北师大版高中数学选修21期末考试试题及答案

合集下载

最新高二数学题库 北师大版高中数学选修21期末考试试题及答案(理科)

最新高二数学题库 北师大版高中数学选修21期末考试试题及答案(理科)

高二期末考试数学试题晁群彦一.选择题(每小题5分,满分60分)1.设n m l ,,均为直线,其中n m ,在平面”“”“,n l m l l a ⊥⊥⊥且是则内α的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.对于两个命题:①,1sin 1x R x ∀∈-≤≤, ②22,sin cos 1x R x x ∃∈+>,下列判断正确的是( )。

A. ① 假 ② 真B. ① 真 ② 假C. ① ② 都假D. ① ② 都真3.与椭圆1422=+y x 共焦点且过点(2,1)Q 的双曲线方程是( ) A. 1222=-y x B. 1422=-y x C. 1222=-y x D. 13322=-y x 4.已知12,F F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的弦交椭圆与A ,B 两点, 则2ABF ∆是正三角形,则椭圆的离心率是( )A2 B 12C D 135.过抛物线28y x =的焦点作倾斜角为045直线l ,直线l 与抛物线相交与A ,B 两点,则弦AB 的长是( )A 8B 16C 32D 646.在同一坐标系中,方程)0(0122222>>=+=+b a by ax x b x a 与的曲线大致是( )A .B .C .D .7.已知椭圆12222=+b y a x (b a >>0) 的两个焦点F 1,F 2,点P 在椭圆上,则12PF F ∆的面积 最大值一定是( )A 2a B ab C D 8.已知向量k -+-==2),2,0,1(),0,1,1(与且互相垂直,则实数k 的值是( )A .1B .51C . 53D .579.在正方体1111ABCD A B C D -中,E 是棱11A B 的中点,则1A B与1D E所成角的余弦值为( )A B C D 10.若椭圆x y n m ny mx -=>>=+1)0,0(122与直线交于A ,B 两点,过原点与线段AB 中点的连线的斜率为22,则m n的值是( )2.23.22.292. D C B A11.过抛物线y x 42=的焦点F 作直线交抛物线于()()222111,,,y x P y x P 两点,若621=+y y ,则21P P 的值为 ( )A .5B .6C .8D .1012.以12422y x -=1的焦点为顶点,顶点为焦点的椭圆方程为 ( )A.1121622=+y x B. 1161222=+y x C. 141622=+y x D. 二.填空题(每小题4分)13.已知A 、B 、C 三点不共线,对平面ABC 外一点O ,给出下列表达式:OCOB y OA x OM 31++=其中x ,y 是实数,若点M 与A 、B 、C 四点共面,则x+y=___14.斜率为1的直线经过抛物线y2=4x 的焦点,且与抛物线相交于A,B 两点,则AB等于___15.若命题P :“∀x >0,0222<--x ax ”是真命题 ,则实数a 的取值范围是___.16.已知90AOB ∠=︒,C 为空间中一点,且60AOC BOC ∠=∠=︒,则直线OC 与平面AOB 所成角的正弦值为___.C三.解答题(解答应写出必要的文字说明、证明过程和演算步骤。

北师大版高二数学选修21试卷及答案

北师大版高二数学选修21试卷及答案

北师大版高二数学选修21试卷及答案姓名:张平安一 选择题(本题共12个小题,每小题只有一个正确答案,每小题5分,共60分)1.x>2是24x >的 ( )A. 充分不必要条件B. 必要不充分条件C. 既充分又必要条件D. 既不充分又不必要条件2.命题“在ABC 中,若21sin =A ,则A=30º”的否命题是 ( )A.在ABC 中,若21sin =A ,则A≠30ºB. 在ABC 中,若1sin 2A ≠,则A=30ºC.在ABC 中,若1sin 2A ≠,则A≠30ºD .以上均不正确3.已知命题P :若a b ≥,则c>d ,命题Q :若e f ≤,则a b <。

若P 为真且Q的否命题为真,则“c d ≤”是“e f ≤的”( )A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件4、在平行六面体ABCD-A 1B 1C 1D 1中,M 为AC 与BD 的交点,若11A B a =,b D A =11,c A A =1,则下列向量中与M B 1相等的向量是A 、c b a ++-2121B 、c b a ++2121 C 、 c b a +-2121 D 、 c b a +--2121 5、空间直角坐标系中,O 为坐标原点,已知两点A (3,1,0),B (-1,3,0),若点C 满足OC =αOA +βOB ,其中α,β∈R ,α+β=1,则点C 的轨迹为 A 、平面 B 、直线 C 、圆D 、线段6、已知a =(1,2,3),b =(3,0,-1),c =⎪⎭⎫⎝⎛--53,1,51给出下列等式:①∣c b a ++∣=∣c b a --∣ ②c b a ⋅+)( =)(c b a +⋅ ③2)(c b a ++=222c b a ++④c b a ⋅⋅)( =)(c b a ⋅⋅其中正确的个数是 A 、1个 B 、2个 C 、3个 D 、4个7.已知椭圆125222=+y ax )5(>a 的两个焦点为1F 、2F ,且8||21=F F ,弦AB过点1F ,则△2ABF 的周长为( ) (A )10 (B )20 (C )241(D ) 4148.椭圆13610022=+y x 上的点P 到它的左准线的距离是10,那么点P 到它的右焦点的距离是( )(A )15 (B )12 (C )10 (D )89.椭圆192522=+y x 的焦点1F 、2F ,P 为椭圆上的一点,已知21PF PF ⊥,则△21PF F 的面积为( )(A )9 (B )12 (C )10 (D )810.椭圆141622=+y x 上的点到直线022=-+y x 的最大距离是( )(A )3(B )11(C )22(D )1011.过抛物线2y ax =(a>0)的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别为p 、q ,则11p q+等于( )(A )2a (B )12a (C )4a (D )4a12. 假如椭圆193622=+yx 的弦被点(4,2)平分,则这条弦所在的直线方程是( )(A )02=-y x (B )042=-+y x (C )01232=-+y x (D )082=-+y x 二.填空题(本大题共4个小题,每小题4分,共16分) 13、“末位数字是0或5的整数能被5整除”的 否定形式是 否命题是14.与椭圆22143x y +=具有相同的离心率且过点(2,3方程 。

北师大版高中数学选修2-1—上学期期末考试试卷(理科)

北师大版高中数学选修2-1—上学期期末考试试卷(理科)

高中数学学习材料 (灿若寒星 精心整理制作)2011—2012学年度上学期期末考试高二数学试卷(理科)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟,注意事项:1.第Ⅰ卷的答案填在答题卷方框里,第Ⅱ卷的答案或解答过程写在答题卷指定处,写在试题卷上的无效。

2.答题前,考生务必将自己的“姓名”、“班级”、和“考号”写在答题卷上。

3.考试结束,只交答题卷。

第Ⅰ卷(选择题共50分)一、选择题(每小题5分,共10个小题,本题满分50分)1.命题P :x R ∀∈,函数2()2cos 3sin 23f x x x =+≤,则( )A .P 是假命题:2:,()2cos 3sin 23P x R f x x x ⌝∃∈=+≤B .P 是假命题:2:,()2cos 3sin 23P x R f x x x ⌝∃∈=+>C .P 是真命题:2:,()2cos 3sin 23P x R f x x x ⌝∃∈=+≤D .P 是真命题:2:,()2cos 3sin 23P x R f x x x ⌝∃∈=+> 2.一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为( )A .9B .12C . 8D .133.如图的程序框图,如果输入三个实数a,b,c ,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的( )A .c>xB .x>cC . c>bD .b>c4.矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 的概率等于( )A .14B .13C .12D .23开始结束输出x 输入a,b,cx=a b>x x=b是否x=c 是否第3题图5.某产品的广告费用与销售额的统计数据如下表: 广告费用x(万元) 4 2 3 5 销售额y(万元)49263954根据上表可得回归方程y=bx+a 中的b 为9.4,据此模型预报广告费用为6万元时销售额为( )A .63.6万元B .65.5万元C . 67.7万元D .72.0万元6.一束光线自点P (1,1,1)发出,遇到平面xoy 被反射,到达点Q (3,3,6)被吸收,那么光所走的路程是( )A .37B .47C .33D .577.在直三棱柱ABC —A 1B 1C 1中,B 1C 1=A 1C 1,A C 1⊥A 1B ,M 、N 分别是A 1B 1,AB 的中点,给出如下三个结论:①C 1M ⊥平面ABB 1A 1;②A 1B ⊥AM ;③平面AMC 1∥平面CNB 1;其中正确结论的个数是( )A .0B .1C . 2D .38.空间四边形ABCD 中,AB 、BC 、CD 的中点分别是P 、Q 、R ,且PQ=2,QR=,PR=3,那么异面直线AC 与BD 所成的角是( ) A . 900 B . 600 C . 450 D .3009.在甲、乙等6个同学参加的一次演讲比赛活动中,每个同学的节目集中安排在一起。

北师大版高中数学选修试题及答案

北师大版高中数学选修试题及答案

高中数学选修2—2试题(时间:120分钟,共150分)制题人:李娜(斗鸡中学)一、 选择题(每小题5分,共60分)1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+-- 的值为( )A .'0()f xB .'02()f xC .'02()f x -D .02.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是( )A .7米/秒B .6米/秒C .5米/秒D .8米/秒 3.函数3y x x =+的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319B .316 C .313 D .310 5.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++= 6.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( )A .1个B .2个C .3个D .4个7.计算机中常用的十六进制是逢16进1的计数制,采用数字09:和字母A F :共16个计数符号,这些符号与十进制的数字的对应关系如下表:例如,用十六进制表示1E D B +=,则=⨯B A ( )A .6EB .72 .5F D .0B8.若,,x y R ∈则"1"xy ≤是22"1"x y +≤的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不条件9.下面四个命题(1) 0比i -大(2)两个复数互为共轭复数,当且仅当其和为实数(3) 1x yi i +=+的充要条件为1x y ==(4)如果让实数a 与ai 对应,那么实数集与纯虚数集一一对应,其中正确的命题个数是( )A .0B .1C .2D .310.13()i i --的虚部为( )A .8iB .8i -C .8D .8-11.给出以下命题:⑴若()0baf x dx >⎰,则f (x )>0;⑵20sin 4xdx =⎰π;⑶f (x )的原函数为F (x ),且F (x )是以T 为周期的函数,则0()()a a T Tf x dx f x dx +=⎰⎰;其中正确命题的个数为( )(A)1 (B)2 (C)3 (D)012.函数y =x 2co sx 的导数为( )(A ) y ′=2x co sx -x 2s i nx(B ) y ′=2x co sx +x 2s i nx(C) y ′=x 2co sx -2xs i nx(D) y ′=x co sx -x 2s i nx二、填空题(每小题5分,共30分)1.从222576543,3432,11=++++=++=中得出的一般性结论是_____________。

北师大版高二数学选修21测试试题及答案

北师大版高二数学选修21测试试题及答案

北师大版高二数学选修21测试试题及答案命题人:铁一中 周粉粉(本试题满分150分,用时100分钟)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.命题“若a b >,则88a b ->-”的逆否命题是 ( )A.若a b <,则88a b -<-B.若88a b ->-,则a b >C.若a ≤b ,则88a b -≤-D.若88a b -≤-,则a ≤b2.假如方程x 2+k y 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范畴是( ) A .(0, +∞)B .(0, 2)C .(0, 1)D . (1, +∞)3.P:12≥-x ,Q:0232≥+-x x ,则“非P ”是“非Q ”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件4.双曲线221169x y -=的左、右焦点分别为F 1,F 2,在左支上过点F 1的弦AB 的长为5,那么△ABF 2的周长是( )A 、24B 、25C 、26D 、 285.若焦点在x 轴上的椭圆1222=+m y x 的离心率为21,则m=( ) A.3 B.23 C.38 D.32 6.在同一坐标系中,方程)0(0122222>>=+=+b a by ax by a x 与的曲线大致是( )7.椭圆221259x y +=的两个焦点分别为F 1、F 2,P 为椭圆上的一点,已知PF 1⊥PF 2,则∆PF 1F 2的面积为( )A.9B.12C.10D.8 8.正方体1111ABCD A B C D -的棱长为1,E 是11A B 的中点,则E 到平面11ABC D 的距离是( ) A.3B.22C.12D.3 9.若向量a 与b 的夹角为60°,4=b ,(2)(3)72a b a b +-=-,则a =( ) A.2 B.4C.6D.1210.方程22111x y k k表示双曲线,则k 的取值范畴是( )A .11<<-kB .0>kC .0≥kD .1>k 或1-<k11.方程12222=+kb y ka x (a >b >0,k >0且k ≠1),与方程12222=+by a x (a >b >0)表示的椭圆( )(A )有等长的短轴、长轴 (B )有共同的焦点(C )有公共的准线 (D )有相同的离心率 12.如图1,梯形ABCD 中,AB CD ∥,且AB ⊥平面α,224AB BC CD ===,点P 为α内一动点,且APB DPC ∠=∠,则P 点的轨迹为( ) A.直线 B.圆 C.椭圆 D.双曲线二、填空题:(本大题共5小题,每小题6分,共30分.将正确答案填在答题卷上对应题号的横线上.)13.设甲、乙、丙是三个命题,假如甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么丙是甲的 (①.充分而不必要条件,②.必要而不充分条件 ,③.充要条件) 14.在棱长为a 的正方体1111ABCD A B C D -中,向量1BA 与向量AC 所成的角为 . 15.已知向量)0,3,2(-=a ,)3,0,(k b =,若b a ,成1200的角,则k= .16.抛物线的的方程为22x y =,则抛物线的焦点坐标为____________17.以下三个关于圆锥曲线的命题中:①设A 、B 为两个定点,K 为非零常数,若|PA |-|PB |=K ,则动点P 的轨迹是双曲线。

高中数学北师大版选修综合测试题含解析

高中数学北师大版选修综合测试题含解析

高中数学北师大版选修2-2、2-3综合测试题(含解析)一、选择题(共12小题,每小题5分,满分60分) 1.根据导数的定义, ()1f x '等于( ) A. ()()0101limx x f x f x x x→-- B. ()()100limx f x f x x∆→-∆C. ()()1102lim2x f x x f x x∆→+∆-∆ D. ()()1110limx f x x f x x→+∆-∆2.曲线()xf x e =在点()()1,1f 处的切线方程为( )A. 0ex y -=B. 0ex y +=C. 10ex y --=D. 20ex y e --=3.甲、乙、丙三人各买了一辆不同品牌的新汽车,汽车的品牌为奇瑞、传祺、吉利.甲、乙、丙让丁猜他们三人各买的什么品牌的车,丁说:“甲买的是奇瑞,乙买的不是奇瑞,丙买的不是吉利.”若丁的猜测只对了一个,则甲、乙所买汽车的品牌分别是( ) A. 吉利,奇瑞 B. 吉利,传祺 C. 奇瑞,吉利 D. 奇瑞,传祺 4.用反证法证明命题“已知为整数,若不是偶数,则都不是偶数”时,下列假设中正确的是( ) A. 假设都是偶数 B. 假设中至多有一个偶数 C. 假设都不是奇数 D. 假设中至少有一个偶数5.用数学归纳法证明“()221*111,1n n a a a aa n N a++-++++=≠∈-,在验证1n =时,等式左边是 ( )A. 1B. 1a +C. 21a a ++D. 231a a a +++ 6.已知i 为虚数单位,复数121iz i+=-,则复数z 在复平面内的对应点位于( ) A.第一象限 B.第二象限C.第三象限D.第四象限7.的展开式中的系数为A. 10B. 20C. 40D. 808.五个同学排成一排照相,其中甲、乙两人不排两端,则不同的排法种数为( ) A. 33 B. 36 C. 40 D. 489.在满分为15分的中招信息技术考试中,初三学生的分数,若某班共有)( )A. 6B. 7C. 9D. 1010.下表是某厂节能降耗技术改造后生产某产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据,用最小二乘法得到y 关于x 的线性回归方程0.7ˆˆyx a =+,则ˆa =( )A. 0.25B. 0.35C. 0.45D. 0.5511.已知离散型随机变量X 的分布列如图,则常数c 为( )A.13 B. 23 C. 13 或 23 D. 1412.1201x dx -=⎰( )A. πB.2π C. 4πD. 0 二、填空题(共4小题,每小题5分,满分20分) 13.已知i 是虚数单位,若()12z i i -=,则z =________ 14.若()()7280128112x x a a x a x a x +-=++++,则1278a a a a ++++的值__________. 15.函数的单调减区间为___________________.16.若函数()ln f x kx x =-在区间()1,+∞上为单调增函数,则k 的取值范围是__________三、解答题(共6小题,满分70分)17.已知函数()322f x ax bx x =+-,且()f x 在1x =和2x =处取得极值.(Ⅰ)求函数()f x 的解析式;(Ⅱ)设函数()()g x f x t =+,是否存在实数t ,使得曲线()y g x =与x 轴有两个交点,若存在,求出t 的值;若不存在,请说明理由.(1)求函数的单调区间.(2)若对恒成立,求实数的取值范围.19.“中国人均读书4.3本(包括网络文学和教科书),比韩国的11本、法国的20本、日本的40本、犹太人的64本少得多,是世界上人均读书最少的国家.”这个论断被各种媒体反复引用,出现这样的统计结果无疑是令人尴尬的,而且和其他国家相比,我国国民的阅读量如此之低,也和我国是传统的文明古国、礼仪之邦的地位不相符.某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需看不同类型的书籍,为了合理配备资源,现对小区内看书人员进行年龄调查,随机抽取了一天40名读书者进行调查,将他们的年龄分成6段: [)20,30,[)30,40, [)40,50, [)50,60, [)60,70, []70,80后得到如图所示的频率分布直方图.问:(1)估计在40名读书者中年龄分布在[)40,70的人数; (2)求40名读书者年龄的平均数和中位数;(3)若从年龄在[)20,40的读书者中任取2名,求这两名读书者年龄在[)30,40的人数X 的分布列及数学期望.20.甲、乙两人参加某种选拔测试.在备选的10道题中,甲答对其中每道题的概率都是53,乙能答对其中的5道题.规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,至少得15分才能入选.(1)求甲得分的数学期望;(2)求甲、乙两人同时入选的概率.21.某机构为了解某地区中学生在校月消费情况,随机抽取了 100名中学生进行调查.如图是根据调査的结果绘制的学生在校月消费金额的频率分布直方图.已知三个金额段的学生人数成等差数列,将月消费金额不低于550元的学生称为“高消费群”.(1)求的值,并求这100名学生月消费金额的样本平均数 (同一组中的数据用该组区间的中点值作代表);(2)根据已知条件完成下面列联表,并判断能否有的把握认为“高消费群”与性别有关?22.已知曲线y=x3,求:(1)曲线在点P(1,1)处的切线方程;(2)过点P(1,0)的曲线的切线方程.高中数学北师大版选修2-2、2-3综合测试题答案一、选择题(本大题共12小题,每小题5分,共60分)1. C 2 .A 3 .A 4 .D 5.C 6.B 7.C 8.B 9.C 10.B 11.A 12.C 二、填空题(本大题共4小题,每小题5分共20分) 13.2 14. 3-15. (0,1) 16 . [)1,+∞三、解答题(本大题共6小题,共70分,解答应写出文字说明、解题过程或演算步骤) 17. 解:(Ⅰ)()2'322f x ax bx =+- 因为()f x 在1x =和2x =处取得极值, 所以1x =和2x =是()'0f x =的两个根,则2123{ 2123b a a +=-⨯=-,解得13{ 32a b =-=经检验符合已知条件,故()3213232f x x x x =-+-. (Ⅱ)由题意知()3213232g x x x x t =-+-+ ()2'32g x x x =-+-另()'0g x =得, 1x =或2x =,()()'g x g x 、随着x 变化情况如下表所示:由上表可知()()5=16g x g t =-极小值, ()()223g x g t ==-极大值 又x 取足够大的正数时, ()0g x <,x 取足够小的负数时, ()0g x >,得: ()506g x t =-=极小值或()203g x t =-=极大值 ∴56t =或23t = 即存在t ,且56t =或23t =时,曲线()y g x =与x 轴有两个交点.18.解:(1)令,解得或,令,解得:. 故函数的单调增区间为,单调减区间为.(2)由(1)知在上单调递增,在上单调递减,在上单调递增,又,,,∴,∵对恒成立, ∴,即,∴19.解:(1)由频率分布直方图知年龄在[)40,70的频率为()0.0200.0300.025100.75++⨯=,所以40名读书者中年龄分布在[)40,70的人数为400.7530⨯=. (2)40名读书者年龄的平均数为250.05350.1450.2550.3⨯+⨯+⨯+⨯ 650.25750.154+⨯+⨯=.设中位数为x ,则()0.005100.01100.02100.03500.5x ⨯+⨯+⨯+⨯-= 解得55x =,即40名读书者年龄的中位数为55. (3)年龄在[)20,30的读书者有0.00510402⨯⨯=人, 年龄在[)30,40的读书者有0.0110404⨯⨯=人, 所以X 的所有可能取值是0,1,2,()2024241015C C P X C ===, ()1124248115C C P X C ===, ()0224246215C C P X C ===, X 012P115 815 61520.解:(1)设甲答对题的道数为X ,则X ⎪⎭⎫⎝⎛53,3~B59533=⨯=EX ,得分1255931059=⨯⎪⎭⎫ ⎝⎛--⨯ (6分)(2)由已知甲、乙至少答对2题才能入选,记甲入选为事件A ,乙入选为事件B . 则 223332381()C ()()()555125P A =+=, 511()12122P B =+=. 故甲乙两人同时入选的概率:250812112581=⨯. (12分) 21.解:(1)由题意知且解得所求平均数为(元)(2)根据频率分布直方图得到如下列联表根据上表数据代入公式可得所以没有的把握认为“高消费群”与性别有关.22.解:y ′=3x 2.(1)当x =1时,y ′=3,即在点P(1,1)处的切线的斜率为3, ∴切线方程为y -1=3(x -1),即3x -y -2=0.(2)设切点坐标为(x 0,y 0),则过点P 的切线的斜率为3x , 由直线的点斜式,得切线方程y -x =3x (x -x 0), 即3x x -y -2x =0.∵P (1,0)在切线上,∴3x -2x =0. 解之得x 0=0或x 0=. 当x 0=0时,切线方程为y =0.。

北师大版高中数学选修2-1考试题及答案(理科).doc

北师大版高中数学选修2-1考试题及答案(理科).doc

选修(2-1)学刘理论班级: 姓名: 座号: 成绩:一、选择题(15×4=60分)1、(x+1)(x+2)>0是(x+1)(2x +2)>0的( )条件A 必要不充分B 充要C 充分不必要D 既不充分也不必要2、已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条件,那么p 是q 成立的( )条件A 必要不充分B 充分不必要C 充要D 既不充分也不必要 3、已知()()()2,5,1,2,2,4,1,4,1A B C ---,则向量AB AC 与的夹角为( ) A 030 B 045 C 060 D 0904、O 、A 、B 、C 为空间四个点,又、、为空间的一个基底,则( ) A O 、A 、B 、C 四点共线 B O 、A 、B 、C 四点共面C O 、A 、B 、C 四点中任三点不共线D O 、A 、B 、C 四点不共面 5、给出下列关于互不相同的直线m 、l 、n 和平面α、β的四个命题: ①若不共面与则点m l m A A l m ,,,∉=⋂⊂αα;②若m 、l 是异面直线,ααα⊥⊥⊥n m n l n m l 则且,,,//,//; ③若m l m l //,//,//,//则βαβα;④若.//,//,//,,,βαββαα则点m l A m l m l =⋂⊂⊂其中为假命题的是 ( ) A ① B ② C ③ D ④6、已知高为3的直棱柱ABC —A ′B ′C ′的底面是边长为1的 正三角形(如图1所示),则三棱锥B ′—ABC 的体积为( )A 41B21C 63D 437、若焦点在x 轴上的椭圆1222=+m y x 的离心率为21,则m=( ) A 3 B23C38 D 328、已知()()3cos ,3sin ,12cos ,2sin ,1P ααββ==和Q ,则PQ 的取值范围是( ) A []1,5 B ()1,5 C []0,5 D []0,259、 已知椭圆13610022=+y x 上一点P 到它的右准线的距离为10, 则点P 到它的左焦点的距离是( )A 8B 10C 12D 1410、与双曲线116922=-y x 有共同的渐近线,且经过点()32,3-的双曲线的一个焦点到 一条渐近线的距离是( )A 1B 2C 4D 811、若抛物线28y x =上一点P 到准线和抛物线的对称轴的距离分别为10和6,则此点P 的横坐标为( )A 10B 9C 8D 非上述答案12、已知坐标满足方程F (x ,y )=0的点都在曲线C 上,那么( ) A 曲线C 上的点的坐标都适合方程F (x ,y )=0; B 凡坐标不适合F (x ,y )=0的点都不在C 上; C 不在C 上的点的坐标不必适合F (x ,y )=0;D 不在C 上的点的坐标有些适合F (x ,y )=0,有些不适合F (x ,y )=0。

