历年高考数学真题精选12 利用导数研究函数的极值与最值
利用导数研究函数的极值与最值
利用导数研究函数的极值与最值导数是研究函数变化率的工具,通过导数可以研究函数的极值和最值。
在这篇文章中,我们将讨论如何利用导数来研究函数的极值和最值。
一、极值的定义和判断条件极值是指函数取得的最大值或最小值。
在数学上,函数f(x)在点x=c处取得极值的充分条件是f'(c)=0,并且f'(x)的符号在x=c的两侧改变。
具体来说,f'(x)大于0时,函数递增;f'(x)小于0时,函数递减。
而当f'(x)从正变为负或从负变为正时,就是函数取得极值的地方。
二、几何图形与导数的关系通过导数的大小和符号,我们可以推断函数的几何行为。
例如,当f'(x)>0时,函数f(x)是递增的,图像是向上的曲线;而当f'(x)<0时,函数f(x)是递减的,图像是向下的曲线。
当f'(x)=0时,函数可能达到极值点。
三、利用导数判断函数的极值1.求导数:首先求出函数f(x)的导数f'(x)。
2.解方程:解方程f'(x)=0,得到可能的极值点x=c。
3.判断符号:将极值点x=c代入f'(x),判断f'(x)的符号在c的两侧。
如果f'(x)从正变为负,或从负变为正,那么极值点x=c是函数的极值点。
4.检验:将极值点代入函数f(x)中,算出函数值f(c),判断是否是极值。
四、利用导数求函数的最值1.求导数:求出函数f(x)的导数f'(x)。
2.解方程:解方程f'(x)=0,得到可能的最值点x=c。
3.极值判断:判断c是否是函数的极值点,确定是否是最值点。
4.边界判断:检查函数在定义域的边界上的函数值,判断是否可能是最值。
5.比较:对于所有可能的最值点,比较它们的函数值,得到最大值和最小值。
五、利用导数求出临界点临界点是指导数不存在的点或者导数为零的点。
通过求导数,我们可以找到函数的临界点。
临界点可能是函数的极值点或最值点。
高二数学利用导数求最值和极值试题答案及解析
高二数学利用导数求最值和极值试题答案及解析1.若函数,当时,函数有极值-.求函数的解析式.【答案】【解析】(1)利用函数的极值与导数的关系;(2)解决类似的问题时,函数在极值点处的导数为零,注意区分函数的最值和极值.求函数的最值时,要先求函数在区间内使的点,再计算函数在区间内所有使的点和区间端点处的函数值,最后比较即得.(3)若可导函数在指定的区间上单调递增(减),求参数问题,可转化为恒成立,从而构建不等式,要注意“=”是否可以取到.试题解析:解:由题意可知于是,,解得经检验符合题意,因此函数的解析式为.【考点】函数的导数与极值.2.设函数,则的极小值点为()A.B.C.D.【答案】D【解析】因为,令得解得,又因为函数的定义域为,当时,,所以时为减函数;当时,,所以时为增函数;所以当时函数取得极小值;【考点】导数在求函数极值中的应用;3.已知函数,且是函数的极值点。
给出以下几个问题:①;②;③;④其中正确的命题是__________。
(填出所有正确命题的序号)【答案】①③【解析】的定义域为,,所以有,所以有即即,所以有;因为,所以有。
【考点】导数在求函数极值中的应用4.若函数,则()A.最大值为,最小值为B.最大值为,无最小值C.最小值为,无最大值D.既无最大值也无最小值【答案】D【解析】,令,得或,令,得,因此函数在上单调递增,在上单调递减,在上单调递增,所以在时,函数取得极大值,在时,函数取得极小值,但是函数在上,既无最大值也无最小值,弄清楚极值与最值是两个不同的概念,就不会选错答案,此处选择D.【考点】导数的应用、函数的极值与最值.5.设函数在内有极值.(1)求实数的取值范围;(2)若求证:.【答案】(1);(2)证明见解析.【解析】解题思路:(1)利用在有极值在有解进行求解;(2)要证,即证在上是最小值与在的最大值之差大于.规律总结:利用导数研究函数的单调性、极值、最值及与函数有关的综合题,都体现了导数的重要性;此类问题往往从求导入手,思路清晰;但综合性较强,需学生有较高的逻辑思维和运算能力.试题解析:(1)0<x<1或x>1时,由在内有解,令,=1不妨设,则,因,所以,解得(2)证明:由或,由或,得在上单调递增,在上单调递减,在上单调递减,在上单调递增.由,得,由,得,所以,因为,所以记则,在上单调递增,所以故.【考点】利用导数研究函数的极值与最值.6.函数的定义域为开区间,导函数在内的图象如图所示,则函数在开区间内有极小值点()A.个B.个C.个D.个【答案】A【解析】由导函数的图像知,的图像先增后减再增再减,故只有一个极小值点,故选A.【考点】函数导数与极值的关系7.点P是曲线x2-y-2ln=0上任意一点,则点P到直线4x+4y+1=0的最短距离是( ) A.(1-ln 2)B.(1+ln 2)C.D.(1+ln 2)【答案】B【解析】设P(,),则点P到直线4x+4y+1=0的距离= =,设==(),所以= =,当时,<0,当时,,所以在(0,)是减函数,在(,)上是增函数,所以当=时,==,所以= .【考点】点到直线距离公式;利用导数求最值8.已知既有极大值又有极小值,则的取值范围为()A.B.C.D.【答案】D【解析】由已知得:在R上有两个不相等的实根,所以解得:,故选D.【考点】函数的极值.9.设,若函数,,有大于零的极值点,则()A.B.C.D.【答案】C【解析】∵f(x)=e x+ax,∴,令=0,可得x=-ln(-a)>0,解得a<-1.【考点】导数的运用.10.已知函数y=f(x)的导函数y=f′(x)的图象如图,则()A.函数f(x)有1个极大值点,1个极小值点B.函数f(x)有2个极大值点,2个极小值点C.函数f(x)有3个极大值点,1个极小值点D.函数f(x)有1个极大值点,3个极小值点【答案】A【解析】所给图象是导函数图象,在处左右两侧函数值取正负,故函数在有极大值,在处有极小值.故选A.【考点】函数的极值.11.函数f(x)=x(1-x2)在[0,1]上的最大值为.【答案】【解析】由题知,则,可得在区间,为增函数,在上,,,为减函数,故在处取得最大值.【考点】由导函数求函数的最值.12.某商品一件的成本为元,在某段时间内,若以每件元出售,可卖出件,当每件商品的定价为元时,利润最大【答案】115【解析】利润为由得,这时利润达到最大.【考点】函数的最值与导数的关系13.下列四个函数,在x=0处取得极值的函数是()①y=x3②y=x2+1 ③y=|x| ④y=2xA.①②B.②③C.③④D.①③【答案】B【解析】根据函数极值的定义,①,在处无极值;④,在处无极值.【考点】函数的极值.14.已知函数f(x)=x4-2x3+3m,x∈R,若f(x)+9≥0恒成立,则实数m的取值范围是() A.m≥B.m>C.m≤D.m<【答案】A【解析】因为函数),所以.令得x=0或x=3,经检验知x=3是函数的一个最小值点,所以函数的最小值为.不等式恒成立,即恒成立,所以,解得.故答案选A.【考点】1、函数恒成立问题;2、利用导数求闭区间上函数的最值.15.若是( )A.3B.C.D.1【答案】C【解析】令,原式化为,求导得,令,解得,函数的极大值点为,极小值点为,又因为,所以最大值在处取得,解得.【考点】1、三角函数化简;2、三角函数中的最值问题.16.若,且函数在处有极值,则ab的最大值为。
高三数学利用导数求最值和极值试题答案及解析
高三数学利用导数求最值和极值试题答案及解析1.已知函数 (R).(1)当时,求函数的极值;(2)若函数的图象与轴有且只有一个交点,求的取值范围.【答案】(1)当时, 取得极大值为;当时, 取得极小值为.(2)a的取值范围是.【解析】(1)遵循“求导数,求驻点,讨论驻点两侧导数值符号,确定极值”.(2)根据= ,得到△= = .据此讨论:①若a≥1,则△≤0,此时≥0在R上恒成立,f(x)在R上单调递增 .计算f(0),,得到结论.②若a<1,则△>0,= 0有两个不相等的实数根,不妨设为.有.给出当变化时,的取值情况表.根据f(x1)·f(x2)>0, 解得a>.作出结论.试题解析:(1)当时,,∴.令="0," 得. 2分当时,, 则在上单调递增;当时,, 则在上单调递减;当时,, 在上单调递增. 4分∴当时, 取得极大值为;当时, 取得极小值为. 6分(2)∵= ,∴△= = .①若a≥1,则△≤0, 7分∴≥0在R上恒成立,∴ f(x)在R上单调递增 .∵f(0),,∴当a≥1时,函数f(x)的图象与x轴有且只有一个交点. 9分②若a<1,则△>0,∴= 0有两个不相等的实数根,不妨设为.∴.当变化时,的取值情况如下表:x x(x,x)x++11分∵,∴.∴=.同理. ∴.令f(x1)·f(x2)>0, 解得a>.而当时,, 13分故当时, 函数f(x)的图象与x轴有且只有一个交点.综上所述,a的取值范围是. 14分【考点】应用导数研究函数的极值、单调性及函数的图象,分类讨论思想.2.函数的极小值是 .【答案】.【解析】,令,解得,列表如下:极大值极小值故函数在处取得极小值,即.