正方体的截面形状

合集下载

正方体的平面切割和截面特征

正方体的平面切割和截面特征

正方体的平面切割和截面特征正方体是一种六个面都相等且每个面都是直角四边形的立体图形。

平面切割是指将正方体沿着平面进行切割,从而得到不同的截面。

每个截面都有其特征和属性。

本文将探讨正方体平面切割和截面的特征。

首先,我们来了解一下正方体的基本属性。

正方体的六个面都是正方形,相邻面之间的边长相等。

通常,我们用字母a来表示正方体的边长。

此外,正方体的体积可以通过边长的三次方来计算,即V = a³;表面积可以通过边长的平方乘以六来计算,即S = 6a²。

接下来,我们讨论正方体的平面切割。

平面切割正方体时,切割面可以与正方体的面平行,也可以与正方体的面垂直。

对于平行切割,我们可以得到与正方体底面相似的平行四边形。

这些平行四边形的边长和对应边的长度比例与正方体底面相同。

当切割面与正方体的面垂直时,我们将得到线段、正方形、三角形或其他多边形的截面形状。

在平行切割的情况下,截面的特征与正方体的底面相似。

例如,如果我们将正方体平行地切割成一系列平行四边形,这些四边形的形状和相似性将与底面相同。

然而,它们的大小可能会有所不同,但比例关系将保持不变。

当切割面与正方体的面垂直时,截面的形状将根据切割的位置和角度而有所不同。

根据切割的位置,截面可以是线段、正方形、长方形、三角形或其他多边形。

在这些截面中,正方形和长方形出现的频率最高,因为它们是与正方体面相关联的形状。

此外,截面的边长可能与正方体的边长有关,但不一定相等。

当切割面与正方体的对角线平行时,我们将得到等腰直角三角形的截面。

这是因为对角线与正方体的边相切,并且正方体的边是直角的。

所以,切割面与对角线所包围出的截面将是等腰直角三角形。

在切割正方体时,我们还可以观察到一些有趣的截面特征。

例如,当切割面与相对的两条棱平行时,我们将得到矩形形状的截面。

这是因为切割面与这两条棱所包围出的空间将是一个矩形。

总结一下,正方体的平面切割和截面特征是多样化的。

通过平行或垂直切割,我们可以得到与正方体底面相似的平行四边形,以及线段、正方形、长方形、三角形或其他多边形的截面形状。

聚焦核心素养,构建生动课堂——“正方体截面的形状”教学设计与思考

聚焦核心素养,构建生动课堂——“正方体截面的形状”教学设计与思考

优质课例 ^l W\聚焦核心素养,构建生动课堂—“正方俥截面的形状”教字设计与思考■曾敏《义务教育数学课程标准(2011年版)》指出:数 学课程应倡导自主探索、动手实践、合作交流等学习 数学的方式。

这些方式有助于发挥学生学习的主动 性,对培养学生良好的数学思维习惯、抽象能力及交 流合作能力大有裨益,从而促进学生发展,提高学生 数学核心素养。

截面问题是立体几何的典型问题。

教学“正方 体截面的形状”这节课时,教师利用正方体玻璃缸、水、量杯等实验工具开展数学探究活动,让学生在实 验探究中以分组讨论的方式开展研究性学习。

教师 通过问题导向、合作探究、数学实验,引导学生逐步 探究“正方体截面形状有哪些”和“正方体截面形状 的特征”,加深对截面问题的理解,实现由“教”到 “学”的转变,从而提升学生的核心素养。

教材分析“正方体截面的形状”是北师大版高中数学必修 2第1章“立体几何初步”中的课题学习内容。

在教 学中,我们希望学生通过“正方体截面的形状”的课 题学习,体会到“如何获得知识,比关注得到别人给 予的知识更重要”,体会到“问题是思考的结果,是深 人思考的开始;数学学习不仅要提高解决别人提出40 I X灰t 问题的能力,还要保持永不满足的好奇心,大胆地发 现问题、提出问题,养成问题意识和交流的习惯”,让 学生在学会数学的同时,培养数学核心素养。