金优课高中数学北师大选修21模块综合测试1 含解析

金优课高中数学北师大选修21模块综合测试1 含解析

模块综合测试(一)(时间120分钟 满分150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.若命题p :∀x ∈R,2x 2+1>0,则¬p 是( ) A .∀x ∈R,2x 2+1≤0 B .∃x ∈R,2x 2+1>0 C .∃x ∈R,2x 2+1<0D .∃x ∈R,2x 2+1≤0解析:¬p :∃x ∈R,2x 2+1≤0. 答案:D2.不等式x -1x >0成立的一个充分不必要条件是( )A .-1<x <0或x >1B .x <-1或0<x <1C .x >-1D .x >1解析:本题主要考查充要条件的概念、简单的不等式的解法.画出直线y =x 与双曲线y =1x 的图像,两图像的交点为(1,1)、(-1,-1),依图知x -1x >0⇔-1<x <0或x >1 (*),显然x >1⇒(*);但(*)x >1,故选D.答案:D3.[2014·西安模拟]命题“若a >b ,则a +1>b ”的逆否命题是( ) A .若a +1≤b ,则a >b B .若a +1<b ,则a >b C .若a +1≤b ,则a ≤bD .若a +1<b ,则a <b解析:“若a >b ,则a +1>b ”的逆否命题为“若a +1≤b ,则a ≤b ”,故选C. 答案:C4.[2014·山东省日照一中模考]下列命题中,为真命题的是( ) A .∀x ∈R ,x 2-x -1>0B .∀α,β∈R ,sin(α+β)<sin α+sin βC .函数y =2sin(x +π5)的图像的一条对称轴是x =45πD .若“∃x 0∈R ,x 20-ax 0+1≤0”为假命题,则a 的取值范围为(-2,2)解析:本题主要考查命题的判定及其相关知识的理解.因为x 2-x -1=(x -12)2-54,所以A 错误;当α=β=0时,有sin(α+β)=sin α+sin β,所以B 错误;当x =4π5时,y =0,故C 错误;因为“∃x 0∈R ,x 20-ax 0+1≤0”为假命题,所以“∀x ∈R ,x 2-ax +1>0”为真命题,即Δ<0,即a 2-4<0,解得-2<a <2,即a 的取值范围为(-2,2).故选D.答案:D5.已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .23B .6C .4 3D .12解析:设椭圆的另一焦点为F ,由椭圆的定义知|BA |+|BF |=23,且|CF |+|AC |=23, 所以△ABC 的周长=|BA |+|BC |+|AC | =|BA |+|BF |+|CF |+|AC |=4 3. 答案:C6.过点(2,-2)与双曲线x 2-2y 2=2有公共渐近线的双曲线方程为( ) A .x 22-y 24=1B .x 24-y 22=1C .y 24-x 22=1D .y 22-x 24=1解析:与双曲线x 22-y 2=1有公共渐近线方程的双曲线方程可设为x 22-y 2=λ(λ≠0),由过点(2,-2),可解得λ=-2. 所以所求的双曲线方程为y 22-x 24=1.答案:D7.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右支上到原点和右焦点距离相等的点有两个,则双曲线离心率的取值范围是( )A .e > 2B .1<e < 2C .e >2D .1<e <2解析:由题意,以原点及右焦点为端点的线段的垂直平分线必与右支交于两个点,故c 2>a ,∴c a>2. 答案:C8.[2013·课标全国卷Ⅱ]一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )解析:本题主要考查空间直角坐标以及三视图的有关知识.利用正方体模型,建立空间直角坐标系,根据点的坐标确定几何体形状,注意画三视图中的正视图时,是以zOx 平面为投影面,故选A.答案:A9.设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线与抛物线y =x 2+1相切,则该双曲线的离心率等于( )A . 3B .2C . 5D . 6解析:双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±ba x ,因为y =x 2+1与渐近线相切,故x 2+1±b a x =0只有一个实根,∴b 2a 2-4=0,∴c 2-a 2a2=4,∴c 2a 2=5,∴e = 5. 答案:C10.已知正四棱柱ABCD —A 1B 1C 1D 1中,AA 1=2AB ,E 为AA 1的中点,则异面直线BE 与CD 1所成角的余弦值为( )A .1010B .15C .31010D .35解析:以DA 、DC 、DD 1所在直线为x 轴、y 轴和z 轴,建立如右图所示的空间直角坐标系,设AB =1,则AA 1=2,依题设有B (1,1,0),C (0,1,0),D 1(0,0,2),E (1,0,1),∴BE →=(0,-1,1),CD 1→=(0,-1,2). ∴cos 〈BE →·CD 1→〉=0+1+22·5=31010.答案:C11.已知抛物线C :y 2=8x 的焦点为F ,准线与x 轴的交点为K ,点A 在C 上且|AK |=2|AF |,则△AFK 的面积为( )A .4B .8C .16D .32解析:∵抛物线C :y 2=8x 的焦点为F (2,0),准线为x =-2,∴K (-2,0).设A (x 0,y 0),如图所示,过点A 向准线作垂线,垂足为B ,则B (-2,y 0). ∵|AK |=2|AF |,又|AF |=|AB |=x 0-(-2)=x 0+2,∴由|BK |2=|AK |2-|AB |2,得y 20=(x 0+2)2,即8x 0=(x 0+2)2,解得x 0=2,y 0=±4.∴△AFK 的面积为12|KF |·|y 0|=12×4×4=8,故选B.答案:B12.[2013·浙江高考]如图,F 1、F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A . 2B . 3C .32D .62解析:本题考查椭圆、双曲线的定义和简单的几何性质.设双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0) ①,点A 的坐标为(x 0,y 0).由题意a 2+b 2=3=c 2 ②,|OA |=|OF 1|=3,∴⎩⎪⎨⎪⎧x 20+y 20=3x 20+4y 20=4,解得x 20=83,y 20=13,又点A 在双曲线C 2上,代入①得,83b 2-13a 2=a 2b 2 ③,联立②③解得a =2,所以e =c a =62,故选D.答案:D二、填空题(本大题共4小题,每小题5分,共20分)13.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于__________.解析:∵a ,b ,c 三向量共面,∴a =x b +y c (x ,y ∈R ), ∴(2,-1,3)=x (-1,4,-2)+y (7,5,λ),∴λ=657.答案:65714.已知命题p :∃x ∈R ,x 2+2ax +a ≤0,若命题p 是假命题,则实数a 的取值范围是__________.解析:p 是假命题,则¬p 为真命题,¬p 为:∀x ∈R ,x 2+2ax +a >0,所以有Δ=4a 2-4a <0,即0<a <1.答案:(0,1)15.[2014·湖南省长沙一中月考]已知正三棱柱ABC -DEF 的侧棱长为2,底面边长为1,M 是BC 的中点,若直线CF 上有一点N ,使MN ⊥AE ,则CNCF=__________________.解析:本题主要考查空间向量基本定理和数量积.设CN CF=m ,由于AE →=AB →+BE →,又CF →=AD →MN →=12BC →+mAD →,又AE →·MN →=0,得12×1×1×(-12)+4m =0,解得m =116. 答案:11616.[2014·河北省邢台一中月考]F 1、F 2分别是双曲线x 216-y 29=1的左、右焦点,P 为双曲线右支上一点,I 是△PF 1F 2的内心,且S △IPF 2=S △IPF 1-λS △IF 1F 2,则λ=________.解析:本题主要考查双曲线定义及标准方程的应用.设△PF 1F 2内切圆的半径为r ,则S △IPF 2=S △IPF 1-λS △IF 1F 2⇒12×|PF 2|×r =12×|PF 1|×r -12λ×|F 1F 2|×r ⇒|PF 1|-|PF 2|=λ|F 1F 2|,根据双曲线的标准方程知2a =λ·2c ,∴λ=a c =45.答案:45三、解答题(本大题共6小题,共70分)17.(10分)已知全集U =R ,非空集合A ={x |x -2x -3<0},B ={x |(x -a )(x -a 2-2)<0}.命题p :x ∈A ,命题q :x ∈B .(1)当a =12时,p 是q 的什么条件?(2)若q 是p 的必要条件,求实数a 的取值范围. 解:(1)A ={x |x -2x -3<0}={x |2<x <3},当a =12时,B ={x |12<x <94},故p 是q 的既不充分也不必要条件.(2)若q 是p 的必要条件,即p ⇒q ,可知A ⊆B , 由a 2+2>a ,故B ={a |a <x <a 2+2},∴⎩⎪⎨⎪⎧a ≤2a 2+2≥3,解得a ≤-1或1≤a ≤2. 18.(12分)已知c >0,设p :y =c x 为减函数;q :函数f (x )=x +1x >1c 在x ∈[12,2]上恒成立,若“p ∨q ”为真命题,“p ∧q ”为假命题,求c 的取值范围.解:由y =c x 为减函数,得0<c <1.当x ∈[12,2]时,由不等式x +1x ≥2(x =1时取等号)知:f (x )=x +1x 在[12,2]上的最小值为2,若q 真,则1c <2,即c >12.若p 真q 假,则0<c <1且c ≤12,所以0<c ≤12.若p 假q 真,则c ≥1且c >12,所以c ≥1.综上:c ∈(0,12]∪[1,+∞).19.(12分)[2014·天津高考]如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.(1)证明:BE ⊥DC ;(2)求直线BE 与平面PBD 所成角的正弦值;(3)若F 为棱PC 上一点,满足BF ⊥AC ,求二面角F -AB -P 的余弦值. 解:法一:依题意,以点A 为原点建立空间直角坐标系(如图),可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2).由E 为棱PC 的中点,得E (1,1,1).(1)证明:向量BE →=(0,1,1),DC →=(2,0,0),故BE →·DC →=0. 所以BE ⊥DC .(2)向量BD →=(-1,2,0),PB →=(1,0,-2).设n =(x ,y ,z )为平面PBD 的法向量,则⎩⎪⎨⎪⎧n ·BD →=0,n ·PB →=0,即⎩⎪⎨⎪⎧-x +2y =0,x -2z =0. 不妨令y =1,可得n =(2,1,1)为平面PBD 的一个法向量.于是有cos 〈n ,BE →〉=n ·BE →|n |·|BE →|=26×2=33.所以直线BE 与平面PBD 所成角的正弦值为33. (3)向量BC →=(1,2,0),CP →=(-2,-2,2),AC →=(2,2,0),AB →=(1,0,0).由点F 在棱PC 上,设CF →=λCP →,0≤λ≤1.故BF →=BC →+CF →=BC →+λCP →=(1-2λ,2-2λ,2λ).由BF ⊥AC ,得BF →·AC →=0,因此,2(1-2λ)+2(2-2λ)=0,解得λ=34.即BF →=⎝⎛⎭⎫-12,12,32.设n 1=(x ,y ,z )为平面F AB 的法向量,则⎩⎪⎨⎪⎧ n 1·AB →=0,n 1·BF →=0,即⎩⎪⎨⎪⎧x =0,-12x +12y +32z =0.不妨令z =1,可得n 1=(0,-3,1)为平面F AB 的一个法向量.取平面ABP 的法向量n 2=(0,1,0),则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-310×1=-31010.易知,二面角F -AB -P 是锐角,所以其余弦值为31010.法二:(1)证明:如图,取PD 的中点M ,连接EM ,AM .由于E ,M 分别为PC ,PD 的中点,故EM ∥DC ,且EM =12DC ,又由已知,可得EM∥AB 且EM =AB ,故四边形ABEM 为平行四边形,所以BE ∥AM .因为P A ⊥底面ABCD ,故P A ⊥CD ,而CD ⊥DA ,从而CD ⊥平面P AD ,因为AM ⊂平面P AD ,于是CD ⊥AM ,又BE ∥AM ,所以BE ⊥CD .(2)连接BM ,由(1)有CD ⊥平面P AD ,得CD ⊥PD ,而EM ∥CD ,故PD ⊥EM .又因为AD =AP ,M 为PD 的中点,故PD ⊥AM ,可得PD ⊥BE ,所以PD ⊥平面BEM ,故平面BEM ⊥平面PBD .所以直线BE 在平面PBD 内的射影为直线BM ,而BE ⊥EM ,可得∠EBM 为锐角,故∠EBM 为直线BE 与平面PBD 所成的角.依题意,有PD =22,而M 为PD 的中点,可得AM =2,进而BE = 2.故在直角三角形BEM 中,tan ∠EBM =EM BE =AB BE =12,因此sin ∠EBM =33. 所以直线BE 与平面PBD 所成角的正弦值为33. (3)如图,在△P AC 中,过点F 作FH ∥P A 交AC 于点H .因为P A ⊥底面ABCD ,故FH ⊥底面ABCD ,从而FH ⊥AC .又BF ⊥AC ,得AC ⊥平面FHB ,因此AC ⊥BH .在底面ABCD 内,可得CH =3HA ,从而CF =3FP .在平面PDC 内,作FG ∥DC 交PD 于点G ,于是DG =3GP .由于DC ∥AB ,故GF ∥AB ,所以A ,B ,F ,G 四点共面.由AB ⊥P A ,AB ⊥AD ,得AB ⊥平面P AD ,故AB ⊥AG .所以∠P AG 为二面角F -AB -P 的平面角.在△P AG 中,P A =2,PG =14PD =22,∠APG =45°,由余弦定理可得AG =102,cos∠P AG =31010.所以二面角F -AB -P 的余弦值为31010.20.(12分)已知椭圆x 29+y 25=1,F 1、F 2分别是椭圆的左、右焦点,点A (1,1)为椭圆内一点,点P 为椭圆上一点.求|P A |+|PF 1|的最大值.解:由椭圆的定义知|PF 1|+|PF 2|=2a =6, 所以|PF 1|=6-|PF 2|,这样|P A |+|PF 1|=6+|P A |-|PF 2|.求|P A |+|PF 1|的最大值问题转化为6+|P A |-|PF 2|的最大值问题, 即求|P A |-|PF 2|的最大值问题,如图在△P AF 2中,两边之差小于第三边, 即|P A |-|PF 2|<|AF 2|,连接AF 2并延长交椭圆于P ′点时, 此时|P ′A |-|P ′F 2|=|AF 2|达到最大值, 易求|AF 2|=2,这样|P A |-|PF 2|的最大值为2, 故|P A |+|PF 1|的最大值为6+ 2.21.(12分)[2014·湖北高考]在平面直角坐标系xOy 中,点M 到点F (1,0)的距离比它到y 轴的距离多1.记点M 的轨迹为C .(1)求轨迹C 的方程;(2)设斜率为k 的直线l 过定点P (-2,1).求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围.解:(1)设点M (x ,y ),依题意得|MF |=|x |+1,即(x -1)2+y 2=|x |+1, 化简整理得y 2=2(|x |+x ). 故点M 的轨迹C 的方程为y 2=⎩⎪⎨⎪⎧4x , x ≥0,0, x <0.(2)在点M 的轨迹C 中,记C 1:y 2=4x ,C 2:y =0(x <0), 依题意,可设直线l 的方程为y -1=k (x +2).由方程组⎩⎪⎨⎪⎧y -1=k (x +2),y 2=4x ,可得ky 2-4y +4(2k +1)=0.①(ⅰ)当k =0时,此时y =1.把y =1代入轨迹C 的方程,得x =14.故此时直线l :y =1与轨迹C 恰好有一个公共点⎝⎛⎭⎫14,1. (ⅱ)当k ≠0时,方程①的判别式为Δ=-16(2k 2+k -1).② 设直线l 与x 轴的交点为(x 0,0),则由y -1=k (x +2),令y =0,得x 0=-2k +1k.③1°若⎩⎪⎨⎪⎧Δ<0,x 0<0,由②③解得k <-1或k >12.即当k ∈(-∞,-1)∪⎝⎛⎭⎫12,+∞时,直线l 与C 1没有公共点,与C 2有一个公共点, 故此时直线l 与轨迹C 恰好有一个公共点.2°若⎩⎪⎨⎪⎧ Δ=0,x 0<0或⎩⎪⎨⎪⎧Δ>0,x 0≥0,则由②③解得k ∈⎩⎨⎧⎭⎬⎫-1,12或-12≤k <0.即当k ∈⎩⎨⎧⎭⎬⎫-1,12时,直线l 与C 1只有一个公共点,与C 2有一个公共点.当k ∈⎣⎡⎭⎫-12,0时,直线l 与C 1有两个公共点,与C 2没有公共点. 故当k ∈⎣⎡⎭⎫-12,0∪⎩⎨⎧⎭⎬⎫-1,12时,直线l 与轨迹C 恰好有两个公共点. 3°若⎩⎪⎨⎪⎧Δ>0,x 0<0,则由②③解得-1<k <-12或0<k <12.即当k ∈⎝⎛⎭⎫-1,-12∪⎝⎛⎭⎫0,12时,直线l 与C 1有两个公共点,与C 2有一个公共点, 故此时直线l 与轨迹C 恰好有三个公共点.综合(ⅰ)(ⅱ)可知,当k ∈(-∞,-1)∪⎝⎛⎭⎫12,+∞∪{0}时,直线l 与轨迹C 恰好有一个公共点;当k ∈⎣⎡⎭⎫-12,0∪⎩⎨⎧⎭⎬⎫-1,12时,直线l 与轨迹C 恰好有两个公共点;当k ∈⎝⎛⎭⎫-1,-12∪⎝⎛⎭⎫0,12时,直线l 与轨迹C 恰好有三个公共点. 22.(12分)[2014·广东省广州六中期末考试]如图,在四棱锥P -ABCD 中,底面ABCD 为直角梯形,且AD ∥BC ,∠ABC =∠P AD =90°,侧面P AD ⊥底面ABCD .若P A =AB =BC =12AD .(1)求证:CD ⊥平面P AC ;(2)侧棱P A 上是否存在点E ,使得BE ∥平面PCD ?若存在,指出点E 的位置并证明,若不存在,请说明理由;(3)求二面角A-PD-C的余弦值.解:因为∠P AD=90°,所以P A⊥AD.又因为侧面P AD⊥底面ABCD,且侧面P AD∩底面ABCD=AD,所以P A⊥底面ABCD.又因为∠BAD=90°,所以AB,AD,AP两两垂直.分别以AB,AD,AP所在直线为x轴,y轴,z轴建立如图所示的空间直角坐标系.设AD=2,则A(0,0,0),B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,1).(1)AP→=(0,0,1),AC→=(1,1,0),CD→=(-1,1,0),可得AP→·CD→=0,AC→·CD→=0,所以AP⊥CD,AC⊥CD.又因为AP∩AC=A,所以CD⊥平面P AC.(2)设侧棱P A的中点是E,则E(0,0,12),BE→=(-1,0,12).设平面PCD的法向量是n=(x,y,z),则⎩⎪⎨⎪⎧n·CD→=0n·PD→=0,因为CD→=(-1,1,0),PD→=(0,2,-1),所以⎩⎪⎨⎪⎧-x+y=02y-z=0,取x=1,则y=1,z=2,所以平面PCD的一个法向量为n=(1,1,2).所以n·BE→=(1,1,2)·(-1,0,12)=0,所以n⊥BE→.因为BE⊄平面PCD,所以BE∥平面PCD.(3)由已知,AB⊥平面P AD,所以AB→=(1,0,0)为平面P AD的一个法向量.由(2)知,n=(1,1,2)为平面PCD的一个法向量.设二面角A-PD-C的大小为θ,由图可知,θ为锐角,所以cosθ=|n·AB→||n||AB→|=|(1,1,2)·(1,0,0)|6×1=66.即二面角A-PD-C的余弦值为66.。

(常考题)北师大版高中数学高中数学选修2-1第三章《圆锥曲线与方程》检测题(含答案解析)(1)

(常考题)北师大版高中数学高中数学选修2-1第三章《圆锥曲线与方程》检测题(含答案解析)(1)

