每一次试验中,各种结果出现的可能性相等.3.一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率P(A)=________.4.随机事件A 发生的概率的取值X 围是________,如果A 是必然发生的事件,那么P(A)=________,如果A 是不可能发生的事件,那么P(A)=________.活动4 精讲例题例1 下列事件中哪些是等可能性事件,哪些不是?(1)运动员射击一次中靶心与不中靶心;(2)随意抛掷一枚硬币反面向上与正面向上;(3)随意抛掷一只可乐纸杯杯口朝上,或杯底朝上,或横卧;(4)分别从写有1,3,5,7,9中一个数的五X 卡片中任抽1X 结果是1,或3,或5,或7,或9.答案:(1)不是等可能事件;(2)是等可能事件;(3)不是等可能事件;(4)是等可能事件. 例2 学生自己阅读教材第131页~132页例1及解答过程.例3 教师引导学生分析讲解教材第132页例2.想一想:把此题(1)和(3)两问及答案联系起来,你有什么发现?例4 教师引导学生分析讲解教材第133页例3.活动5 过关练习教材第133页 练习第1~3题.,这些球除了颜色外都相同.从袋子中随机地摸出一个球,它是红色与它是绿色的可能性相等吗?两者的概率分别是多少?2.一个质地均匀的小正方体骰子,六个面分别标有数字1,2,2,3,4,4,掷骰子后,观察向上一面的数字.(1)出现数字1的概率是多少?(2)出现的数字是偶数的概率是多少?(3)哪两个数字出现的概率相等?分别是多少?答案:,P(摸到红球)=58,P(摸到绿球)=38;2.(1)16;(2)23;(3)数字1和3出现的概率相同,都是16,数字2和4出现的概率相同,都是13. 活动6 课堂小结与作业布置课堂小结1.随机事件概率的意义,等可能性事件的概率计算公式P(A)=m n. 2.概率计算的两个前提条件:可能出现的结果只有有限个;各种结果出现的可能性相同.作业布置教材第134页~135页 习题第3~6题.。
2019秋九年级数学上册第二十五章概率初步25.1随机事件与概率25.1.2概率教案(新版)新人教版
25.1.2 概率教学目标:〈一〉知识与技能1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值2.在具体情境中了解概率的意义〈二〉教学思考让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系.〈三〉解决问题在分组合作学习过程中积累数学活动经验,发展学生合作交流的意识与能力.锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念.〈四〉情感态度与价值观在合作探究学习过程中,激发学生学习的好奇心与求知欲.体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.【教学重点】在具体情境中了解概率意义.【教学难点】对频率与概率关系的初步理解【教具准备】壹元硬币数枚、图钉数枚、多媒体课件【教学过程】一、创设情境,引出问题教师提出问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票给谁.学生:抓阄、抽签、猜拳、投硬币,……教师对同学的较好想法予以肯定.(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阄、投硬币)追问,为什么要用抓阄、投硬币的方法呢?由学生讨论:这样做公平.能保证小强与小明得到球票的可能性一样大在学生讨论发言后,教师评价归纳.用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定“正面朝上”还上“反面朝上”,但同学们很容易感觉到或猜到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小明得到球票的可能性一样大.质疑:那么,这种直觉是否真的是正确的呢?引导学生以投掷壹元硬币为例,不妨动手做投掷硬币的试验来验证一下.说明:现实中不确定现象是大量存在的,新课标指出:“学生数学学习内容应当是现实的、有意义、富有挑战的”,设置实际生活问题情境贴近学生的生活实际,很容易激发学生的学习热情,教师应对此予以肯定,并鼓励学生积极思考,为课堂教学营造民主和谐的气氛,也为下一步引导学生开展探索交流活动打下基础.二、动手实践,合作探究1.教师布置试验任务.(1)明确规则.把全班分成10组,每组中有一名学生投掷硬币,另一名同学作记录,其余同学观察试验必须在同样条件下进行.(2)明确任务,每组掷币50次,以实事求是的态度,认真统计“正面朝上”的频数及“正面朝上”的频率,整理试验的数据,并记录下来..2.教师巡视学生分组试验情况.注意:(1).观察学生在探究活动中,是否积极参与试验活动、是否愿意交流等,关注学生是否积极思考、勇于克服困难.(2).要求真实记录试验情况.对于合作学习中有可能产生的纪律问题予以调控.3.各组汇报实验结果.由于试验次数较少,所以有可能有些组试验获得的“正面朝上”的频率与先前的猜想有出入.提出问题:是不是我们的猜想出了问题?引导学生分析讨论产生差异的原因.在学生充分讨论的基础上,启发学生分析讨论产生差异的原因.使学生认识到每次随机试验的频率具有不确定性,同时相信随机事件发生的频率也有规律性,引导他们小组合作,进一步探究.解决的办法是增加试验的次数,鉴于课堂时间有限,引导学生进行全班交流合作.4.全班交流.把各组测得数据一一汇报,教师将各组数据记录在黑板上.全班同学对数据进行累计,按照书上P140要求填好25-2.并根据所整理的数据,在25.1-1图上标注出对应的点,完成统计图.表25-2想一想1(投影出示). 观察统计表与统计图,你发现“正面向上”的频率有什么规律?注意学生的语言表述情况,意思正确予以肯定与鼓励.“正面朝上”的频率在0.5上下波动.想一想2(投影出示)随着抛掷次数增加,“正面向上”的频率变化趋势有何规律?在学生讨论的基础上,教师帮助归纳.使学生认识到每次试验中随机事件发生的频率具有不确定性,同时发现随机事件发生的频率也有规律性.在试验次数较少时,“正面朝上”的频率起伏较大,而随着试验次数的逐渐增加,一般地,频率会趋于稳定,“正面朝上”的频率越来越接近0.5. 这也与我们刚开始的猜想是一致的.我们就用0.5这个常数表示“正面向上”发生的可能性的大小.说明:注意帮助解决学生在填写统计表与统计图遇到的困难.通过以上实践探究活动,让学生真实地感受到、清楚地观察到试验所体现的规律,即大量重复试验事件发生的频率接n图25.1-1近事件发生的可能性的大小(概率).鼓励学生在学习中要积极合作交流,思考探究.学会倾听别人意见,勇于表达自己的见解.为了给学生提供大量的、快捷的试验数据,利用计算机模拟掷硬币试验的课件,丰富学生的体验、提高课堂教学效率,使他们能直观地、便捷地观察到试验结果的规律性--大量重复试验中,事件发生的频率逐渐稳定到某个常数附近 .