【考点】函数的极值3.已知a≤+lnx对任意的x∈[,2]恒成立,则a的最大值为________.【解析】令f(x)=+lnx,f′(x)=,当x∈[,1)时,f′(x)<0,当x∈(1,2]时,f′(x)>0,∴f(x)min=f(1)=0,∴a≤0,故a最大值为0.4.已知函数,是函数的导函数,且有两个零点和(),则的最小值为()A.B.C.D.以上都不对【答案】B【解析】,由题意,当或时,,当时,,因此的最小值是,选B.【考点】函数的极值与最值.5.已知e为自然对数的底数,设函数f(x)=(e x-1)(x-1)k(k=1,2),则 ().A.当k=1时,f(x)在x=1处取到极小值B.当k=1时,f(x)在x=1处取到极大值C.当k=2时,f(x)在x=1处取到极小值D.当k=2时,f(x)在x=1处取到极大值【答案】C【解析】当k=1时,f′(x)=e x·x-1,f′(1)≠0,∴x=1不是函数f(x)的极值点.当k=2时,f′(x)=(x-1)(xe x+e x-2),显然f′(1)=0,且x在1的左边附近f′(x)<0,x在1的右边附近f′(x)>0,∴f(x)在x=1处取到极小值.6.已知函数f(x)=x3+ax2+x+2(a>0)的极大值点和极小值点都在区间(-1,1)内,则实数a的取值范围是______.【答案】(,2)【解析】由题意可知f′(x)=0的两个不同解都在区间(-1,1)内.因为f′(x)=3x2+2ax+1,所以根据导函数图象可得又a>0,解得<a<2.7.设函数f(x)=x e x,则().A.x=1为f(x)的极大值点B.x=1为f(x)的极小值点C.x=-1为f(x)的极大值点D.x=-1为f(x)的极小值点【答案】D【解析】∵f(x)=x e x,∴f′(x)=e x+x e x=e x(1+x).∴当f′(x)>0时,则x>-1,函数y=f(x)是增函数,同理可求,x<-1时函数f(x)为减函数.∴x=-1时,函数f(x)取得极小值.8.已知函数f(x)=x3+ax2+x+2(a>0)的极大值点和极小值点都在区间(-1,1)内,则实数a的取值范围是().A.(0,2]B.(0,2)C.[,2)D.(,2)【答案】D【解析】由题意可知f′(x)=0的两个不同解都在区间(-1,1)内.因为f′(x)=3x2+2ax+1,所以根据导函数图象可得又a>0,解得<a<2,故选D.9.若函数在区间内有极值,则实数的取值范围是 .【答案】【解析】因为函数在区间内有极值,所以导数在区间内必有零点,于是.【考点】1.导数的公式与法则;2.函数的零点.10.某人进行了如下的“三段论”推理:如果,则是函数的极值点,因为函数在处的导数值,所以是函数的极值点.你认为以上推理的 ( ) A.大前提错误B.小前提错误C.推理形式错误D.结论正确【答案】A【解析】本题中,如果,则是函数的极值点是错误的.若是函数的极值点,则函数在的左右两侧异号,而否则尽管有,都不能说明是函数的极值点.如,其导数,函数在上是增函数.所以不是函数的极值点.因此本题是大前提错误.【考点】推理与证明、导数、函数的极值11.在处有极小值,则实数为 .【答案】1【解析】由得,又在处有极小值,故,解得或,当时,有,函数在单调递增,在单调递减,故在处有极小值;当时,有,函数在单调递增,在单调递减,故在处有极大值.综上可知.【考点】利用导数处理函数的极值12.已知函数.(1)当时,求函数的极值;(2)求函数的单调区间.【答案】(1),无极大值;(2)见解析.【解析】(1)先找到函数的定义域,在定义域内进行作答,在条件下求出函数的导函数,根据函数的单调性与导数的关系,判断函数的极值;(2)先求出函数的导函数,其导函数中含有参数,所以要进行分类讨论,对分三种情况,,进行讨论,分别求出每种情况下的函数的单调增区间和单调减区间.试题解析:(1)函数的定义域是, 1分当时,,所以在上递减,在上递增,所以函数的极小值为,无极大值; 4分(2)定义域, 5分①当,即时,由,得的增区间为;由,得的减区间为; 7分②当,即时,由,得的增区间为和;由,得的减区间为; 9分③当,即时,由,得的增区间为和;由,得的减区间为; 11分综上,时,的增区间为,减区间为;时,的增区间为和,减区间为;时,的增区间为和,减区间为. 13分【考点】1、对数函数的定义域;2、含参数的分类讨论思想;3、函数的单调性与导数的关系;4、解不等式;5、求函数的极值.13.已知函数(,,且)的图象在处的切线与轴平行. (1)确定实数、的正、负号;(2)若函数在区间上有最大值为,求的值.【答案】(1),;(2).【解析】(1)先求导数,因为切线与轴平行,所以导数为0,列出等式,判断出的符号;(2)求导数,令导数为0,解出方程的根,利用导数的正负判断出函数的单调性,通过分类讨论的方法找到最大值,让最大值等于,解出的值.试题解析:(1) 1分由图象在处的切线与轴平行,知,∴. 2分又,故,. 3分(2) 令,得或. 4分∵,令,得或令,得.于是在区间内为增函数,在内为减函数,在内为增函数.∴是的极大值点,是极小值点. 5分令,得或. 6分分类:①当时,,∴ .由解得, 8分②当时,, 9分∴.由得 . 10分记,∵, 11分∴在上是增函数,又,∴, 12分∴在上无实数根. 13分综上,的值为. 14分【考点】1.用导数求切线的斜率;2.用导数求函数最值.14.已知函数,当时取得极小值,则等于()A.B.C.D.【答案】D【解析】由,解得,当;当;当,故在处取得最小值,即,则,所以,故选D.【考点】导数的极值点求法,导数的极值求解.15.对于三次函数,给出定义:设是函数的导数,是函数的导数,若方程有实数解,则称点为函数的“拐点”。
考点12 导数与函数的极值与最值-2018版典型高考数学试题解读与变式(解析版)
考点十二:导数与函数的极值与最值【考纲要求】(1)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次). 【命题规律】利用导数研究函数的极值与最值是高考的热点问题,近2年在高考中大批量的出现,常常会考查利用导数研究含参函数的单调性,极值综合考查,有时出现在做题过程中.预计2018年的高考将会在大题中考查利用导数研究函数的极值与最值,命题形式会更加灵活、新颖. 【典型高考试题变式】 (一)函数的极值的意义例1.【2017全国2卷(理)】若2x =-是函数()()21`1e x f x x ax -=+-的极值点,则()f x 的极小值为( ).A.1-B.32e -- C.35e - D.1 【答案】A【方法技巧归纳】对于可导函数,导数为0的点不一定是极值点.函数)(x f y =在0x x =处取极值的充要条件应为(1))('0=x f ,(2)在x x =左右两侧的导数值的符号相反.从解题的规范性和正确性角度出发,求类似问题最后都要进行检验.【变式1】【改编例题的问法,辨别极值与零点的不同】【2015陕西卷理科】对二次函数2()f x ax bx c =++(a 为非零常数),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是( ) A .1-是()f x 的零点 B .1是()f x 的极值点 C .3是()f x 的极值 D .点(2,8)在曲线()y f x =上 【答案】A【解析】若选项A 错误时,选项B 、C 、D 正确,()2f x ax b'=+,因为1是()f x 的极值点,3是()f x 的极值,所以()()1013f f '=⎧⎪⎨=⎪⎩,即203a b a b c +=⎧⎨++=⎩,解得:23b a c a =-⎧⎨=+⎩,因为点()2,8在曲线()y f x =上,所以428a b c ++=,即()42238a a a +⨯-++=,解得:5a =,所以10b =-,8c =,所以()25108f x x x =-+,因为()()()21511018230f -=⨯--⨯-+=≠,所以1-不是()f x 的零点,所以选项A 错误,选项B 、C 、D 正确,故选A .【变式2】【改变例题的问法,通过极值问题求参数的范围】【2014全国2卷理科】设函数()3sin xf x m π=.若存在()f x 的极值点x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是( )A.()(),66,-∞-⋃∞B.()(),44,-∞-⋃∞C.()(),22,-∞-⋃∞ D.()(),11,-∞-⋃∞【答案】C(二)求函数的极值例2.【2017全国2卷理】已知函数()2ln f x ax ax x x=--,且()0f x(1)求a ; (2)证明:()f x 存在唯一的极大值点x ,且()220e 2f x --<<.【答案】(1)1a =;(2)答案见解析. 【解析】(1)因为()()ln 0f x x ax a x =--,0x >,所以ln 0ax a x --.