一、选择题1.若圆锥曲线C :221x my +=的离心率为2,则m =( )A .BC .13-D .132.若点)0到双曲线C :22221x y a b-=(0a >,0b >)的离心率为( )A B C D 3.(),0F c 是椭圆22221x y a b+=(0a b >>)的右焦点,过原点作一条倾斜角为60︒的直线交椭圆于P 、Q 两点,若2PQ c =,则椭圆的离心率为( )A .12B 1C D 4.椭圆()2222:10x y C a b a b+=>>的左、右焦点分别是1F 、2F ,斜率为1的直线l 过左焦点1F 且交C 于A ,B 两点,且2ABF 的内切圆的面积是π,若椭圆C 离心率的取值范围为[42,,则线段AB 的长度的取值范围是( )A .B .[1 , 2]C .[4 8],D .5.已知椭圆2222:1(0)x y E a b a b +=>>的左、右焦点分别为1F ,2F ,M 为E 上一点.若126MF F π∠=,21212F F F M F F +=,则E 的离心率为( )A B C 1 D 16.已知双曲线2221(0)x y a a -=>与椭圆22183x y +=有相同的焦点,则a =( )A B .C .2D .47.已知抛物线22y px =(0p >)的焦点F 到准线的距离为2,过焦点F 的直线与抛物线交于A ,B 两点,且3AF FB =,则点A 到y 轴的距离为( ) A .5B .4C .3D .28.点A 、B 分别为椭圆2214x y +=的左、右顶点,直线65x my =+与椭圆相交于P 、Q两点,记直线AP 、BQ 的斜率分别为1k 、2k ,则21221k k +的最小值为( ) A .14B .12C .2D .49.已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)y px p =>的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,AOBp =( ) A .1B .32C .2D .310.已知1F 、2F 是椭圆()222210x y a b a b+=>>的左、右焦点,过2F 的直线与椭圆交于P 、Q 两点,1PQ PF ⊥,且112QF PF =,则12PFF △与12QF F 的面积之比为( ) A.2B1 C1D.2+11.若圆222210x y ax y +-++=与圆221x y +=关于直线1y x =-对称,过点()2,C a a -的圆P 与y 轴相切,则圆心P 的轨迹方程为( )A .24480y x y -++=B .22220y x y +-+=C .2210y x y ---=D .24250y x y +-+=12.已知1F ,2F 是双曲线22221(0,0)x y a b a b-=>>的左右焦点,若在右支上存在点A 使得点2F 到直线1AF,则离心率e 的取值范围是( )A.1,2⎛ ⎝⎭ B.2⎛⎫+∞ ⎪ ⎪⎝⎭ C.1,2⎛ ⎝⎭ D.2⎛⎫+∞ ⎪ ⎪⎝⎭二、填空题13.已知双曲线2222:1(0,0)x y C a b a b-=>>)的左,右焦点分别是1F ,2F,直线:(l y k x =过点2F ,且与双曲线C 在第一象限交于点P .若(22()0OP OF PF +⋅=(O 为坐标原点),且()121PF a PF +=,则双曲线C 的离心率为__________. 14.数学中有许多形状优美、寓意美好的曲线,曲线22:4C x y x y +=+就是其中之一.曲线C 对应的图象如图所示,下列结论:①直线AB 的方程为:20x y ++=; ②曲线C 与圆228x y +=有2个交点; ③曲线C 所围成的“心形”区域的面积大于12; ④曲线C 恰好经过4个整点(即横、纵坐标均为整数的点). 其中正确的是:________.(填写所有正确结论的编号)15.设12,F F 为椭圆22:14x C y +=的两个焦点,P 为椭圆C 在第一象限内的一点且点P的横坐标为1,则12PF F △的内切圆的半径为__________.16.点(,)P x y 是曲线22:143x yC +=上一个动点,则23x y +的取值范围为______.17.如图,圆O 与离心率为32的椭圆()2222:10x y T a b a b +=>>相切于点()0,1M ,过点M 引两条互相垂直的直线1l ,2l ,两直线与两曲线分别交于点A ,C 与点B ,D (均不重合).若P 为椭圆上任一点,记点P 到两直线的距离分别为1d ,2d ,则2212d d +的最大值是__________.18.已知椭圆1C 和双曲线2C 的中心均在原点,且焦点均在x 轴上,从每条曲线上取两个点,将其坐标记录于下表中:x0 426y22 2-22-则2C 的虚轴长为______.19.抛物线24y x =的焦点为F ,经过F 的直线与抛物线在x 轴上方的部分相交于点A ,与准线l 交于点B ,且AK l ⊥于K ,如果AF BF =,那么AKF ∆的面积是______.20.已知1F ,2F 分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,第一象限的点P 在渐近线上,满足12F PF 2π∠=,直线1PF 交双曲线左支于点Q ,若点Q 是线段1PF 的中点,则该双曲线的离心率为_____.三、解答题21.已知椭圆1C :22221(0)x y a b a b +=>>的离心率为32,椭圆1C 的一个短轴端点恰好是抛物线2C :24x y =的焦点F . (1)求椭圆1C 的方程;(2)过点F 的直线交抛物线2C 于,M N 两点,连接NO ,MO ,线段NO ,MO 的延长线分别交椭圆1C 于A ,B 两点,记OMN 与OAB 的面积分别为OMN S △、OAB S,设OMNOAB SSλ=-,求λ的取值范围.22.已知椭圆()2222:10x y C a b a b+=>>的离心率63e =,一条准线方程为362x =. (1)求椭圆C 的方程;(2)设,G H 为椭圆上的两个动点,G 在第一象限,O 为坐标原点,若OG OH ⊥,GOH 的面积为3155,求OG 的斜率. 23.如图,设圆2212x y +=与抛物线24x y =相交于A ,B 两点,F 为抛物线的焦点.(1)若过点F 且斜率为1的直线l 与抛物线和圆交于四个不同的点,从左至右依次为1P ,2P ,3P ,4P ,求1234PP P P +的值;(2)若直线m 与抛物线相交于M ,N 两点,且与圆相切,切点D 在劣弧AB 上,求MF NF +的取值范围.24.已知圆22:12O x y +=,P 为圆O 上的动点,点M 在x 轴上,且M 与P 的横坐标相等,且()21PN NM =-,点N 的轨迹记为C .(1)求C 的方程;(2)设()2,2A ,()4,0B ,过B 的直线(斜率不为±1)与C 交于,D E 两点,试问直线AD 与AE 的斜率之和∑是否为定值?若是,求出该定值;若不是,求∑的取值范围.25.已知椭圆()2222:10x y M a b a b +=>>的一个顶点坐标为()2,0-线y x m =-+交椭圆于不同的两点A 、B .(1)求椭圆M 的方程;(2)设点()2,2C -,是否存在实数m ,使得ABC 的面积为1?若存在,求出实数m 的值;若不存在,说明理由.26.点A 是抛物线21:2(0)C y px p =>与双曲线2222:1(0)y C x b b-=>的一条渐近线的交点,若点A 到抛物线1C 的准线的距离为p . (1)求双曲线2C 的方程;(2)若直线:1l y kx =-与双曲线的右支交于两点,求k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【详解】因为圆锥曲线C :221x my +=的离心率为2, 所以,该曲线是双曲线,2222111y x my x m+=⇒-=-,123m =⇒=-, 故选C.2.A解析:A【分析】先求得双曲线C 的其中一条渐近线方程0bx ay -=,根据点)0到双曲线C 的渐近线223c a =,即可求得双曲线的离心率. 【详解】由题意,双曲线C :22221x y a b-=的其中一条渐近线方程为b y x a =,即0bx ay -=,因为点)0到双曲线C==2232b c =,即222332c a c -=,即223c a =,所以==ce a故选:A. 【点睛】本题考查了双曲线的标准方程及几何性质,其中求双曲线的离心率(或范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程,即可得e 的值(范围).3.B解析:B 【分析】设椭圆的左焦点为1F ,连接1,PF PF ,由题 可得1PF PF ⊥且POF 是等边三角形,表示出1,PF PF ,利用勾股定理建立关系即可求出. 【详解】如图所示,设椭圆的左焦点为1F ,连接1,PFPF , 2PQ c =,则PO c =,则1PF PF ⊥,又60POF ∠=,则POF 是等边三角形,即PF c =,12PF PF a +=,12PF a c ∴=-,又22211PF PFF F +=,即()()22222a c c c -+=,整理可得22220c ac a +-=,即2220e e+-=,解得1e =. 故选:B.【点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.4.C解析:C 【分析】 由题可求得2121222ABF AF F BF F cSSS=+=,2222ABF EABEBF EAF S SSSa =++=,即可得出2aAB c=,再根据离心率范围即可求出. 【详解】设2ABF 的内切圆的圆心为E ,半径为r ,则2r ππ=,解得1r =,21212112121121211sin sin 22ABF AF F BF F SSSAF F F AF F BF F F BF F =+=⋅⋅⋅∠+⋅⋅⋅∠ 111122sin 452sin135222cAF c BF c AB =⋅⋅⋅+⋅⋅⋅=, 又22222111222ABF EAB EBF EAF S S S S AB r BF r AF r =++=⋅⋅+⋅⋅+⋅⋅()22114222AB BF AF a a =++=⨯=, 222c a∴=,2a AB c ∴=, 22c e a =∈⎣⎦,,2,22a c ⎤∴∈⎦,则[]24,8ac∈,即线段AB 的长度的取值范围是[]4,8. 故选:C.【点睛】本题考查根据离心率范围求弦长范围,解题的关键是通过两种不同方式求出2ABF 的面积,得出22aAB c=⋅可求解. 5.B解析:B 【分析】先取线段1F M 中点P ,连接2PF ,得到2c P F =,结合正弦定理证明12F PF ∠是直角,求出12,F M MF ,再根据定义122FM MF a +=得到,a c 之间关系,即求得离心率. 【详解】如图椭圆中,取线段1F M 中点P ,连接2PF ,则21222F F F M F P+=,因为21212F F F M F F +=,所以21222F F F P c ==,则2c P F =,12F F P 中,1212122sin sin F F M P F F F P F F =∠∠,即122sin sin6c P F F c π=∠,解得12in 1s P F F =∠,又()120,F PF π∠∈,12F PF ∠=2π,故13F P c =,2PF 是线段1F M 的中垂线,故121223,2FM c MF F F c ===,结合椭圆定义122FM MF a +=, 故2322c c a +=,即)31c a =,故离心率31231c e a ===+. 故选:B. 【点睛】求椭圆离心率(或取值范围)的常见方法: (1)直接法:由a ,c 直接计算离心率c e a=; (2)构建齐次式:利用已知条件和椭圆的几何关系构建关于a ,b ,c 的方程和不等式,利用222b a c =-和ce a=转化成关于e 的方程和不等式,通过解方程和不等式即求得离心率的值或取值范围.6.C解析:C 【分析】先求出椭圆焦点坐(椭圆的半焦距),再由双曲线中的关系计算出a . 【详解】椭圆22183x y +=的半焦距为c∴双曲线中215a +=,∴2a =(∵0a >).故选:C . 【点睛】晚错点睛:椭圆与双曲线中都是参数,,a b c ,但它们的关系不相同:椭圆中222a b c =+,双曲线中222+=a b c ,不能混淆.这也是易错的地方.7.C解析:C 【分析】可设出直线方程与抛物线方程联立,得出12x x ,再由焦半径公式表示出3AF FB =,得到1232x x =+,结合这两个关系式可求解13x = 【详解】已知焦点F 到准线的距离为2,得2p =, 可得24y x =设()()1122,,,A x y B x y ,:1AB x my =+ 与抛物线方程24y x =联立可得:2440y my --=124y y ∴=-,()21212116y y x x ∴==①又3AF FB =,()12131x x ∴+=+,1232x x ∴=+② 根据①②解得13x = 点A 到y 轴的距离为3 故选:C 【点睛】抛物线中焦半径公式如下:抛物线()220y px p =>的焦点为F ,()11,A x y 为抛物线上的一点,则12pAF x =+,解题时可灵活运用,减少计算难度.8.B解析:B 【分析】设点()11,P x y 、()22,Q x y ,将直线PQ 的方程与椭圆的方程联立,列出韦达定理,计算出12k k 的值,利用基本不等式可求得21221k k +的最小值. 【详解】设点()11,P x y 、()22,Q x y ,联立226544x my x y ⎧=+⎪⎨⎪+=⎩,消去x 并整理得()22126440525m y my ++-=, 由韦达定理可得()1221254y y m +=-+,()12264254y y m =-+,设直线AQ 的斜率为k ,则222y k x =+,2222y k x =-,所以,()222222222222212244444y y y y k k x x x y ⋅=⋅===-+----,214k k ∴=-, 而()12121212121212121625616162252555y y y y y y k k m x x m y y y y my my ⋅=⋅==++⎛⎫⎛⎫+++++ ⎪⎪⎝⎭⎝⎭()()()22222642541641922561625254254m m m m m -+==---+++,因此,222112211162k k k k +=+≥==, 当且仅当18k =±时,等号成立, 因此,21221k k +的最小值为12. 故选:B.【点睛】关键点点睛:解本题的关键在于求得214AQ k k =-,进而利用韦达定理法求得1AQ k k ⋅为定值,再结合基本不等式求得最值.9.C解析:C 【分析】求出双曲线的渐近线方程与抛物线22(0)y px p =>的准线方程,进而求出A ,B 两点的坐标,再由双曲线的离心率为2,AOBp 的值. 【详解】解:双曲线2222:1(0,0)x y C a b a b -=>>的两条渐近线方程是b y x a=±,又抛物线22(0)y px p =>的准线方程是2px =-, 故A ,B 两点的纵坐标分别是2pb y a=±, 又由双曲线的离心率为2,所以2c a =2=,则b a = A ,B两点的纵坐标分别是2=±y , 又AOB=,得2p =, 故选:C . 【点睛】本题解题的关键是求出双曲线的渐近线方程和抛物线的准线方程,解出A ,B 两点的坐标,考查离心率公式和三角形的面积公式.10.D解析:D 【分析】设1PF t =,则1122QF PF t ==,由已知条件得出130PQF ∠=,利用椭圆的定义可得22PF a t =-,222QF a t =-,则43PQ a t =-,利用勾股定理可求得t a =,进而可得出121222222PF F QF F S PF a t S QF a t -==-△△,代入t =计算即可得解. 【详解】可设1PF t =,则1122QF PF t ==,1PQ PF ⊥,则130PQF ∠=,由椭圆的定义可得22PF a t =-,222QF a t =-,则43PQ a t =-, 则22211PQ PF QF +=,即()222434a t t t -+=,即有433a t t -=,解得33t =+, 则12PF F △与12QF F 的面积之比为()121222223123323822231233PF F QF F a a S PF a t S QF a t a --+=====+---+△△.故选:D. 【点睛】方法点睛:椭圆上一点与两个焦点构成的三角形,称为椭圆的“焦点三角形”,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理以及椭圆的定义来解决.11.D解析:D 【分析】首先根据两圆的对称性,列式求a ,再利用直接法求圆心P 的轨迹方程. 【详解】由条件可知222210x y ax y +-++=的半径为1,并且圆心连线所在直线的斜率是1-,()()2222222101x y ax y x a y a +-++=⇔-++=,,圆心(),1a -,22r a =,所以2111a a -⎧=-⎪⎨⎪=⎩,解得:1a =,即()2,1C -设(),P x y ,由条件可知PC x =()()2221x y x ++-=,两边平方后,整理为24250y x y +-+=. 故选:D 【点睛】方法点睛:一般求曲线方程的方法包含以下几种:1.直接法:把题设条件直接“翻译”成含,x y 的等式就得到曲线的轨迹方程.2.定义法:运用解析几何中以下常用定义(如圆锥曲线的定义),可从曲线定义出发,直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程.3.相关点法:首先要有主动点和从动点,主动点在已知曲线上运动,则可以采用此法.12.D解析:D 【分析】设直线1AF 的方程,利用点2F 到直线的距离建立等式,解出斜率k ,因为0bk a<<,从而求出,a c 的不等关系,进而解出离心率的范围. 【详解】设1AF :()y k x c =+,因为点A 在右支上,则0b k a<<,,所以222222343a b k c a a =<-,即2247c a >,解得:e >故选:D . 【点睛】本题考查双曲线求离心率,属于中档题.方法点睛:(1)利用点到直线的距离建立等量关系; (2)解出斜率k 与,a b 的关系;(3)由点在右支和左焦点的位置关系,求出斜率k 的范围; (4)利用斜率k 的范围,建立,a c 的不等式,求出离心率的范围.二、填空题13.【分析】取的中点则根据得则设根据结合双曲线的定义得到然后在中利用勾股定理求解即可【详解】如图取的中点则因为所以即因为是的中位线所以由题意可得设则由双曲线的定义可知则即故在中由勾股定理得即整理得解得故【分析】取2PF 的中点H ,则22OP OF OH +=,根据22()0OP OF PF +⋅=,得2OH PF ⊥,则12PF PF ⊥,设2PF m =,根据()121PF a PF +=结合双曲线的定义得到2||2PF =,122PF a =+,然后在12Rt PF F 中,利用勾股定理求解即可.【详解】 如图,取2PF 的中点H ,则22OP OF OH +=, 因为22()0OP OF PF +⋅=,所以20OH PF ⋅=,即2OH PF ⊥.因为OH 是12PF F △的中位线,所以12PF PF ⊥.由题意可得10c =,设2PF m =,则()11PF a m =+, 由双曲线的定义可知12||2PF PF a -=,则2am a =,即2m =, 故2||2PF =,122PF a =+.在12Rt PF F 中,由勾股定理得2221122||||PF PF F F +=, 即()242240a ++=,整理得2280a a +-=, 解得2a =.故双曲线C 的离心率为10c a =. 故答案为:102【点睛】本题主要考查双曲线的几何性质和定义的应用以及平面几何的知识,平面向量垂直问题,还考查了数形结合的思想和运算求解的能力,属于中档题.14.②③【分析】求出点结合直线方程的知识可判断①;联立方程可求出交点坐标即可判断②;在曲线上取点由可判断③;求出整点即可判断④【详解】对于①曲线令则;令则;所以点所以直线AB 的方程为:即故①错误;对于②解析:②③ 【分析】求出点()2,0A ,()0,2B ,结合直线方程的知识可判断①;联立方程可求出交点坐标,即可判断②;在曲线上取点()2,2D ,()2,2E -,()2,0F -,()0,2G -,由ADEFG S 可判断③;求出整点即可判断④. 【详解】 对于①,曲线22:4C xy x y +=+,令0x =,则2y =±;令0y =,则2x =±; 所以点()2,0A ,()0,2B ,所以直线AB 的方程为:221x y+=即20x y +-=, 故①错误;对于②,由222248x y x y x y ⎧+=+⎨+=⎩可得22x y =⎧⎨=⎩或22x y =-⎧⎨=⎩, 所以曲线C 与圆228x y +=有2个交点()2,2,()2,2-,故②正确;对于③,在曲线上取点()2,2D ,()2,2E -,()2,0F -,()0,2G -,顺次连接各点,如图,则12442122ADEFG S =⨯+⨯⨯=, 所以曲线C 所围成的“心形”区域的面积大于12,故③正确;对于④,曲线经过的整点有:()2,0±,()0,2±,()2,2±,有6个,故④错误. 故答案为:②③. 【点睛】本题考查了曲线与方程的应用,考查了运算求解能力与转化化归思想,合理转化条件是解题关键,属于中档题.15.【分析】由点的横坐标为1代入得出点的纵坐标继而求得的面积S 再设的内切圆的半径为由可得答案【详解】因为点的横坐标为1所以点的纵坐标为所以的面积设的内切圆的半径为所以即所以故答案为:【点睛】本题考查椭圆 解析:333【分析】由点P 的横坐标为1,代入得出点P 的纵坐标,继而求得12PF F △的面积S ,再设12PF F △的内切圆的半径为r ,由()(12121232S F F PF PF r r =++⨯=+,可得答案.因为点P 的横坐标为1,所以点P 的纵坐标为2P y =12PF F △的面积121322P F F y S ⋅==,设12PF F △的内切圆的半径为r ,所以()(1212122S F F PF PF r r =++⨯=+,即(322r +=,所以3r =.故答案为:3 【点睛】本题考查椭圆的方程和椭圆的定义,以及焦点三角形的相关性质,属于中档题.16.【分析】可设则其中可得的取值范围【详解】由点是曲线上一个动点可设则其中又则故答案为:【点睛】本题考查了椭圆参数方程的应用辅助角公式三角函数的值域属于中档题 解析:[5,5]-【分析】可设2cos ,x y θθ==,则2x 4cos 3sin 5sin()θθθα=+=+,其中4tan 3α=,可得2x 的取值范围. 【详解】由点(,)P x y 是曲线22:143x y C +=上一个动点,可设2cos ,x y θθ==,[0,2)θπ∈,则2x 4cos 3sin 5sin()θθθα=+=+,其中4tan 3α=,又5sin()θα+[5,5]∈-,则2x [5,5]∈-. 故答案为:[5,5]-. 【点睛】本题考查了椭圆参数方程的应用,辅助角公式,三角函数的值域,属于中档题.17.【分析】首先根据题意求出椭圆的标准方程设根据勾股定理和得到再利用二次函数的性质即可得到最大值【详解】由题知:解得椭圆设因为则又因为即所以因为所以当时取得最大值为故答案为:【点睛】本题主要考查直线与椭 解析:163首先根据题意求出椭圆的标准方程,设()00,P x y ,根据勾股定理和12l l ⊥得到()2222012201PMx d y d ==+-+,再利用二次函数的性质即可得到最大值.【详解】由题知:2221c a b a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得2a =,1b =,椭圆22:14xT y +=.设()00,P x y ,因为12l l ⊥,则()2222012201PMx d y d ==+-+又因为220014x y +=,即220044x y =-.所以()22222120001161=33434d d y y y ⎛⎫=+--++ ⎪⎝⎭+-.因为011y -≤≤,所以当031y =-时,2212d d +取得最大值为163. 故答案为:163【点睛】本题主要考查直线与椭圆的综合应用,同时考查了学生的计算能力,属于中档题.18.【分析】由焦点均在轴上可得点在椭圆上则点和点在双曲线上代入中求解即可【详解】由焦点均在轴上可得点在椭圆上则点和点在双曲线上设双曲线为则解得即所以双曲线的虚轴长为故答案为:4【点睛】本题考查双曲线的方 解析:4【分析】由焦点均在x轴上可得点(0,在椭圆上,则点()4,2-和点(-在双曲线上,代入22221x y a b -=中求解即可. 【详解】由焦点均在x轴上可得点(0,在椭圆上, 则点()4,2-和点(-在双曲线上,设双曲线为22221x y a b-=,则222216412481a b a b ⎧-=⎪⎪⎨⎪-=⎪⎩,解得24b =,即2b =, 所以双曲线2C 的虚轴长为24b =, 故答案为:4 【点睛】本题考查双曲线的方程与焦点的位置的关系,考查双曲线的几何性质.19.【分析】计算得到故为正三角形计算面积得到答案【详解】抛物线的焦点准线为l :由抛物线的定义可得由直角三角形的斜边上的中线等于斜边的一半可得即有为正三角形由F 到l 的距离为则的面积是故答案为:【点睛】本题 解析:43【分析】计算得到AF AK =,FK AF =,故AKF ∆为正三角形,4AK =,计算面积得到答案. 【详解】抛物线24y x =的焦点()1,0F ,准线为l :1x =-,由抛物线的定义可得AF AK =, 由直角三角形的斜边上的中线等于斜边的一半,可得FK AF =, 即有AKF ∆为正三角形,由F 到l 的距离为2d =,则4AK =,AKF ∆的面积是316434⨯=. 故答案为:43.【点睛】本题考查了抛物线中的面积问题,确定AKF ∆为正三角形是解题的关键.20.【分析】由题意结合渐近线的性质可得则把点坐标代入双曲线方程可得化简即可得解【详解】点在第一象限且在双曲线渐近线上又直线的斜率为又点是线段的中点又在双曲线上化简得因为故解得故答案为:【点睛】本题考查了1【分析】由题意结合渐近线的性质可得(,)P a b ,则,22a c b Q -⎛⎫⎪⎝⎭,把Q 点坐标代入双曲线方程可得222222()44a cb b a a b -⋅-⋅=,化简即可得解. 【详解】12F PF 2π∠=,点P 在第一象限且在双曲线渐近线上,∴121||2OP F F c ==, 又直线OP 的斜率为ba,∴(,)P a b , 又 1(,0)F c -,点Q 是线段1PF 的中点,∴,22a c b Q -⎛⎫⎪⎝⎭, 又 ,22a c b Q -⎛⎫ ⎪⎝⎭在双曲线22221(0,0)x y a b a b -=>>上, ∴222222()44a cb b a a b -⋅-⋅=,化简得222222()5420b ac a b a ac c ⋅-=⇒--+=, ∴2240e e --=,因为1e >,故解得1e =1. 【点睛】本题考查了双曲线的性质和离心率的求解,考查了计算能力,属于中档题.三、解答题21.(1)2214x y +=;(2)[1,)+∞.【分析】(1)解关于,,a b c 的方程组即得解;(2)求出OMNS =1OABS=,即得λ的取值范围.【详解】解:(1)因为椭圆1C 的一个短轴端点恰好是抛物线2C :24x y =焦点()0,1F ,所以1b =.由2c a =,222a b c =+,解得2a =, 所以椭圆1C 的方程为2214x y +=.(2)因为过F 的直线交2C 于M ,N 两点,所以直线的斜率存在, 设直线方程为1y kx =+,()11,M x y ,()22,N x y ,联立241x y y kx ⎧=⎨=+⎩,故2440x kx --=.216160k ∆=+>恒成立,121244x x kx x +=⎧⎨=-⎩,由121211122OMNS OF x x x x =⨯-=⨯⨯-, 故()22221212121144444OMNSx x x x x x k ⎡⎤=-=+-=+⎣⎦,所以OMNS=不妨设()22,N x y 在第一象限,所以设直线ON :11(0)y k x k =>,则12214y k xx y =⎧⎪⎨+=⎪⎩,解得A ⎛⎫, 设直线OM :2y k x =,同理B ⎛⎫, 又因为22121212121212144164x x y y x x k k x x x x =⋅===-⋅,可得B ⎛⎫. 又因为点A 到直线OB的距离d ==所以11122OABSd OB =⋅⋅==.所以211OMNOABS Sλ=-=≥.综上:λ的取值范围是[1,)+∞. 【点睛】方法点睛:圆锥曲线中的最值范围问题常用的方法有:(1)函数法;(2)数形结合法;(3)导数法;(4)基本不等式法.要根据已知条件灵活选择方法求解.22.(1)22193x y += (2)k =k =【分析】(1)由离心率可得c a =2a c ,结合222b a c =-可得答案.(2)设直线OG 的方程为y kx =,则0k >,可得出点G 的坐标,求出OG 的长度,由OG OH ⊥,则1OHk k=-,从而可得OH 的长度,由125GOHS OH OG =⨯⨯=建立方程可得答案. 【详解】 (1)由离心率3c e a ==,一条准线方程为x =2a c两式相乘可得23c a a a c ⨯===,所以c则222963b a c =-=-=所以椭圆C 的方程为:22193x y +=(2)由G 在第一象限,设直线OG 的方程为y kx =,则0k >由22193y kxx y =⎧⎪⎨+=⎪⎩,得22931x k =+,则222931k y k =+所以OG == 由OG OH ⊥,则1OHk k =-,所以OH ==所以2119225GOHSOH OG =⨯⨯=⨯=化简得4231030k k -+=,解得23k =或213k =所以直线OG的斜率为k =3k =【点睛】关键点睛:本题考查求椭圆方程和根据三角形面积求直线斜率,解答本题的关键是设出直线OG 的方程为y kx =,表示出OG =OH =的长度,由12GOHSOH OG =⨯⨯=建立方程,属于中档题. 23.(1)1234PP P P +=2)2,22⎡⎤⎣⎦. 【分析】(1)由题意可得直线l 的方程为1y x =+,设()111,P x y ,()222,P x y ,()333,P x y ,()444,P x y,则可得()()12342413PP P P x x x x +=+-+⎤⎦,然后分别联立直线与圆的方程,直线与抛物线的方程,得到两个方程组,消元后利用根与系数的关系,可得结果; (2)将圆的方程和抛物线方程联立方程组可求出A ,B 两点的坐标,设()00,D x y ,则切线00:12m x x y y +=,直线方程式与抛物线方程式联立方程组,消元后,再由根与系数的关系可得22000022200004244842448244M N x y y y y y y y y y +-++===+-,而02y ≤≤而可求出M N y y +的范围,进而可得MF NF +的取值范围. 【详解】解:由题意,()0,1F ,直线l 的方程为1y x =+设()111,P x y ,()222,P x y ,()333,P x y ,()444,P x y,则)1221PP x x =-,)3443P P x x =-,∴)()()123424132413PP P P x x x x x x x x +=+--=+-+⎤⎦故分别联立直线与圆的方程,直线与抛物线的方程,得到两个方程组:22112y x x y =+⎧⎨+=⎩;214y x x y=+⎧⎨=⎩,分别消去y ,整理得:222110x x +-=;2440x x --= ∴131x x +=-,244x x +=,∴1234PP P P +=(2)由222124x y x y⎧+=⎨=⎩解得:()2A -,()2B ,设()00,D x y ,则220012x y +=;切线00:12m x x y y +=,其中02y ≤≤;设(),M M M x y ,(),N N N x y ,则002124x x y y x y+=⎧⎨=⎩,消去x ,整理得: ()2220004241440y y x y y -++=,∴22000022200004244842448244M N x y y y y y y y y y +-++===+-∵02y ≤≤∴20M N y y ⎡⎤+∈⎣⎦∵2M N MF NF y y +=++,∴MF NF +的取值范围为2,22⎡⎤⎣⎦【点睛】关键点点睛:此题考查直线与圆的位置关系,考查直线与抛物线的位置关系,第2问解题的关键是将切线方程与抛物线方程联立方程组002124x x y y x y +=⎧⎨=⎩,进而利用根与系数的关系可得22000022200004244842448244M N x y y y y y y y y y +-++===+-,再利用抛物线的定义可求得MF NF +的取值范围,考查数学转化思想和计算能力,属于中档题24.(1)221126x y +=;(2)不是定值;()33,464,,22⎛⎫⎛⎫-∞---+∞ ⎪ ⎪⎝⎭⎝⎭.【分析】(1)设(),N xy ,()00,P x y ,利用()21PN NM =-,根据向量的坐标运算可得00x xy =⎧⎪⎨=⎪⎩,代入圆O 方程可得C 的方程; (2)设()():41DE y k x k =-≠±,()11,D x y ,()22,E x y ,将DE 方程代入椭圆方程可得韦达定理的形式,利用0∆>可得k 的取值范围,将AD AE k k +整理为121kk --,根据k 的范围可求得∑的取值范围. 【详解】(1)设(),N x y ,()00,P x y ,则()0,0M x ,()21PN NM =-,2PM PN NM NM ∴=+=,又()00,PM y =-,()0,NM x xy =--,由2PM NM =得:))00x x y y -=-=-,则00x x y =⎧⎪⎨=⎪⎩,点P 在圆22:12O x y +=上,)2212x ∴+=,即221126x y +=, C ∴的方程为221126x y +=.(2)依题意,设()11,D x y ,()22,E x y ,过点B 的直线DE 斜率必存在, 可设直线DE 的方程为()()41y k x k =-≠±,由()2241126y k x x y ⎧=-⎪⎨+=⎪⎩,消去y 得:()2222211632120k x k x k +-+-=,其中()()()4222256421321216320k k k k∆=-+-=->,解得:22k -<<,()611,11,22k ⎛⎫⎛⎫∴∈--- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭, 21221621k x x k ∴+=+,2122321221k x x k -=+,()()121212124242222222AD AE k x k x y y k k x x x x ------∴+=+=+----()()()()121222122122k x k k x k x x --+--+=+--()121122122k k x x ⎛⎫=-++ ⎪--⎝⎭()()()121212422124x x k k x x x x +-=-+⋅-++()22222216421221321216242121k k k k k k k k -+=-+⋅--⋅+++()()2221642112221881k k kk k k k -+-=-+⋅=--. ()66,11,11,22k ⎛⎫⎛⎫∈--- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,()121332,464,,1122k k k -⎛⎫⎛⎫∴=--∈-∞---+∞ ⎪ ⎪--⎝⎭⎝⎭,AD AE k k ∴+不是定值,且∑的取值范围是()33,464,,22⎛⎫⎛⎫-∞---+∞ ⎪ ⎪⎝⎭⎝⎭.【点睛】思路点睛:本题考查直线与椭圆综合应用中的定值、取值范围问题的求解,求解此类问题的基本思路如下:①假设直线方程,与椭圆方程联立,整理为关于x 或y 的一元二次方程的形式; ②利用0∆>求得变量的取值范围,得到韦达定理的形式;③利用韦达定理表示出所求量,将所求量转化为关于变量的函数的形式; ④化简所得函数式,消元可得定值或利用函数值域的求解方法求得取值范围.25.(1)2214x y +=;(2)存在,且=m 【分析】(1)由已知条件求出a 的值,结合离心率可求得c 的值,再由a 、b 、c 的关系可求得b 的值,由此可求得椭圆M 的方程;(2)设点()11,A x y 、()22,B x y ,将直线AB 的方程与椭圆M 的方程联立,列出韦达定理,利用弦长公式求出AB ,求出点C 到直线AB 的距离d ,利用三角形的面积公式可得出关于实数m 的等式,解出m 的值,并验证是否满足0∆>,由此可得出结论. 【详解】(1)由于椭圆()2222:10x y M a b a b+=>>的一个顶点坐标为()2,0-,则2a =,又因为该椭圆的离心率为c a =c =1b ∴=, 因此,椭圆M 的方程为2214x y +=;(2)设点()11,A x y 、()22,B x y ,联立2214y x m x y =-+⎧⎪⎨+=⎪⎩,消去y 并整理得2258440x mx m -+-=, ()()2226445441650m m m ∆=-⨯⨯-=->,解得m <<由韦达定理可得1285m x x +=,212445m x x -=,由弦长公式可得12AB x x =-===,点C 到直线AB的距离为d =,所以,ABC的面积为11122ABCS AB d =⋅===△, 整理可得42420250m m -+=,即()22250m -=,可得252m =,满足0∆>. 因此,存在2=±m ,使得ABC 的面积为1. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.26.(1)2214y x -=;(2)(【分析】(1)取双曲线的一条渐近线:y bx =,与抛物线方程联立即可得到交点A 的坐标,再利用点A 到抛物线的准线的距离为p ,即可得到p ,b 满足的关系式,进而可得答案. (2)根据直线:1l y kx =-与双曲线的右支交于两点,利用韦达定理、判别式列不等式组求解即可. 【详解】(1)取双曲线的一条渐近线y bx =, 联立22y px y bx ⎧=⎨=⎩解得222p x b py b ⎧=⎪⎪⎨⎪=⎪⎩,故222(,)p p A b b .点A 到抛物线的准线的距离为p ,∴222p pp b+=,可得24b = 双曲线222:14y C x -=;(2)联立22114y kx y x =-⎧⎪⎨-=⎪⎩可得()224250k x kx -+-=因为直线:1l y kx =-与双曲线的右支交于两点, 所以()22222045{0442040kk k k k ->-->-∆=+->,解得2k << 所以,k的取值范围(. 【点睛】求双曲线标准方程的方法一般为待定系数法,根据条件确定关于,,a b c 的方程组,解出,,a b ,从而写出双曲线的标准方程.解决直线与双曲线的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程或不等式,解决相关问题.。