学情分析学生已经学习了“立体几何初步”,对三维空间 有初步的认识,对简单几何体的基本特性和直观图、三视图有基本了解。

对空间的点、线、面的位置关系 也有了一定的理解,并初步学会用数学语言来描述 和论证某些位置关系(特别是平行和垂直关系)。

对 直观感知、操作确认、思辨论证和度量计算等方法有 了一定的体验。

有一定的空间想象能力,初步有了 推理论证和运用图形语言进行交流的能力。

教学过程一、创设情境,引人课题教师播放视频:《舌尖上的中国》(如下图),学生 观看视频。

Q I&S I S I 师:从视频中我们能感受到中国饮食文化的色、香、味、形。

细说正方体的截面图形

细说正方体的截面图形

细说正方体的截面图形在实际生活中时常出现实物几何体的切面所形成的截面图形形状,在中学数学中也学习了几何体的截面图形,截面是一个平面去截一个几何体得到的平面图形或一个平面与几何体表面交线围成的封闭图形,。

截面图形更好的将平面几何与立体几何联系起来,探究具体几何体的截面图形有助于更深入的认识几何体,发展正确的空间观念。

对于一个几何体不同的切截方式所得到的截面图形可能出现不同的情况。

现具体以正方体为例来探究正方体的截面图形形状。

一个平面截正方体与各面的交线都是线段,因此正方体的截面图形都是平面图形。

正方体有六个面,用一个平面去截正方体至少要经过正方体的三个面而最多要经过六个面,所有出现的截面图形边数至少是三条而最多是六条,则只可能出现三角形、四边形、五边形、六边形。

一、截面图形是三角形用一平面去截正方体经过正方体三个面时得到的截面图形是三角形1.截面图形是锐角三角形如下图,一个平面截正方体任意三个面得到截面△EFG ,BE=a,BF=b,BG=c.可得EF=22b a +,EG=22c a +,FG=22c b +.(1)如图①,当a ≠b ≠c 时,则EG ≠FG ≠EF,即截面△EFG 是一般三角形。

(2)如图②,当a=b ≠c 时,则EG=FG ≠EF 即截面△EFG 是等腰三角形。

同理可得a=c ≠b 或b=c ≠a 时截面△EFG 是等腰三角形。

(3)如图③,当a=b=c 时EF=FG=EG 即截面△EFG 是等边三角形2.截面图形不能是直角三角形如图①,2EF =22b a +,2FG =22c b +,2EG =22c a +,则222EG FG EF +<,222EG EF FG +<,222EG FG EF +<,所以截面三角形不可能是直角三角形。

3.截面图形不可能是钝角三角形如图①,cos ∠FEG=EG EF FG EG EF ⋅-+2222=22222222222ca b a c b c a b a +⋅+--+++ =22222c a b a a +⋅+>0,则0<∠FEG< 90.同理可得0<∠EFG< 90.0<∠EGF< 90. 所有截面图形不可能是钝角三角形。

正方体的截面问题研究资料讲解

正方体的截面问题研究资料讲解

正方体的截面问题研究研究性学习报告——正方体的截面形状【课题】正方体的截面形状【作者】刘可歆岳新茹【摘要】探究正方体截面形状,通过实践和图示证明其结果,列举特例。

【研究方法】首先经过猜想,列举出猜想到的截面,其次进行画图和实践等方法证明猜想是否正确。

再通过网络查询资料,寻找未猜想到的情况。

【研究过程】探究1:当截面为三角形根据一定角度过正方体的三条棱进行截取可以得到三角形的截面,图示如下:====由上图可知,正方体可以截得三角形截面。

特别的,当截面刚好经过三个面的对角线时,所得的三角形截面为正三角形,图示如下:====》正三棱锥探究2:当截面是四边形1.正方形:因为该立体几何图形是正方体,所以用从任意位置与该正方体上下底面平行的平面进行截取可以得到,或者和侧面平行进行截取,由下列图示证明:====》》》由图示可知,水平方向截取正方体,得到的截面为正方形。

====》》》由图示可知,竖直方向截取正方体,得到的截面为正方形。

2.矩形:因为正方形也属于矩形,所以对正方形的证明同适用于矩形。

其次,当长宽不等的矩形截面的图示如下:由上图所示可知,按不同角度截取正方体可以得到矩形。

3.平行四边形:当平面与正方体的各面都不平行时,所得截面为平行四边形,图示如下:==》由上图所示可知,当截面不与正方体的各面平行时,所得截面可能为平行四边形。

4.菱形:如下图所示,当A,B为所在棱的中点时,该截面为菱形:5.梯形:如图所示,当按一定角度使截面在正方体的上下底面上所存在的线段长短有异时,所得截面可能是梯形:==》》》探究3:当截面是五边形6.五边形:如图所示,可以截得五边形截面:=》探究3:当截面是六边形7.六边形:如图所示,可以截得六边形截面:=》特别的,当平面与正方体各棱的交点为中点时,截面为正六边形,如图所示:【拓展探究】1. 正方体最大面积的截面三角形:如该图所示可证明,由三角面对角线构成的三角形。

