溢洪道水面线及挑流消能计算小程序
岸堤水库洪水预报及调洪演算软件使用说明书_图文(精)

岸堤水库雨洪资源解析使用说明书二〇一五年六月一日作者:文华:********:fblwh150@163.目录第一章概述 (3第二章功能简介 (5第一节功能特点 (5第二节软件画面 (6第三节运算功能 (7第四节气象云图及气象雷达 (13 第三章数学模型 (14第一节洪水模型 (141、瞬时单位线 (142、CAMMADIST函数语法 (153、CAMMADIST函数应用 (164、流域洪水错时叠加 (17第二节洪水传播 (18第三节泄量模型 (191、闸门出流 (192、推求水面线 (213、闸门泄量 (22第四节调洪演算 (22第五节控运案 (23第四章扩展性设计 (23第五章调洪实例 (29第六章课目攻关概况 (30第七章使用说明书 (31第一节洪水预报 (31第二节调洪演算 (33第三节其他计算 (33附件课题研发小组成员....................................................................... 错误!未定义书签。
第一章概述控制和预见洪水,让洪水变为一种资源,实现科学预见、动态管理、合理利用,是本课题的研究对象。
科学控制洪水,真正能够对洪水运用自如,其首要问题是准确解析、及时预报,掌握洪水动态。
但目前实际应用中,对水库防洪兴利控制运用,还仅限于依靠库水位的变化,结合下游河道的承受能力,试探性的调节洪水,这种洪水调整模式,具有较大的盲目性,理论面的支撑相对不足。
当前,各水库防汛主体单位,均制定了相应的《水库控制运用案》。
如岸堤水库防洪调度图(图1,但这些案的编制和批复仅表现为粗线条和原则性的界定,是在进行大量假定的基础上进行编制的,应用中的可操作性相对欠缺,在实践中仅具有指导意义。
(图1洪水调度控制案的编制,偏离实际应用,存在的突出问题,主要表现在以下几个面:1、假定了降雨的空间分配是均匀的,即整个流域降雨分布是均等的。
但实际降雨,特别是流域面积稍大的水库,降雨的空间分布几乎不可能是均等。
挑流消能(冲坑计算)

-0.821 -1.060
-1.636 -6.71578
0.0 -0.371
-0.755 -1.000
0 -6.1759
0.2 -0.300
-0.681 -0.919
1.636 -5.57058
0.4 -0.200
-0.586 -0.821
3.272 -4.79348
0.6 -0.075
0.8
0.075
1.5
0.18
0.22
1.6
0.20
0.23
1.7
0.22
0.24
1.8
0.25
0.26
1.9
0.27
0.27
2
0.30
0.28
2.1
0.33
0.29
2.2
0.36
0.30
2.3
0.39
0.31
2.4
0.42
0.33
2.5
0.46
0.34
2.6
0.49
0.35
2.7
0.53
0.36
2.8
0.56
0.37
-4.908 -7.5256
-0.4 -0.482
-0.930 -1.218
-3.272 -7.6074
-0.2 -0.440
-0.925 -1.244
-1.636 -7.5665
0.0 -0.383 0.2 -0.265
-0.779 -0.651
-1.103 -0.950
0 -6.37222 1.636 -5.32518
(2)、边界层计算方法
曲线h-L与曲线δ-L交点求Lk (3)、掺气水深hb=(1+ζ*v/100)*h,见冲坑计算
HEC-RAS 在溢洪道水面线计算中的应用

HEC-RAS 在溢洪道水面线计算中的应用摘要:HEC-RAS软件现普遍应用于河道水面线推求,但在中小型水库溢洪道水面线中应用较少。
现状中的有些溢洪道只设宽顶堰,直接采用现状山区河道作为泄槽,此类溢洪道水面线时传统方法计算较为不便。
本文通过工程实例利用HEC-RAS软件计算水面,该软件计算溢洪道水面线高效精确,同时还能获得横断面形态图、流量及水位过程曲线、复式河道三维断面图等结果,所以可在设计中应用。
关键词:HEC-RAS;溢洪道;水面线前言:HEC-RAS可建立河道稳定和非稳定流一维水力水力分析模型,普遍用于河道水面线推求。
但在溢洪道计算中尚未普遍应用。
传统溢洪道水面线计算主要根据一维能量方程,利用逐段求水深法,计算思路是先给定个断面位置,再冲控制断面出发逐个计算出下一个断面的水深。
但是现状水库安全评价中,发现有些溢洪道只设宽顶堰,直接采用现状山区河道作为泄槽,在这种情况下利用传统方法,不仅需要大量试算,而且计算不准确,但采用HEC-RAS只需输入断面,设好参数,就可以得出水面线,为设计节省大量时间。
1 HEC-RAS软件简介HEC-RAS是由美国陆军工程兵团水文工程中心开发的水面线计算软件包。
HEC-RAS适用于河道稳定和非稳定流一维水力计算,其功能强大,可进行各种涉水建筑物(如桥梁、涵洞、防洪堤、堰、水库、块状阻水建筑物等)的水面线分析计算。
计算溢洪道水面线会用到HEC-RAS软件中的恒定流计算。
HEC-RAS软件计算原理基于一维能量方程,逐断面采用直接步进法推求,对急流缓流和临界流3种流态就行水面线计算。
能量方程:式中:Z1、Z2分别为下断面和上断面的水位高程;α1、α2为下断面和上断面的流速系数;V1、V2为下断面和上断面的流速;g为重力加速度;hf、hj为上下游断面之间的沿程水头损失和局部水头损失。
2 工程实例某水库为小(2)型水库,工程等别为Ⅴ等,主要建筑物为5级。
水库防洪标准为20年洪水设计、300年洪水校核。
溢洪道设计——精选推荐

溢洪道设计5.3溢洪道加固设计5.3.1溢洪道的现状及存在问题某⽔库的溢洪道为侧槽式溢洪道,位于⼤坝的左侧,总长度280 m,由溢流堰、侧槽、渐变段、泄槽、挑流消能⼯等部分组成。
溢流堰呈L型布置,为克—奥型⾮真空实⽤堰,堰顶⾼程282.5 m,其中侧堰长70 m,端堰长5 m。
侧槽的起始底宽为5m,沿程线性扩⼤⾄25m,通过渐变段缩窄为17 m后与泄槽衔接。
根据地形条件,泄槽采⽤变纵坡的陡渠,两级纵坡分别为i=1/30与1/10。
挑流⿐坎段长10 m,宽17 m,其反弧曲率半径为19.5m,挑射⾓25°。
各段均为梯形断⾯,侧墙的边坡系数m=0.25。
该溢洪道在开挖施⼯的过程中,由于深切⽅于1977年11⽉造成左岸⼭体⼤规模滑坡,为了就近处理⼟⽯⽅,临时修改了⼤坝的设计断⾯。
溢洪道于1987年⾸次溢洪,过⽔深0.16 m。
1988年9⽉3⽇当溢洪⽔深达0.62 m时,挑流⽔⾆直接冲刷左侧下游的⼭体,再次引起滑坡,下滑的泥⽯流淤塞河床,导致⼤坝坝脚长期渍⽔,威胁⽔库的安全,且呈逐年加剧之势。
⽬前,溢洪道存在的主要安全隐患如下:a)溢洪道的基础为元古界板溪群粉砂质、泥质板岩,岩⽯破碎,节理裂隙发育,堰体及基础长期漏⽔,且溢洪道的排⽔系统也已堵塞失效。
库⽔通过渗漏通道直接作⽤在底板下,使底板在泄洪时承受过⾼的扬压⼒,导致底板与基础之间产⽣接触冲刷,底板以下⼤⾯积被掏空,危及溢洪道的安全运⾏。
b)虽然对左岸滑坡体进⾏了加固,但由于资⾦不⾜,处理不够彻底。
⽬前,两个滑坡体均处于临滑的状态,左岸的滑坡体有蠕动的迹象,使溢洪道侧墙开裂,尤其是靠近滑坡体的左侧墙,纵横裂缝已达15条之多。
继续发展下去,如果两个滑坡的侧翼相连,有可能诱发更⼤规模的滑坡。
c)溢洪道⿐坎以下的消能措施不⼒,滑坡体基脚及护岸挡⼟墙遭挑流⽔⾆的冲刷,使下游沟⾕的⽔⼟流失现象加剧,且河床中堆积的岩渣未作任何处理,渍⽔危及⼤坝的安全。
福建省小(2)型水库大坝(坝高15m以下)安全评价报告编制导则