新北师大版高中数学高中数学选修2-1第三章《圆锥曲线与方程》测试题(含答案解析)(2)

新北师大版高中数学高中数学选修2-1第三章《圆锥曲线与方程》测试题(含答案解析)(2)

一、选择题1.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为32,直线l 与椭圆C 交于,A B 两点,且线段AB 的中点为()2,1M -,则直线l 的斜率为( ) A .13B .32C .12D .12.如图,过抛物线22y px =(0p >)的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,若2BC BF =,且6AF =,则此抛物线方程为( )A .29y x =B .26y x =C .23y x =D .23y x =3.若圆锥曲线C :221x my +=的离心率为2,则m =( ) A .3B 3C .13-D .134.已知F 是双曲线22:13y C x -=的右焦点,Q 是双曲线C 左支上的一点,(0,23M 是y 轴上的一点.当MQF 的周长最小时,过点Q 的椭圆与双曲线C 共焦点,则椭圆的离心率为( ) A .25B .45C .15D .235.已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,若在右支上存在点A ,使得点2F 到直线1AF 的距离为2a ,则该双曲线的离心率的取值范围是( ) A .(2,)+∞B .2)C .(3,)+∞D .3)6.如图,已知点()00,P x y 是双曲线221:143x y C -=上的点,过点P 作椭圆222:143x y C +=的两条切线,切点为A 、B ,直线AB 交1C 的两渐近线于点E 、F ,O是坐标原点,则OE OF ⋅的值为( )A .34B .1C .43D .9167.已知抛物线2:4C y x =的焦点为F ,过点F 的直线l 与抛物线C 交于,P Q 两点,且30FP FQ +=,则(OPQ O △为坐标原点)的面积S 等于( )A 3B .23C 23D 438.设1F ,2F 分别为双曲线22134x y -=的左,右焦点,点P 为双曲线上的一点.若12120F PF ∠=︒,则点P 到x 轴的距离为( )A .2121B .22121C .42121D 219.椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为F 1,F 2,点P (x 1,y 1),Q (-x 1,-y 1)在椭圆C 上,其中x 1>0,y 1>0,若|PQ |=2|OF 2|,11||3||QF PF ≥,则离心率的取值范围为( ) A .61⎛- ⎝⎦B .62]C .231⎤⎥⎝⎦D .31]10.在平面直角坐标系中,,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y +-=相切,则圆C 面积的最小值为( ) A .45π B .34π C .(625)π-D .54π 11.设椭圆2222:1(0)x y C a b a b+=>> 的右焦点为F ,椭圆C 上的两点,A B 关于原点对称,且满足0,||||2||FA FB FB FA FB ⋅=≤≤,则椭圆C 的离心率的取值范围是( ) A .25[B .5[C .2[31] D .[31,1)12.已知椭圆E :()222210x y a b a b +=>>,过点()4,0的直线交椭圆E 于A ,B 两点.若AB 中点坐标为()2,1-,则椭圆E 的离心率为( )A .12B .32C .13D .233二、填空题13.设F 为抛物线2:=3C y x 的焦点,过F 且倾斜角为30的直线交C 于A ,B 两点,则AB =________.14.直线l 经过抛物线C :212y x =的焦点F ,且与抛物线C 交于A ,B 两点,弦AB 的长为16,则直线l 的倾斜角等于__________.15.过椭圆2222:1x y C a b+=(0)a b >>的左焦点F 作斜率为12的直线l 与C 交于A ,B 两点,若||||OF OA =,则椭圆C 的离心率为________.16.如图,直线3y x =-与抛物线24y x =交于A 、B 两点,过A 、B 两点向抛物线的准线作垂线,垂足分别为P 、Q ,则梯形APQB 的面积为________.17.已知抛物线24x y =的焦点为F ,双曲线()2222:10,0x y C a b a b-=>>的右焦点为1F ,过点F 和1F 的直线l 与抛物线在第一象限的交点为M ,且抛物线在点M 处的切线与直线3y x =-垂直,当3a b 取最大值时,双曲线C 的方程为________.18.已知双曲线()2222:10,0x y C a b a b-=>>的左右焦点分别为12,F F ,点P 在第一象限的双曲线C 上,且2PF x ⊥轴,12PF F △内一点M 满足21230MF MF MP ++=,且点M 在直线2y x =上,则双曲线C 的离心率为____________.19.已知椭圆2222:1(0)x y C a b a b +=>>上有一点22(,)22M ,F 为右焦点,B 为上顶点,O 为坐标原点,且2BFO BFMS S∆=,则椭圆C 的离心率为________20.双曲线221916x y -=的左焦点到渐近线的距离为________.三、解答题21.已知抛物线2:2(0)C x py p =>上一点(,9)M m 到其焦点的距离为10. (Ⅰ)求抛物线C 的方程;(Ⅱ)设过焦点F 的直线l 与抛物线C 交于A ,B 两点,且抛物线在A ,B 两点处的切线分别交x 轴于P ,Q 两点,①设()11,A x y ,求点P 的横坐标; ②求||||AP BQ ⋅的取值范围.22.如图,直线:l x ty n =+与抛物线2:C y x =交于A ,B 两点,且l 与圆22:1O x y +=相切于点()00,P x y .(Ⅰ)证明:00ny t +=; (Ⅱ)求||||PA PB ⋅(用n 表示)23.在直角坐标系xOy 中,已知一动圆经过点()3,0,且在y 轴上截得的弦长为6,设动圆圆心的轨迹为曲线C . (1)求曲线C 的方程;(2)过点3(,0)2作相互垂直的两条直线1l ,2l ,直线1l 与曲线C 相交于A ,B 两点,直线2l 与曲线C 相交于E ,F 两点,线段AB ,EF 的中点分别为M 、N ,求证:直线MN 恒过定点,并求出该定点的坐标.24.在平面直角坐标系中,动点M 到点(2,0)F 的距离和它到直线52x =的距离的比是常25(1)求动点M 的轨迹方程;(2)若过点F 作与坐标轴不垂直的直线l 交动点M 的轨迹于,A B 两点,设点A 关于x 轴的对称点为P ,当直线l 绕着点F 转动时,试探究:是否存在定点Q ,使得,,B P Q 三点共线?若存在,求出点Q 的坐标;若不存在,请说明理由. 25.已知双曲线C 过点(3,且渐近线方程为12y x =±,直线l 与曲线C 交于点M 、N 两点.(1)求双曲线C 的方程;(2)若直线l 过点()1,0,问在x 轴上是否存在定点Q ,使得QM QN ⋅为常数?若存在,求出点坐标及此常数的值;若不存在,说明理由.26.如图,过抛物线24y x =的焦点F 任作直线l ,与抛物线交于A ,B 两点,AB 与x 轴不垂直,且点A 位于x 轴上方.AB 的垂直平分线与x 轴交于D 点.(1)若2,AF FB =求AB 所在的直线方程; (2)求证:||||AB DF 为定值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由椭圆的离心率可得a ,b 的关系,得到椭圆方程为22244x y b +=,设出A ,B 的坐标并代入椭圆方程,利用点差法求得直线l 的斜率. 【详解】解:由3c e a ==2222234c a b a a -==, 224a b ∴=,则椭圆方程为22244x y b +=,设1(A x ,1)y ,2(B x ,2)y , 则124x x +=-,122y y +=,把A ,B 的坐标代入椭圆方程得:22211222224444x y b x y b ⎧+=⎨+=⎩①②, ①-②得:12121212()()4()()x x x x y y y y -+=--+, ∴12121212414()422y y x x x x y y -+-=-=-=-+⨯.∴直线l 的斜率为12. 故选:C . 【点睛】本题考查椭圆的简单性质,训练了利用“点差法”求中点弦的斜率,属于中档题.2.B解析:B 【分析】分别过A ,B 作准线的垂线,交准线于E ,D ,设|BF |=a ,运用抛物线的定义和直角三角形的性质,求得p ,可得所求抛物线的方程. 【详解】如图,分别过点A ,B 作准线的垂线,分别交准线于点E ,D ,设BF a =, 则由已知得2BC a =,由抛物线定义得BD a =,故30BCD ∠=︒.在Rt ACE 中,因为6AE AF ==,63AC a =+,2AE AC =, 所以6312a +=,得2a =,36FC a ==,所以132p FG FC ===, 因此抛物线方程为26y x =. 故选:B 【点睛】本题考查抛物线的定义和方程、性质,以及直角三角形的性质,考查方程思想和数形结合思想,属于中档题.3.C解析:C 【详解】因为圆锥曲线C :221x my +=的离心率为2, 所以,该曲线是双曲线,2222111y x my x m+=⇒-=-, 11()123m m +-=⇒=-, 故选C.4.B解析:B 【分析】当,,M Q E 三点共线时,MQ QE +最小,进而可求出Q 的坐标,结合椭圆的性质,可知椭圆的离心率EF e QE QF=+.【详解】由题意,双曲线22:13y C x -=中,2221,3,4a b c ===,设双曲线的左焦点为E ,则()2,0E -,右焦点()2,0F ,则()222324MF =+=,根据双曲线的性质可知,2QF QE a -=,则MQF 的周长为26MF MQ QF MF MQ QE a MQ QE ++=+++=++,当,,M Q E 三点共线时,MQ QE +最小,此时MQF 的周长最小,此时直线ME 的方程为)32y x =+,联立)221332y x x y ⎧==+-⎪⎨⎪⎩,消去y 得450x +=,解得54x =-,则334y = 所以MQF 的周长最小时,点Q 的坐标为5334⎛- ⎝⎭, 过点Q 的椭圆的左焦点()2,0E -,右焦点()2,0F ,则2222533533224444QE QF ⎛⎫⎛⎫⎛⎫⎛⎫+=-++--+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭614544=+=, 所以椭圆的离心率45EFe QE QF ==+.故选:B.【点睛】本题考查双曲线、椭圆的性质,考查椭圆离心率的求法,考查学生的计算求解能力,属于中档题.5.A解析:A 【分析】由点()2,0F c 到直线1AF 的距离为2a ,可得出直线1AF 的方程为0ax by ac -+=,与双曲线联立,利用120x x <可建立关系求解. 【详解】设点A 的坐标为(,)m n ,则直线1AF 的方程为()()0m c y n x c +-+=, 点()2,0F c 到直线1AF 的距离为2a ,2a =,可得()a n m c b =+,则直线1AF 的方程化为0ax by ac -+=,与双曲线方程联立,可得()4424422420b a x a cx a c a b ----=,A 在右支上,4224440a c a b b a--∴<-,即440b a ->,即220b a ->,即2220c a ->,则可得e >故选:A. 【点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.6.B解析:B 【分析】设点()00,P x y ,求出直线AB 的方程为003412x x y y +=,联立直线AB 与双曲线两渐近线方程,求出点E 、F 的坐标,由此可计算得出OE OF ⋅的值. 【详解】先证明结论:椭圆222:143x y C +=在其上一点()00,M x y 的切线方程为003412x x y y +=.由于点()00,M x y 在椭圆2C 上,则22003412x y +=,联立002234123412x x y y x y +=⎧⎨+=⎩,消去y 得()()22220000342448160x y x x x y +-+-=, 即22001224120x x x x -+=,即()200x x -=,所以,直线003412x x y y +=与椭圆2C 相切.所以,椭圆222:143x y C +=在其上一点()00,M x y 的切线方程为003412x x y y +=.本题中,设点()00,P x y ,设点()11,A x y 、()22,B x y ,直线PA 的方程为113412x x y y +=,直线PB 的方程为223412x x y y +=,由于点()00,P x y 在直线PA 、PB 上,可得1010202034123412x x y y x x y y +=⎧⎨+=⎩,所以点()11,A x y 、()22,B x y 满足方程003412x x y y +=, 所以,直线AB 的方程为003412x x y y +=.联立0034122x x y y y x +=⎧⎪⎨=⎪⎩,得点E ⎫,同理F ⎫.因此,()()()()2222220000048361213422OE OF x y y y ⋅=-==---. 故选:B. 【点睛】结论点睛:在利用椭圆的切线方程时,一般利用以下方法进行直线: (1)设切线方程为y kx m =+与椭圆方程联立,由0∆=进行求解;(2)椭圆22221x y a b +=在其上一点()00,x y 的切线方程为00221x x y y a b +=,在应用此方程时,首先应证明直线00221x x y y a b +=与椭圆22221x y a b+=相切.7.D解析:D 【分析】设11(,)P x y ,22(,)Q x y ,直线l 的方程为1x ky =+,直线方程代入抛物线方程整理后应用韦达定理得1212,y y y y +,由30FP FQ +=得123y y =-,从而可求得k ,12,y y ,再由面积公式1212S OF y y =-得结论. 【详解】设11(,)P x y ,22(,)Q x y ,直线l 的方程为1x ky =+,将1x ky =+代入24y x =,消去x 可得2440yky --=,所以124y y k +=,124y y =-.因为3FP QF =,所以123y y =-,所以2234y y k -+=,则22y k =-,16y k =,所以264k k -⋅=-,所以3||3k =, 又||1OF =,所以OPQ △的面积S =121143||||18||223OF y y k ⋅-=⨯⨯=. 故选:D . 【点睛】方法点睛:本题考查直线与抛物线相交问题,解题方法是应用韦达定理.即设11(,)P x y ,22(,)Q x y ,直线l 的方程为1x ky =+,直线方程代入抛物线方程后整理,应用韦达定理得1212,y y y y +,再结合已知求出12,,y y k ,然后求出三角形面积.8.C解析:C 【分析】如图,设1=PF m ,2=PF n ,由双曲线定义知=23m n -,平方得:22212m n mn +-=,在12F PF △中利用余弦定理可得:2228m n mn ++=,即可得到163mn =,再利用等面积法即可求得PD 【详解】由题意,双曲线22134x y -=中,2223,4,7a b c === 如图,设1=PF m ,2=PF n ,由双曲线定义知=223m n a -= 两边平方得:22212m n mn +-=在12F PF △中,由余弦定理可得:2222cos120428m n mn c +-==,即2228m n mn ++=两式相减得:316mn =,即163mn = 利用等面积法可知:11sin120222mn c PD =⨯⨯,即1632732PD ⨯=⨯ 解得42121PD = 故选:C.【点睛】关键点睛:本题考查双曲线的定义及焦点三角形的几何性质,解题的关键是熟悉焦点三角形的面积公式推导,也可以直接记住结论:(1)设1F ,2F 分别为椭圆22221x y a b+=的左,右焦点,点P 为椭圆上的一点,且12F PF θ∠=,则椭圆焦点三角形面积122tan2F PF Sb θ=(2)设1F ,2F 分别为双曲线22221x y a b-=的左,右焦点,点P 为双曲线上的一点,且12F PF θ∠=,则双曲线焦点三角形面积122tan2F PF b Sθ=9.C解析:C 【分析】根据2||2PQ OF =,可得四边形12PFQF 为矩形,设12,PFn PF m ==,根据椭圆的定义以及勾股定理可得()22242c m n n m a c =+-,再分析18m t n m =+的取值范围, 进而求得()222422c a c <≤-,再求离心率的范围即可【详解】设12,PF n PF m ==,由210,0x y >>,知m n <,因为()()1111,,,P x y Q x y --,在椭圆C 上,222PQ OP OF ==, 所以,四边形12PFQF 为矩形,12=QF PF ;由11QF PF ≥,可得13mn≤<, 由椭圆定义可得2222,4m n a m n c +=+=①; 平方相减可得()222mn a c=-②;由①②得()2222242c m n m nmn n m a c +==+-; 令=+m nt n m,令m v n ⎫=∈⎪⎪⎣⎭,所以,1t v v ⎛=+∈ ⎝⎦, 即()2224232c a c <≤-,所以,()22222a c c a c -<≤-,所以,()222113e e e -<≤-,所以,2142e <≤-解得12e <≤ 故选:C 【点睛】关键点睛:解题的关键在于运用椭圆的定义构造齐次式求椭圆的离心率, 即由椭圆定义可得2222,4m n a m n c +=+=①; 平方相减可得()222mn a c=-②;由①②得()2222242c m n m nmn n m a c +==+-,然后利用换元法得出()222113e e e -<≤-,进而求解 属于中档题10.A解析:A 【详解】试题分析:设直线:240l x y +-=因为1||||2C l OC AB d -==,1c d -表示点C 到直线l 的距离,所以圆心C 的轨迹为以O 为焦点,l 为准线的抛物线,圆C 的半径最小值为11225O l d -==,圆C 面积的最小值为245ππ=⎝⎭.故本题的正确选项为A. 考点:抛物线定义.11.A解析:A 【分析】设椭圆的左焦点'F ,由椭圆的对称性结合0FA FB ⋅=,得到四边形'AFBF 为矩形,设'AF n =,AF m =,在直角ABF 中,利用椭圆的定义和勾股定理化简得到222m n c n m b+=,再根据2FB FA FB ≤≤,得到m n 的范围,然后利用双勾函数的值域得到22b a 的范围,然后由c e a ==. 【详解】 如图所示:设椭圆的左焦点'F ,由椭圆的对称性可知,四边形'AFBF 为平行四边形, 又0FA FB ⋅=,即FA FB ⊥, 所以平行四边形'AFBF 为矩形, 所以'2AB FF c ==, 设'AF n =,AF m =,在直角ABF 中,2m n a +=,2224m n c +=,得22mn b =,所以222m n c n m b +=,令m t n =,得2212t c t b+=, 又由2FB FA FB ≤≤,得[]1,2mt n=∈, 所以221252,2c t t b ⎡⎤+=∈⎢⎥⎣⎦,所以 2251,4c b ⎡⎤∈⎢⎥⎣⎦ ,即2241,92b a ⎡⎤∈⎢⎥⎣⎦,所以2225123c b e a a ==-⎣⎦,所以离心率的取值范围是25⎣⎦, 故选:A. 【点睛】本题主要考查椭圆的定义,对称性,离心率的范围的求法以及函数值域的应用,还考查了转化求解问题的能力,属于中档题.12.B解析:B 【分析】设()()1122,,,A x y B x y ,代入椭圆方程,利用点差法得到22221212220x x y y a b --+=,然后根据AB 中点坐标为()2,1-,求出斜率代入上式,得到a ,b 的关系求解.【详解】设()()1122,,,A x y B x y ,则22112222222211x y a bx y a b ⎧+=⎪⎪⎨⎪+=⎪⎩, 两式相减得:22221212220x x y y a b--+=, 因为AB 中点坐标为()2,1-, 所以12124,2x x y y +=+=-,所以()()2212122212122x x b y y b x x y y a a +-=-=-+, 又1212011422AB y y k x x -+===--, 所以22212b a =,即2a b =,所以c e a ===, 故选:B 【点睛】本题主要考查椭圆的方程,点差法的应用以及离心率的求法,还考查了运算求解的能力,属于中档题.二、填空题13.12【解析】由知焦点所以设直线AB 方程为联立抛物线与直线方程消元得:设则根据抛物线定义知故填:解析:12 【解析】由2=3y x 知焦点3(0)4F ,,所以设直线AB方程为3)34y x =-,联立抛物线与直线方程,消元得:21616890x x -+=,设1122(,),(,)A x y B x y ,则12212x x += ,根据抛物线定义知12213||=x 1222AB x p ++=+=.故填:12. 14.或【分析】设设直线方程为利用焦点弦长公式可求得参数【详解】由题意抛物线的焦点为则的斜率存在设设直线方程为由得所以所以所以直线的倾斜角为或故答案为:或【点睛】本题考查直线与抛物线相交问题解题方法是设而解析:3π或23π 【分析】设1122(,),(,)A x y B x y ,设直线AB 方程为(3)y k x =-,利用焦点弦长公式12AB x x p =++可求得参数k .【详解】 由题意6p,抛物线的焦点为(3,0)F , 16AB =,则AB 的斜率存在,设1122(,),(,)A x y B x y ,设直线AB 方程为(3)y k x =-,由2(3)12y k x y x =-⎧⎨=⎩得22226(2)90k x k x k -++=,所以21226(2)k x x k ++=,所以12616AB x x =++=,21226(2)10k x x k++==,k =, 所以直线AB 的倾斜角为3π或23π.故答案为:3π或23π. 【点睛】本题考查直线与抛物线相交问题,解题方法是设而不求思想方法,解题关键是掌握焦点弦长公式.15.【分析】作出示意图记右焦点根据长度和位置关系计算出的长度再根据的形状列出对应的等式即可求解出离心率的值【详解】如图所示的中点为右焦点为连接所以因为所以所以又因为所以且所以又因为所以所以所以故答案为:【分析】作出示意图,记右焦点2F ,根据长度和位置关系计算出2,AF AF 的长度,再根据2AFF 的形状列出对应的等式,即可求解出离心率e 的值. 【详解】如图所示,AF 的中点为M ,右焦点为2F ,连接2,MO AF ,所以2//MO AF , 因为OA OF=,所以OM AF ⊥,所以2AFAF ⊥,又因为12AF k =,所以212AF AF =且22AF AF a +=,所以242,33a aAF AF ==,又因为22222AF AF FF +=,所以222164499a a c +=,所以2259c a =,所以e =故答案为:53.