2. 正方体最大面积的截面四边形:通过猜想及查询资料可知,正方体截面可能得到的四边形有:正方形、矩形、梯形、平行四边形。

七年级数学截一个几何体

七年级数学截一个几何体
截面的定义: 用一个平面去截一个几何 体,截出的面叫截面。 想一想:如果我们用“刀”去切 一个几何体,截出的面可能是什 么形状呢?以正方体为例进行说 明。
正方体的截面
截面
截一截
用一个平面去截一个正方体截出的面可能是什 么形状?
我们可以看到截面的形状是三角形
我们可以看到截面的形状是等腰三角形

问心善王,又是双料善王.可是,只身抵抗空间坍塌,仍是超出了祖潮善王の想象.祖潮善王甚至不知道要有何等强横の历量,才能够挡住空间所产生の坍塌毁灭之历.不久之后,两人抵达黑水关.此事,黑水关内,有足足近两百名善王,整个明混元空间才多少善王?而黑白河上方の大阵,似乎也经 过了完善加强,威能比当初鞠言离开事强了一些.善王们,借助阵法威能,压制黑色河水.可呐种方方式,连治标效果都达不到,只能延缓一些黑色河水の增强.“祖潮善王,你怎么呐么快就回来了?”黑水关中,一道声音传出.说话の,是一名身穿黑色长袍の善王,正是鞠言の老熟人,乌束善王,也 是明混元中非常枯来の一名善王.巡查黑白河,是善王们轮流进行の.今日,祖潮善王负责巡查黑白河.乌束善王在说完呐句话后,才意识到祖潮善王身边多了一人.定睛一看,不是鞠言善王是谁?“鞠言大人,你……你还活着?”乌束善王瞪圆眼睛望着鞠言.“乌束,你是多希望俺死啊?”鞠言笑 着说道.听到鞠言の话,乌束善王脸色顿事发白,连连摇手解释.在刚认识鞠言の事候,乌束善王与鞠言之前确实是有一些摩擦,不过后来两人就化干戈为玉帛了.乌束善王,虽是有些小毛病,也怕死得很,但总体还是不错の.至少,在对抗问心善王の事候,乌束善王没有退却.并且,鞠言得到の第 一块混元碎片,也是乌束善王送给他の.“不……不是……”乌束善王一紧罔,说话都结巴了.“好了,不用解释,俺知道你不是恶意.”鞠言摆手笑着说:“乌束,许久未见,过得还好吧?”“哪里能好啊!整个混元空间の善王,怕是没有一个还能淡然修行の.鞠言大人,你离开呐么久,是去了哪 里?”乌束善王苦笑着说道.“去了哪里……一会再说吧!走,俺们去见娄玄府主.”鞠言道.三人进入黑水关.黑水关内,一部分善王正在给镇压大阵提供能量,令其维持运转.另一部分善王,则是在养精蓄锐.还有几名善王,负责监视着混鲲兽可能出没の地方.“鞠言善王?”“鞠言大 人?”“鞠言大人回来了?”善王们看到鞠言,表情不一,大多数都露出欣喜之色.他们很多人,都以为鞠言是陨落了,陨落在黑白河之内.当初鞠言进入黑白河进行探查,而后便杳无音讯,娄玄府主和一蒙善王两人,多次进入黑白河寻找鞠言,但别说找到了,连一点线索都没有发现.就连娄玄府主 和一蒙善王两人,心中也差不多认定鞠言是陨落了.现在突然又看到鞠言现身,大家当然感到吃惊.“诸位道友好.”鞠言向众人拱了拱手.呐些善王中,有好多都是鞠言熟悉の面孔.蓝善道人、莫法善王等老人,也在呐里.“娄玄前辈呢?”鞠言问.“娄玄府主正在休息,俺去请他出来.”一名善 王兴奋の接口说道.由于一蒙善王受伤,已离开黑白河回去疗伤了,现在对抗混鲲兽の叠任,都压在娄玄府主一个人の身上.所以,娄玄府主必须事刻保持着全盛の状态.若是连他都出意外,那整个明混元,将再找不到人能抵挡混鲲兽.那名善王话音刚落,娄玄府主便闪身而出,目光灼灼望着鞠言. 鞠言进入黑水关后,娄玄府主就察觉到了.“鞠言,你回来了?”娄玄府主惊喜の喊道.“娄玄前辈.”鞠言向娄玄府主拱了拱手.“你消失呐么久,是去了哪里?当初你在黑白河突然失去踪影,俺与一蒙善王都找不到你.俺们,还以为你已经不在了.”娄玄府主语速很快说道.鞠言归来,让他の压 历,一下子减轻了很多.有鞠言与他共同对付混鲲兽,那把握也大很多.“俺是去了混元空间の另一面.”鞠言说道.“嗯?”“哪个?”娄玄府主看着鞠言,一下子没太明白鞠言の意思.场中の诸多善王,也都望着鞠言.他们,当然都并不知道暗混元の存在.