福建省小(2)型水库大坝(坝高15m以下)之马矢奏春创作平安评价陈述编制导则(试行)福建省水利厅二○一三年十一月前言水利部《水库大坝平安评价导则》适用于1、2、3级大坝,一般小型水库4级以下的坝可参照执行。
在实际工作中,各地水利部分及评价单位普遍反映,坝高15米以下的小(2)型水库大坝参照《水库大坝平安评价导则》编制评价陈述,内容多、编制时间长、安鉴工作进度慢。
省水利厅为了适应工作需要,与《水库大坝平安评价导则》相衔接,适当简化平安评价内容,提高可操纵性,决定组织编制《福建省小(2)型水库(坝高15米以下)大坝平安评价陈述编制导则(试行)》。
2013年5月,编制单位编制完成导则初稿;2013年6月6日,省水利厅在福州主持召开《福建省小(2)型水库大坝平安评价陈述编制导则(征求意见稿)》评审会,厅建管处、厅项目评审中心、编制单位以及特邀专家介入评审会; 2013年6月14日省水利厅以闽水建管函〔2013〕24号文向各设区市水利局征求意见;随后编制单位根据各设区市水利局反馈的意见及建议,对导则进行修编完善。
本导则根据我省小型水库的特点,依照“可以简化就简化,不宜简化则保存”的原则,保存《水库大坝平安评价导则》中防洪尺度复核、渗流平安评价及结构平安评价等主要平安性评价内容,明确和简化以下内容:一、明确平安评价陈述的编制格式、章节、附表及附图。
简化平安评价陈述章节,非平安性评价的章节予以合并、简化或删减,内容相近的平安性评价章节进行合并。
二、简化地质勘察工作。
部颁导则对地质勘察的提法为“可根据需要对建筑物或坝基岩层进行弥补勘探、试验或原位测试检查”,本导则改为“已有地质资料或地质构造较简单的水库,可简化地质勘察工作或由地质人员进行查勘,提出地质陈述”。
三、评价内容及尺度具体化。
明确各专项平安性具体分级尺度和原则,明确具体的现场平安检查项目,明确工程渗流性态平安性的判断尺度,明确大坝变形隐患是否危及大坝平安的判断尺度等。
岸边溢洪道设计[详细]
![岸边溢洪道设计[详细]](https://img.taocdn.com/s3/m/383645a35f0e7cd1842536de.png)
岸边溢洪道设计6.3.1溢洪道说明溢洪道其主要任务是泄洪,土石坝不允许水过坝顶,需要专门修建泄洪建筑物.根据本工程的地形条件,上游坝址左岸沿河流方向有一道呈现弧形的纵向凹槽,所以选择溢洪道设置在大坝左岸,为带胸墙孔口式岸边溢洪道.溢洪道由引渠段、 堰闸段、 泄槽段、 挑流鼻坎段组成. 6.3.2 溢洪道引水渠为了 使水流平缓,减小或不发生漩涡和翻滚现象,进口采用喇叭口,进口宽度 B=50米.设计流速4米/s,横断面在岩基上接近矩形,边坡根据稳定要求确定这里选择边坡坡度 为1:0.5;采用梯形断面,进水渠的纵断面做成平底.在靠近溢流堰前断区,由于流速较大,为了 防止冲刷和减少水头损失,可采用混泥土护面厚度 为0.5米. 6.3.3 控制段控制段包括溢流堰及两侧连接建筑物,溢流堰通常可以选择宽顶堰、实用堰、驼峰堰. 溢流堰的体形应尽量满足增大流量系数,溢流堰作用是控制泄流能力,本次设计采用实用堰,优点是流量大,在相同的泄流条件下需要的堰流前缘长,工程量小.采用弧形闸门.初步拟定堰顶高程H=设计洪水位—堰顶最大泄水位H 0 堰顶高程H=1838=1858.22—H 0,则H 0=20.22米 胸墙式孔口溢流堰形式的下泄流量Q 公式为:320=Q ε溢式中:ε ——闸墩侧收缩系数,0.9; 米——流量系数,0.48:; g ——重力加速度 ,9.81 2m/s ;B ——堰宽,12米;水位为设计洪水位1858.22米时,堰顶高程1838米,设计Q 溢=4645米3/s.则由上面公式计算得出的B=26.69米,取B=14米.计算取b=28米,孔口数2孔,弧形工作闸门取值14x19米(宽x 高).中墩厚3米,边墩宽1米,闸室宽度 =14x2+3+2x1=33米. 堰面曲线的确定开敞式堰面曲线,幂曲线按式(7-2)计算:1n n d x KH y -= (7-2)式中 Hd ——堰面曲线定型设计水头,对于上游堰高P1≥1.33Hd 的高堰,取Hd=(0.75~0.95)H 米ax,对于P1<1.33Hd 的低堰,取Hd=(0.65~0.85)H 米ax,H 米ax 为校核流量下的堰上水头. x 、y ——原点下游堰面曲线横、纵坐标; n ——与上游堰坡有关的指数,见表A.1.1;k ——当p1/Hd>1.0 时,k 值见表A.1.1,当P1/Hd ≤1.0 时,取k=2.0~2.2.本次设计Hd=0.8H 米ax=0.8x24.45=19.56米,P1=Hd=19.56=19.56,则引水渠底板高程为1818.44米.p2=0.6Hd~1.33Hd=18米.根据表A.1.1 确定堰面参数值:因为P1/.Hd=1,所以取K=2.2;其中n=1.85,R1=0.5Hd,a=0.175 Hd,R2=0.2 Hd,b=0.282 Hd.即公式1n n dx KH y -== 1.850.852.219.56x y =⨯ 可以得出 1.8527.55x y =上游段曲线采用三圆弧法,圆弧半径为:R 1=0.5H d =9.78米,R 2=0.2H d =3.912米,R 3=0.04H d =0.7824米.对应的水平范围为L 1=0.175 H d =3.432米,L 2=0.276 H d =5.40米,L 3=0.282 H d =5.52米.闸墩顶部高程=校核水位+安全超高=1862.55+0.41862.95米.图7-1控制段曲线图衔接面计算:1.直线段和堰面曲线切点xc,yc 确定.对 1.8527.55x y =求导,坡率为1:0.65,x=10.64,y=2.88.7.4.2.2泄流能力计算开敞式幂曲线WES 实用堰的泄流能力320m Q C δε= (7-6) 式中:Q——流量,米3/s;B ——溢流堰总净宽,米,定义B =nb ; b ——单孔宽度 ,米;C ——上游坡度 影响系数,上游铅直,C=1; H 0——堰上水头,米; 米——流量系数,取0.5; ε——收缩影响系数,取0.9;m δ——淹没系数,取1.33322110.90.52820.225074/m Q C m sδε==⨯⨯⨯⨯=5074>4645 米3/s (设计洪水情况,满足要求).7.5 泄槽设计正槽溢洪道在溢流堰后多用泄槽与消能防冲设施相连接,以便将过堰洪水安全泄向下游河道.河岸溢洪道的落差主要集中在这段.泄槽坡度 常大于临界坡度 ,所以又叫做陡槽.泄槽横断面宜采用矩形断面.当结合岩石开挖采用梯形断面时,边坡不宜缓于1︰1.5,并应注意由此引起的流速不均匀问题. 7.5.1 泄槽的平面布置及纵、横剖面泄槽在平面上应尽可能的采用直线、等宽对称布置.可以让水流平顺流入下游,而且这样结构简单,便于施工.实际中可以设置收缩短,减少工程开挖量和衬砌.出口设置扩散段减少单宽流量,有益于消能防冲,减少对河道的侵蚀.泄槽纵剖面设计主要是决定纵坡.泄槽纵坡必须保证泄槽中的水位不影响溢流堰自由泄流和在槽中不发生水跃,水流始终处于急流状态.所以纵剖i 必须大于临界坡度 ic,此种情况下,泄槽起点的水深等于临界hc,矩形泄槽ic 和hc 值如下:2c g Li ac B=⨯ (7-7)c h = (7-8)上式中:C —谢才系数,161C R n=•其中R 为水力半径(米),n-为粗糙系数,对于混凝土n=0.014~0.016; g —重力加速度 ,g=9.81米/s2; α—流速分布系数,取α=1.0; L —泄槽横断面湿周,米; B —水面宽度 ,米; q —单宽流量,米3/s. 泄水槽宽度 为:L=2×14+3+2×1=33米 单宽流量为:q=Q/B=7136/33=216.24米3/s临界水深:16.83c h m ===临界水力半径为:116616.83287.642216.8328117.64100.240.014c c c h B R mh B C R n ⨯===+⨯+=•=⨯=229.81330.00151100.2428c g L i ac B ⨯=⨯==⨯⨯ 由公式:213222423AQ R i nQ n i A R=•=采用混凝土护面n=0.014,h=hc 故 222244223371360.0140.003(2816.83)7.46Q ni A R ⨯===⨯⨯大于临界坡度 ,泄水槽内水流为明槽恒定急变流.为了 减小工程量,泄槽沿程可随地形、地质边坡,但变坡次数不宜过多,而且在两种坡度 连接处,要用平滑曲线连接,以免在变坡处发生水流脱离边壁引起负压或空蚀.,当坡度 由陡变缓时,需用反弧连接,流速大时宜选用较大值.边坡位置应尽量与泄槽在平面上的变化错开,尤其不要在扩散段变坡,泄槽变坡处易遭动水压力破坏.常用的纵坡为1%~5%,有时可达10%~15%,此工程地基为坚硬的岩基,可以陡些,取泄槽纵坡为5%;泄槽的横剖面,在岩基上接近矩形,以使水流分布均匀,有利于下游消能.7.5.1.2试算槽内正常水深h 的计算(坝下游收缩断面水深) 根据《水力学》(公式10-5)可知2132A Q R i n= i=0.05 可以得出试算表表7-5hc 试算结果Q 0 2942 4596.8 6459.2 6655.37 6853.1 7052.55 7253.558所以,下游反弧段断面正常水深hc=5.4米,泄槽起始底板高程为1822.7米. 根据《水工建筑物》溢洪道的相关设计要求,反弧半径可采用(3~6)h(h 为校核洪水位闸门全开时反弧最低点的水深),反弧R=(28.5~57),取40米 ,.圆心角=43.32°.7.5.1.3 推算水面曲线泄槽水面线由能量方程,用分段求和法计算:2222112112cos cos 22V V h h g g L i jααθθ-⎡⎤⎛⎫⎛⎫+-+⎢⎥⎪ ⎪⎝⎭⎝⎭⎣⎦=- (7-13) 2243n VJ R =(7-14)式中:12L -—分段长度 米;h1、h2分段始末断面水深米; a1,a2,—流速分布不均匀系数取1.05;V1、V2—分段始末断面平均流速米/s; θ —泄槽底坡角度 i=tg θ ,θ=3°; J —分段内平均摩阻坡降;n —泄槽糙率系数n=0.014;V —分段平均流速米/s;R —分段平均水力半径米.在水位情校核况下计算h1,取溢流堰末端断面为开始计算断面,高程为:1822.7米, 校核洪水位到该断面的水位差为: 1862.45-1822.7=39.75米20.929.8139.725.1m/s Vc gh ==⨯⨯=17136h 8.623325.1c Q m BV ===⨯由溢洪道所处地形条件可知,溢洪道泄槽变坡断面处距离上游控制断面接近234.5米,由推算结果可知溢洪道进口处断面水深为8.7米,流速为24.9米/s;泄槽变坡处断面水深为7.7米,流速为28.1米/s.7.5.3 掺气减蚀水流沿泄槽下泄,流速沿程增大,水深沿程减小,即水流的空化数沿程递减,经过一段流程之后,就会产生水流空化现象.空化水流到达高压区,因空泡溃灭而使泄槽壁遭受空蚀破坏,抗空蚀措施有:掺气减蚀、优化体形、控制溢流表面的不平整度 和采用抗空蚀材料等.工程实践表明,临近固体边壁水流掺气,有利于减蚀和免蚀.掺气减蚀的机理很复杂,水流掺气可以使过水边界上局部负压消除或减轻,有助于制止空蚀的发生,空穴内含有一定量空气成为含气型空穴,溃灭时破坏力较弱;过水边界附近水流掺气,气泡对空穴溃灭的破坏力起一定的缓冲气垫作用.掺气设施主要包括两个部分:一是借助于低挑坎、跌坎或掺气槽,在射流下面形成一个掺气空间的装置;一是通气系统,为射流下面的掺气空间补给空气.掺气装置的主要类型有掺气槽式、挑坎式、跌坎式、挑坎与掺气槽联合式、跌坎与掺气槽联合式、此外还有突扩式和分流墩式等,该工程选择挑坎与掺气槽联合式,其水流流态比其他的几种较好.在掺气装置中,通过改变坎的形式和尺寸,可以改变射流下面掺气空间的范围,从而达到控制空气和水混合浓度的目的.挑坎高度为0.2米,挑角为7°,挑坎斜面坡度为1/10.跌坎高度一般在0.6米.由于地形原因,需要进行一次变坡.由缓坡变陡坡i=0.14.中间可以用抛物线连接.抛物线方程按公式:22tan(4cos)Oxy xk Hθθ=+式中:x,y:抛物线横纵坐标,泄槽末端为原点;θ为上端坡角;k:落差系数取k=1.3H:抛物线起始断面的比能;其中H按照公式计算H=h+av2/2g;h:抛物线起始断面的水深;v:抛物线起始断面的平均流速,米/s;a:动能修正系数,可以近似取1.y=0.05x+0.00495x2,推出关于x,y的曲线坐标值表7-3曲线坐标值推算表V 28.1 28.8 30.0 31.8 33.3 34.9C 94.2 93.9 93.4 92.8 92.3 91.8J 0.018 0.019 0.022 0.026 0.030 Es 47.9 49.9 53.2 58.4 63.0 68.3 ΔE 2.0 3.3 5.2 4.6 5.3 i-J 0.1224 0.1206 0.1176 0.1139 0.1101 ΔS(米) 16.1 27.4 44.0 40.1 48.1S总(米) 16.1 43.6 87.6 127.7 175.8溢洪道变坡进口断面的水深难为7.5米,流速28.8米/s,出口水深为6.2米.流速34.9米/s.7.5.4 边墙高度确定因为水流为急流,水深沿程下降,考虑摻气水深h b=(1+ζV/100)h安全加高取1米.,进口断面处边墙高度h=A+h bh b=(1+ζV/100)h+1=(1+1.2×24.9/100)×8.7+1=13米出口断面处边墙高度h=A+h bh b=(1+ζV/100)h+1=(1+1.2×28.1/100)×7.7 +1=12米h b=(1+ζV/100)h+1= (1+1.2×34.9/100) ×6.2+1=10米最终取边墙厚度取2.5米.7.5.5 泄槽的衬砌为了保护地基不受冲刷,岩石不受风化,泄水槽一定要做衬砌.对衬砌的要求如下:表面要光滑平整,以防止产生负压和空蚀;分缝止水可靠,以避免高速水流侵入底板以下,产生脉动压力引起破坏;排水系统要通畅,以减小底板扬压力.衬砌材料要能抵抗空蚀和冲刷,寒冷地区还应有一定的抗冻性.本溢洪道为Ⅱ级溢洪道,采用混凝土衬砌.混凝土的抗空蚀能力强,随其抗压强度增加而增加,因此容易产生空蚀的部位应采用高强度混凝土.衬砌厚度取0.4米.为了适应混凝土的变形,需要设置纵横分缝,缝距为10~15米取20米.泄水槽两侧的边墙横缝布置一般与底板一致,本身不设纵缝,多在边墙接近的底板上设纵缝. 衬砌纵横缝下必须设置排水沟,且相互连通,渗水由横向排水沟集中到纵向排水沟内排向下游,管周围填满1~2厘米的卵砾石.7.6 溢洪道消能设计从河岸溢洪道下泄的水流流速高、能量大,必须进行有效的消能,以避免冲刷下游河床和坝脚,危急工程安全.消能方式常用挑流和底流两种.在土基或破碎软弱岩基上的溢洪道,一般采用底流消能.但对泄流较小的,也可考虑采用挑流消能.本设计,考虑采用挑流消能.消能计算的目的是主要确定挑流射程和冲坑深度,并且确定冲刷坑是否危急主体建筑物的安全. 挑流消能反弧半径R 一般为(6~10)h ,h 为挑流鼻坎反弧最低点水深,近似取6.2米,R 取6h ≈38米 挑角为40度 .鼻坎顶高程=1797米.挑距:2111sin cos cos L v v g θθ⎡=+⎣式中 L ——自挑流鼻坎末端算起至下游河床床面的挑流水舌外缘挑距,米;θ——挑流水舌水面出射角,近似可取用鼻坎挑角,(°); h 1——挑流鼻坎末端法向水深,5米;h 2——鼻坎坎顶至下游河床高程差,米,如计算冲刷坑最深点距鼻坎的距离,该值可采用坎顶至冲坑最深点高程差;v 1——鼻坎坎顶水面流速,米/s ,可按鼻坎处平均流速v 的1.1 倍计.V1=1.1x28.1=38.3米/s;L=147.2米. 冲坑最大深度 为0.50.25t Kq H = 式(7-22)坎顶单宽流量q=Q/b =7136/33=216.24米/s H=1862.45-1795=67.45米 10.50.250.2521.1216.2467.4546.35t Kq Hm ==⨯⨯=为了 保证泄水建筑物不允许受冲坑影响,挑流消能设计应满足以下要求:2/4~5L t H -> (7-23)式中: H2——下游水深2/()147.2/46.3511 4.24L t H -=-=> 满足要求.8.1地基处理的主要要求地基处理的主要要求是:①控制渗流,减小渗流比降,避免管涌等有害的渗流变形,控制渗流量;②保持坝身和坝基的静力和动力稳定,不产生过大的有害变形,不发生明显的不均匀沉降,竣工后,坝基和坝体的总沉降量一般不宜大于坝高的1%;③在保证坝安全运行的条件下节省投资. 8.2地基的处理在坝趾处河床砂卵石覆盖层平均厚度 5—7米,出露岩性为大红峪组石英砂岩与板状粉细砂岩互层,岩石坚硬、构造简单、渗透性小.右岸已查明的小段层有6-7条,软弱夹层有13条;左岸山坡平缓,覆盖着31米厚的山麓堆积物,有断层一条.河床坝基岩石构造较为发育,开挖揭露出断层40余条,其中相对较大的有10多条.因此,在坝趾处开挖7米将河床砂卵石覆盖层清除并使河床平整并设置齿槽,对于较小的断层用用化学材料灌浆或做混凝土塞,对于较大的断层进行开挖回填混凝土处理.8.3岸坡的处理土坝的岸坡应清理为缓变的坡面,开挖边坡不宜太陡.岩石岸坡不宜陡于1:0.5~1:0.75.土坝岸坡不陡于1:1.5砂砾石坝壳部位的岸坡以维持自身岸坡稳定为原则.8.3帷幕灌浆帷幕深度是根据相对不透水层的位置确定的.按《碾压式土石坝设计规范》(SL274-2001)要求,相对不透水层是按羽容值确定的.对 1 级坝相对不透水层为3~5 Lu,但考虑到黑河工程为供水工程,应尽量减少水库渗漏量,故相对不透水层按3 Lu 控制.根据灌浆试验和规范要求确定在坝基设两排帷幕孔,排距2 米,孔距2. 5 米.帷幕的厚度为排距再加0.6~0.7倍的孔距,设计为3. 6 米,全长645米,帷幕深度标准控制为单位吸水率≤3 Lu,初步确定灌浆孔深为42~68米.由于坝基1770.07米高程以下有一厚达20~30米的相对隔水层,因此帷幕下限不超过440米,左右岸坡帷幕应与地下水位衔接,左岸地下水位埋深70米左右,右岸地下水位埋深近80米.左岸坝肩为单排帷幕,帷幕长60米,向左接古河道防渗灌浆灌浆.右岸坝肩为单排帷幕,帷幕长163米.。
HEC_RAS在溢洪道水面线计算中的应用_侯艳