令()ln g x ax a x=--,则()10g =,()11ax g x a x x -'=-=,当0a 时,()0g x '<,()g x 单调递减,但()10g =,1x >时,()0g x <;当0a >时,令()0g x '=,得1x a =.当10x a <<时,()0g x '<,()g x 单调递减;当1x a >时,()0g x '>,()g x 单调递增.若01a <<,则()g x 在11a ⎛⎫ ⎪⎝⎭,上单递调递减,()110g g a ⎛⎫<= ⎪⎝⎭; 若1a >,则()g x 在11a ⎛⎫ ⎪⎝⎭,上单调递增,()110g g a ⎛⎫<= ⎪⎝⎭; 若1a =,则()()min 110g x g g a ⎛⎫=== ⎪⎝⎭,()0g x ≥.综上,1a =. (2)()2ln f x x x x x=--,()22ln f x x x'=--,0x >.令()22ln h x x x=--,则()1212x h x x x -'=-=,0x >.令()0h x '=得12x =,当102x <<时,()0h x '<,()h x 单调递减;当12x >时,()0h x '>,()h x 单调递增.所以()min 112ln 202h x h ⎛⎫==-+< ⎪⎝⎭.因为()22e2e 0h --=>,()22ln 20h =->,21e 02-⎛⎫∈ ⎪⎝⎭,,122⎛⎫∈+∞ ⎪⎝⎭,, 所以在102⎛⎫ ⎪⎝⎭,和12⎛⎫+∞ ⎪⎝⎭,上,()h x 即()f x '各有一个零点. 设()f x '在102⎛⎫ ⎪⎝⎭,和12⎛⎫+∞ ⎪⎝⎭,上的零点分别为02x x ,,因为()f x '在102⎛⎫⎪⎝⎭,上单调递减,所以当00x x <<时,()0f x '>,()f x 单调增;当012x x <<时,()0f x '<,()f x 单调递减.因此,0x 是()f x 的极大值点.因为,()f x '在12⎛⎫+∞ ⎪⎝⎭,上单调增,所以当212x x <<时,()0f x '<,()f x 单调递减,当2x x >时,()f x 单调递增,因此2x 是()f x 的极小值点.所以()f x 有唯一的极大值点0x .由前面的证明可知,201e 2x -⎛⎫∈ ⎪⎝⎭,,则()()24220e e e e f x f ---->=+>.因为()00022ln 0f x x x '=--=,所以00ln 22x x =-,又()()22000000022f x x x x x x x =---=-,因为0102x <<,所以()014f x <.因此,()201e 4f x -<<.即()220e 2f x --<<.【方法技巧归纳】求函数极值的步骤:①求函数的定义域;②求出函数的导函数)('x f ;③解方程0)('=x f ,求出x 的值;④判定在定义域内导函数为0的点两侧的单调性,并求出在该点的原函数值;⑤先增后减位极大值点,先减后增为极小值点,两侧单调性相同,则该点不是极值点.【变式1】【改变例题的问法,通过极值求参数范围】【2017江苏卷】已知函数()()3210,f x x ax bx a b =+++>∈R 有极值,且导函数()f x '的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b 关于a 的函数关系式,并写出定义域;(2)证明:²3b a >; (3)若()f x ,()f x ' 这两个函数的所有极值之和不小于72-,求a 的取值范围.【答案】(1)2239a b a =+,定义域为(3,)+∞;(2)答案见解析;(3)(]36,.【解析】(1)由32()1f x x ax bx =+++,得222()32333a a f x x ax b x b ⎛⎫'=++=++- ⎪⎝⎭.当3ax =-时,()f x '有极小值23a b-. 因为()f x '的极值点是()f x 的零点.所以331032793a a a ab f ⎛⎫-=-+-+= ⎪⎝⎭,又0a >,故2239a b a =+. 因为()f x 有极值,故()=0f x '有实根,从而()23127039a b a a -=-,即3a .3a =时,()>0(1)f x x '≠-,故()f x 在R 上是增函数,()f x 没有极值;3a >时,()=0f x '有两个相异的实根213=3a a b x ---,223=3a a b x -+-.列表如下x1(,)x -∞1x12(,)x x2x2(,)x +∞()f x ' + 0– 0+ ()f x极大值极小值故()f x 的极值点是12,x x.从而3a >,因此2239a b a =+,定义域为(3,)+∞.(3)由(1)知,()f x 的极值点是12,x x ,且1223x x a +=-,22212469a b x x -+=.从而()()32321211122211f x f x x ax bx x ax bx +=+++++++=()()()()2222121122121212323223333x x x ax b x ax b a x x b x x ++++++++++=346420279a ab ab --+=.记()f x ,()f x '所有极值之和为()h a ,因为()f x '的极值为221339a b a a -=-+,所以()213=9h a a a -+,3a >. 因为()223=09h a a a '--<,于是()h a 在(3,)+∞上单调递减.因为()76=2h -,于是()()6h a h ,故6a .因此a 的取值范围为(]36,.【变式2】【改编例题条件和问题,求解含参函数的极值】【2017山东理】已知函数()22cos f x x x=+,()()e cos sin 22x g x x x x =-+-,其中e 2.71828=是自然对数的底数.(1)求曲线()y f x =在点()(),f ππ处的切线方程;(2)令()()()()h x g x af x a =-∈R ,讨论()h x 的单调性并判断有无极值,有极值时求出极值.【答案】(1)222y x =π-π-;(2)当0a 时,()h x 在(),0-∞上单调递减,在()0,+∞上单调递增, 函数()h x 有极小值,极小值是()021h a =--;当01a <<时,函数()h x 在(),ln a -∞和()0,ln a 和()0,+∞上单调递增,在()ln ,0a 上单调递减,函数()h x 有极大值,也有极小值,极大值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦,极小值是()021h a =--;当1a =时,函数()h x 在(),-∞+∞上单调递增,无极值;当1a >时,函数()h x 在(),0-∞和()ln ,a +∞上单调递增,在()0,ln a 上单调递减,函数()h x 有极大值,也有极小值, 极大值是()021h a =--;极小值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦.【解析】(1)由题意()22f π=π-,又()22sin f x x x'=-,所以()2f ππ'=,因此曲线()y f x =在点()(),f ππ处的切线方程为()()222y x -π-=π-π,即222y x =π-π-. (2)由题意得2()e (cos sin 22)(2cos )x h x x x x a x x =-+--+, 因为()()()()e cos sin 22e sin cos 222sin x x h x x x x x x a x x '=-+-+--+--=()()2e sin 2sin x x x a x x ---()()2e sin x a x x =--,令()sin m x x x=-,则()1cos 0m x x '=-,所以()m x 在R 上单调递增.因为(0)0m =,所以当0x >时,()0m x >,当0x <时,()0m x <.(i )当0a 时,e xa -0>当0x <时,()0h x '<,()h x 单调递减, 当0x >时,()0h x '>,()h x 单调递增,所以 当0x =时()h x 取得极小值,极小值是()021h a =--;(ii )当0a >时,()()()ln 2e e sin x ah x x x '=--由()0h x '=得 1ln x a =,2=0x①当01a <<时,ln 0a <, 当(),ln x a ∈-∞时,ln e e 0x a -<,()0h x '>,()h x 单调递增;当()ln ,0x a ∈时,ln e e 0x a ->,()0h x '<,()h x 单调递减; 当()0,x ∈+∞时,ln e e 0x a ->,()0h x '>,()h x 单调递增.