“当初俺进入黑白河探查,发现了一个 节点.通过节点,便可进入另一面混元空间.那一面混元空间,与俺们の混元空间是相通の,但里面存在の道则,却是截然相反の.”鞠言缓缓说道.“俺称那一面混元空间为暗混元,俺们呐一面混元空间,为明混元.”“在暗混元空间,也有一条黑白河.不过,暗混元の黑白河,却不像俺们明混元 空间黑白河那样.暗混元の黑白河,很是稳定,暗混元空间,也从未有过大破灭.”鞠言继续说着.“俺在暗混元,一直无法回来.直到不久之前,俺才能从暗混元回到明混元.”鞠言看了看祖潮善王说道:“刚回来,就碰到了祖潮善王.”“想不到,在俺们混元の另一面,还存在着一个暗混元空 间.”娄玄府主唏嘘说道.“鞠言大人,暗混元也有善王修行者吗?善王の数量多吗?”有人问道.“暗混元の善王数量,比俺们明混元,不知多了多少倍.暗混元有上万个国度,一个比较强の国家之中,善王级の修行者,怕都能超过俺们整个明混元の善王.”鞠言解释道.鞠言の话,让全场の善王 都非常震惊.“对啊!鞠言大人都说了,暗混元,从未有过大破灭发生.不像俺们明混元,一次次の破灭叠生.每次破灭,生灵几乎都全部覆膜.暗混元の强者,当然要比明混元更多更强了.俺们明混元,就是娄玄府主,修行の事间也不过才两个混元纪而已,暗混元却是不知存在多少个混元纪了.” 有人泛着羡慕の情绪说道.??感谢‘亮哥’一八八八书币打赏!?????(本章完)第三一七陆章不了解鞠言の实历暗混元の强者数量更多,呐大家都能理解.不过,暗混元那些最强の善王,如天庭大王那般,其实历究竟强到何种程度,呐就不是明混元の善王能够想象出来の了.在明混元,最强の善 王就是娄玄府主、一蒙善王.而娄玄府主、一蒙善王呐样の层次,放在暗混元之中,是混元无上级.可能比一般の混元无上稍强一些,但还比不上几个王国战申那个级数.至于与天庭大王相比,就更不可能了.“鞠言大人,你从暗混元归来,是否找到了办法,解决黑白河失衡の问题?”一名善王看 向鞠言,出声问道.当初鞠言进入黑白河查探,就是为了查找黑白河失衡の原因.“黑白河失衡の原因,俺大概已经清楚.至于如何彻底解决呐个问题,俺还需要一些事间.”鞠言道.“鞠言善王已经回来了,俺们混元空间,至少能多坚持一些事间了.”莫法善王开口说道.他说鞠言回来,能让混元 空间坚持更久一些不破灭.很明显,对于鞠言善王解决黑白河失衡问题,莫法善王没哪个信心.“莫法前辈所言极是,至少面对混鲲兽,不用再像之前那样只靠娄玄府主大人一个人了.”又有善王点头道.“鞠言大人,你刚刚从那个暗混元回来,是否需要休养一段事间?”石云善王也是鞠言の老 熟人,当初与鞠言一同对抗の问心善王.“不用,俺现在很好.”鞠言摆手.“娄玄前辈,现在黑白河の情况,可否与俺详细说说?”鞠言看向娄玄府主问道.娄玄府主点头,道:“黑白河,已近乎失控.俺们竭尽全历,也无法压制住黑色河水の膨胀.早期の事候,俺们预测混元还能够坚持上亿年の 事间,后来出现混鲲兽,加剧了混元空间の局面恶化.也就是你去暗混元之前,俺们预测混元空间可能只有几千万年事间,甚至只有千万年事间.然而,俺们还是太乐观了.”“黑白河の平衡被打破,是由于黑色河水强势,白色河水势弱.而随着黑色河水の膨胀,白色河水愈发の处于弱势.此消彼 长之下,恶化の速度,远超俺们の想象.”“俺估计,最多再有百万年事间,整个混元便会大破灭.”娄玄府主琛琛の呼出一口气.“尤其是现在……”“黑白河内,又出现了两头混鲲兽.一蒙道友,不惜自身受创,击伤了其中一头混鲲兽.但是,却根本不能将混鲲兽击杀.如果不能除掉混鲲兽,那 混元大破灭の到来,还会进一步の提前.”“鞠言,俺们现在首先要想办法,先杀死两头混鲲兽.”娄玄府主道.上一次,鞠言、娄玄府主和一蒙善王,联手斩杀了一头混鲲兽.而呐次,却有两头混鲲兽,哪怕三人再次联手,想杀死呐两头混鲲兽也没哪个希望,何况一蒙善王叠伤,短事间无历出手. 所以,娄玄府主难免の有些绝望,他也不知道该怎么应对了.现在,只能是走一步算一步,勉强の维持着局面.“鞠言善王,俺们是否能通过黑白河前往暗混元?你也说了,暗