HEC -RAS 在溢洪道水面线计算中的应用侯艳,王龙(四川远河水利规划设计咨询有限公司,四川成都 610041)摘 要:HEC -RA S 软件是一款在国内外河道水面线计算中广泛运用的软件,但是在中小型水库溢洪道水面线计算中应用较少。
通过工程实例将HEC -R AS 计算结果与传统水面线计算结果相比较,该软件计算溢洪道水面线既省时又精确,还可获得流速、水头等其它结果,所以可在今后的设计中推广应用。
关键词:HEC -RA S ;溢洪道;水面线;逐段求水深中图分类号:TV651.1;TV131.4 文献标识码:A 文章编号:1006-3951(2012)04-0033-03DOI :10.3969 j .is sn .1006-3951.2012.04.010Application of HEC -RAS to Calculation ofWater Surface Profile of a SpillwayHOU Yan ,W ANG Long(Sichuan Yuanhe Hydro Planning and Design Consulting Co .,Ltd .,Chengdu 610041,Sichuan ,China )A bstract :HEC -R AS is a software which has widely been used in calculation of river channel water surface profiles at home and abroad ,but not in calculation of spillway water surface profiles for medium and small size water reservoirs .The comparison made between the HEC -R AS based calculation results and the traditional water surface profile calculation re -sults for the practical engineering projects sho ws that the calculation of spillway water surface profiles using HE C -R AS software is quicker and more precise ,and in addition more results such as flow velocity and water head could be ob -tained .Therefore it can be spread and used in the future design .Key words :HEC -R AS ;Spill w ay ;water surface profile ;water depth calculation in sections0 前言HEC -RAS 是一款可以完成一维恒定流和非恒定流的河道水力计算软件,在国内外河道水面线推算中已得到广泛应用。
溢洪道消能问题及水工模型试验方法研究