其实,历史上有许多著名数学家也做过掷硬币的试验.让学生阅读历史上数学家做掷币试验的数据统计表(看书P141表25-3).表25-3通过以上学生亲自动手实践,电脑辅助演示,历史材料展示, 让学生真实地感受到、清楚地观察到试验所体现的规律,大量重复试验中,事件发生的频率逐渐稳定到某个常数附近,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).同时,又感受到无论试验次数多么大,也无法保证事件发生的频率充分地接近事件发生的概率.在探究学习过程中,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,鼓励学生在学习中不怕困难积极思考,敢于表达自己的观点与感受,养成实事求是的科学态度.5.下面我们能否研究一下“反面向上”的频率情况?学生自然可依照“正面朝上”的研究方法,很容易总结得出:“反面向上”的频率也相应稳定到0.5.教师归纳:(1)由以上试验,我们验证了开始的猜想,即抛掷一枚质地均匀的硬币时,“正面向上”与“反面向上”的可能性相等(各占一半).也就是说,用抛掷硬币的方法可以使小明与小强得到球票的可能性一样.(2)在实际生活还有许多这样的例子,如在足球比赛中,裁判用掷硬币的办法来决定双方的比赛场地等等.说明:这个环节,让学生亲身经历了猜想试验——收集数据——分析结果的探索过程,在真实数据的分析中形成数学思考,在讨论交流中达成知识的主动建构,为下一环节概率意义的教学作了很好的铺垫.三、评价概括,揭示新知问题 1.通过以上大量试验,你对频率有什么新的认识?有没有发现频率还有其他作用?学生探究交流.发现随机事件的可能性的大小可以用随机事件发生的频率逐渐稳定到的值(或常数)估计或去描述.通过猜想试验及探究讨论,学生不难有以上认识.对学生可能存在语言上、描述中的不准确等注意予以纠正,但要求不必过高.归纳:以上我们用随机事件发生的频率逐渐稳定到的常数刻画了随机事件的可能性的大小.那么我们给这样的常数一个名称,引入概率定义.给出概率定义(板书):一般地,在大量重复试验中,如果事件A 发生的频率nm会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率(probability ), 记作P (A )= p.注意指出:1.概率是随机事件发生的可能性的大小的数量反映.2.概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.想一想(学生交流讨论)问题2.频率与概率有什么区别与联系?从定义可以得到二者的联系, 可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.说明:猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破.为下节课进一步研究概率和今后的学习打下了基础. 当然,学生随机观念的养成是循序渐进的、长期的.这节课教学应把握教学难度,注意关注学生接受情况.四.练习巩固,发展提高.学生练习1.书上P143.练习.1. 巩固用频率估计概率的方法.2.书上P143.练习.2 巩固对概率意义的理解.教师应当关注学生对知识掌握情况,帮助学生解决遇到的问题.五.归纳总结,交流收获:1.学生互相交流这节课的体会与收获,教师可将学生的总结与板书串一起,使学生对知识掌握条理化、系统化.2.在学生交流总结时,还应注意总结评价这节课所经历的探索过程,体会到的数学价值与合作交流学习的意义.【作业设计】(1)完成P144 习题25.1 2、4(2)课外活动分小组活动,用试验方法获得图钉从一定高度落下后钉尖着地的概率.【教学设计说明】这节课是在学习了25.1.1节随机事件的基础上学习的,学生通过大量重复试验,体验用事件发生的频率去刻画事件发生的可能性大小,从而得到概率的定义.1.对概率意义的正确理解,是建立在学生通过大量重复试验后,发现事件发生的频率可以刻画随机事件发生可能性的基础上.结合学生认知规律与教材特点,这节课以用掷硬币方法分配球票为问题情境,引导学生亲身经历猜测试验—收集数据—分析结果的探索过程.这符合《新课标》“从学生已有生活经验出发,让学生亲身经历将实际问题抽象为数学模型并进行解释与应用的过程”的理念.贴近生活现实的问题情境,不仅易于激发学生的求知欲与探索热情,而且会促进他们面对要解决的问题大胆猜想,主动试验,收集数据,分析结果,为寻求问题解决主动与他人交流合作.在知识的主动建构过程中,促进了教学目标的有效达成.更重要的是,主动参与数学活动的经历会使他们终身受益.2.随机现象是现实世界中普遍存在的,概率的教学的一个很重要的目标就是培养学生的随机观念.为了实现这一目标,教学设计中让学生亲身经历对随机事件的探索过程,通过与他人合作探究,使学生自我主动修正错误经验,揭示频率与概率的关系,从而逐步建立正确的随机观念,也为以后进一步学习概率有关知识打下基础.3.在教学中,本课力求向学生提供从事数学活动的时间与空间,为学生的自主探索与同伴的合作交流提供保障,从而促进学生学习方式的转变,使之获得广泛的数学活动经验.教师在学习活动中是组织者、引导者与合作者,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,给学生以适时的引导与鼓励.。
九年级数学上册 第二十五章 25.1 随机事件与概率 25.1.2 概率备课资料教案 (新版)新人教版
第二十五章 25.1.2概率知识点1:概率的意义和表示方法一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记作P(A).一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中m种结果,那么事件A发生的概率为P(A)= .若事件A发生的概率为P(A),则有0≤P(A)≤1.特别地,当事件A为必然事件时,P(A)=1;当事件A为不可能事件时,P(A)=0;当事件A为随机事件时,0<P(A)<1.关键提醒:(1)概率是从数量上刻画随机事件发生的可能性的大小;(2)事件发生的可能性越大,它的概率越接近1;反之,事件发生的可能性越小,它的概率越接近0;(3)概率是根据大量重复试验中频率的稳定性得到的一个介于0到1的常数,它反映事件发生的可能性的大小,需要注意的是,概率是针对大量试验而言的,大量试验反映的规律并非在每次试验中一定存在.知识点2:事件概率的求法等可能事件的概率型:在一次试验中,如果不确定事件的可能结果只有有限个,且每一个结果发生的可能性都相等,求这种类型事件的概率称为等可能事件的概率型.等可能事件概率的求法:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中m种结果,那么事件A发生的概率为P(A)=.