1.3截一个几何体

1.3截一个几何体

正方形 长方形 梯形
正方体的截面形状归纳 形状
特殊情形
三角形 四边形 五边形























六边形
2.2 圆柱的截面
长方形
圆 形
椭 圆 形
拱形
圆柱的截பைடு நூலகம்形状归纳
长方 形
圆椭 形圆

拱形
2.3 圆锥的截面
2.4 球的截面
截面是圆
三、截面在生活中的意义
如考古领域的树轮定年、医学上的“虚拟人”、雷达 在地质勘探中的运用等。这一部分的知识除了高中 还要继续再学习外,也是工程与机械制图中的基础 知识。
树轮定年
现实生活中截面应用的 例子还有很多,如地质 剖面、CT等。
CT技术以射线作为无形的刀,按照医 生选定的方向,对病人的病灶作一系列平行 的截面,通过截面图像的解读,医生可以比 较精确地得出病灶大小和位置。
CT已经成为各大中医院必备的检查设 备。 CT技术的发明人A. M. 柯马赫 和 G. N. 洪斯菲尔德爵士因此获1979年诺贝尔 医学奖。
§1.3截一个几何体
一、几何体截面的定义
截面
用一个平面去截一个几何体, 截出的面叫做截面
二、常见几何体的截面
(1)正方体截面可能有 哪些形状?
2.1 正方体的截面
我们可以看到截面的形状是三角形
我们可以看到截面的形状是等腰三角形
我们可以看到截面的形状是等边三角形
截面:长方形
我们可以看到截面的形状是正方形

正方体截面总结(最全,适用于公务员图形推理)

正方体截面总结(最全,适用于公务员图形推理)

正方体截面的形状IIII II II 1 1 II II II II四边形:可能出现正方形、矩形、非矩形的平行四边形、菱形、梯形、等腰梯形不可能出现直角梯形y' J7 /\ /J-X z/F -\/<、H I ■亠*T〕结论如下:1可能出现的:锐角三角型、等边、等腰三角形,正方形、矩形、非矩形的平行四边形、梯形、等腰梯形、五边形、六边形、正六边形2、不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边正方体的截面形状:问题背景在家做饭时,切菜尤其是切豆腐时,发现截面有很多形状。

若用不同的截面去截一个正方体,得到的截面会有哪几种不同的形状?二:研究方法先进行猜想,再利用土豆和萝卜通过切割实验研究。

三:猜想及其他可能的证明:1.正方形:因为该立体几何图形是正方体,所以用从任意位置与该正方体上下底面平行的平面进行截取可以得到,或者和侧面平行进行截取,由下列图示证明:==》》》由图示可知,水平方向截取正方体,得到的截面为正方形。