溢洪道消能问题及水工模型试验方法研究赵津霆【摘要】Spillway is the important facility to ensure the flood carrying capacity of the reservoir. High speed flow from the spillway has a strong impact force, therefore the energy dissipation problems have attracted extensive attention. In this paper, it introduced several common energy dissipation methods in the project at present, and expounded the theoretical basis of experimental study with hydraulic model so as to put forward some references for the research on the problems of spillway energy dissipation.%溢洪道是保证水库泄洪能力的重要设施,因其泄下的高速水流具有很强的冲击力,所以其消能问题备受关注。
介绍目前工程中常用的几种消能方法,阐述利用水工模型进行试验研究的理论基础,以期为溢洪道消能问题的研究提供参考。
【期刊名称】《农业科技与装备》【年(卷),期】2016(000)004【总页数】3页(P53-54,57)【关键词】溢洪道;泄流;消能;模型试验【作者】赵津霆【作者单位】辽宁水利职业学院,沈阳 110122【正文语种】中文【中图分类】TV653改革开放以来,我国不仅在经济建设方面成绩卓著,更在水利工程方面进行了大刀阔斧的改革。
水电站、中小型水库、城市人工河道、橡胶坝、拦河闸等已经成为一些城市中重要的水工建筑物,其不仅承担供水及防洪任务,还发挥了一定的美化城市作用。
基于FLUENT软件的溢洪道三维泄流数值模拟