所以 当ln x a =时()h x 取得极大值.极大值为()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦,当0x =时()h x 取到极小值,极小值是()021h a =--;②当1a =时,ln 0a =, 所以当(),x ∈-∞+∞时,()0h x ',函数()h x 在(),-∞+∞上单调递增,无极值;③当1a >时,ln 0a >所以 当(),0x ∈-∞时,ln e e 0x a -<,()0h x '>,()h x 单调递增;当()0,ln x a ∈时,ln e e 0x a -<,()0h x '<,()h x 单调递减; 当()ln ,x a ∈+∞时,ln e e 0x a ->,()0h x '>,()h x 单调递增;所以 当0x =时()h x 取得极大值,极大值是()021h a =--;当ln x a =时()h x 取得极小值.极小值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦.综上所述:当0a 时,()h x 在(),0-∞上单调递减,在()0,+∞上单调递增,函数()h x 有极小值,极小值是()021h a =--;当01a <<时,函数()h x 在(),ln a -∞和()0,ln a 和()0,+∞上单调递增,在()ln ,0a 上单调递减,函数()h x 有极大值,也有极小值,极大值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦,极小值是()021h a =--;当1a =时,函数()h x 在(),-∞+∞上单调递增,无极值;当1a >时,函数()h x 在(),0-∞和()ln ,a +∞上单调递增,在()0,ln a 上单调递减,函数()h x 有极大值,也有极小值, 极大值是()021h a =--;极小值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦.【变式3】【根据函数在某处取得极值求参数范围】【2016山东文】设()()2ln 21f x x x ax a x =-+-,a ∈R.(1)令()()'g x f x =,求()g x 的单调区间;(2)已知()f x 在1x =处取得极大值,求实数a 的取值范围.【答案】(1)当0≤a 时,函数()g x 单调递增区间为()0,+∞;当0a >时,函数()g x 单调递增区间为10,2a ⎛⎫ ⎪⎝⎭,单调递减区间为1,2a ⎛⎫+∞ ⎪⎝⎭. (2)12a >.(2)由(1)知,()'10f =.①当0≤a 时, ()'f x 单调递增所以当()0,1x ∈时,()'0f x <,()f x 单调递减.当()1,x ∈+∞时,()'0f x >,()f x 单调递增.所以()f x 在1x =处取得极小值,不合题意.②当102a <<时,112a >,由(1)知()'f x 在10,2a ⎛⎫ ⎪⎝⎭内单调递增,可得当()0,1x ∈时,()'0f x <,11,2x a ⎛⎫∈ ⎪⎝⎭时,()'0f x >, 所以()f x 在()0,1内单调递减,在11,2a ⎛⎫⎪⎝⎭内单调递增,所以()f x 在1x =处取得极小值,不合题意.③当12a =时,即112a =时,()'f x 在()0,1内单调递增,在()1,+∞内单调递减, 所以当()0,x ∈+∞时,()'0f x ,()f x 单调递减,不合题意.④当12a >时,即1012a << ,当1,12x a ⎛⎫∈ ⎪⎝⎭时,()'0f x >,()f x 单调递增,当()1,x ∈+∞时,()'0f x <,()f x 单调递减,所以()f x 在1x =处取得极大值,合题意.综上可知,实数a 的取值范围为12a >.【变式4】【根据极值点的关系证明等式】【2016天津文】设函数b ax x x f --=3)(,x ∈R ,其中,a b ∈R . (1)求)(x f 的单调区间;(2)若)(x f 存在极值点0x ,且)()(01x f x f =,其中01x x ≠,求证:0201=+x x ;(3)设0>a ,函数|)(|)(x f x g =,求证:)(x g 在区间]1,1[-上的最大值不小于41.【答案】答案见解析【解析】(1)由3()f x x ax b =--,可得2()3f x x a '=-,下面分两种情况讨论: ①当0a时,有2()30f x x a'=-恒成立,所以()f x 在R 上单调递增.②当0a >时,令()0f x '=,解得3x =或3x =-.当x 变化时,()f x ',()f x 的变化情况如表所示.所以()f x 的单调递减区间为⎛ ⎝⎭,单调递增区间为,⎛-∞ ⎝⎭,⎫+∞⎪⎪⎝⎭.(3)证明:设()g x 在区间[1,1]-上的最大值为M ,max{,}x y 表示x ,y 两数的最大值,下面分三种情况讨论:①当3a 时,3311,33a a --<由()1知()f x 在区间[]1,1-上单调递减,所以()f x 在区间[]1,1-上的取值范围为[](1),(1)f f -,因此()(){}{}max 1,1max 1,1M f f a b a b =-=---+-={}max 1,1a b a b -+--1,01,0a b b a b b -+⎧=⎨--<⎩,所以1 2.M a b=-+②当334a <时,23332311a a aa-<-<<,由(1)和(2) 知233(1)a a f f f ⎛--= ⎝⎭⎝⎭,233(1)a a f f f ⎛⎛= ⎝⎭⎝⎭,所以()f x 在区间[1,1]-上的取值范围为33,33a a f f ⎡⎤⎛⎫⎛⎫-⎢⎥ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以33max ,33a a M f f ⎧⎫⎛⎫⎛⎫⎪⎪=-= ⎪ ⎪⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎪⎪⎩⎭22max 3399a a a b a b ⎧⎫=⎨⎬⎩⎭2222331max 333||39999444a a a a b a b a b ⎧⎫=⨯⨯⨯=⎨⎬⎩⎭. ③当304a <<时,23332311a a a a -<<<<<,由(1)和(2)知,(1),f f f ⎛-<= ⎝⎭⎝⎭(1)f f f ⎛>= ⎝⎭⎝⎭, 所以()f x 在区间[]1,1-上的取值范围为()()1,1f f -⎡⎤⎣⎦, 因此()(){}=max 1,1M f f -={}max 1,1a b a b ---+-={}1max 1,114a b a b a b ---+=-+>.综上所述,当0a >时,()g x 在区间[]1,1-上的最大值不小于14.(三)求不含参函数的最值 例3.【2017北京卷理】已知函数()e cos x f x x x=-.(1)求曲线()y f x =在点()()0,0f 处的切线方程;(2)求函数()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值和最小值.【答案】(1)1y =;(2)()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值为(0)1f =,最小值为ππ22f ⎛⎫=-⎪⎝⎭. 【解析】(1)因为()e cos x f x x x =-,所以()e (cos sin )1xf x x x '=--,(0)0f '=. 又因为(0)1f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为1y =.(2)设()e (cos sin )1x h x x x =--,则()e (cos sin sin cos )2e sin x xh x x x x x x '=---=-. 当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,所以()h x 在区间π0,2⎡⎤⎢⎥⎣⎦上单调递减. 所以对任意π0,2x ⎛⎤∈ ⎥⎝⎦有()(0)0h x h <=,即()0f x '<. 所以函数()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上单调递减.因此()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值为(0)1f =,最小值为ππ22f ⎛⎫=-⎪⎝⎭. 【方法技巧归纳】在],[b a 上连续的函数)(x f 在],[b a 上必有最大值与最小值的步骤:①讨论单调区间;②判断极值;③极值与闭区间端点的函数值比较,最大的为最大值,最小的是最小值.