区域事件发生的概率:在与图形有关的概率问题中,概率的大小往往与面积有关,这种类型的概率称为区域型概率.在区域事件中,某一事件发生的概率等于这一事件所有可能结果组成的图形的面积除以所有可能结果组成的图形的面积.关键提醒:(1)等可能事件概率要求试验的结果是有限个的,且这些结果出现的可能性相等,因此求等可能事件概率时,要关注某个事件在试验中可能出现哪些结果,以及这些结果发生的机会是否均等;(2)我们平常计算概率中出现的如摸球、掷硬币、掷骰子等都属于等可能性事件型概率;(3)区域型概率中随机事件的概率大小与随机事件所在区域的形状、位置无关,只与区域面积的大小有关.考点1:概率大小的判断【例1】甲箱装有40个红球和10个黑球,乙箱装有60个红球、40个黑球和50个白球,这些球除了颜色外没有其他区别.搅匀两箱中的球,从箱中分别任意摸出一个球.下列说法中正确的是( ).A. 从甲箱摸到黑球的概率较大B. 从乙箱摸到黑球的概率较大C. 从甲、乙两箱摸到黑球的概率相等D. 无法比较从甲、乙两箱摸到黑球的概率答案:B.点拨: 由于这两个箱子中都装有除颜色外没有其他区别的球,因此,搅匀两箱中的球,从箱中分别任意摸出一个球,所摸出的球都是等可能的,则从甲箱摸到黑球的概率为,从乙箱摸到黑球的概率为>,所以本题选B.考点2:概率与函数的综合运用【例2】已知一纸箱中装有5个只有颜色不同的球,其中2个白球,3个红球.(1)求从箱中随机取出一个白球的概率是多少?(2)若往装有5个球的原纸箱中,再放入x个白球和y个红球,从箱中随机取出一个白球的概率是,求y与x的函数解析式.解:(1)取出一个白球的概率P==.(2)∵取出一个白球的概率P=,∴=.∴5+x+y=6+3x,即y=2x+1.∴y与x的函数解析式是y=2x+1.点拨:因为“只有颜色不同的球”,所以从中任意摸出一个球的机会是等可能的,纸箱中共装有5个球,其中2个白球,3个红球.根据公式:P(随机事件)=,易使问题获解.考点3:概率知识的实际应用【例3】某厂为新型号电视机上市举办促销活动,顾客每购买一台该型号电视机,可获得一次抽奖机会,该项厂拟按10%设大奖,其余90%为小奖.厂家设计的抽奖方案是:在一个不透明的盒子中,放入10个黄球和90个白球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸到黄球的顾客获得大奖,摸到白球的顾客获得小奖.(1)厂家请教了一位数学老师,他设计的抽奖方案是:在一个不透明的盒子中,放入2个黄球和3个白球,这些球除颜色外都相同,搅匀后从中任意摸出2个球,摸到的2个球都是黄球的顾客获得大奖,其余的顾客获得小奖.该抽奖方案符合厂家的设奖要求吗?请说明理由;(2)如图(1),是一个可以自由转动的转盘,请你将转盘分为2个扇形区域,分别涂上黄、白两种颜色,并设计抽奖方案,使其符合厂家的设奖要求.解:(1)该抽奖方案符合厂家的设奖要求.(2)本题答案不唯一,下列解法供参考.如图(2),将转盘中圆心角为36°的扇形区域涂上黄色,其余的区域涂上白色.顾客每购买一台该型号电视机,可获得一次转动转盘的机会,任意转动这个转盘,当转盘停止时,指针指向黄色区域获得大奖,指向白色区域获得小奖.点拨:(1)是否符合要求是指该数学老师设计的方案能否体现“10%得大奖,90%得小奖”的厂家意图,因此可将数学老师的方案用排列法或画树状图的方法得到概率.如用黄1、黄2、白1、白2、白3表示这5个球.从中任意摸出2个球,可能出现的结果有:(黄1,黄2)、(黄1,白1)、(黄1,白2)、(黄1,白3)、(黄2,白1)、(黄2,白2)、(黄2,白3)、(白1,白2)、(白1,白3)、(白2,白3),共有10种,它们出现的可能性相同.所有的结果中,满足摸到2个球都是黄球(记为事件A)的结果有1种,即(黄1,黄2),所以P(A)=.即顾客获得大奖的概率为10%,获得小奖的概率为90%.数学老师设计的方案符合要求;(2)本题求解方法不唯一,画图时只需将该转盘(圆)平均分为10份,某种颜色占1份,另一种颜色占9份.顾客购买该型号电视机时获得一次转动转盘的机会,指向1份颜色获得大奖,指向9份颜色获得小奖即可.。
人教版九年级数学上册《25.1随机事件与概率——25.1.1随机事件》 教 案
第二十五章概率初步25.1 随机事件与概率25.1.1 随机事件一、教学目标1.了解必然事件、不可能事件、随机事件的特点.2.了解影响随机事件发生的可能性大小的因素.二、教学重点及难点重点:1.理解必然事件、不可能事件、随机事件的概念.2.对随机事件发生的可能性大小作定性分析.难点:1.辨别某个事件是否是随机事件.2.理解大量重复试验的必要性.三、教学用具多媒体课件.四、相关资源《箱子中装10个白球》、《箱子中5白球5红球》、《箱子中10红球》图片五、教学过程【创设情境,引入新课】下列现象哪些是必然发生的,哪些是不可能发生的?(1)将白糖放入一杯温水中,并搅拌,白糖溶解;(2)测量某天气温,结果为-150℃;(3)物体在重力作用下自由下落;(4)两个正数相加,结果是负数.师生活动:教师进行课件演示,并提出问题.学生阅读、观察、思考,回答问题.教师应关注:学生的表情变化,学生的参与程度,学生是否细心观察,认真阅读,勤于思考.设计意图:首先通过实际生活中几个生动,鲜活的实例,自然而然地引出必然事件和不可能事件.必然事件和不可能事件,相对于随机事件而言,学生更容易接受和理解.【合作探究,形成新知】1.摸球游戏三个不透明的箱子里均装有10个乒乓球,挑选多名同学来参加游戏.游戏规则:每人每次从自己选择的箱子中摸出一球,记录下颜色,放回,搅匀,重复前面的试验.每人摸球5次.按照摸出红色球的次数排序,次数最多的为第一名,其次为第二名,最少的为第三名.师生行为:教师事先准备三个箱子中分别装有10个白色的乒乓球;5个白色的乒乓球和5个红色的乒乓球;10个红色的乒乓球.学生积极参加游戏,通过操作和观察,归纳猜测出在第一个箱子中摸出红色球是不可能的;在第二个箱子中能否摸出红色球是不确定的;在第三个箱子中摸出红色球是必然的.教师适时引导学生归纳出必然发生的事件、随机事件、不可能发生的事件的特点.归纳总结:必然事件:在一定条件下,重复进行试验时,有的事件在每次试验中必然会发生,这种事件称为必然事件.不可能事件:在一定条件下,重复进行试验时,有的事件在每次试验中都不会发生,这种事件称为不可能事件.随机事件:在一定条件下,有些事件有可能会发生,也有可能不会发生,事先无法确定,这种事件称为随机事件.设计意图:做游戏是学习数学的最好方法之一,在这个环节上,设计三次摸球游戏,力求引领学生在游戏中形成新认识,学习新概念,获得新知识,同时也活跃了课堂气氛,培养了学生的合作能力,在轻松快乐的氛围中,领悟了数学的道理,突出了本节课的重点.2.解决问题问题1五名同学参加演讲比赛,以抽签方式决定每个人的出场顺序.