【点睛】本题考查椭圆离心率的求解,难度一般.(1)涉及到利用图形求解椭圆的离心率时,注意借助几何图形的性质完成求解;(2)已知,,a b c 任意两个量之间的倍数关系即可求解出椭圆的离心率.16.【分析】设点将直线的方程与抛物线的方程联立求得点的坐标进而可得出的坐标由此可计算得出梯形的面积【详解】设点并设点在第一象限由图象可知联立消去得解得或所以点因此梯形的面积为故答案为:【点睛】本题考查抛 解析:48【分析】设点()11,A x y 、()22,B x y ,将直线AB 的方程与抛物线的方程联立,求得点A 、B 的坐标,进而可得出P 、Q 的坐标,由此可计算得出梯形APQB 的面积. 【详解】设点()11,A x y 、()22,B x y ,并设点A 在第一象限,由图象可知12x x >,联立234y x y x =-⎧⎨=⎩消去y ,得21090x x -+=,解得19x =,21x =,1196x y =⎧∴⎨=⎩或2212x y =⎧⎨=-⎩, 所以点()9,6A 、()1,2B -、()1,6P -、()1,2Q --,10AP ∴=,2BQ =,8PQ =,因此,梯形APQB 的面积为()()10284822AP BQ PQ S +⋅+⨯===.故答案为:48. 【点睛】本题考查抛物线中梯形面积的计算,解题的关键就是求出直线与抛物线的交点坐标,考查计算能力,属于中等题.17.【分析】设点的坐标为则利用导数的几何意义结合已知条件求得点的坐标可求得直线的方程并求得点的坐标可得出利用三角换元思想求得的最大值及其对应的的值由此可求得双曲线的标准方程【详解】设点的坐标为则对于二次解析:2213944x y -= 【分析】设点M 的坐标为()00,x y ,则00x >,利用导数的几何意义结合已知条件求得点M 的坐标,可求得直线l 的方程,并求得点1F 的坐标,可得出223a b +=,利用三角换元思想求得a 的最大值及其对应的a 、b 的值,由此可求得双曲线的标准方程. 【详解】设点M 的坐标为()00,x y ,则00x >,对于二次函数24x y =,求导得2x y '=,由于抛物线24x y =在点M处的切线与直线y =垂直,则(012x ⨯=-,解得0x =,则200143x y ==,所以,点M的坐标为13⎫⎪⎪⎝⎭, 抛物线24x y =的焦点为()0,1F ,直线MF的斜率为11MFk -==所以,直线l的方程为13y x =-+,该直线交x轴于点)1F ,223a b ∴+=,可设a θ=,b θ=,其中02θπ≤<,3sin 6a πθθθ⎛⎫=+=+ ⎪⎝⎭,02θπ≤<,13666πππθ∴≤+<, 当62ππθ+=时,即当3πθ=时,a取得最大值此时,32a π==,332b π==, 因此,双曲线的标准方程为2213944x y -=. 故答案为:2213944x y -=. 【点睛】本题考查双曲线方程的求解,同时也考查了利用导数求解二次函数的切线方程,以及利用三角换元思想求代数式的最值,考查计算能力,属于中等题.18.【分析】先根据题意得再根据向量关系得再算出代入化简整理得解方程即可求解【详解】由图像可知点则由则则则则由则则点由点在直线上则则由则故答案为:【点睛】本题考查双曲线的离心率的求解是中档题【分析】先根据题意得2,b P c a ⎛⎫⎪⎝⎭,再根据向量关系得1212::1:2:3MPF MPF MF F SSS=,再算出2,32c b M a ⎛⎫⎪⎝⎭,代入2y x =,化简整理得23430e e --=,解方程即可求解. 【详解】由图像可知,点2,b P c a ⎛⎫⎪⎝⎭,则122PF F b cS a=,由21230MF MF MP ++=, 则1212::1:2:3MPF MPF MF F S SS=,则222132PMF b c b S d a a==⋅⋅,则23c d =,则3M c x =, 由1221222F MF b c Sc h a ==⋅⋅,则22b h a=, 则22M b y a =,点2,32c b M a ⎛⎫ ⎪⎝⎭,由点M 在直线2y x =上,则22222234334343023b cb ac c a ac e e a =⇒=⇒-=⇒--=,则e =,由1e >,则e =.【点睛】本题考查双曲线的离心率的求解,是中档题.19.【分析】由题意可得直线的方程求出到直线的距离且求出的值求出的面积及的面积再由题意可得的关系进而求出椭圆的离心率【详解】由题意可得直线的方程为:即所以到直线的距离因为所以而因为所以整理可得:整理可得解解析:22【分析】由题意可得直线BF 的方程,求出M 到直线BF 的距离,且求出|BF |的值,求出BFM 的面积及BFO 的面积,再由题意可得a ,c 的关系,进而求出椭圆的离心率. 【详解】由题意可得直线BF 的方程为:1x yc b+=,即0bx cy cb +-=, 所以M 到直线BF 的距离2222||12|(21)|222ab bc bc b a c d ab c +---==+,因为22||BF b c a =+=, 所以12||[(21)]24BFMS BF d b a c ==--, 而12BFOSbc =, 因为2BFOBFMSS=,所以122[(21)]24bc b a c =--, 整理可得:[(21)]c a c =--, 整理可得2a c =,解得22e =, 故答案为:22【点睛】本题主要考查椭圆的简单几何性质和椭圆离心率的计算,考查直线和椭圆的位置关系,考查三角形面积的计算,意在考查学生对这些知识的理解掌握水平.20.4【分析】首先根据题中所给的双曲线方程求出其左焦点坐标和渐近线方程之后利用点到直线的距离公式求得结果【详解】根据题意双曲线的方程为其中所以所以其左焦点的坐标为渐近线方程为即则左焦点到其渐近线的距离为解析:4【分析】首先根据题中所给的双曲线方程,求出其左焦点坐标和渐近线方程,之后利用点到直线的距离公式求得结果. 【详解】根据题意,双曲线的方程为221916x y -=,其中3,4a b ==,所以5c =,所以其左焦点的坐标为(5,0)-,渐近线方程为43y x =±,即430x y ±=,则左焦点到其渐近线的距离为2045d ===, 故答案为:4. 【点睛】该题考查的是有关双曲线的问题,涉及到的知识点有根据双曲线的方程求其焦点坐标以及渐近线方程,点到直线的距离公式,属于简单题目.三、解答题21.(1)24x y =;(2)①112x ;②[2,)+∞. 【分析】(1)可得抛物线的准线为2py =-,∴9102p +=,解得2p =,即可得抛物线的方程; (2)①设:1l y kx =+.设211(,)4x A x ,2(B x ,22)4x ,可得21111:()42x PA y x x x -=-,令0y =即得解;②||AP =||BQ =||||AP BQ ⋅的取值范围.【详解】(1)已知(9,)M m 到焦点F 的距离为10,则点M 到其准线的距离为10. 抛物线的准线为2py =-,∴9102p +=, 解得2p =,∴抛物线的方程为24x y =.(2)①由已知可判断直线l 的斜率存在,设斜率为k ,因为(0,1)F ,则:1l y kx =+.设211(,)4x A x ,2(B x ,22)4x ,由214y kx x y =+⎧⎨=⎩消去y 得,2440x kx --=, 124x x k ∴+=,124x x =-.由于抛物线C 也是函数214y x =的图象,且12y x '=,则21111:()42x PA y x x x -=-.令0y =,解得112x x =,11(,0)2P x ∴,②||AP.同理可得,||BQ∴||||AP BQ ⋅=20k ,||||AP BQ ∴⋅的取值范围为[2,)+∞.【点睛】方法点睛:解析几何里的最值范围问题常用的方法有:(1)函数法;(2)数形结合法;(3)导数法;(4)基本不等式法. 要根据已知条件灵活选择方法求解.22.(Ⅰ)证明见解析;(Ⅱ)||||PA PB ⋅21n n =--,1n ≤-或1n ≥.【分析】(Ⅰ)利用圆心到直线的距离为半径可得221n t =+,结合00x ty n =+以及点P 在圆上可得01nx =,在00x nt y -=消去n 后可得所求证的关系式. (Ⅱ)设()11,A x y ,()22,B x y ,则||||PA PB ⋅可用前者的纵坐标表示,联立直线方程和抛物线方程,消去x 后利用韦达定理化简||||PA PB ⋅,则可得其表达式. 【详解】解:(Ⅰ)若00y =,则直线l 垂直于x 轴,此时0t =,故00ny t +=成立, 若00y ≠,因为直线:l x ty n =+1=,整理得到:221n t =+,又00x ty n =+,故()222022121x n nx n n y y --+=+=, 整理得到2200120nx n x -+=即01nx =,而2000000000011x x x n x x y t ny y y y x ---====-=-即00ny t +=. (Ⅱ)设()11,A x y ,()22,B x y .联立2x ty ny x=+⎧⎨=⎩,得20y ty n --=,∴12y y t +=,12y y n =-.由(Ⅰ)可得221n t =+,故1n ≤-或1n ≥,而240t n ∆=+>,故2410n n +->即2n <-2n >- 故1n ≤-或1n ≥.而1020||||PA PB y y ⋅=--()()221201201t y y y y y y =+-++()22222220021t t t t t n ty y n n t n n n n n n--⎛⎫=+--+=--⨯+=-++ ⎪⎝⎭222211n n n n n n--=-++21n n =--,其中1n ≤-或1n ≥. 【点睛】思路点睛:对于直线与抛物线、圆的位置关系的问题,前者可设而不求(即韦达定理)来处理,后者利用几何方法来处理,计算过程中注意判别式的隐含要求以及代数式非负对应范围的影响.23.(1)26y x =;(2)证明见解析,9(,0)2. 【分析】(1)设圆心(),C x y ,然后根据条件建立方程求解即可;(2)设直线1l 的方程为3()2y k x =-,然后算出22363(,)2k M k k +,236(,3)2k N k +-,然后表示出直线MN 的方程即可. 【详解】(1)设圆心(),C x y ,由题意得2229(3)x x y =-++,即26y x = 所以曲线C 的方程为26y x =(2)由题意可知,直线12,l l 的斜率均存在,设直线1l 的方程为3()2y k x =-,()11,A x y ,()22,B x y联立方程组2632y x y k x ⎧=⎪⎨⎛⎫=- ⎪⎪⎝⎭⎩得22224(1224)90k x k x k -++=, 所以212236k x x k ++=,12126(3)y y k x x k +=+-= 因为点M 是线段AB 的中点,所以22363(,)2k M k k +同理,将k 换成1k -得236(,3)2k N k +-,当222363622k k k ++≠,即1k ≠±时2222333636122MNkk k k k k k k +-==++--所以直线MN 的方程为22363()12k k y k x k -++=--即29()12k y x k -=--, 所以直线MN 恒过定点9(,0)2当1k =±时,直线MN 的方程为92x =,也过点9(,0)2所以直线MN 恒过定点9(,0)2【点睛】方法点睛:定点问题的常见解法:①假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点;②从特殊位置入手,找出定点,再证明该点适合题意.24.(1)2215x y +=;(2)存在定点5,02Q ⎛⎫ ⎪⎝⎭,使得,,P B Q 三点共线.【分析】(1)设(,)M x y=化简可得结果;(2)联立直线l 与椭圆方程,根据韦达定理得1212,x x x x +,椭圆的对称性知,若存在定点Q ,则点Q 必在x 轴上,设(,0)Q t ,根据//PB PQ 列式,结合1212,x x x x +可求出52t =. 【详解】(1)设(,)M x y=,化简得2215x y +=故动点M 的轨迹方程为2215x y +=.(2)由题知(2,0)F 且直线l 斜率存在,设为k ,则直线l 方程为(2)y k x =- 由22(2)15y k x x y =-⎧⎪⎨+=⎪⎩得2222(51)202050k x k x k +-+-=设1122(,),(,)A x y B x y ,则2212122220205,5151k k x x x x k k -+==++, 由椭圆的对称性知,若存在定点Q ,则点Q 必在x 轴上故假设存在定点(,0)Q t ,使得,,P B Q 三点共线,则//PB PQ 且11(,)P x y - 又212111(,),(,).PB x x y y PQ t x y =-+=-211211()()()x x y y y t x ∴-=+-,即211121()(2)(4)()x x k x k x x t x --=+-- 化简得12122(2)()40x x t x x t -+++=将2212122220205,5151k k x x x x k k -+==++式代入上式得2222205202(2)405151k k t t k k -⨯-+⨯+=++ 化简得52t =故存在定点5(,0)2Q ,使得,,P B Q 三点共线. 【点睛】关键点点睛:由椭圆的对称性知,若存在定点Q ,则点Q 必在x 轴上是解题关键.25.(1)2214x y -=;(2)存在;23(,0)8Q ;27364QM QN ⋅=. 【分析】(1)由渐近线方程和点的坐标列出关于,a b 的方程组,解之可得;(2)设直线l 的方程为1x my =+,设定点(,0)Q t ,设()11,M x y ,()22,N x y ,直线方程代入双曲线方程得应用韦达定理得12y y +,12y y ,计算QM QN ⋅,并代入12y y +,12y y ,利用此式与m 无关可得t (如果得不出t 值,说明不存在).【详解】(1)∵双曲线C过点,且渐近线方程为12y x =±, ∴22163112a b b a ⎧-=⎪⎪⎨⎪=⎪⎩,解得221,4b a ==, ∴双曲线的方程为2214x y -=;(2)设直线l 的方程为1x my =+,设定点(,0)Q t联立方程组22141x y x my ⎧-=⎪⎨⎪=+⎩,消x 可得()224230m y my -+-=,∴240m -≠,且()2241240m m ∆=+->,解得23m >且24m ≠, 设()11,M x y ,()22,N x y , ∴12122223,44m y y y y m m +=-=---, ∴()2121222282244m x x m y y m m -+=++=-+=--, ()()()22221212121222232441111444m m m x x my my m y y m y y m m m +=++=+++=--+=---- 22044m =--- ∴()()()()11221212,,QM QN x t y x t y x t x t y y ⋅=--=--+()22212121222222083823444444t x x t x x t y y t t t m m m m -=-+++=--+⋅-+=-++----为常数,与m 无关. ∴8230t -=, 解得238t =.即23(,0)8Q ,此时27364QM QN ⋅=.【点睛】方法点睛:本题考查求双曲线的标准方程,考查直线民双曲线相交中定点问题.解题方法是设而不求的思想方法:即设直线方程,设交点坐标,直线方程与双曲线方程联立消元后应用韦达定理,然后计算QM QN ⋅(要求定值的量),利用它是关于参数m 的恒等式,求出定点坐标.26.(1)0y --=;(2)证明见解析. 【分析】(1)由于直线l 斜率不为0,(1,0)F ,所以设直线:1l x ty =+,设()()1122,,,A x y B x y ,由题意可得120,0y y ><,然后直线方程和抛物线方程联立,消去x ,再利用韦达定理结合2,AF FB =可求出t 的值,从而可得AB 所在的直线方程;(2)设AB 中点为(),N N N x y ,则由(1)可得2122,212N N y y y t x t +===+,从而可得AB 中垂线()2:221l y t t x t -=---',求出点()223,0D t +,进而可求出DF 的长,再利用两点间的距离公式可求出AB 的长,从而可求得||||AB DF 的值【详解】解:(1)直线l 斜率不为0,(1,0)F ,设直线:1l x ty =+, 设()()1122,,,A x y B x y ,因为A 点在x 轴上方,所以120,0y y ><由214x ty y x =+⎧⎨=⎩,得2440y ty --= 12124,4y y t y y ∴+==-()()11221221,21,2AF FB x y x y y y =⇒-=-∴-=由1211224824y y t y ty y y t ⎧+==⎧⎪⇒⎨⎨-==-⎪⎩⎩代入124y y =-因10y >,所以0t >,解得t =所以AB所在直线方程为0y --= (2)设AB 中点为(),N N N x y()22122,2121,22N N y y y t x t N t t +∴===+∴+ 所以AB 中垂线()()22:22123,0l y t t x t D t -=---+'∴22||23122DF t t ∴=+-=+(||AB ====244t =+22||442||22AB t DF t +∴==+(定值) 【点睛】关键点点睛:此题考查直线与抛物线的位置关系,考查韦达定理的应用,解题的关键是利用设而不求的方法,设出直线方程和交点坐标,然后将直线方程和抛物线的方程联立,消元,再利用韦达定理,然后结已知条件求解即可,考查计算能力,属于中档题。

数学北师大版高中选修2-1高二下数学期末试卷

数学北师大版高中选修2-1高二下数学期末试卷

高二数学期末试卷一、选择题(本大题共有12小题, 每小题5分, 共60分. 在每小题所给出的四个选项中,只有一项是符合题意的,请把正确选项前的字母代号填在题后的括号内)1.物体的运动方程是S =10t -t 2 (S 的单位:m ; t 的单位:s), 则物体在t =2s 的速度是 ( ) A .2 m/s B .4 m/s C .6 m/s D .8 m/s 2.算法 此算法的功能是 ( )A .a ,b ,c 中最大值B .a ,b ,c 中最小值C .将a ,b ,c 由小到大排序D .将a ,b ,c 由大到小排序3.从一群游戏的孩子中抽出k 人,每人扎一条红带,然后让他们返回继续游戏,一会后,再从中任取m 人,发现其中有n 人扎有红带,估计这群孩子的人数为 ( ) A .k m B .k n C .m kn D .n km4.甲、乙、丙、丁四名射击选手在选拔赛 中所得的平均环数x 及其方差S 2如下表所示,则选送参加决赛的最佳人选 是 ( )A .甲B . 乙C .丙D . 丁5.若命题p : x ∈A ∪B , 则非p 是 ( ) A .x ∉A 且x ∉B B .x ∉A 或x ∉B C .x ∉A ∩B D .x ∈A ∩B 6.在下列命题中,(1)2,0x R x ∀∈≥. (2)x R ∃∈,使得x 2+x +1<0. (3)若tan α= tan β,则α=β.(4)若ac =b 2则a 、b 、c 成等比数列。

其中真命题有 ( ) A .0个 B .1个 C .2个 D .3个 7.若不等式|x -1| <a 成立的充分条件是0<x <4,则实数a 的取值范围是 ( ) A .a ≤1 B .a ≤3 C .a ≥1 D .a ≥38. (文科做) 甲、乙两人下棋,两人下成和棋的概率是21,乙获胜的概率是31则65是 ( )A .乙胜的概率B .乙不输的概率C .甲胜的概率D .甲不输的概率8.(理科做)若向量a 、b 的坐标满足(2,1,2)a b +=--,(4,3,2)a b -=--,则a ·b 等于 ( ) A .1- B .5- C .5 D .7 9.(文科做) 设一组数据的方差s 2,将这组数据的每个数据乘以10,所得到一组新数据的方差是 ( ) A .0.1s 2 B .100s 2 C .10s 2 D .s 29.(理科做)下列积分正确的一个是 ( )A .22ππ-⎰sin x dx =2 B .271⎰=12C .ln 20⎰e x (1+ e x ) dx =163D .21⎰12xe x dxe10.已知双曲线x 2a 2 - y 22 =1(a>2)的两条渐近线的夹角为π3,则双曲线的离心率为 ( )A .2B . 3C .263D .23311.在平面直角坐标系中,点(x ,y ) 中的x 、y ∈{0,1,2,3,4,5,6}且x ≠y ,则点(x ,y )落在半圆(x -3)2+y 2=9(y ≥0)内(不包括边界) 的概率是 ( )A .1142B .1342C .37D .154912.函数y =x cos x -sin x 在下面哪个区间上是增函数 ( )A .(2π, 23π)B .(π, 2π)C .( 23π,25π) D .( 2π, 3π)二、填空题(本大题共有6小题,每题5分,共30分. 把结果直接填在题中的横线上)13.若施肥量x 与水稻产量y 的线性回归方程为ˆy=5x +250,当施肥量为80kg 时,预计的水 稻产量为 . 14.右图给出的是计算201614121+⋅⋅⋅+++的值的一个程序 框图,其中判断框内应填入的条件是 .15有两个人在一座15层大楼的底层进入电梯,设他们中的每 一个人自第二层开始在每一层离开是等可能的,则这两个 人在不同层离开的概率是 .16.直线y =x -3与抛物线y 2=4x 交于A 、B 两点,过A 、B 两点向抛物线的准线作垂线,垂足分别为P 、Q ,则梯形 APQB 的面积为 .17.点P 是椭圆19y 16x 22=+上一点, F 1、F 2是其焦点, 若 ∠F 1P F 2=90°, △F 1P F 2面积为 .18. (文科做) 函数f (x )= x -e x 在点P 的切线平行于x 轴,则点P 的坐标为 . 18. (理科做) 由曲线y=24x 、直线x =1、x =6和x 轴围成的封闭图形的面积为 .三、解答题(本大题共有6小题,满分50分. 解答需写出文字说明、推理过程或演算步骤) 19.一个社会调查机构就某地居民的月收入调查了20000人,并根据所得数据画了样本的频率分布直方图(如下图).根椐上述信息回答下列问题:(1)月收入在[3000, 3500 )的居民有多少人? (2) 试估计该地居民的平均月收入(元); (3) 为了分析居民的收入与年龄、学历、职 业等方面的关系,要从这20000人中再用分层抽样方法抽出300人作进一步调查,则在[2500, 3000 )(元)月收入段应抽出多少人.20.今有一批球票,按票价分别为10元票5张,20元票3张,50票2张,从这批票中抽出2张. 问:(1)抽得2张均为20元的票价的概率 (2)抽得2张不同票价的概率.(3)抽得票价之和等于70元的概率.21.(文科做)已知命题p : f (x )=31x- , 且,命题q : 集合{}2|(2)10,A x x a x x R =+++=∈,B={x | x >0}, 且A B =∅,求实数a 的取值范围,使p 、q 中有且只有一个为真命题。