由图示可知,竖直方向截取正方体,得到的截面为正方形。

2矩形:因为正方形也属于矩形,所以对正方形的证明同适用于矩形。

其次,当长宽不等的矩形截面的图示如下:==》》》由上图所示可知,按不同角度截取正方体可以得到矩形。

例如,正方体的六个对角面都是矩形。

3. 平行四边形:当平面与正方体的各面都不平行时,所得截面为平行四边形,图示如下:由上图所示可知,当截面不与正方体的各面平行时,所得截面可能为平行四边形。

4. 三角形:根据一定角度过正方体的三条棱进行截取可以得到三角形的截面,图示如下==》》》由上图可知,正方体可以截得三角形截面。

但一定是锐角三角形,包括等腰和等边三角形特别的,当截面刚好经过三个面的对角线时,所得的三角形截面为正三角形,图示如下:ClCl 111A,IK==》得到:正三棱锥5. 猜想之外的截面形状:(1)菱形:如下图所示,当A,B为所在棱的中点时,该截面为菱形:(2)梯形:如图所示,当按一定角度使截面在正方体的上下底面上所存在的线段长短有异时,所得截面可能是梯形:(3)五边形:如图所示,可以截得五边形截面:通过实践及资料查询可知,无法得到正五边形。

正方体截面总结(最全,适用于公务员图形推理)

正方体截面总结(最全,适用于公务员图形推理)

M / * B结论如下:1可能出现的:锐角三角型、等边、等腰三角形,正方形、矩形、边形、梯形、等腰梯形、五边形、六边形、正六边形2、不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、非矩形的平行四七边形或更多边正方体的截面形状一:问题背景在家做饭时,切菜尤其是切豆腐时,发现截面有很多形状。

若用不同的截面去截一个正方体,得到的截面会有哪几种不同的形状?二:研究方法先进行猜想,再利用土豆和萝卜通过切割实验研究。

三:猜想及其他可能的证明:1•正方形:因为该立体几何图形是正方体,所以用从任意位置与该正方体上下底面平行的平面进行截取可以得到,或者和侧面平行进行截取,由下列图示证明:由图示可知,水平方向截取正方体,得到的截面为正方形。

由图示可知,竖直方向截取正方体,得到的截面为正方形。

2矩形:因为正方形也属于矩形,所以对正方形的证明同适用于矩形。

其次,当长宽不等的矩形截面的图示如下: 由上图所示可知,按不同角度截取正方体可以得到矩形。

例如,正方体的六个对角面都是矩形。

3. 平行四边形:当平面与正方体的各面都不平行时,所得截面为平行四边形,图示如下:==》》》 ==》》》由上图所示可知,当截面不与正方体的各面平行时,所得截面可能为平行四边形。

4. 三角形:根据一定角度过正方体的三条棱进行截取可以得到三角形的截面,图示如下==》由上图可知,正方体可以截得三角形截面。

但一定是锐角三角形,包括等腰和等边三角形特别的,当截面刚好经过三个面的对角线时,所得的三角形截面为正三角形,图示如下:==》得到: 正三棱锥5. 猜想之外的截面形状:(1)菱形:如下图所示,当A,B 为所在棱的中点时,该截面为菱形:(2)梯形:如图所示,当按一定角度使截面在正方体的上下底面上所存在的线段长短有异时,所得截面可能是梯形:(3 )五边形:(4 )六边形:如图所示,可以截得六边形截面:==》》》如图所示,可以截得五边形截面:通过实践及资料查询可知,无法得到正五边形。

截一个几何体(课件)

截一个几何体(课件)
用平面截正方体, 当平面经过正方体 六个面时,所得截 面是六边形。
注意: 用一平面去截正方体,由 于正方体共有六个面,所 以截面不可能是七边形。
新知讲解
图1-16的中的样 的截面呢?
拓展提高
练习一:用一个平面去截一个圆柱体,不可能的截面是( D )。
拓展提高
练习六:图1是一个正六面体,把它按图2中所示方法切割,可以 得到一个正六边形的截面,则下列展开图中正确画出所有的切割 线的是( C )。
A、
B、
C、
D、
图1
图2
课堂总结
(1)用一个平面去截正方体,当平面经过正方体的三个面时,所得截 面的形状是三角形。锐角三角形或等腰三角形或等边三角形。其中等 边三角形的三个顶点是正方形的顶点。
图六
图七
图八
用一个平面去截正方体,当平面经过正方体的三个面时,所得截面 的形状是三角形。如图六的锐角三角形、图七的等腰三角形、图八 的等边三角形。其中等边三角形的三个顶点是正方形的顶点。
新知讲解
截面的形状还可 能是几边形呢?
图九
用平面截正方体, 当平面经过正方体 五个面时,所得截 面是五边形。
图十
图一
新知讲解
按图二、图三、图四的方式切截,那么得到的截面是长方形。
图二
图三
图四
新知讲解
按图五的方式切截,那么得到的截面是梯形。
图五
新知讲解
正方体各种截面动态图
新知讲解
用一个平面去截正方体,当平面经过正方体的四个面时,所得截面 可能是正方形,长方形或梯形。
图一
图二
图三
图四
图五
新知讲解
截面的形状可能 是三角形吗?
A、
B、
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正方体的截面形状
一:问题背景
在家做饭时,切菜尤其是切豆腐时,发现截面有很多形状。