签筒中有5根形状大小相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机(任意)地取一根纸签.请考虑以下问题:(1)抽到的数字有几种可能的结果?(2)抽到的序号小于6吗?这是什么事件?(3)抽到的序号会是吗?这是什么事件?(4)抽到的序号会是1吗?这是什么事件?师生活动:根据学生回答的具体情况,教师适当地加以点拔和引导.问题2小伟掷一个质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.掷一次骰子,观察骰子向上的一面,请考虑以下问题:(1)可能出现哪些点数?(2)出现的点数大于0吗?这是什么事件?(3)出现的点数是7吗?这是什么事件?(4)出现的点数是4吗?这是什么事件?师生活动:学生先独立思考,再把自己的观点和小组其他同学交流,并提炼出小组成员列举的主要事件.设计意图:通过抽签和掷骰子两个问题,引导学生进入生活中的数学,为学生提供一个开放的空间,放手让学生去探索和发现,再通过小组的合作交流,展示成果,更进一步的加深了对三种事件的理解,化解难点,贯彻课改中的数学来源于生活同时又指导生活的理念.问题3袋子中装有4个黑球、2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.(1)这个球是白球还是黑球?(2)如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗?师生活动:教师注意引导学生独立思考,交流合作,提升学生对问题的理解与判断能力.3.实验论证(1)袋子中装有4个黄球、2个白球,这些球的形状、大小、质地等完全相同.在看不到球的条件下,随机地从袋子中摸出一个球是白球.(2)袋子中装有4个黄球、2个白球,这些球的形状、大小、质地等完全相同.在看不到球的条件下,随机地从袋子中摸出一个球是黄球.师生活动:教师让一部分学生动手操作并把摸出的白、黄球分成两类.让学生通过它们的数量差异归纳结论:摸到白球的可能性小.归纳总结:一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.设计意图:让学生自己概括出所感知的知识,有利于学生在实践中感悟知识的生成过程,并能培养学生的语言表达能力.得出结论:随机事件的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.4.思考能否通过改变袋子中某种颜色的球的数量,使“摸出黑球”和“摸出白球”的可能性大小相同?师生活动:小组讨论、交流,小组代表汇报讨论结果,教师给予表扬.归纳总结:可以增加2个白球或减少2个黑球,使“摸出黑球”和“摸出白球”的可能性大小相同.设计意图:把问题留给学生,也是体现了以学生为主体,让学生自主探索、自主学习的理念.【例题分析,深化提升】例指出下列事件中哪些是必然事件,哪些是不可能事件,哪些是随机事件.1.通常加热到100℃时,水沸腾;2.篮球队员在罚球线上投篮一次,命中;3.掷一次骰子,向上的一面是6点;4.度量三角形的内角和,结果是180°;5.经过城市中某一有交通信号灯的路口,遇到红灯;6.某射击运动员射击一次,命中靶心;7.太阳东升西落;8.人离开水可以正常生活100天.师生活动:学生先思考,回答问题.教师引导学生从必然事件、不可能事件和随机事件的定义来判断各事件.解:1.通常加热到100℃时,水沸腾,是必然事件.2.篮球队员在罚球线上投篮一次,命中,是随机事件.3.掷一次骰子,向上的一面是6点,是随机事件.4.度量三角形的内角和,结果是180°,是必然事件.5.经过城市中某一有交通信号灯的路口,遇到红灯,是随机事件.6.某射击运动员射击一次,命中靶心,是随机事件.7.太阳东升西落,是必然事件.8.人离开水可以正常生活100天,是不可能事件.设计意图:通过大量丰富多彩的实例,激发学生的学习热情,调动学生的学习兴趣,使学生对随机现象有比较充分的感知,从不同的侧面,不同的视角进一步深化对随机事件的理解和认识.【练习巩固,综合应用】1.下列事件中,是必然事件的为( ).A.抛掷一枚质地均匀的硬币,落地后正面朝上B.江汉平原7月份某一天的最低气温是-2℃C.通常加热到100℃时,水沸腾D.打开电视,正在播放节目《男生女生向前冲》2.下列说法正确的是( ).A.如果一件事情发生的机会只有十万分之一,那么它就不可能发生B.如果一件事情发生的可能性是100%,那么它就一定会发生C.彩票的中奖率是1%,那么买100张彩票,就有一张中奖D.一个口袋中装有10个质地均匀的小球,其中9个白球,只有一个红球,那么从中任取一个球,一定是白球3.为了了解参加某运动会的2 000名运动员的年龄情况,从中抽查了100名运动员的年龄,“某运动员被抽到”这一事件是事件,抽到的可能性为.4.小明和小华在做抛掷骰子游戏,规则是这样的:抛掷出去的骰子落地后,朝上的点数是偶数,则小明获胜,否则小华获胜,那么这个游戏是(填“公平”或“不公平”)的.5.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1,2,3,4,5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的可能性为P(偶数),指针指向标有奇数所在区域的可能性为P(奇数),则P(偶数) P(奇数)(填“>”“<”或“=”).6.指出下列事件中,哪些是不可能事件,哪些是必然事件,哪些是随机事件.(1)地球不停地转动;(2)木柴燃烧,产生能量;(3)一天中在常温下,石头被风化;(4)某人射击一次,击中十环;(5)掷一枚硬币,出现正面;(6)在标准大气压下且温度低于0℃时,雪融化.7.已知地球表面陆地面积与海洋面积的比均为3︰7.如果宇宙中飞来一块陨石落在地球上,“落在海洋里”与“落在陆地上”哪个可能性更大?参考答案1.C2.B3.随机;1204.公平5.<设计意图:巩固学生对概念的理解与判断,巩固新知,同时培养学生的发散思维.6.解:(1)地球不停地运动,是必然事件.(2)木柴燃烧,产生热量,是必然事件.(3)一天中在常温下,石块被风化,是不可能事件.(4)某人射击一次,击中十环,是随机事件.(5)掷一枚硬币,出现正面,是随机事件.(6)在标准大气压下且温度低于0℃时,雪融化,是不可能事件.设计意图:考查了必然事件、不可能事件和随机事件的概念的应用.7.解:因为“落在陆地上”的可能性为310,“落在海洋里”的可能性为710,因为710>310,所以“落在海洋里”的可能性更大.设计意图:考查了对随机事件发生的可能性大小的比较.六、课堂小结1.必然事件:在一定条件下,重复进行试验时,有的事件在每次试验中必然会发生,这种事件称为必然事件.2.不可能事件:在一定条件下,重复进行试验时,有的事件在每次试验中都不会发生,这种事件称为不可能事件.3.随机事件:在一定条件下,有些事件可能会发生,也可能不会发生,事先无法确定,这种事件称为随机事件.4.一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.设计意图:通过回顾和反思,把所学内容内化成自己的思考问题的能力,让学生看到自己的进步,提高学生的学习热情.同时也是给教师一个反思提高的机会.七、板书设计25.1 随机事件与概率——25.1.1 随机事件1.必然事件2.不可能事件3.随机事件。