(完整word)北师大版高二理科数学选修2-1测试题及答案,推荐文档

(完整word)北师大版高二理科数学选修2-1测试题及答案,推荐文档

选修2-1本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3至6页。

考试结束后. 只将第Ⅱ卷和答题卡一并交回。

第Ⅰ卷(选择题 共60分)注意事项:1.答第Ⅰ卷前,考生务必将姓名、准考号、考试科目用铅笔涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。

一、选择题:本大题共10小题,每小题6分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 命题“若A B =,则cos cos A B =”的否命题是A. 若A B =,则cos cos A B ≠B. 若cos cos A B =,则A B =C. 若cos cos A B ≠,则A B ≠D. 若A B ≠,则cos cos A B ≠ 2. “直线l 与平面α平行”是“直线l 与平面α内无数条直线都平行”的A .充要条件B .充分非必要条件C .必要非充分条件D .既非充分又非必要条件 3. 已知命题p :23<,q :23>,对由p 、q 构成的“p 或q ”、“p 且q ”、“⌝p ”形式的命题,给出以下判断:①“p 或q ”为真命题; ②“p 或q ”为假命题; ③“p 且q ”为真命题; ④“p 且q ”为假命题; ⑤“⌝p ”为真命题; ⑥“⌝p ”为假命题. 其中正确的判断是A .①④⑥ B. ①③⑥ C. ②④⑥ D .②③⑤ 4.“56απ=”是“221cos sin 2αα-=”的 A.充分不必要条件 B. 必要不充分条件 C.充要条件 D. 既不充分又不必要条件5.若方程22113x y k k +=--表示双曲线,则实数k 的取值范围是 A.1k < B. 13k << C. 3k > D. 1k <或3k > 6. 抛物线22y x =的焦点坐标是A. 108(,)B. 104(,)C. 1,08()D. 1,04()7. 以下给出了三个判断,其中正确判断的个数为.(1) 向量(3,2,1)a =-r与向量(3,2,1)b =--r 平行 (2) 向量(3,6,4)a =-r与向量(0,2,3)b =-r 垂直(3)向量(1,2,0)a =-r与向量1(,1,0)2b =-r 平行A. 0B. 1C. 2D. 3 8. 以下有四种说法,其中正确说法的个数为:(1)“2b ac =”是“b 为a 、c 的等比中项”的充分不必要条件; (2)“a b >”是“22a b >”的充要条件;(3)“A B =”是“tan tan A B =”的充分不必要条件; (4)“a b +是偶数”是“a 、b 都是偶数”的必要不充分条件. A. 0个 B. 1个 C. 2个 D. 3个 9.抛物线21,(0)y x a a=->的准线方程是 A. 4a y =B. 4y a =-C. 4ay =- D. 4y a = 10.抛物线x y 122=上与焦点的距离等于7的点的横坐标是A. 6B.5C.4D.3二、填空题:本大题共6小题,每小题5分,共30分。

北师大版高中数学必修第二册期末质量检测试卷(含答案)

北师大版高中数学必修第二册期末质量检测试卷(含答案)

北师大版高中数学必修第二册期末质量检测试卷本试卷共150分,考试时长120分钟一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2-i 1+2i=()A .1B .-1C .iD .-i2.已知OA →=(-1,2),OB →=(3,m),若OA →⊥OB →,则m 的值为()A .1B .32C .2D .43.现有四个函数:①y =x·sin x ;②y =x·cos x ;③y =x·|cos x|;④y =x·2x 的图象(部分)如下,则按照从左到右图象对应的函数序号安排正确的一组是()A .①④②③B .①④③②C .④①②③D .③④②①4.已知a ,b 为直线,α,β为平面,给出下列四个命题:①若a ⊥α,b ⊥α,则a ∥b ;②a ∥α,b ∥α,则a ∥b ;③若a ⊥α,a ⊥β,则α∥β;④若b ∥α,b ∥β,则α∥β.其中真命题的个数是()A .0B .1C .2D .35.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a 2+b 2=2c 2,则cos C 的最小值为()A .32B .22C .12D .-126.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F.若AC →=a ,BD →=b ,则AF →=()A .14a +12bB .12a +14bC .23a +13bD .13a +23b 7.下列命题中正确的是()A .y =cos x 的图象向右平移π2个单位长度得到y =sin x 的图象B .y =sin x 的图象向右平移π2个单位长度得到y =cos x 的图象C.当φ<0时,y=sin x的图象向左平移|φ|个单位长度可得y=sin(x+φ)的图象D.y=sin(2x+π3)的图象是由y=sin2x的图象向左平移π3个单位长度得到的8.在三棱锥P­ABC中,PA⊥平面ABC,AB⊥BC,AB=BC=1,PA=3,则该三棱锥外接球的表面积为()A.5πB.2πC.20πD.4π二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分) 9.设a,b是两个非零向量,则下列说法不正确的是()A.若|a+b|=|a|-|b|,则a⊥bB.若a⊥b,则|a+b|=|a|-|b|C.若|a+b|=|a|-|b|,则存在实数λ,使得b=λaD.若存在实数λ,使得b=λa,则|a+b|=|a|-|b|10.在△ABC中,下列命题正确的是()A.若A>B,则cos A>cos BB.若sin2A=sin2B,则△ABC一定为等腰三角形C.若a cos B-b cos A=c,则△ABC一定为直角三角形D.若三角形的三边的比是3∶5∶7,则此三角形的最大角为钝角11.对于函数f(x)x,sin x≤cos x,x,sin x>cos x,下列四个结论正确的是()A.f(x)是以π为周期的函数B.当且仅当x=π+kπ(k∈Z)时,f(x)取得最小值-1 C.f(x)图象的对称轴为直线x=π4+kπ(k∈Z)D.当且仅当2kπ<x<π2+2kπ(k∈Z)时,0<f(x)≤2 212.如图,正方体ABCD­A1B1C1D1的棱长为1,E,F分别为棱DD1,AB上的点.下列命题中正确的是()A.A1C⊥平面B1EFB.在平面A1B1C1D1内总存在与平面B1EF平行的直线C.△B1EF在侧面BCC1B1上的正投影是面积为定值的三角形D.当E,F为中点时,平面B1EF截该正方体所得的截面图形是五边形三、填空题(本题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.已知tanθ=2,则cos2θ=__________,tan=________.14.已知圆锥的侧面积(单位:cm2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________.15.设复数z 1,z 2满足|z 1|=|z 2|=2,z 1+z 2=3+i ,则|z 1-z 2|=________.16.如图,在四边形ABCD 中,∠B =60°,AB =3,BC =6,且AD →=λBC →,AD →·AB →=-32,则实数λ的值为________,若M ,N 是线段BC 上的动点,且|MN →|=1,则DM →·DN →的最小值为________.四、解答题(本题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)在平面直角坐标系xOy 中,角α的顶点与原点O 重合,始边与x 轴的正半轴重合,它的终边过点-35,,以角α的终边为始边,逆时针旋转π4得到角β.(1)求tan α的值;(2)求cos (α+β)的值.18.(12分)在△ABC 中,a +b =11,再从条件①、条件②这两个条件中选择一个作为已知,求:(1)a 的值;(2)sin C 和△ABC 的面积.条件①:c =7,cos A =-17;条件②:cos A =18,cos B =916.注:如果选择条件①和条件②分别解答,按第一个解答计分.19.(12分)在①函数f为奇函数;②当x =π3时,f (x )=3;③2π3是函数f (x )的一个零点这三个条件中任选一个,补充在下面问题中,并解答,已知函数f (x )=2sin (ωx+φ>0,0<φ,f (x )的图象相邻两条对称轴间的距离为π,________.(1)求函数f (x )的解析式;(2)求函数f (x )在[0,2π]上的单调递增区间.注:如果选择多个条件分别解答,按第一个解答计分.20.(12分)在①ac=3,②c sin A=3,③c=3b这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC,它的内角A,B,C的对边分别为a,b,c,且sin A=3sin B,C=π6,________?注:如果选择多个条件分别解答,按第一个解答计分.21.(12分)如图,已知直四棱柱ABCD­A1B1C1D1的底面是菱形,F是BB1的中点,M 是线段AC1的中点.(1)求证:直线MF∥平面ABCD;(2)求证:平面AFC1⊥平面ACC1A1.22.(12分)已知四棱锥P­ABCD的底面ABCD是菱形.(1)求证:AD∥平面PBC;(2)若PB=PD,求证:BD⊥平面PAC;(3)下面两问任选一问作答.①E、F分别是AB、PD上的点,若EF∥平面PBC,AE=2EB,求PFPD的值;②若∠DAB=60°,平面PAD⊥平面ABCD,PB⊥PD,判断△PAD是不是等腰三角形,并说明理由.参考答案与解析1.解析:解法一:2-i 1+2i =(2-i )(1-2i )(1+2i )(1-2i )=2-2-5i5=-i ,选D.解法二:利用i 2=-1进行替换,则2-i 1+2i =-2×(-1)-i 1+2i =-2i 2-i 1+2i=-i (1+2i )1+2i =-i ,选D.答案:D2.解析:由OA →⊥OB →,得OA →·OB →=-3+2m =0,故m =32.答案:B 3.解析:①y =x ·sin x 为偶函数,y 轴对称,②y =x ·cosx 上的值为负数,故第三个图象满足;③y =x ·|cos x |为奇函数,当x >0时,f (x )≥0,故第四个图象满足;④y =x ·2x ,为非奇非偶函数,故它的图象没有对称性,故第二个图象满足,故选A.答案:A4.解析:由“垂直于同一平面的两直线平行”知①是真命题;由“平行于同一平面的两直线平行或异面或相交”知②是假命题;由“垂直于同一直线的两平面平行”知③是真命题;在长方体ABCD ­A 1B 1C 1D 1中,易知A 1B 1∥平面DCC 1D 1,A 1B 1∥平面ABCD ,但以上两平面却相交,故④是假命题.答案:C5.解析:由余弦定理的推论,得cos C =a 2+b 2-c 22ab =a 2+b 24ab≥12,当且仅当a =b 时取“=”.答案:C6.解析:如图,∵AC →=a ,BD →=b ,∴AD →=AO →+OD →=12AC →+12BD →=12a +12b .∵E 是OD 的中点,∴DE EB =13.∴DF =13AB ,∴DF →=1AB →=13(OB →-OA →)=13-12→-12AC =16AC →-16BD →=16a -16b ,AF →=AD →+DF →=12a +12b +16a -16b =23a +13b ,故选C.答案:C7.解析:y =cos x 的图象向右平移π2个单位长度得到y =cos =sin x 的图象,故A 正确;y =sin x 的图象向右平移π2个单位长度得到y =sin =-cos x 的图象,故B 错误;y =sin x 的图象向左平移|φ|个单位长度得到y =sin (x +|φ|)=sin (x -φ)的图象,故C错误;y =sin 2x 的图象向左平移π3个单位长度得到y =sin 2=sin x 的图象,故D 错误.答案:A 8.解析:如图,取PC 的中点O ,连接OA ,OB ,∵PA ⊥平面ABC ,AC ⊂平面ABC ,BC ⊂平面ABC .∴PA ⊥AC ,PA ⊥BC .在Rt △PAC 中,∵O 为PC 的中点,∴OA =12PC ,又PA ⊥BC ,AB ⊥BC ,PA ∩AB =A ,∴BC ⊥平面PAB ,∴BC ⊥PB ,在Rt △PBC 中,可得OB =12PC ,∴OA =OB =OC =OP ,∴O 是三棱锥P ­ABC 的外接球的球心,∵Rt △PAC 中,AC =2,PA =3,∴PC =5,∴三棱锥P ­ABC 的外接球的半径R =12PC =52,∴该三棱锥外接球的表面积S =4πR 2=5π.答案:A9.解析:若|a +b |=|a |-|b |,则a ,b 反向共线,且|a |>|b |,即存在实数λ,使得b =λa ,故A 不正确,C 正确;若a ⊥b ,显然在以a ,b 对应的线段为邻边的长方形中|a +b |=|a |-|b |不成立,故B 不正确;若λ>0,则a ,b 为同向的共线向量,显然|a +b |=|a |-|b |不成立,故D 不正确.故选ABD.答案:ABD10.解析:在△ABC 中,若A >B ,则a >b ,sin A >sin B ,但cos A >cos B 不正确,A 错误;若sin 2A =sin 2B ,则2A =2B 或2A +2B =π,即A =B 或A +B =π2,所以△ABC 为等腰三角形或直角三角形,B 错误;若a cos B -b cos A =c ,则sin A ·cos B -sin B cos A =sin C =sin(A +B ),所以sin B cos A =0,即cos A =0,A =π2,所以△ABC 定为直角三角形,C 正确;三角形的三边的比是3∶5∶7,设最大边所对的角为θ,则cos θ=32+52-722×3×5=-12,因为π3<θ<π,所以θ=2π3,D 正确.故选CD.答案:CD11.解析:函数f (x )x ,sin x ≤cos x ,x ,sin x >cos x的最小正周期为2π,画出f (x )在一个周期内的图象,可得当2k π+π4≤x ≤2k π+5π4,k ∈Z 时,f (x )=cos x ,当2k π+5π4<x ≤2k π+9π4,k ∈Z 时,f (x )=sin x ,可得f (x )的对称轴方程为x =π4+k π,k ∈Z ,当x =2k π+π或x =2k π+3π2,k ∈Z 时,f (x )取得最小值-1;当且仅当2k π<x <π+2k π(k ∈Z )时,f (x )>0.f (x )的最大值为=22,可得0<f (x )≤22,综上可得,正确的有CD.答案:CD 12.解析:连接AB 1,B 1D 1,AD 1,由正方体的性质可得A 1C ⊥平面AB 1D 1,而平面AB 1D 1与平面B 1EF 不可能平行,所以显然有A 1C 与平面B 1EF 不垂直,故A 错误;由题图可知,平面A 1B 1C 1D 1与平面B 1EF 相交,则一定有一条交线,所以在平面A 1B 1C 1D 1内一定存在直线与此交线平行,则此直线与平面B 1EF 平行,故B 正确;点F 在侧面BCC 1B 1上的投影为点B ,点E 在侧面BCC 1B 1上的投影在棱CC 1上,所以投影三角形的面积为S =12BB 1·BC =12,为定值,故C 正确;在D 1C 1上取点M ,使D 1M =14D 1C 1,在AD 上取点N ,使AN =23AD ,连接B 1M ,EM ,EN ,FN ,则五边形B 1MENF 即为截面,故D 正确,故选BCD.答案:BCD13.解析:解法一:因为tan θ=2,所以sin θ=2cos θ,由22θ=1可知,sin 2θ=45,cos 2θ=15,所以cos2θ=cos 2θ-sin 2θ=15-45=-35,=tan θ-11+tan θ=2-11+2=13.解法二:因为tan θ=2,所以cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=1-41+4=-35,=tan θ-11+tan θ=2-11+2=13.答案:-351314.解析:解法一:设该圆锥的母线长为l ,因为圆锥的侧面展开图是一个半圆,其面积为2π,所以12πl 2=2π,解得l =2,所以该半圆的弧长为2π.设该圆锥的底面半径为R ,则2πR =2π,解得R =1.解法二:设该圆锥的底面半径为R ,则该圆锥侧面展开图中的圆弧的弧长为2πR .因为侧面展开图是一个半圆,设该半圆的半径为r ,则πr =2πR ,即r =2R ,所以侧面展开图的面积为12·2R ·2πR =2πR 2=2π,解得R =1.答案:115.解析:设复数z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则a 2+b 2=4,c 2+d 2=4,又z 1+z 2=(a +c )+(b +d )i =3+i ,∴a +c =3,b +d =1,则(a +c )2+(b +d )2=a 2+c 2+b 2+d 2+2ac +2bd =4,∴8+2ac +2bd =4,即2ac +2bd =-4,∴|z 1-z 2|=(a -c )2+(b -d )2=a 2+b 2+c 2+d 2-(2ac +2bd )=8-(-4)=23.答案:2316.解析:依题意得AD ∥BC ,∠BAD =120°,由AD →·AB →=|AD →|·|AB →|·cos ∠BAD =-32|AD →|=-32,得|AD →|=1,因此λ=|AD →||BC →|=16.取MN 的中点E ,连接DE ,则DM →+DN→=2DE →,DM →·DN →=14[(DM →+DN →)2-(DM →-DN →)2]=DE →2-14NM →2=DE →2-14.注意到线段MN 在线段BC 上运动时,DE 的最小值等于点D 到直线BC 的距离,即AB ·sin ∠B =332,因此DE →2-142-14=132,即DM →·DN →的最小值为132.答案:1613217.解析:(1)∵角α的顶点与原点O 重合,始边与x 轴的正半轴重合,它的终边过点-35,,∴tan α=45-35=-43.(2)以角α的终边为始边,逆时针旋转π4得到角β,∴β=α+π4.由(1)利用任意角的三角函数的定义可得cos α=-35,sin α=45.∴sin 2α=2sin αcos α=-24,cos 2α=2cos 2α-1=-725.∴cos(α+β)=cos α=cos 2αcosπ4-sin 2αsin π4=22(cos 2α-sin 2α)=17250.18.解析:方案一:选条件①(1)由余弦定理a 2=b 2+c 2-2bc cos A ,b =11-a ,c =7,得a 2=(11-a )2+49-2(11-a )×7,∴a =8.(2)∵cos A =-17,A ∈(0,π),∴sin A =437.由正弦定理a sin A =c sin C ,得sin C =c sin A a =7×4378=32,由(1)知b =11-a =3,∴S △ABC =12ab sin C =12×8×3×32=63.方案二:选条件②(1)∵cos A =18,∴A,sin A =378.∵cos B =916,∴B ,sin B =5716.由正弦定理a sin A =bsin B ,得a378=11-a 5716,∴a =6.(2)sin C =sin (π-A -B )=sin (A +B )=sin A cos B +cos A sin B =74.∵a +b =11,a =6,∴b =5.∴S △ABC =12ab sin C =12×6×5×74=1574.19.解析:∵函数f (x )的图象相邻对称轴间的距离为π,∴T =2πω=2π,∴ω=1,∴f (x )=2sin (x +φ).方案一:选条件①∵=+φ为奇函数,∴=2sin =0,解得:φ=π3+k π,k ∈Z .(1)∵0<φ<π2,∴φ=π3,∴f (x )=2sin ;(2)由-π2+2k π≤x +π3≤π2+2k π,k ∈Z ,得-56π+2k π≤x ≤π6+2k π,k ∈Z .∴令k =0,得-5π6≤x ≤π6,令k =1,得7π6≤x ≤13π6,∴函数f (x )在[0,2π]上的单调递增区间为[0,π6],[76π,2π];方案二:选条件②=2sin =3,∴sin =32,∴φ=2k π,k ∈Z 或φ=π3+2k π,k ∈Z ,(1)∵0<φ<π2,∴φ=π3,∴f (x )=2sin ;(2)由-π2+2k π≤x +π3≤π2+2k π,k ∈Z ,得-56π+2k π≤x ≤π6+2k π,k ∈Z .∴令k =0,得-5π6≤x ≤π6,令k =1,得7π6≤x ≤13π6,∴函数f (x )在[0,2π]上的单调递增区间为[0,π6],[76π,2π];方案三:选条件③∵23π是函数f (x )的一个零点,∴=2sin +=0.∴φ=k π-2π,k ∈Z .(1)∵0<φ<π2,∴φ=π3,∴f (x )=2sin ;(2)由-π2+2k π≤x +π3≤π2+2k π,k ∈Z ,得-56π+2k π≤x ≤π6+2k π,k ∈Z .∴令k =0,得-5π6≤x ≤π6,令k =1,得7π6≤x ≤13π6,∴函数f (x )在[0,2π]上的单调递增区间为[0,π6],[76π,2π].20.解析:方案一:选条件①.由C =π6和余弦定理得a 2+b 2-c 22ab=32.由sin A =3sin B 及正弦定理得a =3b .于是3b 2+b 2-c 223b2=32,由此可得b =c .由①ac =3,解得a =3,b =c =1.因此,选条件①时问题中的三角形存在,此时c =1.方案二:选条件②.由C =π6和余弦定理得a 2+b 2-c 22ab=32.由sin A =3sin B 及正弦定理得a =3b .于是3b 2+b 2-c 223b 2=32,由此可得b =c ,B =C =π6,A =2π3.由②c sin A =3,所以c =b =23,a =6.因此,选条件②时问题中的三角形存在,此时c =23.方案三:选条件③.由C =π6和余弦定理得a 2+b 2-c 22ab=32.由sin A =3sin B 及正弦定理得a =3b .于是3b 2+b 2-c 223b 2=32,由此可得b =c .由③c =3b ,与b =c 矛盾.因此,选条件③时问题中的三角形不存在.21.证明:(1)连接BD ,设AC ,BD 相交于点O ,连接MO ,因为M 是线段AC 1的中点,所以在△ACC 1中,MO 綊12CC 1.又F 是BB 1的中点,所以BF 綊12CC 1,所以BF 綊MO ,故四边形MOBF 是平行四边形,所以MF∥BO.又MF⊄平面ABCD,BO⊂平面ABCD,所以MF∥平面ABCD.(2)由(1)知OB∥MF,在菱形ABCD中,OB⊥AC,所以MF⊥AC.在直四棱柱ABCD­A1B1C1D1中,CC1⊥平面ABCD,BO⊂平面ABCD,所以BO⊥CC1,即MF⊥CC1.又MF⊥AC,CC1∩AC=C,AC⊂平面ACC1A1,CC1⊂平面ACC1A1,所以MF⊥平面ACC1A1.因为MF⊂平面AFC1,所以平面AFC1⊥平面ACC1A1.22.解析:(1)证明:因为四边形ABCD是菱形,所以AD∥BC.因为AD⊄平面PBC,BC⊂平面PBC,所以AD∥平面PBC.(2)证明:设AC、BD交于点O,连接PO.因为四边形ABCD是菱形,所以AC⊥BD,DO=OB.因为PB=PD,所以PO⊥BD.因为AC∩PO=O,PO,AC⊂平面PAC,所以BD⊥平面PAC.(3)①过F作FG∥DC交PC于G,连接BG.在菱形ABCD中,AB=DC,AB∥DC,所以FG∥AB.所以E,F,G,B共面.因为EF∥平面PBC,平面FEBG∩平面PBC=BG,所以EF∥BG.所以四边形FEBG为平行四边形,所以EB=FG.所以AE=2EB,所以PFPD=FGDC=EBAB=13.②△PAD不是等腰三角形,理由如下:作BQ⊥AD交AD于点Q,连接PQ.因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,BQ⊂平面ABCD,所以BQ⊥平面PAD.所以BQ⊥PD.因为PD⊥PB,PB∩BQ=B.所以PD⊥平面PBQ.所以PD⊥PQ.所以AD>PD,AD>PA,QD>PD,∠PQD<90°.所以∠PQA>90°.所以PA>AQ.在菱形ABCD中,∠DAB=60°,所以△ABD是等边三角形.所以Q为AD的中点.所以AQ=QD.所以PA>PD.所以△PAD不可能为等腰三角形.。

北师大版高中数学选修2-1期末考试试题与答案..pdf

北师大版高中数学选修2-1期末考试试题与答案..pdf

A. ①假
②真
sin x 1 , )。
②x
B. ① 真 ② 假
2
2
R , sin x cos x 1 ,
C. ①②都假
D. ①②都真
3. 与椭圆 x 2 y 2 1 共焦点且过点 Q (2,1) 的双曲线方程是(

4
A. x 2
2
y1 2
2
x
B.
y2 1
Байду номын сангаас
4
2
x
C.
y2
1
2
2
D. x 3
2
y1 3
4 .已知 F1, F 2 是椭圆的两个焦点,过
F1 且与椭圆长轴垂直的弦交椭圆与
A ,B 两点,
则 ABF 2 是正三角形,则椭圆的离心率是(
) w wwk 5u om
2
A
2
1
B
2
3 C
3
1 D
3
5 . 过抛物线 y 2 8 x 的焦点作倾斜角为 45 0 直线 l ,直线 l 与抛物线相交与
A,B 两点,
则弦 AB 的长是( )
A8
B 16
C 32
1
OM
x OA y OB
OC
3
其中 x,y 是实数,若点 M 与 A、 B、 C 四点共面,则
外一点 O,给出下列表达式: x+y=___
14.斜率为 于 ___
1 的直线经过抛物线
y2= 4x 的焦点,且与抛物线相交于
A,B 两点,则 AB 等
15.若命题
ax
P: “ x> 0,
2 2 x 2 0 ”是真命题 ,则实数 a 的取值范围是 ___ .