【变式1】【在给定区间上求函数的最值】【2018河北石家庄二中八月模考】已知函数()()21xf x xe x=-+.(Ⅰ)当[]1,2x∈-时,求()f x的最大值与最小值;(Ⅱ)讨论方程()1f x ax=-的实根的个数.【答案】(1)最小值是()2ln21--,最大值是229e-;(2) 1a<-时,方程()1f x ax=-有1个实根;1a>-时,方程()1f x ax=-有3个实根.【解析】试题分析:(1)()()()12xf x x e=+-',明确函数的单调性,求出极值与端点值,比较后得最值;(2)方程()1f x ax=-的实根的个数即()2xg x e x a=---的图象与x轴的交点个数,分类讨论函数()g x的单调性,借助极值与0的关系确定交点个数. 试题解析:(Ⅰ)因为()()21xf x xe x=-+,所以()()()()()12112x xf x x e x x e=+-+=+-',令()0f x'=得121,ln2x x=-=,()(),f x f x'的变化如下表:() f x在[]1,2-上的最小值是()2ln21--,因为2211 290,0,29e ee e->---,所以()f x在[]1,2-上的最大值是229e-.(ⅰ)当10a -->时,即1a <-时, ()0g x =没有实根,方程()1f x ax =-有1个实根;(ⅱ)当10a --=时,即1a =-时, ()0g x =有1个实根为零,方程()1f x ax =-有1个实根;(ⅲ)当10a --<时,即1a >-时,()0g x =有2不等于零的实根,方程()1f x ax =-有3个实根.综上可得, 1a <-时,方程()1f x ax =-有1个实根; 1a >-时,方程()1f x ax =-有3个实根.求含参函数的最值例4.【2016全国2卷理】(1)讨论函数2()e 2xx f x x -=+的单调性,并证明当0x >时,(2)e 20;xx x -++>(2) 证明:当[0,1)a ∈ 时,函数()2e =(0)x ax a g x x x --> 有最小值.设()g x 的最小值为()h a ,求函数()h a 的值域.【答案】答案见解析【解析】(1)证明:由已知得,函数的定义域为由已知得, 2x ≠-.因为()2e 2xx f x x -=+,所以()()()22224e e 222xxx x f x x x x ⎛⎫-' ⎪=+= ⎪+++⎝⎭.因为当x ∈()()22-∞--+∞,,时,()0f x '>,所以()f x 在()()22,-∞--+∞,和上单调递增, 所以当0x >时,()2e 0=12xx f x ->-+,所以()2e 20x x x -++>.(2)由已知得,()()()24e2e xxa x x ax a g x x ----'=()4e 2e 2=xxx x ax a x -++=()322e 2x x x a x x -⎛⎫+⋅+⎪+⎝⎭,[)01a ∈,.解法一:记()2e 2xx h x a x -=++,因为()()01020h a h a =-<=,,所以由(1)知()h x 在[)02,上存在唯一零点.记零点为0x ,即()00h x =,则()g x 在()00x ,上单调递减,在()02x ,上单调递增. 故0x 为()g x 的极小值,此时极小值为()0g x .因为0002e 02x x a x -+=+,所以[)(]00002e 0022x x a x x -=-∈⇒∈+,1,. 所以()()()000000000220002e e 1e 12e =2x x x x x x a x x x x x x ⎛⎫---+ ⎪-++⎝⎭==+g. 记()000e 2x P x x =+,,则()()()()00002200e +2e 1=e 0+2+2x xx x x P x x x -+'=>,所以()0P x 在(]002x ∈,上单调递增,所以()201e 24P x ⎛⎤∈ ⎥⎝⎦,.解法二:由(1)知,当0x >时,()2e 2x x f x x -=⋅+的值域为()1-+∞,,只有一解,使得2e 2tt a t -⋅=-+,(]02t ∈,. 当(0,)x t ∈时,()0g x '<,()g x 单调递减;当(,)x t ∈+∞时,()0g x '>,()g x 单调递增..()()()222e 1ee 1e 22t ttt t t a t t h a t t t -++⋅-++===+.记()e 2tk t t =+,在(]0,2t ∈时,()()()2e 102t t k t t +'=>+,所以()k t 单调递增,所以()()21e 24h a k t ⎛⎤=∈ ⎥⎝⎦,. 【方法技巧归纳】超越函数(指数函数、对数函数、三角函数)的最值一般都是利用导函数求单调性或极值得到的.函数在区间上的最大(小)值,若不是区间端点值就是极大(小)值. 【变式1】【由最大值存在的不等关系求参数的取值范围】【2015全国2卷文】已知函数()()ln 1f x x a x =+-.(1)讨论()f x 的单调性;(2)当()f x 有最大值,且最大值大于22a -时,求a 的取值范围.【答案】(Ⅰ)0a ≤, ()f x 在()0,+∞是单调递增; 0a >, ()f x 在10,a ⎛⎫ ⎪⎝⎭单调递增,在1,a⎛⎫+∞ ⎪⎝⎭单调递减;(Ⅱ)()0,1.【解析】试题分析:(Ⅰ)由()1f x ax'=-,可分0a≤, 0a>两种情况来讨论;(II)由(I)知当0a≤时()f x在()0,+∞无最大值,当0a>时()f x最大值为1ln 1.f a aa⎛⎫=-+-⎪⎝⎭因此122ln10f a a aa⎛⎫>-⇔+-<⎪⎝⎭.令()ln1g a a a=+-,则()g a在()0,+∞是增函数,当01a<<时, ()0g a<,当1a>时()0g a>,因此a的取值范围是()0,1.试题解析:(Ⅰ)()f x的定义域为()0,+∞,()1f x ax'=-,若0a≤,则()0f x'>,()f x在()0,+∞是单调递增;若0a>,则当10,xa⎛⎫∈ ⎪⎝⎭时()0f x'>,当1,xa⎛⎫∈+∞⎪⎝⎭时()0f x'<,所以()f x在10,a⎛⎫⎪⎝⎭单调递增,在1,a⎛⎫+∞⎪⎝⎭单调递减.【变式2】【求函数取得最值时自变量的取值】【2014安徽卷理】设函数23()1(1)f x a x x x=++--,其中0a>.(1)讨论()f x在其定义域上的单调性;(2)当[0,1]x∈时,求()f x取得最大值和最小值时的x的值.【答案】(1)()f x在1(,)x-∞和2(,)x+∞内单调递减,在12(,)x x内单调递增;(2)所以当01a<<时,()f x在1x=处取得最小值;当1a=时,()f x在x=和1x=处同时取得最小只;当14a<<时,()f x在x=处取得最小值.【解析】试题分析:(1)对原函数进行求导,2'()123f x a x x =+--,令'()0f x =,解得1212143143,,33a ax x x x --+-++==<,当1x x <或2x x >时'()0f x <;从而得出,当12x x x <<时,'()0f x >.故()f x 在1(,)x -∞和2(,)x +∞内单调递减,在12(,)x x 内单调递增.(2)依据第(1)题,对a 进行讨论,①当4a ≥时,21x ≥,由(1)知,()f x 在[0,1]上单调递增,所以()f x 在0x =和1x =处分别取得最小值和最大值.②当04a <<时,21x <.由(1)知,()f x 在2[0,]x 上单调递增,在2[,1]x 上单调递减,因此()f x 在21433ax x -++==处取得最大值.又(0)1,(1)f f a ==,所以当01a <<时,()f x 在1x =处取得最小值;当1a =时,()f x 在0x =和1x =处同时取得最小只;当14a <<时,()f x 在0x =处取得最小值.(1)()f x 的定义域为R ,2'()123f x a x x =+--.令'()0f x =,得1212143143,,33a ax x x x --+-++==<,所以12'()3()()f x x x x x =---.当1x x <或2x x >时'()0f x <;当12x x x <<时,'()0f x >.故()f x 在1(,)x -∞和2(,)x +∞内单调递减,在12(,)x x 内单调递增. 因为0a >,所以120,0x x <>.①当4a ≥时,21x ≥,由(1)知,()f x 在[0,1]上单调递增,所以()f x 在0x =和1x =处分别取得最小值和最大值.②当04a <<时,21x <.由(1)知,()f x 在2[0,]x 上单调递增,在2[,1]x 上单调递减,因此()f x 在21433ax x -++==处取得最大值.