2024年人教版九年级数学上册教案及教学反思全册第25章 概率初步(教案)25.1.1 随机事件教案
25.1随机事件与概率25.1.1随机事件一、教学目标【知识与技能】1.理解必然发生的事件,不可能发生的事件,随机事件的概念,掌握判断随机事件的方法.2.了解随机事件发生的可能性有大有小,并会对随机事件发生的可能性大小做出判断.【过程与方法】通过本节课的学习,会根据经验判断一个简单事件是属于必然事件,不可能事件还是随机事件.【情感态度与价值观】感受数学与现实生活的联系,积极参与对数学问题的探讨,利用数学的思维方式解决现实问题.二、课型新授课三、课时1课时。
四、教学重难点【教学重点】随机事件的特点,会判断现实生活中的随机事件.【教学难点】判断现实生活中哪些事件是随机事件.五、课前准备课件、图片等.六、教学过程(一)导入新课你能确定明天是什么天气吗?(出示课件2)解决这个问题要研究随机事件.(板书课题)(二)探索新知探究一必然事件、不可能事件和随机事件出示课件4,5:活动1掷骰子掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.请思考以下问题:掷一次骰子,则骰子向上的一面:教师问:可能出现哪些点数?学生答:1点、2点、3点、4点、5点、6点.教师问:出现的点数是7,可能发生吗?学生答:不可能发生.教师问:出现的点数大于0,可能发生吗?学生答:一定会发生.教师问:出现的点数是4,可能发生吗?学生答:可能发生,也可能不发生.出示课件6-8:活动2摸球游戏教师问:小明从盒中任意摸出一球,一定能摸到红球吗?学生答:不一定.教师问:小麦从盒中摸出的球一定是白球吗?学生答:一定.教师问:小米从盒中摸出的球一定是红球吗?学生答:一定.教师问:三人每次都能摸到红球吗?学生答:小明不一定;小麦一定不能;小米一定能.出示课件9:“从如下一堆牌中任意抽一张牌,可以事先知道抽到红牌的发生情况”吗?学生交流,回答问题:第一组一定会发生;第二组一定不会发生;第三组有可能发生,也可能不发生.教师归纳:(出示课件10,11)在一定条件下,有些事件必然会发生,这样的事件称为必然事件.有些事件必然不会发生,这样的事件称为不可能事件.在一定条件下,可能发生也可能不发生的事件称为随机事件.教师强调:事件一般用大写字母A,B,C···表示.出示课件12:例判断下列事件是必然事件、不可能事件和随机事件:(1)乘公交车到十字路口,遇到红灯;(2)把铁块扔进水中,铁块浮起;(3)任选13人,至少有两人的出生月份相同;(4)从上海到北京的D314次动车明天正点到达北京.学生思考交流后,教师抽查学生口答:⑴随机事件;⑵不可能事件;⑶必然事件;⑷随机事件.巩固练习:(出示课件13)下列现象哪些是必然发生的,哪些是不可能发生的?学生独立思考后口答:必然事件;必然事件;不可能事件;不可能事件;必然事件;必然事件;不可能事件;不可能事件.探究二随机事件发生的可能性大小出示课件15-17:活动3:摸球袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.教师问:这个球是白球还是黑球?学生答:可能是白球也可能是黑球.教师问:如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗?学生答:摸出黑球的可能性大.由于两种球的数量不等,所以“摸出黑球”和“摸出白球”的可能性的大小是不一样的,且“摸出黑球”的可能性大于“摸出白球”的可能性.教师问:能否通过改变袋子中某种颜色的球的数量,使“摸出黑球”和“摸出白球”的可能性大小相同?学生答:可以.白球个数不变,拿出两个黑球或黑球个数不变,加入2个白球.出示课件18:教师归纳:随机事件的特点:一般地,⑴随机事件发生的可能性是有大小的;⑵不同的随机事件发生的可能性的大小有可能不同.出示课件19:例1有一个转盘(如图所示),被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①指针指向红色;②指针指向绿色;③指针指向黄色;④指针不指向黄色.估计各事件的可能性大小,完成下列问题:(1)可能性最大的事件是_____,可能性最小的事件是_____(填写序号);(2)将这些事件的序号按发生的可能性从小到大的顺序排列:____________.学生观察交流后,师生共同解答.⑴④;②;⑵②<③<①<④.巩固练习:(出示课件20,21)1.随意从一副扑克牌中抽到Q和K的可能性大小是()A.抽到Q的可能性大B.抽到K的可能性大C.抽到Q和K的可能性一样大D.无法确定2.如果一件事情不发生的可能性为99.99%,那么它()A.必然发生B.不可能发生C.很有可能发生D.不太可能发生学生思考后独立解答:1.C解析:因为在一副扑克牌中,Q和K的数量相同,所以它们的可能性相同.2.D解析:一件事情不发生的可能性为99.99%,说明这个事件是随机事件,这个事件发生的可能性不大,即不太可能发生.出示课件22:例2一个不透明的口袋中有7个红球,5个黄球,4个绿球,这些球除颜色外没有其他区别,现从中任意摸出一球,如果要使摸到绿球的可能性最大,需要在这个口袋中至少再放入多少个绿球?请简要说明理由.师生共同解答.解:至少再放入4个绿球.理由:袋中有绿球4个,再至少放入4个绿球后,袋中有不少于8个绿球,即绿球的数量最多,这样摸到绿球的可能性最大.巩固练习:(出示课件23,24)甲口袋中放着22个红球和8个黑球,乙口袋中则放着200个红球、8个黑球和2个白球,这三种球除了颜色以外没有任何区别,两袋中的球都各自搅匀,蒙上眼睛从口袋中取一个球,如果你想取一个红球,你选哪个口袋成功的机会大?小红认为选甲较好,因为里面的球较少,容易摸到红球;小明认为选乙较好,因为里面的球较多,成功的机会越大;小亮认为都一样,因为只摸一次,谁也无法预测会取出什么颜色的球.你觉得他们说的有道理吗?学生交流后口答.解:他们的说法都没有道理.因为摸到一个红球的可能性的大小和袋子中球的总数量没关系,而是取决于红球占总数量的比例.在甲口袋中取一个红球的可能性为2230,在乙口袋中取一个红球的可能性为200 210,即2021,因为2021>2230,所以在乙口袋中取一个红球的可能性大.(三)课堂练习(出示课件25-30)1.下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件2.下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨3.