新北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》测试题(有答案解析)(3)

新北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》测试题(有答案解析)(3)

一、选择题1.在四面体OABC 中,空间的一点OM 满足1126OM OA OB OC λ=++,若MA ,MB ,MC 共面,则λ=( )A .12B .13C .512D .7122.定义向量的外积:a b ⨯叫做向量a 与b 的外积,它是一个向量,满足下列两个条件: (1)a a b ⊥⨯,b a b ⊥⨯,且a ,b 和a b ⨯构成右手系(即三个向量两两垂直,且三个向量的方向依次与拇指、食指、中指的指向一致);(2)a b ⨯的模sin ,a b a b a b ⨯=⋅(,a b 表示向量a 、b 的夹角); 如图,在正方体1111ABCD A BC D -,有以下四个结论:①1AB AC ⨯与1BD 方向相反; ②AB AC BC AB ⨯=⨯;③6BC AC ⨯与正方体表面积的数值相等; ④()1AB AB CB ⨯⋅与正方体体积的数值相等. 这四个结论中,正确的结论有( )个 A .4B .3C .2D .13.如图,在几何体111ABC A B C -中,ABC ∆为正三角形,111////AA BB CC ,1AA ⊥平面ABC ,若E 是棱11B C 的中点,且1112AB AA CC BB ===,则异面直线1A E 与1AC 所成角的余弦值为( )A .1313B .21313C .2613D .226134.在边长为2的菱形ABCD 中,23BD =,将菱形ABCD 沿对角线AC 对折,使二面角B AC D --的余弦值为13,则所得三棱锥A BCD -的内切球的表面积为( ) A .43π B .πC .23π D .2π 5.已知长方体1111ABCD A BC D -的底面AC 为正方形,1AA a =,AB b =,且a b >,侧棱1CC 上一点E 满足13CC CE =,设异面直线1A B 与1AD ,1A B 与11D B ,AE 与11D B 的所成角分别为α,β,γ,则 A .αβγ<<B .γβα<<C .βαγ<<D .αγβ<<6.如图,已知平行六面体1111ABCD A BC D -中,底面ABCD 是边长为1的正方形,12AA =, 011120A AB A AD ∠=∠=,则线段1AC 的长为( )A 2B .1C .2D 37.若向量(3,1,0)a =,(1,0,)b z =,,3a b π=,则实数z 的值为( )A 2B .2C .2±D .2±8.已知()()2,,,1,21,0a t t b t t ==--,则b a -的最小值是( ) A 2B 3C 5D 69.记动点P 是棱长为1的正方体1111-ABCD A BC D 的对角线1BD 上一点,记11D PD Bλ=.当APC ∠为钝角时,则λ的取值范围为( ) A .(0,1)B .1(,1)3C .1(0,)3D .(1,3)10.如图,在棱长都相等的正三棱柱111ABC A B C -中,D 是棱1CC 的中点,E 是棱1AA 上的动点.设AE x =,随着x 增大,平面BDE 与底面ABC 所成锐二面角的平面角是( )A .增大B .先增大再减小C .减小D .先减小再增大11.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,DC =2,DA =DD 1=1,点M 、N 分别为A 1D 和CD 1上的动点,若MN ∥平面AA 1C 1C ,则MN 的最小值为( )A .53B .23C .56D .5212.已知正方体ABCD ﹣A 1B 1C 1D 1,点E 为平面BCC 1B 1的中心,则直线DE 与平面ACD 1所成角的余弦值为( ) A .14B .13C .33D .233二、填空题13.在直三棱柱111ABC A B C -中,90ACB ∠=,12AA =,1AC BC ==,则异面直线1A B 与1AC 所成角的余弦值是_____________.14.在正方体1111ABCD A B C D -中,M 、N 分别是11A B 、11A C 的中点,则异面直线BM 与AN 所成角的余弦值为______.15.正四棱锥S ABCD -的八条棱长都相等,SB 的中点是E ,则异面直线AE ,SD 所成角的余弦为__________.16.在正方体1111ABCD A BC D -中,M 为棱11A B 的中点,则异面直线AM 与1BC 所成的角的大小为________(结果用反三角函数值表示).17.已知向量,,a b c 是空间的一个单位正交基底,向量,,a b a b c +-是空间的另一个基底.若向量m 在基底,,a b c 下的坐标为()1,2,3,则m 在基底,,a b a b c +-下的坐标为 _________18.已知平行六面体中,则____.19.在棱长为2的正方体△ABCD -A 1B 1C 1D 1中,M 、N 分别是A 1B 1、CD 的中点,则点B 到截面AMC 1N 的距离为_____.20.已知平面α⊥平面β,且l αβ⋂=,在l 上有两点A ,B ,线段AC α⊂,线段BD β⊂,并且AC l ⊥,BD l ⊥,6AB =,24BD =,8AC =,则CD =______.三、解答题21.如图,在棱长为2的正方体1111ABCD A BC D -中,E 、F 、M 、N 分别是棱AB 、AD 、11A B 、11A D 的中点,点P 、Q 分别在棱1DD 、1BB 上移动,且()02DP BQ λλ==<<.(1)当1λ=时,证明:直线1//BC 平面EFPQ ;(2)是否存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.22.如图,四棱锥P ABCD -的底面为直角梯形,且AB AD ⊥,BC //AD ,BC AB =112AD ==,10PA PD ==,平面PAD ⊥平面ABCD ,点M 为棱PD 上动点.(1)当M 为PD 的中点时,平面PAB ⋂平面PCD =l ,求证:l //平面ACM ; (2)是否存在点M 使二面角M AC D --的余弦值为2211,若存在,请确定M 的位置;若不存在,请说明理由.23.如图,在四棱锥E ABCD -中,平面ADE ⊥平面ABCD O M ,,分别为线段AD DE ,的中点.四边形BCDO 是边长为1的正方形,,AE DE AE DE =⊥.(Ⅰ)求证://CM 平面ABE ;(Ⅱ)求直线DE 与平面ABE 所成角的正弦值;(Ⅲ)点N 在直线AD 上,若平面BMN ⊥平面ABE ,求线段AN 的长.24.将边长为2的正方形ABCD 沿对角线BD 折叠,使得平面ABD ⊥平面CBD ,AE ⊥平面ABD ,且2AE =.(1)求直线DE 与直线AC 所成的角; (2)求二面角B ED C --的余弦值.25.已知三棱锥,A BCD ABD -和BCD △是边长为2的等边三角形,平面ABD ⊥平面BCD(1)求证:AC BD ⊥;(2)设G 为BD 中点,H 为ACD △内的动点(含边界),且//GH 平面ABC ,求直线GH 与平面ACD 所成角的正弦值的取值范围.26.如图,四棱锥中P ABCD -中,底面ABCD 是直角梯形,//AB CD ,60DAB ∠=︒,2AB AD CD ==,侧面PAD ⊥底面ABCD ,且PAD △为等腰直角三角形,90APD ∠=︒.(Ⅰ)求证:AD PB ⊥;(Ⅱ)求平面PAD 与平面PBC 所成锐二面角的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据向量共面定理求解. 【详解】由题意1126MA OA OM OA OB OC λ=-=--, 1526MB OB OM OA OB OC λ=-=-+-,11(1)26MC OC OM OA OB OC λ=-=--+-,∵MA ,MB ,MC 共面,∴在在实数唯一实数对(,)m n ,使得MA mMB nMC =+,1126OA OB OC λ--1511(1)2626m OA OB OC n OA OB OC λλ⎛⎫⎡⎤=-+-+--+- ⎪⎢⎥⎝⎭⎣⎦,∴111222511666(1)m n m n m n λλλ⎧--=⎪⎪⎪-=-⎨⎪-+-=-⎪⎪⎩,解得132313m n λ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩.故选:B . 【点睛】结论点睛:本题考查空间向量共面定理.空间上任意三个不共面的向量都可以作为一个基底,其他向量都可用基底表示,且表示方法唯一.,,OA OB OC 是不共面的向量,OM xOA yOB zOC =++,则,,,M A B C 共面⇔1x y z ++=. 2.D解析:D 【分析】根据外积的定义逐项判断即可得到结果. 【详解】对于①,根据向量外积的第一个性质可知1AB AC ⨯与1BD 方向相同,故①错误; 对于②,根据向量外积的第一个性质可知AB AC ⨯与BC AB ⨯方向相反,不会相等,故②错误;对于③,根据向量外积的第二个性质可知sin4ABCDBC AC BC AC Sπ⨯=⋅⋅=,则6BC AC ⨯与正方体表面积的数值相等,故③正确;对于④,1AB AB ⨯与CB 的方向相反,则()10AB AB CB ⨯⋅<,故④错误. 故选:D. 【点睛】本题考查正方体的性质和信息迁移,解题的关键在于依据新概念的性质进行推理论证,属难题.3.C解析:C 【解析】 【分析】以C 为原点,在平面ABC 内过C 作BC 的垂线为x 轴,CB 为y 轴,CC 1为z 轴,建立空间直角坐标系,利用向量法能求出异面直线A 1E 与AC 1所成角的余弦值 【详解】以C 为原点,在平面ABC 内过C 作BC 的垂线为x 轴, CB 为y 轴,CC 1为z 轴,建立空间直角坐标系, 设AB =AA 1=CC 1=2BB 1=2,则A 1(3,1,2),A (310,,),C 1(0,0,2),B 1(0,2,1),E (0,1,32), 1A E =(3-,0,12-),1AC =(3-,﹣1,2),设异面直线A 1E 与AC 1所成角为θ,则cosθ1111226131384A E AC A E AC ⋅===⋅⋅. ∴异面直线A 1E 与AC 1所成角的余弦值为2613. 故选C .【点睛】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是基础题.4.C解析:C 【分析】作出图形,利用菱形对角线相互垂直的性质得出DN ⊥AC ,BN ⊥AC ,可得出二面角B ﹣AC﹣D 的平面角为∠BND ,再利用余弦定理求出BD ,可知三棱锥B ﹣ACD 为正四面体,可得出内切球的半径R ,再利用球体的表面积公式可得出答案. 【详解】 如下图所示,易知△ABC 和△ACD 都是等边三角形,取AC 的中点N ,则DN ⊥AC ,BN ⊥AC . 所以,∠BND 是二面角B ﹣AC ﹣D 的平面角,过点B 作BO ⊥DN 交DN 于点O ,可得BO ⊥平面ACD .因为在△BDN 中,3BN DN ==,所以,BD 2=BN 2+DN 2﹣2BN •DN •cos ∠BND 1332343=+-⨯⨯=, 则BD =2.故三棱锥A ﹣BCD 为正四面体,则其内切球半径为正四面体高的14,又正四面体的高为棱6,故662R ==因此,三棱锥A ﹣BCD 的内切球的表面积为226244(3R πππ=⨯=. 故选C . 【点睛】本题考查几何体的内切球问题,解决本题的关键在于计算几何体的棱长确定几何体的形状,考查了二面角的定义与余弦定理,考查计算能力,属于中等题.5.A解析:A 【分析】根据题意将异面直线平移到同一平面,再由余弦定理得到结果. 【详解】根据题意将异面直线平移到同一平面中,如上图,显然α,β,(0,]2πγ∈,因为a b >,异面直线1A B 与1AD 的夹角即角1AD C ,根据三角形1AD C 中的余弦定理得到222211cos 21()a b a b aα==>++,故(0,)3πα∈,同理在三角形1A DB 中利用余弦定理得到:2221cos 222()1a a b bβ==<⋅+⋅+,故(,)32ππβ∈, 连接AC ,则AC 垂直于BD ,CE 垂直于BD ,AC 交CE 于C 点,故可得到BD 垂直于面ACE ,进而得到BD 垂直于AE ,而BD 平行于11D B .从而得到2πγ=,故αβγ<<. 故答案为A. 【点睛】这个题目考查了异面直线夹角的求法,一般是将异面直线平移到同一平面中,转化到三角形中进行计算,或者建立坐标系,求解两直线的方向向量,两个方向向量的夹角就是异面直线的夹角或其补角.6.A解析:A 【分析】由11AC AB BC CC =++,两边平方,利用数量积的运算法则及数量积公式能求出21AC 的值,从而可得结果. 【详解】平行六面体1111ABCD A BC D -中,底面ABCD 是边长为1的正方形,1112,120AA A AB A AD =∠=∠=,11AC AB BC CC ∴=++, ()2211AC AB BC CC ∴=++222111222AB BC CC AB CC BC CC AB BC =+++⋅+⋅+⋅114212cos120212cos12002=+++⨯⨯⨯+⨯⨯⨯+=,∴线段1AC 的长为12AC = A.【点睛】本题主要考查利用空间向量求线段的长,考查向量数量积的运算法则,属于中档题.向量数量积的运算主要掌握两点:一是数量积的基本公式cos a b a b θ⋅=;二是向量的平方等于向量模的平方22a a =.7.C解析:C 【解析】分析:根据两个向量的数量积的定义式,推导出其所成角的余弦公式,从而利用cos ,a b a b a b⋅<>=,结合22a a =,将有关量代入求得z 的值,得到结果.详解:根据题意得31cos ,23a b ⨯===+,化简得22z =,解得z = C.点睛:该题考查的是有关向量夹角余弦公式的问题,在解题的过程中,需要把握住向量夹角余弦公式,再者就是向量的模的平方和向量的平方是相等的,还有就是向量的模的坐标运算式.8.A解析:A 【解析】解:由题意可知:()1,1,b a t t t -=---- ,则:(b a t -=--= ,即b a - 本题选择A 选项.点睛:本题的模长问题最终转化为二次函数求最值的问题.二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.9.B解析:B 【分析】建立空间直角坐标系,利用∠APC 不是平角,可得∠APC 为钝角等价于cos ∠APC <0,即 ,从而可求λ的取值范围.【详解】由题设,建立如图所示的空间直角坐标系D-xyz ,则有A (1,0,0),B (1,1,0),C (0,1,0),1D (0,0,1) ∴ =(1,1,-1),∴ =(λ,λ,-λ),∴=+=(-λ,-λ,λ)+(1,0,-1)=(1-λ,-λ,λ-1) =+ =(-λ,-λ,λ)+(0,1,-1)=(-λ,1-λ,λ-1)显然∠APC 不是平角,所以∠APC 为钝角等价于cos ∠APC <0 ∴ 0PA PC ⋅<∴(1-λ)(-λ)+(-λ)(1-λ)+(λ-1)(λ-1)=(λ-1)(3λ-1)<0,得 <λ<1 因此,λ的取值范围是( ,1),故选B.点评:本题考查了用空间向量求直线间的夹角,一元二次不等式的解法,属于中档题.10.D解析:D 【分析】设正三棱柱111ABC A B C -棱长为2,设平面BDE 与底面ABC 所成锐二面角为α,,02AE x x =≤≤,以A 为坐标原点建立空间直角坐标系,确定出,,B D E 点的坐标,求出平面BDE 的法向量m ,底面ABC 的法向量坐标为(0,0,1)n =,将cos α表示为关于x 的函数,通过讨论cos α的增减变化,即可求出结论. 【详解】设正三棱柱111ABC A B C -棱长为2,,02AE x x =≤≤, 设平面BDE 与底面ABC 所成锐二面角为α,以A 为坐标原点,过点A 在底面ABC 内与AC 垂直的直线为x 轴,1,AC AA 所在的直线分别为,y z 轴建立空间直角坐标系,则(3,1,0),(0,2,1),(0,0,),(3,1,1),(0,2,1)B D E x BD ED x =-=-,设平面BDE 的法向量(,,)m s t k =,则m BDm ED ⎧⊥⎨⊥⎩,即302(1)0s t k t x k ⎧-++=⎪⎨+-=⎪⎩,令23k =,则33,1t x s x =-=+,所以平面BDE 的一个法向量(1,33,23)m x x =+-, 底面ABC 的一个法向量为(0,0,1)n =,222233cos |cos ,|115(1)3(1)12()24m n x x x α=<>==++-+-+当1(0,)2x ∈,cos α随着x 增大而增大,则α随着x 的增大而减小, 当1(,2)2x ∈,cos α随着x 增大而减小,则α随着x 的增大而增大. 故选:D.【点睛】本题考查空间向量法求二面角,应用函数思想讨论二面角的大小,考查直观想象、数学计算能力,素养中档题.11.A解析:A 【分析】先建立空间坐标系,设出(),0,M m m ,()0,22,N n n -+,转化条件得1m n +=,利用函数即可得解. 【详解】如图建系,由题意可设(),0,M m m ,()0,22,N n n -+,∴(),22,MN m n n m =---,又 ()10,0,1AA =,()1,2,0AC =-,∴平面11AAC C 的法向量()2,1,0n =,又 //MN 面11AACC ,∴=0MN n ⋅即1m n +=,∴()()2222222941MN m n n m m m =+-+-=-+,∴MN 最小值为故选:A. 【点睛】本题考查了空间向量的应用,考查了转化化归和函数思想,属于中档题.12.B解析:B 【分析】如图所示,建立空间之间坐标系,设正方体边长为1,则()0,0,0D ,11,1,22E ⎛⎫⎪⎝⎭.易知平面1ACD 的法向量为()1,1,1n =,计算夹角得到答案. 【详解】如图所示,建立空间之间坐标系,设正方体边长为1,则()0,0,0D ,11,1,22E ⎛⎫⎪⎝⎭. 根据1,n AC n AD ⊥⊥得到平面1ACD 的法向量为()1,1,1n =,11,1,22DE ⎛⎫= ⎪⎝⎭, 故22cos 3n DE n DEα⋅==⋅,故1sin 3α=, 直线DE 与平面ACD 1所成角θ,满足1cos sin 3θα==. 故选:B .【点睛】本题考查了线面夹角,意在考查学生的空间想象能力和计算能力.二、填空题13.【分析】先找出线面角运用余弦定理进行求解【详解】连接交于点取中点连接则连接为异面直线与所成角在中同理可得异面直线与所成角的余弦值是故答案为【点睛】本题主要考查了异面直线所成的角考查了空间想象能力运算 解析:3010【分析】先找出线面角,运用余弦定理进行求解 【详解】连接1AB 交1A B 于点D ,取11B C 中点E ,连接DE ,则1DE AC ,连接1A E1A DE ∴∠为异面直线1A B 与1AC 所成角在111RtAC B 中,111AC =,1111122C E C B == 15A E ∴=同理可得1A D =DE =2221cos A DE +-∠==, ∴异面直线1A B 与1AC所成角的余弦值是10【点睛】本题主要考查了异面直线所成的角,考查了空间想象能力,运算能力和推理论证能力,属于基础题.14.【解析】【分析】由题意设正方体的棱长为2建立如图所示空间直角坐标系利用空间向量求解即可得到答案【详解】设正方体的棱长为2建立如图所示空间直角坐标系则0211异面直线BM 与AN 所成角的余弦值为故答案为【解析】 【分析】由题意,设正方体的棱长为2,建立如图所示空间直角坐标系,利用空间向量求解,即可得到答案. 【详解】设正方体的棱长为2,建立如图所示空间直角坐标系, 则A(2,0,0),B(2,2,0),M(2,1,2),N(1,1,2),()BM 0,1,2∴=-,()AN 1,1,2=-,BM AN cos BM,AN 5BM AN⋅∴===⋅∴异面直线BM 与AN【点睛】本题主要考查了空间向量在立体几何中的应用,其中解答中根据几何体的结构特征,建立适当的空间直角坐标系,利用向量的夹角公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.15.【解析】以正方形的中心为原点平行于的直线为轴平行于的直线为轴为轴建立如图所示空间直角坐标系设四棱锥棱长为则所以∴故异面直线所成角的余弦值为解析:33【解析】以正方形ABCD 的中心O 为原点,平行于AB 的直线为x 轴,平行于AD 的直线为y 轴,SO 为z 轴建立如图所示空间直角坐标系O xyz -,设四棱锥S ABCD -棱长为2,则(1,1,0)A --,(1,1,0)B -,2)S ,(1,1,0)D -,112,22E ⎛- ⎝⎭, 所以312,22AE ⎛= ⎝⎭,(1,1,2)SD =--,∴311322cos ,3911112442AE SD -+-==-++⋅++故异面直线AE ,SD 所成角的余弦值为33. 16.【分析】以D 为原点DA 为x 轴DC 为y 轴DD1为z 轴建立空间直角坐标系利用向量法能求出异面直线AM 与B1C 所成的角【详解】以D 为原点DA 为x 轴DC 为y 轴DD1为z 轴建立空间直角坐标系设正方体ABCD ﹣ 解析:10arccos5【分析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出异面直线AM 与B 1C 所成的角. 【详解】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系, 设正方体ABCD ﹣A 1B 1C 1D 1棱长为2,则A (2,0,0),M (2,1,2),B 1(2,2,2),C (0,2,0),AM =(0,1,2),1BC =(﹣2,0,2), 设异面直线AM 与B 1C 所成的角为θ, cosθ11410558AM B C AM B C⋅===⨯⋅. ∴θ105arccos=. ∴异面直线AM 与B 1C 所成的角为arccos 105. 故答案为:105arccos.【点睛】本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意向量法的合理运用.17.【解析】由题意可知:即在基底下的坐标为解析:31,,322⎛⎫- ⎪⎝⎭【解析】由题意可知:()()3123322m a b c a b a b c =++=+--+ , 即m 在基底,,a b a b c +-下的坐标为31,,322⎛⎫-⎪⎝⎭. 18.【解析】试题分析:因为在平行六面体中所以则考点:本题考查的知识点是点线面间的距离计算考查空间两点之间的距离运算根据已知条件构造向量将空间两点之间的距离转化为向量模的运算是解答本题的关键 解析:【解析】试题分析:因为在平行六面体中,,所以,则.考点:本题考查的知识点是点、线、面间的距离计算,考查空间两点之间的距离运算,根据已知条件,构造向量,将空间两点之间的距离转化为向量模的运算,是解答本题的关键.19.【分析】建立空间直角坐标系利用香炉峰能求出点B 到截面的距离得到答案【详解】如图所示建立空间直角坐标系因为棱长为2的正方体中分别是的中点所以则设平面的法向量为则取得所以点B 到截面的距离为【点睛】本题主 26【分析】建立空间直角坐标系D xyz -,利用香炉峰能求出点B 到截面1AMC N 的距离,得到答案. 【详解】如图所示,建立空间直角坐标系D xyz -,因为棱长为2的正方体1111ABCD A BC D -中,,M N 分别是11,A B CD 的中点, 所以(2,0,0),(2,1,2),(0,1,0),(2,2,0)A M N B , 则(0,1,2),(2,1,0),(0,2,0)AM AN AB ==-=, 设平面AMN 的法向量为(,,)n x y z =,则2020y z x y +=⎧⎨-+=⎩,取1x =,得(1,2,1)n =-,所以点B 到截面1AMC N 的距离为42636AB n d n⋅===.【点睛】本题主要考查了利用空间向量求解点到平面的距离问题,其中解答中建立适当的空间直角坐标系,正确求解平面的法向量,利用向量法准确计算是解答的关键,着重考查了推理与计算能力,属于中档试题.20.26【分析】推导出=从而=()2=由此能出CD 【详解】∵平面α⊥平面β且α∩β=l 在l 上有两点AB 线段AC ⊂α线段BD ⊂βAC ⊥lBD ⊥lAB=6BD=24AC=8∴=∴=()2==64+36+57解析:26 【分析】推导出CD =CA AB BD ++,从而2CD =(CA AB BD ++)2=222CA AB BD ++,由此能出CD . 【详解】∵平面α⊥平面β,且α∩β=l ,在l 上有两点A ,B ,线段AC ⊂α,线段BD ⊂β, AC ⊥l ,BD ⊥l ,AB=6,BD=24,AC=8, ∴CD =CA AB BD ++, ∴2CD =(CA AB BD ++)2 =222CA AB BD ++ =64+36+576 =676, ∴CD=26.故答案为26. 【点睛】本题考查两点间距离的求法,考查线段长的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、数形结合思想,是中档题.三、解答题21.(1)证明见解析;(2)存在,212λ=±. 【分析】(1)以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,证明出1//BC FP ,利用线面平行的判定定理可证得1//BC 平面EFPQ ; (2)计算出面EFPQ 与面PQMN 的法向量,由已知条件得出这两个平面的法向量垂直,结合02λ<<求出实数λ的值,即可得解. 【详解】(1)证明:以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()2,2,0B 、()10,2,2C 、()2,1,0E 、()1,0,0F ,当1λ=时,()0,0,1P ,()12,0,2BC =-,()1,0,1FP =-,12BC FP ∴=,1//BC FP ∴, 1BC ⊄平面EFPQ ,FP ⊂平面EFPQ ,因此,1//BC 平面EFPQ ;(2)()2,1,0E 、()1,0,0F 、()0,0,P λ、()1,0,2N 、()2,1,2M ,设平面EFPQ 的一个法向量为()111,,m x y z =,()1,1,0EF =--,()1,0,FP λ=-,由00m EF m FP ⎧⋅=⎨⋅=⎩,可得111100x y x z λ--=⎧⎨-+=⎩,取1x λ=,则1y λ=-,11z =,(),,1m λλ=-,设平面PQMN 的一个法向量为()222,,n x y z =,()1,1,0MN =--,()1,0,2NP λ=--,由00n MN n NP ⎧⋅=⎨⋅=⎩,可得()2222020x y x z λ--=⎧⎨-+-=⎩,取22x λ=-,则22y λ=-,21z =,()2,2,1n λλ∴=--,若存在λ,使得面EFPQ 与面PQMN 所成的二面角为直二面角,则m n ⊥. 且()()2210m n λλλλ⋅=---+=,整理可得22410λλ-+=,02λ<<,解得1λ=±因此,存在1λ=±EFPQ 与面PQMN 所成的二面角为直二面角. 【点睛】方法点睛:立体几何开放性问题求解方法有以下两种:(1)根据题目的已知条件进行综合分析和观察猜想,找出点或线的位置,然后再加以证明,得出结论;(2)假设所求的点或线存在,并设定参数表达已知条件,根据题目进行求解,若能求出参数的值且符合已知限定的范围,则存在这样的点或线,否则不存在.22.(1)证明见解析;(2)M 为PD 的靠近点P 三等分点时,二面角M AC D --的. 【分析】(1)延长,AB DC 交于Q ,连接PQ ,PQ 即为直线l ,证明//MC PQ 即可得线面平行; (2)取AD 的中点O ,连接OP ,OC ,分别以OC ,OD ,OP 为x 轴,y 轴,z 轴建立空间直角坐标系-O xyz .设DM DP λ=,利用空间向量法求二面角的余弦,由已知余弦值可求得λ,即存在. 【详解】(1)延长,AB DC 交于Q ,连接PQ .则易知PQ 为平面PAB 与平面PCD 的交线, 即:PQ 与l 重合.由题意,在ADQ △中://BC AD ,且12BC AD =, 故C 为DQ 的中点.又∵M 为PD 的中点,∴//MC PQ . 又∵MC ⊂平面ACM ,PQ ⊄平面ACM , ∴//PQ 平面ACM ,即//l 平面ACM .(2)取AD 的中点O ,连接OP ,OC ,由题意可得:OP AD ⊥,OC AD ⊥. 又∵平面PAD ⊥平面ABCD ,则OP ⊥平面ABCD ,∴分别以OC ,OD ,OP 为x 轴,y 轴,z 轴建立空间直角坐标系-O xyz . 则()0,1,0A -,()1,0,0C ,()0,1,0D ,()0,0,3P ,()0,1,3DP =-,()0,2,0AD =,()1,1,0AC =∵M 在棱PD 上,不妨设()()0,1,30,,3DM DP λλλλ==-=-, 其中01λ≤≤.∴AM AD DM =+()()0,2,00,,3λλ=+-()0,2,3λλ=-, 设平面MAC 的一个法向量为(),,m x y z =,则00m AM m AC ⎧⋅=⎨⋅=⎩即()2300y z x y λλ⎧-+=⎨+=⎩,令2z λ=-解得:3y λ=-,3x λ=.即()3,3,2m λλλ=--. 又∵平面ACD 的一个法向量()0,0,1m =. ∴()()()222222cos ,332m n λλλλ-<>==+-+-23λ=. 所以,M 为PD 的靠近点P 三等分点时,二面角M AC D --的余弦值为2211. 【点睛】方法点睛:本题考查证明线面平行,求二面角.求二面角的方法:(1)几何法(定义法):根据定义作出二面角的平面角并证明,然后解三角形得出结论; (2)空间向量法:建立空间直角坐标系,写出各点为坐标,求出二面角两个面的法向量,由两个平面法向量的夹角得二面角(它们相等或互补). 23.(Ⅰ)证明见解析;(Ⅱ6;(Ⅲ)53.【分析】(Ⅰ)取AE 中点P ,连接BP 、MP ,根据题意可得四边形BCMP 为平行四边形,根据线面平行的判定定理,即可得证;(Ⅱ)连接EO ,根据面面垂直的性质定理,可证得EO OB ⊥, EO OD ⊥,以O 为原点,分别以OB ,OD ,OE 为x ,y ,z 轴正方向建系,分别求得CM ,BD 的坐标,利用夹角公式,即可求得结果;(Ⅲ)设ON OD λ=,则可得N 点坐标,即可求得平面BMN 的法向量n ,同理可求得平面ABE 的法向量m ,根据题意,可得0m n ⋅=,即可求得λ的值,即可得答案. 【详解】解:(Ⅰ)取AE 中点P ,连接MP BP ,,因为M 为线段DE 的中点, 所以1//2MP AD MP AD =,, 因为四边形BCDO 是正方形, O 为线段AD 的中点,所以1//2BC AD BC AD =,,即//BC OD BC OD =,, 所以//BC MP BC MP =,所以四边形BCMP 为平行四边形.所以//MC BP ,又因为MC ⊂/平面ABE ,BP ⊂平面ABE , 所以//CM 平面ABE ;(Ⅱ)因为AE DE O =,为线段AD 的中点,连接EO ,则⊥EO AD , 因为平面ADE ⊥平面ABCD ,平面ADE平面ABCD AD =,EO ⊂平面ADE所以EO ⊥平面ABCD ,又因为OB ⊂平面ABCD ,所以EO OB ⊥, 又因为OB OD ⊥,所以OE OB OD ,,三线两两垂直.以O 为原点,以OB 为x 轴,以OD 为y 轴,以OE 为z 轴建立直角坐标系,如图所示,依题意可知(0,1,0),(1,0,0),(0,0,1),(0,1,0)A B E D -设平面ABE 的一个法向量为(,,)m x y z =,因为(1,1,0),(0,1,1)AB AE ==,因为00AB m AE m ⎧⋅=⎨⋅=⎩,所以0x y y z +=⎧⎨+=⎩,令1z =得11y x =-=,,所以(1,1,1)m =- 因为(0,1,1)DE =-,设DE 与平面ABE 所成角为θ, 则6sin |cos ,|32m DE θ=〈〉==⨯, 所以直线DE 与平面ABE 6; (Ⅲ)设(0,,0)ON OD λλ==,则(0,,0)N λ, 因为11110,,,1,,,(1,,0)2222M MB BN λ⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭,设平面BMN 的一个法向量为(,,)n x y z =,因为00MB n BN n ⎧⋅=⎨⋅=⎩,所以11022x y z x y λ⎧--=⎪⎨⎪-+=⎩, 令1y =得21x z λλ==-,,所以(,1,21)n λλ=-, 因为平面BMN ⊥平面ABE ,所以0m n ⋅= 故1210λλ-+-=,解得23λ=,即2(0,,0)3N , 故线段25133AN AO ON =+=+=. 【点睛】 方法点睛:求空间角的常用方法:(1)定义法,由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量夹角(直线方向向量与直线方向向量、直线方向向量与平面法向量,平面法向量与平面法向量)余弦值,即可求出结果. 24.(1)2π;(2)12.【分析】由题意可得AB AD ⊥,AE AB ⊥,AE AD ⊥,以A 为坐标原点,分别以AB ,AD ,AE 所在直线为x ,y ,z 轴建立空间直角坐标系,分别求出所用点的坐标.(1)分别求出,DE AC 的坐标,由0DE AC =可得直线DE 与直线AC 所成的角; (2)分别求出平面BED 的一个法向量与平面EDC 的一个法向量,由两法向量所成角的余弦值可得二面角B ED C --的余弦值. 【详解】如图,由题意,AB AD ⊥,AE AB ⊥,AE AD ⊥,以A 为坐标原点,分别以AB ,AD ,AE 所在直线为x ,y ,z 轴建立空间直角坐标系:则()0,0,0A ,()2,0,0B ,(2C ,()0,2,0D ,(2E , (1)(0,2DE =-,(2AC =,220DE AC ⋅=-+=,∴直线DE 与直线AC 所成的角为π2;(2)设平面BED 的一个法向量为()111,,m x y z =,(2BE =-,(0,2DE =-,由1111220220m BE x z m DE y z ⎧⋅=-+=⎪⎨⋅=-=⎪⎩,取12z (2m =; 设平面EDC 的一个法向量为()222,,n x y z =,(0,2DE =-,()1,1,0EC =,由2222200n DE y n EC x y ⎧⋅=-=⎪⎨⋅=+=⎪⎩,取2z =(1,1,n =-.21cos ,222m n m n m n⋅∴===⨯⋅, ∴二面角B ED C --的余弦值为12. 【点睛】本题考查了立体几何中的异面直线所成的角和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.25.(1)证明见解析;(2)⎣⎦. 【分析】()1证明:取BD 中点G ,连接,AG CG .根据三角形的性质和线面垂直的判定和性质可得证;()2以G 为原点,以GC 所在直线为x 轴,以GD 所在直线为y 轴建立空间直角坐标系. 取AD 中点,E CD 中点F ,连接,,GE GF EF ,则平面//GEF 平面,ABC 所以H 在线段EF 上运动,设1)0(EH EF λλ=≤≤,运用线面角的空间向量求解方法和二次函数的性质可求得范围. 【详解】()1证明:取BD 中点G ,连接,AG CG .ABD 和BCD △是等边三角形,AG BDCG BD AG BD G ⊥⎧⎪∴⊥⇒⎨⎪⋂=⎩BD ⊥面ACG ,AC ⊂面ACG ⇒AC BD ⊥; ()2以G 为原点,以GC 所在直线为x 轴,以GD 所在直线为y 轴建立空间直角坐标系. 取AD 中点,E CD 中点F ,连接,,GE GF EF ,则平面//GEF 平面,ABC 所以H 在线段EF 上运动, 则()(),0,0,00,1,0G B -,)()0,1,,,(00,CD A ,,110,,,02222E F ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭设1)0(EH EFλλ=≤≤,31,,2222GH λ⎛⎫=- ⎪ ⎪⎝⎭.设平面ACD 的一个法向量(),,n x y z =,则00n AC n CD ⎧⋅=⎨⋅=⎩,即3303+0x z x y ⎧-=⎪⎨-=⎪⎩,平面的一个法向量()1,3,1n =,设直线GH 与平面ACD 所成角为θ,则231526sin ,55335122GH n GH nθλλ⎡⎤⋅==∈⎢⎥⎣⎦⋅-+.所以直线GH 与平面ACD 所成角的正弦值的范围为1526,55⎡⎤⎢⎥⎣⎦.【点睛】本题考查线面垂直的判定和性质,以及运用向量法求线面角的方法,关键在于得出动点运动的轨迹,运用向量的线性关系,设出动点的坐标,属于中档题. 26.(Ⅰ)证明见解析;(Ⅱ39. 【分析】(Ⅰ)取AD 的中点G ,连结PG 、GB 、BD ,根据PA PD =和ABD △是正三角形,证明AD ⊥平面PGB 即可.(Ⅱ)根据侧面PAD ⊥底面ABCD ,PG AD ⊥,易得直线GA 、GB 、GP 两两互相垂直,以G 为原点,直线GA 、GB 、GP 所在直线为x 轴、y 轴和z 轴建立空间直角坐标系G xyz -,求得平面PBC 的一个法向量()000,,n x y z =,再由平面PAD 的一个法向量13,0)n GB a ==,设平面PAD 与平面PBC 所成锐二面角为θ,由11cos ||n n n n θ⋅=⋅求解.【详解】 (Ⅰ)如图所示:取AD 的中点G ,连结PG 、GB 、BD .PA PD =,PG AD ∴⊥AB AD =,且60DAB ∠=︒,ABD ∴是正三角形,BG AD ⊥, 又PG BG G =,AD ∴⊥平面PGB . AD PB ∴⊥(Ⅱ)∵侧面PAD ⊥底面ABCD , 又PG AD ⊥,PG ∴⊥底面ABCD .PG BG ∴⊥.∴直线GA 、GB 、GP 两两互相垂直,故以G 为原点,直线GA 、GB 、GP 所在直线为x 轴、y 轴和z 轴建立 如图所示的空间直角坐标系G xyz -.设PG a =,则可求得(0,0,)P a ,(,0,0)A a ,3,0)B a ,(,0,0)D a -,33,,022C a a ⎛⎫- ⎪ ⎪⎝⎭.3,,02BC a ⎛⎫∴=- ⎪ ⎪⎝⎭.(0,,)PB a ∴=-. 设()000,,n x y z =是平面PBC 的一个法向量,则0n BC ⋅=且0n PB⋅=.000030,220.ax ay az ⎧--=⎪∴-=解得0000,.x y z ⎧=⎪⎨⎪=⎩ 取0y =(1,3,3)n =-.又∵平面PAD 的一个法向量1,0)n GB ==,设平面PAD 与平面PBC 所成锐二面角为θ,则11cos ||1313n nn n θ⋅===⋅+ 所以平面PAD 与平面PBC 【点睛】 方法点睛:求二面角最常用的方法:1、几何法:二面角的大小用它的平面角来度量.平面角的作法常见的有①定义法;②垂面法.注意利用等腰、等边三角形的性质.向量法:分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版高中数学选修21期末考试试题及答案晁群彦一.选择题(每小题5分,满分60分)1.设n m l ,,均为直线,其中n m ,在平面”“”“,n l m l l a ⊥⊥⊥且是则内α的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.关于两个命题:①,1sin 1x R x ∀∈-≤≤, ②22,sin cos 1x R x x ∃∈+>,下列判定正确的是( )。