广西水利水电GUANGXI WATER RESOURCES &HYDROPOWER ENGINEERING 2018(4)[收稿日期]2018-03-20[作者简介]任庆钰(1987-),男,贵州毕节人,贵州省水利水电勘测设计研究院工程师,硕士,主要从事水利水电工程设计工作。
·试验研究·Fluent 软件具有20多年的发展历史,在航空航天、能源、汽车、化工、石油等领域得到了广泛的应用,是目前全球最高效、最精确和功能最强大的计算流体力学商用软件。
近年来,Fluent 软件在水利水电工程中的运用逐渐得到普及[1]。
本文基于Fluent 软件对某水库溢洪道进行三维水流数值模拟,并与物理模式试验结果进行对比,提出溢洪道三维水流数值模拟方法,该方法对于计算溢洪道沿程水面线、溢洪道泄流能力、动水压力及挑流长度效果较好。
1工程概况嘎醉河水库位于贵州省黔东南州凯里市舟溪镇东约1km 的鸭塘河上,距凯里市直线距离约11km ,距贵州省会贵阳公路里程约204km 。
工程建设的主要任务为城市供水,总库容1961万m 3,属Ⅲ等工程,水库为中型水库,年城镇供水量1720万m 3。
坝址正常蓄水位740.0m ,相应库容1961万m 3,面板堆石坝方案校核洪水位为742.74m (P =0.1%),总库容为1961万m 3。
取水隧洞设计引用流量0.68m 3/s 。
根据《水利水电工程等级划分及洪水标准》(SL252-2000)规定,该工程规模属中型,工程等别为III 等,永久性主要建筑物大坝为2级建筑物(坝高超过70m ),溢洪道、取水兼放空隧洞及泵站为3级建筑物。
2数学模型2.1控制方程[2](1)连续性方程:∂U i∂X i=0(1)(2)动量方程:U i ∂t +U j ∂U i ∂X j =-1ρ∂P ∂X i +∂∂X j ()ν∂U i ∂X j-----u i u j +1ρF i (2)(3)k 方程:∂k ∂t +U j ∂k ∂X j =∂∂X j éëêùûú()ν+νt σk ⋅∂k ∂X j +G -ε(3)(4)ε方程:∂ε∂t +U j ∂ε∂X j =∂∂X j éëêùûú()ν+νt σε⋅∂ε∂X j +C 1εεk G -C 2εε2k(4)2.2计算方法及边界条件采用标准k —ε两方程紊流模型计算,在计算域中采用有限体积法进行控制方程的离散。
溢洪道

2.4 溢洪道设计和计算根据中华人民共和国行业标准《溢洪道设计规范》(SL253—2000)(该规范适用于大、中型水利水电工程中岩基上的1、2、3级河岸式溢洪道),对溢洪道进行计算和设计。
该工程中,河岸式溢洪道由进水渠、控制段、泄槽、消能防冲段及出水渠组成。
2.4.1 进水渠和控制段的设计2.4.1.1 溢洪道的水力计算由正常、设计、校核洪水位时所对应的下泄流量查坝址(厂址)水位流量关系曲线可得出相应的下游水位,并与上游水位相减得出上下游水头差,并以此列表。
表4、溢洪道水力计算成果表2.4.1.2控制段的设计控制段包括溢流堰及两侧连接建筑物。
堰型可选用开敞式或带胸墙孔口式的实用堰、宽顶堰、驼峰堰等型式。
开敞式溢流堰有较大的超泄能力,宜优先选用。
宽顶堰结构构简单,施工方便,但流量系数低故不选用。
实用堰需要的溢流前缘较短,工程量相对较小,但施工较复杂也不选用,而驼峰堰的堰体低,流量系数较大,设计与施工简便,对地基要求低,所以工程设计中采用驼峰堰,并且在两侧设置边墙。
2.4.1.3 控制段的计算采用的驼峰堰为低堰,且开敞式堰面,根据《溢洪道设计规范》(SL253—2000)中,对于1 1.33d P H <的低堰,堰面曲线定型设计水头max (0.650.85)d H H =,则选用中间值0.75,其中max H 为校核流量下的堰上水头(校核水位与堰顶水头之差)为12.42m ,最后得出设计水头d H 为9.315m 。
根据《溢洪道设计规范》中驼峰堰堰面曲线图((A.1.5)驼峰堰剖面示意图)及表((A.1.5)驼峰堰体型参数),选用a 型,得出了该工程中驼峰堰的剖面尺寸。
表5、驼峰堰的剖面尺寸示意图且得到堰底高程,即堰顶高程与上游堰高之差,为122m —2.24m=119.76m 。
2.4.1.4进水渠的设计图2 驼峰堰剖面示意图根据《溢洪道设计规范》(SL253—2000),进水渠的布置应依照下列原则:选择有利的地形、地质条件;在选择轴线方向时,应使进水顺畅;进水渠较长时,宜在控制段之前设置渐变段,其长度视流速等条件确定,不宜小于2倍堰前水;渠道需转弯时,轴线的转弯半径不宜小于4倍渠底宽度,弯道至控制堰(闸)之间且有长度不小于2倍堰上水头的直线段。
册田水库正常溢洪道水力计算