下列事件是必然事件,不可能事件还是随机事件?(1)太阳从东边升起.(2)篮球明星林书豪投10次篮球,次次命中.(3)打开电视正在播中国新航母舰载机训练的新闻片.(4)一个三角形的内角和为181度.4.如果袋子中有4个黑球和x个白球,从袋子中随机摸出一个,“摸出白球”与“摸出黑球”的可能性相同,则x=______.5.已知地球表面陆地面积与海洋面积的比约为3:7,如果宇宙中飞来一块陨石落在地球上,“落在海洋里”发生的可能性()“落在陆地上”的可能性.A.大于B.等于C.小于D.三种情况都有可能6.桌上扣着背面图案相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取1张扑克牌.(1)能够事先确定抽取的扑克牌的花色吗?(2)你认为抽到哪种花色扑克牌的可能性大?(3)能否通过改变某种花色的扑克牌的数量,使“抽到黑桃”和“抽到红桃”的可能性大小相同?7.你能说出几个与必然事件、随机事件、不可能事件相联系的成语吗?数量不限.参考答案:1.C2.B3.解:⑴必然事件;⑵随机事件;⑶随机事件;⑷不可能事件.4.45.A6.解:⑴不能确定;⑵黑桃;⑶可以,去掉一张黑桃或增加一张红桃.7.解:必然事件:种瓜得瓜,种豆得豆;黑白分明.随机事件:海市蜃楼,守株待兔.不可能事件:海枯石烂,画饼充饥,拔苗助长.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流.(五)课前预习预习下节课(24.2.2第1课时)的相关内容.七、课后作业1.教材129页练习1,2.2.配套练习册内容八、板书设计:九、教学反思:通过这些生动的、有趣的实例,自然地引出必然事件和不可能事件;其次,必然事件和不可能事件相对于随机事件来说,特征比较明显,学生容易判断,把它们首先提出来,符合由浅入深的理念,容易激发学生的学习积极性.。
九年级数学上册25.1.1随机事件导学案2(新版)新人教版
随机事件主备:审核:九年级备课组时间:学习目标:了解随机事件的意义,会判断必然事件、不可能事件和随机事件;知道不同随机事件发生的可能性不同学习重点:随机事件的特点学习难点:对生活中的随机事件作出准确判断课堂前置学前准备1.自学课本125-126页,写下疑惑摘要。
2.下列问题哪些是必然发生的?哪些是不可能发生的?(1)太阳从西边下山; (2)某人的体温是100℃;(3)a2+b2=-1(其中a,b都是实数); (4)一元二次方程x2+2x+3=0无实数根。
3.引发思考我们把上面的事件_________称为必然事件,把事件________称为不可能事件,那么请问:什么是必然事件?什么又是不可能事件呢?它们的特点各是什么?4、(活动1:)5名同学参加演讲比赛,以抽签方式决定每个人的出场顺序。
签筒中有5根形状大小相同的纸签,上面分别标有出场的序号1,2,3,4,5。
小军首先抽签,他在看不到的纸签上的数字的情况从签筒中随机(任意)地取一根纸签。
请考虑以下问题:(1)抽到的序号是0,可能吗?这是什么事件?(2)抽到的序号小于6,可能吗?这是什么事件?(3)抽到的序号是1,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?5、(活动2:)小伟掷一个质地均匀的正方形骰子,骰子的六个面上分别刻有1至6的点数。
请考虑以下问题,掷一次骰子,观察骰子向上的一面:(1)出现的点数是7,可能吗?这是什么事件?(2)出现的点数大于0,可能吗?这是什么事件?(3)出现的点数是4,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?(二)思索、交流结合上述两个活动中的两个活动的第(3)问中的事件想一想怎样的事件称为随机事件呢?课堂探究1、课堂练习:指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件。
(1)两直线平行,内错角相等;(2)打靶命中靶心;(3)掷一次骰子,向上一面是3点;(4)13个人中,至少有两个人出生的月份相同;(5)经过有信号灯的十字路口,遇见红灯;(6)在装有3个球的布袋里一次摸出4个球(7)度量三角形的内角和是360°;(8)抛掷一百枚硬币,全部正面朝上。
九年级数学上册 25.1.2 概率学案(新版)新人教版(2)
25.1.2概率一、自主学习认真自学课本第130页至第1332.页练习以上的内容,并完成以下的填空:1、概率的定义:,记为:2、课本两个试验有什么共同的特点?(1)每一次试验中,;(2)每一次试验中,。
3、从分别标有1,2,3 ,4,5号的5根纸签中随机地抽取一根.抽出的号码有种?抽到1的概率为多少?即:概率是P(抽到1号)= ;4、掷一个骰子,向上的一面的点数有多少种可能?向上一面的点数是1的概率是多少?即: P(出现点数是1)= 。
归纳:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性相等,事件A包含其中的m种结果,那么事件A发生的概率为。
注意:1.概率从数量上刻画了一个随机事件发生的可能性的大小.2 .当A是必然发生的事件时,P(A)= ;3.当A是不可能发生的事件时,P(A)= .归纳:事件发生的可能性,则它的概率越接近;反之,事件发生的可能性越,则它的概率越接近。
总之0≤P(A)≤1二、合作探究1、掷一枚骰子,观察向上一面的点数,求下列事件的概率(1)点数为3;(2)点数为偶数;(3)点数大于3小于5.三、展示交流如图是一个转盘,转盘分成6个相同的三角形,颜色分为红、绿、黄三种颜色。
指针的位置固定,转动转盘后任其自由停止,其中的某个三角形会恰好停在指针所指的位置(指针指向两个三角形的交线时,当作指向右边的三角形)。
求下列事件的概率: 1)指针指向红色 . 2) 指针指向黄色或绿色 . 3)指针不指向绿色.四、随堂检测 班级: 姓名:4.如图,对角线将一个长宽不等的矩形分成4个区域,分别涂上红、黄、蓝、白四色,中间装有匀速转动的指针,则指针在每个区域内的概率是( )A. 一样大B.蓝白区域大C.红黄区域大D.由指针转动的速度确定2、(汕尾)一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担任组长,则女生当选组长的概率是 。
3、一个质地均匀的小正方体,六个面分别标有数字1、1、2 、4 、5 、5、掷小正方体后,观察朝上一面的数字。
最新人教版九年级数学上册 25.1 随机事件与概率2 1 随机事件 (2)