又(0)1,(1)f f a ==,所以当01a <<时,()f x 在1x =处取得最小值;当1a =时,()f x 在0x =和1x =处同时取得最小只;当14a <<时,()f x 在0x =处取得最小值.【数学思想】 分类讨论思想1.分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法,这种思想在简化研究对象,发展思维方面起着重要作用,因此,有关分类讨论的思想的数学命题在高考试题中占有重要地位. 所谓分类讨论,就是在研究和解决数学问题时,当问题所给对象不能进行统一研究,我们就需要根据数学对象的本质属性的相同点和不同点,将对象区分为不同种类,然后逐类进行研究和解决,最后综合各类结果得到整个问题的解决,这一思想方法,我们称之为“分类讨论的思想”.2.分类讨论思想的常见类型⑴问题中的变量或含有需讨论的参数的,要进行分类讨论的; ⑵问题中的条件是分类给出的;⑶解题过程不能统一叙述,必须分类讨论的;⑷涉及几何问题时,由几何元素的形状、位置的变化需要分类讨论的. 【处理导数的极值与最值问题注意点】对参数的讨论要做到不重不漏.至于如何分类的思想是将导函数零点之间的大小以及区间端点值的大小进行比较,将区间端区限定不动,变动零点位置. 【典例试题演练】1.【2018广东广州珠海区高三检测(一)理】已知函数()()ln f x x x ax =-有两个极值点,则实数a 的取值范围是( )A. 10,2⎛⎫ ⎪⎝⎭ B.()0,1 C. (),0-∞ D. 1,2⎛⎫-∞ ⎪⎝⎭ 【答案】A2.【2018海南八校联盟开学考试理】已知函数()213ln 2f x x x a x⎛⎫=-+- ⎪⎝⎭在区间()1,3上有最大值,则实数a 的取值范围是( )A.1,52⎛⎫-⎪⎝⎭B.111,22⎛⎫-⎪⎝⎭ C.111,22⎛⎫⎪⎝⎭ D.1,52⎛⎫⎪⎝⎭【答案】B【解析】因为()3122f x x ax'=-+-,所以由题设()3122f x x ax'=-+-在()1,3只有一个零点且单调递减,则问题转化为()()10{30ff><,即11112{11222aaa+>⇒-<<-<,应选答案B。
高三数学利用导数求最值和极值试题
高三数学利用导数求最值和极值试题1.已知函数(1)若是的极值点,求的极大值;(2)求实数的范围,使得恒成立.【答案】(1)极大值为;(2)综上所述:时,恒成立.【解析】(1)通过“求导数、求驻点、讨论驻点附近导数值的符号、确定极值”,“表解法”形象直观;(2)应用转化与化归思想.要使得恒成立,即时,恒成立;构造函数,应用导数研究函数的最值,注意分以下情况:(ⅰ)当时,(ii)当时,(iii)当时,(iv)当a>1时,综上所述:时,恒成立.试题解析:(1)是的极值点解得 2分当时,当变化时,+4分的极大值为 6分(2)要使得恒成立,即时,恒成立 8分设,则(ⅰ)当时,由得单减区间为,由得单增区间为,得 10分(ii)当时,由得单减区间为,由得单增区间为,此时,不合题意. 10分(iii)当时,在上单增,不合题意. 12分(iv)当a>1时,由得单减区间为,由得单增区间为,此时不合题意. 13分综上所述:时,恒成立. 14分【考点】1.应用导数研究函数的单调性、极(最)值,2.应用导数证明不等式3.转化与化归思想.2.函数的极小值是 .【答案】.【解析】,令,解得,列表如下:极大值极小值故函数在处取得极小值,即.【考点】函数的极值3. [2013·浙江高考]已知e为自然对数的底数,设函数f(x)=(e x-1)(x-1)k(k=1,2),则() A.当k=1时,f(x)在x=1处取到极小值B.当k=1时,f(x)在x=1处取到极大值C.当k=2时,f(x)在x=1处取到极小值D.当k=2时,f(x)在x=1处取到极大值【答案】C【解析】当k=1时,f(x)=(e x-1)(x-1),f′(x)=xe x-1,∵f′(1)=e-1≠0,∴f(x)在x=1处不能取到极值;当k=2时,f(x)=(e x-1)(x-1)2,f′(x)=(x-1)(xe x+e x-2),令H(x)=xe x+e x-2,则H′(x)=xe x+2e x>0,x∈(0,+∞).说明H(x)在(0,+∞)上为增函数,且H(1)=2e-2>0,H(0)=-1<0,因此当x0<x<1(x为H(x)的零点)时,f′(x)<0,f(x)在(x0,1)上为减函数.当x>1时,f′(x)>0,f(x)在(1,+∞)上是增函数.∴x=1是f(x)的极小值点,故选C.4.已知a≤+lnx对任意的x∈[,2]恒成立,则a的最大值为________.【解析】令f(x)=+lnx,f′(x)=,当x∈[,1)时,f′(x)<0,当x∈(1,2]时,f′(x)>0,∴f(x)min=f(1)=0,∴a≤0,故a最大值为0.5.已知常数a,b,c都是实数,f(x)=ax3+bx2+cx-34的导函数为f′ (x),f′(x)≤0的解集为{x|-2≤x≤3},若f(x)的极小值等于-115,则a的值是()A.-B.C.2D.5【答案】C【解析】依题意得f′(x)=3ax2+2bx+c≤0的解集是[-2,3],于是有3a>0,-2+3=-,-2×3=,解得b=-,c=-18a,函数f(x)在x=3处取得极小值,于是有f(3)=27a+9b+3c-34=-115,-a=-81,a=2,故选C.6.已知函数f(x)=x(ln x-ax)有两个极值点,则实数a的取值范围是()A.(-∞,0)B.C.(0,1)D.(0,+∞)【答案】B【解析】由题知,x>0,f′(x)=ln x+1-2ax.由于函数f(x)有两个极值点,则f′(x)=0有两个不等的正根,显然a≤0时不合题意,必有a>0.令g(x)=ln x+1-2ax,g′(x)=-2a,令g′(x)=0,得x=,故g(x)在上单调递增,在上单调递减,所以g(x)在x=处取得极大值,即f′=ln>0,所以0<a<.7.已知函数f(x)的导函数f′(x)=a(x+1)(x-a),若f(x)在x=a处取到极大值,则a的取值范围是________.【答案】(-1,0)【解析】根据函数极大值与导函数的关系,借助二次函数图象求解.因为f(x)在x=a处取到极大值,所以x=a为f′(x)的一个零点,且在x=a的左边f′(x)>0,右边f′(x)<0,所以导函数f′(x)的开口向下,且a>-1,即a的取值范围是(-1,0).8.已知函数在时有极值0,则.【答案】11【解析】对函数求导得,由题意得 ,即解得: 或,当时,故,【考点】函数的极值9.如图,已知点,函数的图象上的动点在轴上的射影为,且点在点的左侧.设,的面积为.(Ⅰ)求函数的解析式及的取值范围;(Ⅱ)求函数的最大值.【答案】(Ⅰ).(Ⅱ)当时,函数取得最大值8.【解析】(Ⅰ)确定三角形面积,主要确定底和高.(Ⅱ)应用导数研究函数的最值,遵循“求导数,求驻点,讨论驻点两侧导数正负,比较极值与区间端点函数值”.利用“表解法”形象直观,易以理解.试题解析:(Ⅰ)由已知可得,所以点的横坐标为, 2分因为点在点的左侧,所以,即.由已知,所以, 4分所以所以的面积为. 6分(Ⅱ) 7分由,得(舍),或. 8分函数与在定义域上的情况如下:+↘12所以当时,函数取得最大值8. 13分【考点】三角形面积,应用导数研究函数的最值.10.某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式其中为常数.己知销售价格为5元/千克时,每日可售出该商品11千克.(1)求的值;(2)若该商品的成本为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得利润最大.【答案】(1);(2)【解析】(1)商品每日的销售量与销售价格满足的关系中,只含有一个参数,所以只需一个条件即可,已知,代入解析式,可求;(2)利用函数思想,列利润关于销售价格的函数解析式,再求其最大值,利润=(每千克商品的利润)(每日销售量). 试题解析:(1)∵时,,,∴;(2)销售利润=2+∴于是,当变化时,,的变化情况如下表,由表知,是函数在区间内的极大值点,亦是最大值点,所以当时,函教取得最大值,且最大值为42.【考点】1、函数的应用;2、利用导数求函数的最值.11.设函数,其中.(1)若在处取得极值,求常数的值;(2)设集合,,若元素中有唯一的整数,求的取值范围.【答案】(1);(2)【解析】(1)由在处取得极值,可得从而解得,此问注意结合极值定义检验所求值是否为极值点;(2)分,,和三种情况得出集合A,然后由元素中有唯一的整数,分析端点,从而求出的取值范围.试题解析:(1),又在处取得极值,故,解得.经检验知当时,为的极值点,故.(2),当时,,则该整数为2,结合数轴可知,当时,,则该整数为0,结合数轴可知当时,,不合条件.综上述,.【考点】1.利用导数处理函数的极值;2.集合元素的分析12.