若用不同的截面去截一个正方体,得到的截面会有哪几种不同的形状?
二:研究方法
先进行猜想,再利用土豆和萝卜通过切割实验研究。

三:猜想及其他可能的证明:
1.正方形:
因为该立体几何图形是正方体,所以用从任意位置与该正方体上下底面平行的平面进行截取可以得到,或者和侧面平行进行截取,由下列图示证明:
由图示可知,水平方向截取正方体,得到的截面为正方形。

由图示可知,竖直方向截取正方体,得到的截面为正方形。

2矩形:
因为正方形也属于矩形,所以对正方形的证明同适用于矩形。

其次,当长宽不等的矩形截面的图示如下:
由上图所示可知,按不同角度截取正方体可以得到矩形。

例如,正方体的六个对角面都是矩形
3.平行四边形:
当平面与正方体的各面都不平行时,所得截面为平行四边形,图示如下:
由上图所示可知,当截面不与正方体的各面平行时,所得截面可能为平行四边形。

4. 三角形:
根据一定角度过正方体的三条棱进行截取可以得到三角形的截面,图示如下
由上图可知,正方体可以截得三角形截面。

但一定是锐角三角形,包括等腰和等边三角形
特别的,当截面刚好经过三个面的对角线时,所得的三角形截面为正三角形,图示如下:
5. 猜想之外的截面形状:
(1)菱形:
如下图所示,当
A
(2)梯形:
如图所示,当按一定角度使截面在正方体的上下底面上所存在的线段长短有异时,所得截面可能是梯形:
==》
==》得到:
正三棱锥
(3 )五边形:
如图所示,可以截得五边形截面:
通过实践及资料查询可知,无法得到正五边形。

(4 )六边形:
如图所示,可以截得六边形截面:
拓展探究:1•正方体最大面积的截面三角形2.正方体最大面积的截面四边形3.最大面积的截面形状4.截面五边形、六边形性质i.正方体最大面积的截面三角形:
如该图所示可证明由三角面对角线构成的三角形
2.正方体最大面积的截面四边形:
通过猜想及查询资料可知,正方体截面可能得到的四边形有:正方形、矩形、梯形、平行四边形根据四边形的面积公式:面积=长R宽
联系正方体图形:
得到:当由两条平行的面对角线和两对平行棱构成的四边形的长最大, 又
因为在各个情况下的宽不变。

则由猜想得到:“最大面积的截面四边形:由两条平行的面对角线和两对平行棱构成的四边形。


3.最大面积的截面形状:
正方体的截面可以分为:三角形、正方形、梯形、矩形、平行四边形、五边形、六边形、正六边形。

其中三角形还分
为锐角三角型、等边、等腰三角形。

梯形分位非等腰梯形和等腰梯形。

首先比较三角形与五边形和六边形,所得这三种截面的情况有一共同特点:不能完整在该截面所在平面在正方体内所
截的范围的最大值,有部分空间空岀。

因此可以得到:最大面积一定是四边形。

所以最大面积的截面形状:即最大截面四边形(猜想)。

初步推断为如图所示的矩形:
4.截面五边形、六边形性质
通过课本及资料查询知:截面五边形:有两组边互相平行.截面六边形:三组对边平行的六边形
正方体的截面图
四:结论如下:
1、可能出现的:
锐角三角型、等边、等腰三角形,正方形、矩形、非矩形的平行四边形、非等腰梯形、等腰梯形、五边形、六边形、正六边形2、不可能出现:
钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形。

相关文档
最新文档