第二十五章概率初步25.1 随机事件与概率25.1.1 随机事件【知识与技能】1.理解必然发生的事件,不可能发生的事件,随机事件的概念.2.了解随机事件发生的可能性有大有小,不同的随机事件发生的可能性的大小不同.【过程与方法】通过本节课的学习,会根据经验判断一个简单事件是属于必然事件,不可能事件还是随机事件.【情感态度】感受数学与现实生活的联系,积极参与对数学问题的探讨,利用数学的思维方式解决现实问题.【教学重点】随机事件的特点,会判断现实生活中的随机事件.【教学难点】判断现实生活中哪些事件是随机事件.一、情境导入,初步认识1.播放一段天气预报,引出一句古语“天有不测风云”.这句话被引申为世界上有很多事情具有偶然性.人们不能事先判断这些事情是否会发生,但是随着人们对事件发生可能性的深入研究,人们发现许多偶然事件的发生也是有规律可循的.所以天气预报也只是对未来天气的预测,但并不是一定是如此.【教学说明】激发学生的兴趣,让学生体会数学源于生活,生活中处处有数学.2.分析说明下列事件能否一定发生.(1)今天不上课.(2)明天要下雨.(3)煮熟的鸭子飞了.(4)投一枚硬币,正面向上.【教学说明】教师提出问题,引起学生的注意和思考.让学生感知事件的发生有多种可能.二、思考探究,获取新知探究15名同学参加演讲比赛,按抽签方式决定每个人的出场顺序,签筒中有5根形状、大小完全相同的纸签,上面分别标有出场的序号1、2、3、4、5,小军先抽签,他在看不到纸签上的数字的情况下从签筒中随机任意地取一根纸签.请考虑以下问题:(1)抽到的序号有几种可能的结果?(2)抽到的序号小于6吗?(3)抽到的序号会是0吗?(4)抽到的序号会是1吗?【教学说明】教师提出问题,也可事先做好签,请学生们动手操作试验,感知事件发生的多种情况.经过操作试验思考回答,让学生分析阐述自己的观点,初步感知事件发生的情况类别.(1)每次抽签的结果不一定相同,序号1、2、3、4、5都有可能抽到,共有5种可能的结果,但事先不能预料一次抽签会抽到哪种结果.(2)抽到的序号一定小于6.(3)抽到的序号一定不是0.(4)抽到的序号可能是1,也可能不是1,事先无法确定.探究2小伟掷一个质地均匀的正方体骰子,骰子的6个面上分别刻有1到6的点数,请考虑以下问题:掷一次骰子,在骰子向上的一面上:(1)可能出现哪些点数?(2)出现的点数大于0吗?(3)出现的点数会是7吗?(4)出现的点数会是4吗?【教学说明】教师给出问题,学生合作交流,进一步体会事件发生的情况,是一定发生,或一定不发生,还是可能发生.1.从上述探究中可知,有些事件发生与否是可以事先确定的,有些事件发生与否,则是不能事先确定的.【教学说明】教师引导学生归纳总结事件发生的三种情况,增强学生对事件发生可能性的认识.引导学生理解“在一定条件下”的意义.【归纳结论】在一定条件下,有些事件必然会发生(如:标准大气压下,加热到100℃,水沸腾),这样的事件称为必然事件.相反的,有些事件必然不会发生(如:三角形的内角和为360°),这样的事件称为不可能事件.在一定条件下,可能发生也可能不发生的事件(如:探究1中序号为2,探究2中出现点数为4)称为随机事件.2.请同学们举生活中的实例说明必然事件、不可能事件、随机事件.【教学说明】学生结合定义列举,并能稍作阐述,教师讲评、归纳、鼓励.3.随机事件发生的可能性有大小.探究试验:袋子中有4个黑球,2个白球,这些球的形状、大小、质地等完全相同.在看不到球的情况下,随机的从袋子中摸出一个球.(1)是白球还是黑球?(2)经过多次试验,摸出的黑球和白球哪个次数多?说明了什么问题?【教学说明】教师提出问题,引导学生试验,学生通过试验,观察结果,思考并得出结论,体会随机事件发生的可能性有大小.【归纳结论】一般地,随机事件发生的可能性有大小,不同的随机事件发生的可能性的大小有可能不同.三、运用新知,深化理解1.下列事件中,属必然事件的是()A.男生的身高一定超过女生B.方程4x2=0有实数解C.明天数学考试小明一定得满分D.两个无理数相加一定是无理数2.下列事件中,哪些是随机事件?哪些是必然事件?哪些是不可能事件?说说你的理由.(1)掷一枚骰子,6点朝上.(2)367人中至少有2人出生日期相同.(3)小明想用长度为10cm,20cm,30cm的小木条,首尾相接,做一个三角形.(4)小明买福利彩票,中500万奖金.【教学说明】上述题目较为简单,可让学生自主完成,教师再选派几名学生作出回答即可.【答案】1.B【解析】A.男生的身高可能超过女生,也可能不超过女生,生活中这样的现象随处可见,故它是随机事件.B.方程4x2=0的Δ=0,故它有两个相等的实数根,所以是必然事件.C.小明可能得满分,也可能不会,故为随机事件.D.如0是随机事件.2.(1)随机事件,因为一枚骰子有6个面,其中一个面是6点.(2)必然事件,因为一年有365天或366天,所以367人必有两个生日相同.(3)不可能事件,因为10+20=30,而三角形任意两边之和大于第三边.(4)随机事件,因为福利彩票中包含有500万的奖项,所以只要买福利彩票是有可能中500万奖金的.四、师生互动,课堂小结本堂课你学到了哪些有关随机事件的知识?你有哪些收获和体会?说说看.【教学说明】在学生回顾与反思本堂课的学习过程中,进一步完善认知,师生共同归纳总结.1.布置作业,从教材“习题25.1”中选取.2.完成练习册中本课时练习的“课后作业”部分.通过这些生动的、有趣的实例,自然地引出必然事件和不可能事件;其次,必然事件和不可能事件相对于随机事件来说,特征比较明显,学生容易判断,把它们首先提出来,符合由浅入深的理念,容易激发学生的学习积极性.“抽签”这个活动是学生容易理解或亲身经历过的,操作简单省时,又具有很好的经验性,最主要的是活动中含有丰富的随机事件,激发学生的探知欲.。
九年级数学上册25.1随机事件与概率25.1.1随机事件2课件(新人教版)_1
嘿嘿,这次非 让你死不可!
相传古代有个王国,国王非常阴险而多疑,一 位正直的大臣得罪了国王,被叛死刑,这个国家 世代沿袭着一条奇特的法规:凡是死囚,在临刑 前都要抽一次“生死签”(写着“生”和“死” 的两张纸条),犯人当众抽签,若抽到“死”签 ,则立即处死,若抽到“生”签,则当众赦免。 国王一心想处死大臣,与几个心腹密谋,想出一 条毒计:
嘿嘿,这次非 让你死不可!
暗中让执行官把“生死签”上都写成“死 ”,两死抽一,必死无疑。然而,在断头 台前,聪明的大臣迅速抽出一张签纸塞进 嘴里,等到执行官反应过来,签纸早已吞 下,大臣故作叹息说:“我听天意,将苦 果吞下,只要看剩下的签是什么字就清楚 了。”剩下的当然写着“死”字,国王怕 犯众怒,只好当众释放了大臣。
嘿嘿,这次非让你 死不可!
老臣自有妙计!
(1)在法规中,大臣被处死是什么事件? (2)在国王的阴谋中,大臣被处死是什么事件? (3)在大臣的计策中,大臣被处死是什么事件?
第25章 概率
25.1随机事件与概率
一.学习目标
1、了解随机事件、必然事件、不可能事件的概念。 2、经历“猜测---实验并收集数据---分析实验结果”的活动过程,体 会随机事件发生的可能性大小。
二.探究新知:
自学指导1:带着下面的问题看课本128页到129页问题3上面的内容,并 完成课本129页的《练习》和自学检测1: 思考: 1.什么是必然事件? 2.什么是不可能事件? 3.什么是确定性事件? 4.什么是随机事件?