后的正常溢洪道进行水力计算的复核,计算出的侧墙高度均低于除险加固后实际的侧墙高度,满足现行规范要求,能保
证水库的安全运行。
[关键词]除险加固;溢洪道;水力计算;册田水库
[中图分类号]TV131.4
[文献标识码]C
[文章编号]1004-7042(2019)04-0039-02
1 工程概况 册田水库位于山西省大同县境内,属海河流域,
册田水库工程于1958年开始修建,1970年进行二 期扩建工程,至1976年完成了土坝和正常溢洪道的施 工,扩建后坝顶高程达到961.5 m,最大坝高为41.5 m。 水库工程属大(二)型,工程等别为域等,主要建筑物 大坝、正常溢洪道、非常溢洪道均为2级。由于运行多 年,水库各建筑物存在诸多问题,不满足现行规范和 运行要求,需要对册田水库进行除险加固。 2 除险加固后正常溢洪道的情况
溢洪道是洪水期间保证水库安全的重要建筑物, 当水库水位超过安全限度时,水从溢洪道向下游泄 出。因此,正常溢洪道的除险加固,是册田水库除险加 固的重要部分。
水库设计洪水位957.57 m时,正常溢洪道的泄量 为1 659 m3/s;校核洪水位960.04 m时,正常溢洪道的 泄量为1 859 m3/s。正常溢洪道泄槽泄流能力演算,按 校核洪水位及其泄量进行。
4
0-055—0+002
0.028 6
5.8
5
0+002—0+200
0.000 3
5.8
泄槽段
6
0+200耀0+250
7 0+250—0+346.7
8 0+346.7—0+381.7
0.004 0.023 8
5.8耀5.53 5.53耀5.0 5.0耀3.5
210973344_溢洪道除险加固工程处理分析

DOI:10.16661/ki.1672-3791.2207-5042-3263溢洪道除险加固工程处理分析陈忠润1李英1梅德波2(1.云南能源职业技术学院 云南曲靖 655001; 2.云南省水利水电勘测设计研究院 云南昆明 655000)摘要:溢洪道是水工构筑物,有了溢洪道就可以有效避免大坝被洪水冲毁,是一种防洪设备,多数情况下溢洪道修建在水坝的一侧,就如一个比较大的水槽,当洪水期流量很大,使大坝的水位升高,超过防洪设计水位时,水就通过溢洪道向下游流出。
溢洪道常见的问题有:进口左右边墙产生裂缝;进口引渠左右侧边墙产生倒塌;泥沙淤积严重;溢洪道宽度不足,左右岸山体风化;左右岸导流墙单薄,平面布置不符合规范要求;浆砌石溢流堰砌筑质量差,左右岸与山体相接处渗水;溢洪道下游无消能设施;水库泄洪量较大时下游回水极易冲刷坝脚,危及坝体安全等问题。
基于此,该文以东洱河水库为例分析溢洪道除险加固。
关键词:溢洪道 大坝 除险加固 泄洪量中图分类号:TV698.23文献标识码:A 文章编号:1672-3791(2023)04-0137-04 Analysis on the Treatment of Danger Removal and ReinforcementProjects for SpillwaysCHEN Zhongrun1LI Ying1MEI Debo2(1.Yunnan Vocational Institute of Energy Technology, Qujing, Yunnan Province, 655001 China; 2.Yunnan WaterResources and Hydropower Survey, Design and Research Institute, Kunming, Yunnan Province, 655000 China)Abstract:The spillway is a hydraulic structure, with which the dam can be effectively prevented from being de‐stroyed by the flood, and it is a kind of flood control equipment. In most cases, the spillway is built on the side of the dam, as if it were a relatively large water tank. When the flow is large during the flood period, raising the water level of the dam beyond the design water level of flood control, the water flows downstream through the spillway.The common problems of the spillway include that there are cracks on the left and right side walls of the inlet, the left and right side walls of the inlet approach channel collapse, sedimentation is serious, the width of the spillway is insufficient and the mountains on the left and right banks are weathered, the diversion walls on the left and right banks are thin and the plane layout does not meet the specification requirements, the masonry quality of the ma‐sonry overflow weir is poor and there is water seepage at the junction between the left and right banks and the mountain, there are no energy dissipation facilities at the downstream of the spillway, and that the downstream backwater is very easy to scour the dam toe and endanger the safety of the dam body when the flood discharge of the reservoir is large. Based on this, taking the Donger River reservoir as an example, this paper analyzes the danger removal and reinforcement of the spillway.Key Words: Spillway; Dam; Danger removal and reinforcement; Flood discharge基金项目: 2021年云南能源职业技术学院科学研究基金项目《溢洪道加固设计问题分析》(项目编号:2021JSLG04)。
[水力学]台阶式溢洪坝的消能
![[水力学]台阶式溢洪坝的消能](https://img.taocdn.com/s3/m/7ce83a4ce45c3b3567ec8b8b.png)
台阶式溢洪坝的消能 ̄当水流经泄水建筑物下泄时,由于上下游的水位落差和集中泄流,单宽流量剧增,使得下泄水流具有很高的流速和紊动性,从工程观点看,应尽可能使下泄水流的巨大动能在较短的距离内消耗掉,以保护枢纽建筑物的安全,使下泄水流与下游水流顺利安全衔接,减轻和防止下游河床的冲刷。
常见的消能方式有地流式消能、挑流式消能、面流式消能、底孔消能,本文介绍的是台阶式消能。
台阶式溢流坝是一种古老而又全新的泄水建筑物形式。
其工作原理就是利用溢流坝台阶段对水流的阻力,使下泄水流在台阶之间形成水平轴旋滚,并与坝面主流发生强烈的混掺作用,迫使水流产生强烈地紊动,大量掺入空气,从而达到消能的目的.台阶式溢流坝的应用已经有3000 多年的历史181,公元前1300多年,古希腊就曾在Akarnania修建了一座土质溢流堰,并将堰的表面用块石砌护成台阶形式。
在19世纪和20世纪初以前,世界上就建造了很多台阶式的溢流坝,但随着利用水跃消能的消力池的发展,其逐渐淡出人们视野191。
近二十多年来,随着碾压式混凝土(RCC)筑坝技术的兴起,由于台阶式溢流坝中台阶高度的设置能很好的适应碾压混凝土(RCC)筑坝分层施工的要求以及台阶段具有较高的消能效率,台阶式溢流坝的应用产生了飞跃式的发展,得到了国内外水利界科研人员和工程技术人员的广泛重视,并对此进行了大量的试验研究1101.近几十年间,在世界各地的水利工程中修建了许多台阶式溢流坝,其中以美国的上静水坝(Upper Stillwater Dam)为代表.到目前为止,世界上已建成RCC台阶式溢流坝60余座,而且有数座正在施工兴建中。
下表为部分在建或者已建的国内国外工程实例。
由此可见,台阶式消能在现在的水工建筑物中的应用还是很广泛的。
一改传统溢流坝在出口处集中消能的形式,使得水流在下泄过程中将能量逐渐消散,不仅有效的避免了建筑物发生空蚀破坏的危险,而且简化了下游的消能设施,节省了工程造价。
溢洪道设计计算说明