A. ① 假 ② 真B. ① 真 ② 假C. ① ② 都假D. ① ② 都真3.与椭圆1422=+y x 共焦点且过点(2,1)Q 的双曲线方程是( ) A. 1222=-y x B. 1422=-y x C. 1222=-y x D. 13322=-y x 4.已知12,F F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的弦交椭圆与A ,B 两点, 则2ABF ∆是正三角形,则椭圆的离心率是( )A22 B 12 C 3 D 135.过抛物线28y x =的焦点作倾斜角为045直线l ,直线l 与抛物线相交与A ,B 两点,则弦AB 的长是( )A 8B 16C 32D 646.在同一坐标系中,方程)0(0122222>>=+=+b a by ax x b x a 与的曲线大致是( )A .B .C .D .7.已知椭圆12222=+by a x (b a >>0) 的两个焦点F 1,F 2,点P 在椭圆上,则12PF F ∆的面积 最大值一定是( )A 2a B ab C 22a a b - D 22b a b -8.已知向量b a b a k b a -+-==2),2,0,1(),0,1,1(与且互相垂直,则实数k 的值是( )A .1B .51C . 53D .579.在正方体1111ABCD A B C D -中,E 是棱11A B 的中点,则1A B与1D E所成角的余弦值为( )A .510B .1010C .55D .10510.若椭圆x y n m ny mx -=>>=+1)0,0(122与直线交于A ,B 两点,过原点与线段AB 中点的连线的斜率为22,则m n的值是( )2.23.22.292. D C B A11.过抛物线y x 42=的焦点F 作直线交抛物线于()()222111,,,y x P y x P 两点,若621=+y y ,则21P P 的值为 ( )A .5B .6C .8D .1012.以12422y x -=1的焦点为顶点,顶点为焦点的椭圆方程为 ( ) A.1121622=+y x B. 1161222=+y x C. 141622=+y x D. 二.填空题(每小题4分)13.已知A 、B 、C 三点不共线,对平面ABC 外一点O ,给出下列表达式:y x 31++=其中x ,y 是实数,若点M 与A 、B 、C 四点共面,则x+y=___14.斜率为1的直线通过抛物线y2=4x 的焦点,且与抛物线相交于A,B 两点,则AB等于___15.若命题P :“∀x >0,0222<--x ax ”是真命题 ,则实数a 的取值范畴是___.16.已知90AOB ∠=︒,C 为空间中一点,且60AOC BOC ∠=∠=︒,则直线OC 与平面AE y x D CBAOB 所成角的正弦值为___.三.解答题(解承诺写出必要的文字说明、证明过程和演算步骤。

) 17.(本小题满分14)设命题P :2",2"x R x x a ∀∈->,命题Q :2",220"x R x ax a ∃∈++-=; 假如“P 或Q ”为真,“P 且Q ”为假,求a 的取值范畴。

18.(15分)如图①在直角梯形ABCP 中,BC ∥AP ,AB ⊥BC ,CD ⊥AP ,AD=DC=PD=2,E ,F ,G 分别是线段PC 、PD ,BC 的中点,现将ΔPDC 折起,使平面PDC ⊥平面ABCD (如图②) (Ⅰ)求证AP ∥平面EFG ;(Ⅱ)求二面角G-EF-D 的大小;(Ⅲ)在线段PB 上确定一点Q ,使PC ⊥平面ADQ ,试给出证明.19.(15分) 如图,金砂公园有一块边长为2的等边△ABC 的边角地,现修成草坪,图中DE 把草坪分成面积相等的两部分,D 在AB 上,E 在AC 上.(Ⅰ)设AD =x ,DE =y ,求y 关于x 的函数关系式;(Ⅱ)假如DE 是灌溉水管,我们期望它最短,则DE 的位置应在哪里?请予以证明.20(本小题满分15分)设21,F F 分别为椭圆)0(1:2222>>=+b a by a x C 的左、右两个焦点.(Ⅰ)若椭圆C 上的点21,)23,1(F F A 到两点的距离之和等于4,求椭圆C 的方程和焦点坐标;(Ⅱ)设点P 是(Ⅰ)中所得椭圆上的动点,的最大值求||),21,0(PQ Q 。

21(本小题满分15分)如图,设抛物线C :y x 42=的焦点为F ,),(00y x P 为抛物线上的任一点(其中0x ≠0), 过P 点的切线交y 轴于Q 点.(Ⅰ)证明:FQ FP =;(Ⅱ)Q 点关于原点O 的对称点为M ,过M 点作平行于PQ 的直线 交抛物线C 于A 、B 两点,若)1(>=λλ,求λ的值.高二(理科)期末考试数学试题参考答案及评分标准一.选择题:ABCCB D CBDB DD二、填空题:13. 13.8 14.)4,(-∞ 15详解:由对称性点C 在平面AOB 内的射影D 必在AOB ∠的平分线上作DE OA ⊥于E ,连结CE 则由三垂线定理CE OE ⊥,设1DE =1,2OE OD ⇒==,又60,2COE CE OE OE ∠=⊥⇒=,因此222CD OC OD =-=,因此直线OC 与平面AOB 所成角的正弦值2sin 2COD ∠=,本题亦可用向量法。

16.y ex =三.解答题:17解:命题P :2",2"x R x x a ∀∈->即222(1)1x x x a -=-->恒成立1a ⇔<- …………3分 命题Q :2",220"x R x ax a ∃∈++-= 即方程2220x ax a ++-=有实数根∴2(2)4(2)0a a ∆=--≥ 2a ⇔≤-或1a ≥ .…………6分 ∵“P 或Q ”为真,“P 且Q ”为假,∴P 与Q 一真一假 …………8分 当P 真Q 假时,21a -<<-;当P 假Q 真时,1a ≥ …………10 ∴a 的取值范畴是(2,1)[1,)--+∞ ………1418(14分)解法一:(Ⅰ)在图②中 ∵平面PDC ⊥平面ABCD ,AP ⊥CD ∴ PD ⊥CD ,PD ⊥DA32∴PD ⊥平面ABCD如图. 以D 为坐标原点,直线DA 、DC 、DP 分别为y x 、与z 轴建立空间直角坐标系: …………………1分 则()0,0,0D ()0,0,2A ()0,2,2B ()0,2,0C ()2,0,0P ()1,1,0E ()1,0,0F ()0,2,1G()2,0,2-=∴ ()0,1,0-=EF ()1,2,1-=FG ………………3分设平面GEF 的法向量),,(z y x n =,由法向量的定义得: ⎩⎨⎧==⇒⎩⎨⎧=-+=⇒⎩⎨⎧=-•=-•⇒⎪⎩⎪⎨⎧=•=•z x y z y x y EF n 00200)1,2,1()z y,x,(0)0,1,0()z y,x,(00不妨设 z=1, 则 ………………………………4分 0210212=⨯+⨯+⨯-=⋅ ………………………………5分⊥∴,点P ∉ 平面EFG∴AP ∥平面EFG ………………………………6分(Ⅱ)由(Ⅰ)知平面GEF 的法向量 ,因平面EFD 与坐标平面PDC 重合 则它的一个法向量为=(1,0,0分设二面角D EF G --为θ.则 …………9分由图形观看二面角D EF G --为锐角,故二面角G-EF-D 的大小为45°。

………10分 (Ⅲ)假设在线段PB 上存在一点Q ,使PC ⊥平面ADQ ,∵P 、Q 、D 三点共线,则设t t +-=)1(,又()0,2,2=,()2,0,0=DP ∴)22,2,2(t t t -=,又()2,0,0= …………11分 若PC ⊥平面ADQ ,又)2,2,0(-=则210)22(2220)22,2,2()0,2,-2(0)0,0,2()0,2,-2(00=⇒=--⨯⇒⎩⎨⎧=-•=•⇒⎪⎩⎪⎨⎧=•=•t t t t t t DQ PC DA PC …………15分∴)DB DP DQ +=(21, ………………………………13分故在线段PB 上存在一点Q ,使PC ⊥平面ADQ ,且点Q 为线段PB 的中点。

……15分 解法二:(1)∵EF ∥CD ∥AB ,EG ∥PB ,依照面面平行的判定定理∴平面EFG ∥平面PAB ,又PA ⊂面PAB ,∴AP ∥平面EFG ……………………4分 (2)∵平面PDC ⊥平面ABCD ,AD ⊥DC∴AD ⊥平面PCD ,而BC ∥AD ,∴BC ⊥面EFD过C 作CR ⊥EF 交EF 延长线于R 点连GR ,依照三垂线定理知 ∠GRC 即为二面角的平面角,∵GC=CR ,∴∠GRC=45°,)1,0,1(=)1,0,1(=n 2221cos =⋅==θ故二面角G-EF-D 的大小为45°。

…………………8分 (3)Q 点为PB 的中点,取PC 中点M ,则QM ∥BC ,∴QM ⊥PC在等腰Rt △PDC 中,DM ⊥PC ,∴PC ⊥面ADMQ ……………………15分 19(14分)解: (1)在△ADE 中,y 2=x 2+AE2-2x ·AE·cos60°⇒y 2=x 2+AE2-x ·AE,①又S △ADE = S △ABC = · 2= x ·AE·sin60°⇒x ·AE =2.② ……4分②代入①得y 2=x 2+ -2(y >0), ∴y =………6分又x ≤2,若1x <,,矛盾,因此x ≥1∴y =x ≤2). ………………………7分(2)假如DE 是水管y =………………10分当且仅当x 2=24x ,即x =2时“=”成立, …………………………15分故DE ∥ BC ,且DE =2. ………………………………15分 20解:(Ⅰ)椭圆C 的焦点在x 轴上,由椭圆上的点A 到F 1、F 2两点的距离之和是4,得2a=4,即a=2. …….2分又点.1,31)23(21,)23,1(22222===+c b bA 于是得因此在椭圆上 …….4分因此椭圆C 的方程为).0,1(),0,1(,1342122F F y x -=+焦点 …….6分 (Ⅱ)设134),,(22=+y x y x P 则22344y x -=∴ …….8分 222222141117||()423434PQ x y y y y y y =+-=-+-+=--+ …….10分5)23(312++-=y …….12分又33≤≤-y 5||,23max =-=∴PQ y 时当 …….15分21解:(Ⅰ)证明:由抛物线定义知1||0+=y PF ,121222(x 22AE x =>2|00x y k x x PQ ='==, 可得PQ 所在直线方程为000()2x y y x x -=-, ∵2004x y =∴得Q 点坐标为(0, 0y -)∴1||0+=y QF ∴ |PF |=|QF |(Ⅱ)设A (x 1, y 1),B (x 2, y 2),又M 点坐标为(0, y 0)∴AB 方程为002y x x y +=…….8分。

相关文档
最新文档