九年级数学上册第二十五章概率初步25.1随机事件与概率25.1.2概率2教案 新人教版
25.1.2 概率教学过程二、概率1、用概率解决问题2、概率的表示二、导入新课:我们上节课学习了概率的概念和意义,知道了求概率的方法.今天我们运用实例进一步理解概率的意义和求概率的方法,并体会它在生活中的应用.三、新课教学:例2 :下图是一个可以自由转动的转盘,转盘分成7个大小相同的扇形,颜色分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).求下列事件的概率:(1)指针指向红色;(2)指针指向红色或黄色;(3)指针不指向红色.教师引导学生回顾求概率的方法,仔细审题,然后分析、解答.问题中可能出现的结果有7种,即指针可能指向7个扇形中的任何一个.因为这7个扇形大小相同,转动的转盘又是自由停止,所以指针指向每个扇形的可能性相等.解:按颜色把7个扇形分别记为:红1,红2,红3,绿1,绿2,黄1,黄2,所有可能结果的总数为7,并且它们出现的可能性相等.(1)指针指向红色(记为事件A)的结果有3种,即红1,红2,红3,因此P(A)=.(2)指针指向红色或黄色(记为事件B)的结果有5种,即红1,红2,红3,黄1,黄2,因此P(B)从问题出发,了解概率的作用考查学生对概率意义的理解教学过程3、概率在扫雷游戏中的应用三、巩固练习小王在游戏开始时随机地点击一个方格,点击后出现了如图所示的情况.我们把与标号3的方格相邻的方格记为A区域(画线部分),A区域外的部分记为B区域.数字3表示在A区域有3颗地雷.下一步应该点击A区域还是B区域?分析:下一步应该怎样走取决于点击哪部分遇到地雷的概率小,只要分别计算点击两区域内的任一方格遇到地雷的概率并加以比较就可以了.一、解: A区有8格3个雷,踩A区任一方格,遇雷的概率为3/8,B区有9×9-9=72个小方格,还有10-3=7个地雷,踩B区任一方格,遇雷的概率为7/72。
九年级数学上册 25.1 随机事件与概率教案 (新版)新人教版-(新版)新人教版初中九年级上册数学教
第一课时随机事件的概率一、教学目标:1、知识与技能:(1)通过实例了解随机事件、必然事件、不可能事件的概念;(2)正确理解事件A出现的频率的意义;(3)正确理解概率的概念,明确事件A发生的频率f n(A)与事件A发生的概率P(A)的区别与联系.2、过程与方法:(1)发现法教学,通过在抛硬币试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高;(2)通过对现实生活中的“掷币”、“掷骰子”、“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法.3、情感态度与价值观:(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;(2)培养学生的辩证唯物主义观点,增强学生的科学意识.二、重点与难点:(1)教学重点:事件的分类;概率的定义以及和频率的区别与联系;(2)教学难点:概率的概念的理解,明确事件A发生的频率f n(A)与事件A发生的概率P(A)的区别与联系.三、学法与教学用具:1、引导学生对身边的事件加以注意、分析,结果可定性地分为三类事件:必然事件,不可能事件,随机事件;指导学生做简单易行的实验,让学生无意识地发现随机事件的某一结果发生的规律性;2、教学用具:硬币数枚,投灯片,计算机及多媒体教学.四、教学设想:1、创设情境:日常生活中,有些问题是很难给予准确无误的回答的。
例如,你明天什么时间起床?7:20在某公共汽车站候车的人有多少?你购买本期福利彩票是否能中奖?等等。
请观看下面事件,它们发生的情况如何?(1)“抛一石块,下落”.(2)“在标准大气压下且温度低于0℃时,冰融化”;(3)“某人射击一次,中靶”;a ”;(4)“若a为实数,则0(5)“掷一枚硬币,出现正面”;(6)“导体通电后,发热”;(7)“从分别标有号数1,2,3,4,5的5X标签中任取一X,得到4号签”;(8)“某机在1分钟内收到2次呼叫”;(9)“没有水份,种子能发芽”;(10)“在常温下,焊锡熔化”.根据引例导出概念:2、基本概念:(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;请同学们根据概念判断引列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件?答:根据定义,事件(1)、(4)、(6)是必然事件;事件(2)、(9)、(10)是不可能事件;事件(3)、(5)、(7)、(8)是随机事件.组织学生利用带来的硬币做试验导入频数与频率的概念:活动:1:全班每人各取一枚硬币,做10次掷硬币的试验,每人记录下试验的结果,填入下表中:思考:与其它同学的试验结果比较,你的结果和他们一致吗?为什么会出现这样的情况?2:每组把本组同学的试验结果统计一下,填入下表中思考:与其它小组的试验结果比较,各组结果一致吗?为什么会出现这样的情况?3:请一位同学把本班同学的试验结果统计一下,填入下表中:4:请把全班每个同学的试验中正面朝上的次数收集起来,并用条形图表示 5:请同学们找出掷硬币时“正面朝上”这个事件发生的规律性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十五概率初步
25.1 随机事件与概率
25.1.1 随机事件
自学目标:
1.通过“摸球”这样一个有趣的试验,形成对随机事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素。
2.历经“猜测—动手操作—收集数据—数据处理—验证结果”,及时发现问题,解决问题,总结出随机事件发生的可能性大小的特点以及影响随机事件发生的可能性大小的客观条件。
重、难点:
1.对随机事件发生的可能性大小的定性分析
2.理解大量重复试验的必要性。
自学过程:
一、课前准备:
1.在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个.搅匀后,从中同时摸出1个小球,请你写出这个摸球活动中的一个随机事件
_________________.
2.一副去掉大小王的扑克牌(共52张),洗匀后,摸到红桃的可能性______摸到J、Q、K的可能性.(填“<,>或=”)
3.下列事件为必然发生的事件是( )
(A)掷一枚均匀的普通正方形骰子,骰子停止后朝上的点数是1
(B)掷一枚均匀的普通正方形骰子,骰子停止后朝上的点数是偶数
(C)打开电视,正在播广告
(D)抛掷一枚硬币,掷得的结果不是正面就是反面
4.同时掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,下列事件中是不可能发生的事件是( )
(A)点数之和为12 (B)点数之和小于3
(C)点数之和大于4且小于8 (D)点数之和为13
5.从一副扑克牌中任意抽出一张,则下列事件中可能性最大的是( )
(A)抽出一张红心(B)抽出一张红色老K
(C)抽出一张梅花J (D)抽出一张不是Q的牌
6.某学校的七年级(1)班,有男生23人,女生23人.其中男生有18人住宿,女生有20人住宿.现随机抽一名学生,则:a、抽到一名住宿女生;b、抽到一名住宿男生;c、抽到一名男生.其中可能性由大到小排列正确的是( )
(A)cab(B)acb(C)bca(D)cba
一、自主探究:
1、袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球。
我们把“摸到白球”记为事件A,把“摸到黑球”记为事件B。
(1)事件A和事件B是随机事件吗?哪个事件发生的可能性大?
(2)“10次摸球”的试验中,事件A发生的可能性大的有几组?“20次摸球”的试验中呢?你认为哪种试验更能获得较正确结论呢?
(3)如果把刚才各小组的20次“摸球”合并在一起是否等同于400次“摸球”?这样做会不会影响试验的正确性?
(4)通过上述试验,你认为,要判断同一试验中哪个事件发生可能性的较大,必须怎么做?
三、反馈练习
1.从一幅扑克牌中,任意抽取一张,抽到的可能性较小的是 ( )
A.黑桃 B.红桃 C.梅花 D.大王
2.小红花2元钱买了一张彩票,你认为小红中大奖的可能性 ( )
A.一定 B.很可能 C.可能 D.不大可能
3.在不透明的袋装中有999个白球和1个红球,它们除颜色外其余都相同.从袋中随意摸出一个球,则下列说法中正确的是( )
A.“摸出的球是白球”是必然事件 B.“摸出的球是红球”是不可能事件
C.摸出白球的可能性不大 D.摸出的球有可能是红球
4.200张卡片分别写着1,2,3,…,20,从中任意抽出一张,号码是2的倍数与号码是3的倍数的可能性哪个大?
5.80件产品中,有50件一等品,20件二等品,10件三等品,从中任取一件,取到哪种产品的可能性最大?取到哪种产品的可能性最小?为什么?
6、一个袋子里装有20个形状、质地、大小一样的球,其中4个白球,2个红球,3个黑球,其它都是黄球,从中任摸一个,摸中哪种球的可能性最大?
7、袋子里装有红、白两种颜色的小球,质地、大小、形状一样,小明从中随机摸出一个球,然后放回,如果小明5次摸到红球,能否断定袋子里红球的数量比白球多?怎样做才能判断哪种颜色的球数量较多?
8、已知地球表面陆地面积与海洋面积的比均为3:7。
如果宇宙中飞来一块陨石落在地球上,“落在海洋里”与“落在陆地上”哪个可能性更大?
四、尝试小结:。