已知(a是常数)在[-2,2]上有最大值3,那么在[-2,2]上f(x)的最小值是____________.【答案】-37.【解析】,令得或.当变化时,随的变化如下表+_极大值.【考点】利用导数求函数的最值.13.已知函数,且函数在区间(0,1)内取得极大值,在区间(1,2)内取得极小值,则的取值范围为( )A.B.C.D.【答案】B【解析】试题分析:因为函数在区间(0,1)内取得极大值,在区间(1,2)内取得极小值,所以即画出可行域如图所示,为可行域内的点到的距离的平方,由图可知,距离的最小值为距离的最大值为,所以的取值范围为【考点】本小题主要考查导数与极值的关系以及线性规划的应用.点评:对于此类问题,必须牢固掌握导数的运算,利用导数求单调性以及极值和最值.本题导数与线性规划结合,学生必须熟练应用多个知识点,准确分析问题考查的实质,正确答题.14.若函数()有大于零的极值点,则实数范围是()A.B.C.D.【答案】B=【解析】解:因为函数y=e(a-1)x+4x,所以y′=(a-1)e(a-1)x+4(a<1),所以函数的零点为x0,因为函数y=e(a-1)x+4x(x∈R)有大于零的极值点,故=0,得到a<-3,选B15.已知函数在区间上的最大值与最小值分别为,则.【答案】32【解析】解:∵函数f(x)=x3-12x+8∴f′(x)=3x2-12令f′(x)>0,解得x>2或x<-2;令f′(x)<0,解得-2<x<2故函数在[-2,2]上是减函数,在[-3,-2],[2,3]上是增函数,所以函数在x=2时取到最小值f(2)=8-24+8=-8,在x=-2时取到最大值f(-2)=-8+24+8=24 即M=24,m=-8∴M-m=32故选C.16.已知函数与函数.(I)若的图象在点处有公共的切线,求实数的值;(II)设,求函数的极值.【答案】(I)因为,所以点同时在函数的图象上…………… 1分因为,,……………3分……………5分由已知,得,所以,即……………6分(II)因为(………7分所以……………8分当时,因为,且所以对恒成立,所以在上单调递增,无极值………10分;当时,令,解得(舍)………11分所以当时,的变化情况如下表:0+……………13分所以当时,取得极小值,且. ……………15分综上,当时,函数在上无极值;当时,函数在处取得极小值.【解析】略17.函数 (为自然对数的底数)在区间上的最大值是▲ .【答案】【解析】略18.已知函数(为实数).(I)若在处有极值,求的值;(II)若在上是增函数,求的取值范围.【答案】解:由已知得的定义域为又……3分由题意得……5分(II)解:依题意得对恒成立,……7分……9分的最大值为的最小值为……11分又因时符合题意为所求【解析】略19.设函数的最大值为M,最小值为m,则M+m的值为( )A.1B.2C.3D.4【答案】B【解析】设,则是奇函数;的最大值为最小值为且故选B20.已知函数有绝对值相等,符号相反的极大值和极小值,则常数的值是()A.或B.或C.或D.或或【答案】D【解析】,∴,令,得,由题意,该方程必定有不相等两实根,可分别设为,则,,∴∴或或.21.设,函数的最大值为1,最小值为,常数的值是_____________.【答案】1【解析】令得或,当时,;当时,;当时,.故函数有极大值,极小值,又,,由于,∵,,又,故最大值为,同理,,故最小值为22.若函数,既有极大值又有极小值,则的取值范围是【答案】【解析】略23.已知函数无极值,则实数的取值范围是 ()A.B.C.D.【答案】A【解析】;由题意知方程无实根或有两个等根。
高二数学 利用导数研究函数的单调性 极值 最值 (不含参)
§3.2导数与函数的单调性、极值、最值1.函数的单调性在某个区间(a,b)内,如果f′(x) >0,那么函数y=f(x)在这个区间内单调递增;如果f′(x) <0,那么函数y=f(x)在这个区间内单调递减.2.函数的极值(1)判断f(x0)是极值的方法一般地,当函数f(x)在点x0处连续时,②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.(2)求可导函数极值的步骤①求f′(x);②求方程f′(x)=0的根;③检查f′(x)在方程f′(x)=0的根的左右两侧导数值的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.3.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(3)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下:①求f(x)在(a,b)内的极值;②将f(x)的各极值与f(a),f(b)进行比较,其中最大的一个是最大值,最小的一个是最小值.1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)f′(x)>0是f(x)为增函数的充要条件.()(2)函数在某区间上或定义域内极大值是唯一的.()(3)函数的极大值不一定比极小值大.()(4)对可导函数f(x),f′(x0)=0是x0点为极值点的充要条件.()(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.()(6)函数f(x)=x sin x有无数个极值点.() 2.函数f(x)=x2-2ln x的单调减区间是() A.(0,1) B.(1,+∞)C.(-∞,1) D.(-1,1)3.已知e为自然对数的底数,设函数f(x)=(e x-1)(x-1)k(k=1,2),则() A.当k=1时,f(x)在x=1处取到极小值B.当k=1时,f(x)在x=1处取到极大值C.当k=2时,f(x)在x=1处取到极小值D.当k=2时,f(x)在x=1处取到极大值4.函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为() A.(-1,1) B.(-1,+∞)C.(-∞,-1) D.(-∞,+∞)5.函数f(x)=x3+ax-2在(1,+∞)上是增函数,则实数a的取值范围是________.答案[-3,+∞)解析f′(x)=3x2+a,f′(x)在区间(1,+∞)上是增函数,则f′(x)=3x2+a≥0在(1,+∞)上恒成立,即a≥-3x2在(1,+∞)上恒成立.∴a≥-3.题型一利用导数研究函数的单调性例1 已知α,[,]22βππ∈-,且sin sin 0ααββ->,则下列结论正确的是 A .αβ>B .0αβ+>C .αβ<D .22αβ>变式训练⑴已知函数2()2cos f x x x =+,若()f x '是()f x 的导函数,则函数()f x '的图象大致是 A . B .C .D .⑵已知函数384()ln 33f x x x =--,则函数()f x 的零点个数为______________. ⑶.已知函数2()ln f x x x x =--的导函数为()f 'x . ①解不等式()2f 'x <;②求函数()()4x x g f x =-的单调区间.题型二 利用导数求函数的极值例2 设f (x )=e x1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围.例3如图是函数f(x)=x3+bx2+cx+d的大致图象,则x21+x22等于()A.89B.109C.169D.289变式训练⑴.设函数f(x)在R 上可导,其导函数为f′(x),且函数f(x)在x=-2处取得极小值,则函数y=xf′(x)的图象可能是 ( )⑵.函数y=x 3-3x 2-9x(-2<x<2)有 ( )A.极大值5,极小值-27B.极大值5,极小值-11C.极大值5,无极小值D.极小值-27,无极大值⑶.函数f(x)=mln x-cos x 在x=1处取得极值,则m 的值为 () A.sin 1 B.-sin 1C.cos 1D.-cos 1⑷.设函数f(x)=xe x ,则 ( )A.x=1为f(x)的极大值点B.x=1为f(x)的极小值点C.x=-1为f(x)的极大值点D.x=-1为f(x)的极小值点⑸.若a>0,b>0,且函数f(x)=4x3-ax2-2bx在x=1处有极值,则+的最小值为( )A. B. C. D.⑹.已知a∈R,且函数y=e x+ax(x∈R)有大于零的极值点,则( )A.a<-1B.a>-1C.a<-D.a>-⑺.函数f(x)=x3-x4在区间上的极值点为.⑻.若函数y=-x3+6x2+m的极大值为13,则实数m等于.1.设函数f(x)=e x(sin x-cos x)(0≤x≤2 015π),则函数f(x)的各极大值之和为( )A. B.C. D.2.已知函数f(x)=x4+9x+5,则f(x)的图象在(-1,3)内与x轴的交点的个数为.3已知函数f(x)=x ln x ,求函数f(x)的极值点题型三利用导数求函数的最值例3已知函数f(x)=ax2+1(a>0),g(x)=x3+bx.