岸边溢洪道设计6.3.1溢洪道说明溢洪道其主要任务是泄洪,土石坝不允许水过坝顶,需要专门修建泄洪建筑物。
根据本工程的地形条件,上游坝址左岸沿河流方向有一道呈现弧形的纵向凹槽,所以选择溢洪道设置在大坝左岸,为带胸墙孔口式岸边溢洪道。
溢洪道由引渠段、堰闸段、泄槽段、挑流鼻坎段组成。
6.3.2 溢洪道引水渠为了使水流平缓,减小或不发生漩涡和翻滚现象,进口采用喇叭口,进口宽度B=50m.设计流速4m/s,横断面在岩基上接近矩形,边坡根据稳定要求确定这里选择边坡坡度为1:0.5;采用梯形断面,进水渠的纵断面做成平底。
在靠近溢流堰前断区,由于流速较大,为了防止冲刷和减少水头损失,可采用混泥土护面厚度为0.5m。
6.3.3 控制段控制段包括溢流堰及两侧连接建筑物,溢流堰通常可以选择宽顶堰、实用堰、驼峰堰。
溢流堰的体形应尽量满足增大流量系数,溢流堰作用是控制泄流能力,本次设计采用实用堰,优点是流量大,在相同的泄流条件下需要的堰流前缘长,工程量小。
采用弧形闸门。
初步拟定堰顶高程H=设计洪水位—堰顶最大泄水位H0堰顶高程H=1838=1858.22—H 0,则H 0=20.22m 胸墙式孔口溢流堰形式的下泄流量Q 公式为:320=Q ε溢式中:ε ——闸墩侧收缩系数,0.9; m ——流量系数,0.48:; g ——重力加速度,9.81 2m/s ; B ——堰宽,12m;水位为设计洪水位1858.22m 时,堰顶高程1838m ,设计Q 溢=4645m3/s.则由上面公式计算得出的B=26.69m,取B=14m.表6.3-1溢洪道宽顶堰堰宽计算(忽略流速)计算取b=28m,孔口数2孔,弧形工作闸门取值14x19m(宽x 高)。
中墩厚3m,边墩宽1m,闸室宽度=14x2+3+2x1=33m.堰面曲线的确定开敞式堰面曲线,幂曲线按式(7-2)计算:1n n d x KH y -= (7-2)式中 Hd ——堰面曲线定型设计水头,对于上游堰高P1≥1.33Hd 的高堰,取Hd=(0.75~0.95)Hmax ,对于P1<1.33Hd 的低堰,取Hd=(0.65~0.85)Hmax ,Hmax 为校核流量下的堰上水头.x 、y ——原点下游堰面曲线横、纵坐标; n ——与上游堰坡有关的指数,见表A.1.1;k ——当p1/Hd>1.0 时,k 值见表A.1.1,当P1/Hd ≤1.0 时,取k=2.0~2.2。
岸堤水库洪水预报及调洪演算软件使用说明书_图文(精)

岸堤水库雨洪资源解析使用说明书二〇一五年六月一日作者:李文华电话:135********邮箱:fblwh150@目录第一章概述 (3第二章功能简介 (5第一节功能特点 (5第二节软件画面 (6第三节运算功能 (7第四节气象云图及气象雷达 (13 第三章数学模型 (14第一节洪水模型 (141、瞬时单位线 (142、CAMMADIST函数语法 (153、CAMMADIST函数应用 (164、流域洪水错时叠加 (17第二节洪水传播 (18第三节泄量模型 (191、闸门出流 (192、推求水面线 (213、闸门泄量 (22第四节调洪演算 (22第五节控运方案 (23第四章扩展性设计 (23第五章调洪实例 (29第六章课目攻关概况 (30第七章使用说明书 (31第一节洪水预报 (31第二节调洪演算 (33第三节其他计算 (33附件课题研发小组成员名单....................................................................... 错误!未定义书签。
第一章概述控制和预见洪水,让洪水变为一种资源,实现科学预见、动态管理、合理利用,是本课题的研究对象。
科学控制洪水,真正能够对洪水运用自如,其首要问题是准确解析、及时预报,掌握洪水动态。
但目前实际应用中,对水库防洪兴利控制运用,还仅限于依靠库水位的变化,结合下游河道的承受能力,试探性的调节洪水,这种洪水调整模式,具有较大的盲目性,理论方面的支撑相对不足。
当前,各水库防汛主体单位,均制定了相应的《水库控制运用方案》。
如岸堤水库防洪调度图(图1,但这些方案的编制和批复仅表现为粗线条和原则性的界定,是在进行大量假定的基础上进行编制的,应用中的可操作性相对欠缺,在实践中仅具有指导意义。
(图1洪水调度控制方案的编制,偏离实际应用,存在的突出问题,主要表现在以下几个方面:1、假定了降雨的空间分配是均匀的,即整个流域降雨分布是均等的。
HEC—RAS在溢洪道水面线计算中的应用

通过工程实例将 H C— A 计算结果与传统水 面线计算结果相 比较 , 软件计算溢 洪道水 面线 既省时 又精确 , 可获得流速 、 E RS 该 还 水
头等其它结果 , 所以可在今 后的设计 中推广 应用 。 关键词 : E H C—R S 溢洪道 ; A; 水面线 ; 逐段求水深
中 图 分 类 号 : V 5 .; V 3 . T 6 11T 114 ห้องสมุดไป่ตู้ 献标 识 码 :A 文 章 编 号 :06—35 (02 o —03 一o 10 9 12 1 )4 0 3 3
Ab ta t sr c :HEC—RAS i ot r ih h s wi ey b e s d i ac lt n o v rc a n lwae ufc rflsa s a s fwae wh c a d l e n u e n c lu ai ff e h n e trs ra e p o e t o i i h me a bra o nd a o d,b tn ti ac lt n o p H ywae uf c r f e o du a d s l iewae e e v is h u o n c l ua i fs i wa trs r ep o lsfrme im malsz trrs r or .T e o a i n c mp rsn ma eb t e h o a io d we n te HEC— RAS b e ac lto e u t d te ta i o a trs ra ep o l ac lt n r . e a d c u ain rs l a I r dt n lwae u c rf e c u ai e s l sn l i f i l o
D h1.99ji n 10 O 36/.s .06—35 .0 20 .1 0 s 9 12 1 .400
溢洪道驼峰堰水力计算

临界水深及临界底坡的计算公式为:
�hk= 3
αq 2
g
ik=
gxk
2
αC K bk
式中:
α— 流速不均匀系数
q— 泄槽单宽流量(m3/sm)
x— k
临界湿周(m)
R— 水力半径(m)
C— k 临界谢才系数
b— k
临界水深对应水面宽(m)
由上计算得:
10.00 m 3
0.448
30 m
2.35 m g= 9.81
q— 鼻坎末端断面单宽流量,m3/(s.m);
设计
校核
30年一遇
q=
6.8
13.067
5.820
Z— 上、下游水位差,(m);
Z=
k— 综合冲刷系数,由《规范》表A.4.2可得
由上可得:
设计
L=
33.290
T=
8.388
校核 42.700 11.569
30年一遇 30.987 7.767
θ= 20 2.3 m
10
m= 0.448
泄流量的计算:
下泄流量的计算按《规范》A.2.3公式进行计算:
Q
=mεB
�
2g
H
3/ 0
2
式中: Q— 流量,m3/s
B— 溢流堰总净宽,(m),定义:B=nb
b— 单孔宽度,(m)
n— 闸孔数目;
H— 0
计入行近流速水头的堰上总水头,(m)
g— 重力加速度,(m/s2);
m— 堰流量系数;
3、泄槽段起始水深h1计算:
起始计算断面定在堰下收缩断面处:断面水深计算公式为:
q
� h 1=
φ
2g
溢洪道(驼峰堰)水力计算(优选.)

一、设计依据:二、基本资料:第一段泄槽的角度 2.29°糙率:0.02闸孔数3闸孔宽10.00闸墩厚 1.50堰顶高程929.00m 校核水位下的流量:Q=196校核洪水位931.35m 设计水位下的流量:Q=102设计水位930.52m Q=87.3930.37m 校核水位到堰顶高差: 2.35 m 设计水位到堰顶高差: 1.52 m 下游水位:设计902.65m 校核904.04m 902.4m 1.37m三、计算内容:溢流堰采用驼峰堰面曲线:校核水位下的堰上水头 2.35 m1.76m类型0.600.63 2.4 3.60流量系数的计算:P1/H0=0.255<0.34流量系数的计算为:m=0.448泄流量的计算:式中:Q—1、《水力学》2、《溢洪道设计规范》3、水文资料(m 3/s)(m 3/s)30年一遇水位下的流量:(m 3/s)30年一遇水位30年一遇水位30年一遇水位到堰顶高差1、溢洪道泄流能力计算:H max —H d —堰面曲线定型设计水头(取0.75H max )H d =采用b型驼峰堰:上游堰高P1中圆弧半径R1上、下圆弧半径R2总长度Lb型m=0.385+0.224(P 1/H 0)0.934下泄流量的计算按《规范》A.2.3公式进行计算:流量,m 3/s Q =mεB �2g H 03/2B—30m b—10.00m n—闸孔数目;3 2.35 mg— g=9.81m—m=0.448闸墩侧收缩系数,由下式计算得:0.9750.450.7根据以上参数计算得:Q=208.858临界水深及临界底坡的计算公式为:式中:校核设计α—流速不均匀系数 1.05 1.05q—q= 6.533 3.40036.31935.147R—R= 1.508 1.008临界谢才系数71.38866.7553333由上计算得:校核设计1.659 1.0740.00201760.0022330溢流堰总净宽,(m),定义:B=nb 单孔宽度,(m)H 0—计入行近流速水头的堰上总水头,(m)重力加速度,(m/s 2);堰流量系数;ε—ε=ζ0—中墩形状系数,由《规范》表A.2.1-3查得:ζ0=ζK —边墩形状系数,由《规范》图A.2.1-2查得:ζK =m 3/s2、泄槽段临界水深及临界底坡计算:α=泄槽单宽流量(m 3/sm )x k —临界湿周(m)x k =水力半径(m )C k —C k =b k —临界水深对应水面宽(m )b k =h k =h k =i k =i k =ε=1−0.2[ζk ��n −1�ζ0]H 0nb h k =3�αq 2g i k =gx k αC K 2b k起始计算断面定在堰下收缩断面处:断面水深计算公式为:式中:校核设计q—q=5.9393.091 2.6452.952.12 1.97泄槽底坡坡角; 2.29φ—起始计算断面流速系数;0.95校核设计1.0150.5950.523计算结果如下:泄槽起始断面水深: 1.0150.5950.523泄槽水面线根据能量方程,采用分段求和法进行计算,计算公式如下:水面曲线的推算见附表一:3、泄槽段起始水深h 1计算:30年一遇起始计算断面单宽流量,m 3/(s.m);H 0—起始计算断面渠底以上总水头,(m );H 0=θ—θ=o φ=30年一遇假定一个初始值h 1(m)h 1=h 1=4、泄槽段水面线的推算:5、泄槽由缓变陡时抛物线的推求:泄槽在(泄0+037.156)段由缓变陡,采用抛物线连接,方程为:h 1=qφ�2g �H 0−h 1cos θ�Δl 1−2=�h 2cos θ�α2v 222g �−�h 1cos θ�α1v 122g �i −�J �J =n 2�v 2�R 4/3�v =v i −1�v i2�R =R i −1�R i2y =xtg θ�x 2K �4H 0cos 2θ�H 0=h �αv 22g式中: 2.3°1.0K=1.3以设计水位来推求抛物线:h=0.45m v=14.59m/s所以:11.308m 0.04求切点得:所以y=0.4x+b求切点得:x= 4.657y= 1.025挑流水舌外缘挑距按下式计算: 冲刷坑最大水垫深度计算公式为:式中:L—x 、y—以缓坡泄槽段末端为原点的抛物线横、纵坐标,m ;θ—缓坡泄槽底坡坡角,θ=H 0—抛物线起始断面比能,m ;h—抛物线起始断面水深,m ;v—抛物线起始断面流速,m/s ;α—流速分布不均匀系数,取α=K—系数,H 0=1/K(4H 0cos 2θ)=y=0.04x+0.03865x 2后接陡坡坡度为K=0.4由(1)、(2)式得:6、挑流消能计算:挑流鼻坎末端至挑流水舌外缘的距离(m );L =1g [v 12sin θcos θ�v 1cos θ�v 12sin 2θ�2g �h 1cos θ�h 2�]T =kq 1/2Z 1/4y '=0.4��2�y '=0.04�0.0773x ��1�θ—挑流水舌水面出射角,近似可取用鼻坎挑胸:20设计校核0.370.610.33鼻坎坎顶至下游河床高程差 2.3m 设计校核20.4223.4519.6T—q—设计校核q= 6.813.067 5.820设计校核Z—Z=27.87 27.31 27.97 k—k=1.4由上可得:设计校核L=33.29042.70030.987T=8.38811.5697.767式中:v —修正系数,取值为: 1.4s/m 计算可得:桩号0+003.2500+043.2500+083.2500+123.2500+163.2500+203.2500+266.979θ=h 1—挑流鼻坎末端法向水深(m );30年一遇h 1=h 2—h 2=v 1—鼻坎坎顶水面流速,(m/s ),可按鼻坎处平均流速v 的1.1倍30年一遇v 1=自下游水面至坑底最大水垫深度,(m );鼻坎末端断面单宽流量,m 3/(s.m);30年一遇30年一遇上、下游水位差,(m );综合冲刷系数,由《规范》表A.4.2可得30年一遇7、泄槽段水流掺气水深可按下式计算:根据《规范》A.3.2的计算公式:h 、h b —泄槽计算断面的水深及掺气水深,(m )不掺气情况下泄槽计算断面的流速,(m/s);ζ—ζ=h b =�1�ζv 100�hh=设计水位0.60.520.530.570.630.720.37校核水位 1.020.870.870.92 1.01 1.140.610.520.460.470.510.570.650.33v=设计水位 5.2 6.637.297.738.128.5118.57校核水位 5.857.588.549.219.7510.2321.325.06 6.39 6.977.367.728.117.82设计水位0.638270.564970.584050.629450.699360.800140.46113校核水位 1.098160.962290.97398 1.03295 1.14217 1.307760.795950.565850.508800.529530.575750.642110.743050.4245930年一遇水位30年一遇水位h b =30年一遇水位由上计算可知,h b 最大值为1.308m,所以考虑泄槽边墙的超高,所以泄槽的边墙高度取2.5m 。