(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a,b的值;(2)当a=3,b=-9时,若函数f(x)+g(x)在区间[k,2]上的最大值为28,求k的取值范围.变式训练1.函数f(x)=x2e x+1,x∈[-2,1]的最大值为( )A.4e-1B.1C.e2D.3e2.2.函数f(x)=2+,x∈(0,5]的最小值为( )A.2B.3C.D.2+3 若函数y=x3+x2+m在[-2,1]上的最大值为,则m等于( )A.0B.1C.2D.4.函数f(x)=x3-3ax-a在(0,1)内有最小值,则a的取值范围为( )A.0≤a<1B.0<a<1C.-1<a<1D.0<a<5.已知函数f(x),g(x)均为[a,b]上的可导函数,在[a,b]上连续且f′(x)<g′(x),则f(x)-g(x)的最大值为( )A.f(a)-g(a)B.f(b)-g(b)C.f(a)-g(b)D.f(b)-g(a)6.函数f(x)=x3-3x2+2在区间[-1,1]上的最大值为.7设函数f(x)=x3-3x+1,x∈[-2,2]的最大值为M,最小值为m,则M+m= .8.已知函数f(x)=+ln x,求f(x)在上的最大值和最小值.9.设f(x)=ln x,g(x)=f(x)+f′(x).(1)求g(x)的单调区间和最小值.(2)求a的取值范围,使得g(a)-g(x)<对任意x>0恒成立.1.(5分)设动直线x=m与函数f(x)=x3,g(x)=ln x的图象分别交于点M,N,则|MN|的最小值为( )A.(1+ln 3)B.ln 3C.1+ln 3D.ln 3-12函数f(x)=x3-3x-1,若对于区间[-3,2]上的任意x1,x2,都有|f(x1)-f(x2)|≤t,则实数t的最小值是 ( )A.20B.18C.3D.0。
历年高考数学真题精选12 利用导数研究函数的极值与最值
历年高考数学真题精选(按考点分类)专题十二 极值与最值(学生版)一.选择题(共13小题)1.(2017•新课标Ⅱ)若2x =-是函数21()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为() A .1-B .32e --C .35e -D .12.(2013•安徽)若函数32()f x x ax bx c =+++有极值点1x ,2x ,且11()f x x =,则关于x 的方程23(())2()0f x af x b ++=的不同实根个数是( ) A .3B .4C .5D .63.(2013•辽宁)设函数()f x 满足2()2()x e x f x xf x x '+=,f (2)28e =,则0x >时,()(f x)A .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值也无极小值4.(2016•四川)已知a 为函数3()12f x x x =-的极小值点,则(a = ) A .4-B .2-C .4D .25.(2015•新课标Ⅰ)设函数()(21)x f x e x ax a =--+,其中1a <,若存在唯一的整数0x 使得0()0f x <,则a 的取值范围是( ) A .3[,1)2e-B .33[,)24e -C .33[,)24e D .3[,1)2e6.(2013•浙江)已知e 为自然对数的底数,设函数()(1)(1)(1,2)x k f x e x k =--=,则( ) A .当1k =时,()f x 在1x =处取得极小值 B .当1k =时,()f x 在1x =处取得极大值 C .当2k =时,()f x 在1x =处取得极小值 D .当2k =时,()f x 在1x =处取得极大值7.(2013•福建)设函数()f x 的定义域为R ,00(0)x x ≠是()f x 的极大值点,以下结论一定正确的是( ) A .x R ∀∈,0()()f x f x … B .0x -是()f x -的极小值点 C .0x -是()f x -的极小值点D .0x -是()f x --的极小值点8.(2013•湖北)已知函数()()f x x lnx ax =-有两个极值点,则实数a 的取值范围是( ) A .(,0)-∞B .1(0,)2C .(0,1)D .(0,)+∞9.(2013•安徽)已知函数32()f x x ax bx c =+++有两个极值点1x ,2x ,若112()f x x x =<,则关于x 的方程23(())2()0f x af x b ++=的不同实根个数为( ) A .3B .4C .5D .610.(2013•湖北)已知a 为常数,函数()()f x x lnx ax =-有两个极值点1x ,212()(x x x < ) A .121()0,()2f x f x >>-B .121()0,()2f x f x <<-C .121()0,()2f x f x ><-D .121()0,()2f x f x <>-11.(2011•福建)若0a >,0b >,且函数32()422f x x ax bx =--+在1x =处有极值,则ab 的最大值等于( ) A .2B .3C .6D .912.(2008•广东)设a R ∈,若函数x y e ax =+,x R ∈,有大于零的极值点,则( ) A .1a <-B .1a >-C .1a e<-D .1a e>-13.(2011•湖南)设直线x t =与函数2()f x x =,()g x lnx =的图象分别交于点M ,N ,则当||MN 达到最小时t 的值为( )A .1B .12C D 二.填空题(共3小题)14.(2018•江苏)若函数32()21()f x x ax a R =-+∈在(0,)+∞内有且只有一个零点,则()f x 在[1-,1]上的最大值与最小值的和为 .15.(2018•新课标Ⅰ)已知函数()2sin sin 2f x x x =+,则()f x 的最小值是 . 16.(2013•新课标Ⅰ)若函数22()(1)()f x x x ax b =-++的图象关于直线2x =-对称,则()f x 的最大值为 .历年高考数学真题精选(按考点分类)专题十二 极值与最值(教师版)一.选择题(共13小题)1.(2017•新课标Ⅱ)若2x =-是函数21()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( ) A .1- B .32e -- C .35e - D .1【答案】A【解析】函数21()(1)x f x x ax e -=+-,可得121()(2)(1)x x f x x a e x ax e --'=+++-, 2x =-是函数21()(1)x f x x ax e -=+-的极值点,可得:33(2)(4)(421)0f a e a e --'-=-++--=,即4(32)0a a -++-=.解得1a =-. 可得121()(21)(1)x x f x x e x x e --'=-+--21(2)x x x e -=+-,函数的极值点为:2x =-,1x =, 当2x <-或1x >时,()0f x '>函数是增函数,(2,1)x ∈-时,函数是减函数, 1x =时,函数取得极小值:f (1)211(111)1e -=--=-.故选A .2.(2013•安徽)若函数32()f x x ax bx c =+++有极值点1x ,2x ,且11()f x x =,则关于x 的方程23(())2()0f x af x b ++=的不同实根个数是( ) A .3 B .4C .5D .6【答案】A【解析】2()32f x x ax b '=++,1x ,2x 是方程2320x ax b ++=的两根, 由23(())2()0f x af x b ++=,得1x x =,或2x x =,即23(())2()0f x af x b ++=的根为1()f x x =或22()f x x =的解. 如图所示,由图象可知1()f x x =有2个解,2()f x x =有1个解,因此23(())2()0f x af x b ++=的不同实根个数为3.3.(2013•辽宁)设函数()f x 满足2()2()x e x f x xf x x '+=,f (2)28e =,则0x >时,()f x ( ) A .有极大值,无极小值 B .有极小值,无极大值 C .既有极大值又有极小值 D .既无极大值也无极小值【答案】D【解析】Q 函数()f x 满足2()2()x e x f x xf x x '+=,∴2[()]x e x f x x'=令2()()F x x f x =,则()x e F x x '=,F (2)4f =g (2)22e =.由2()2()x e x f x xf x x '+=,得32()()x e F x f x x -'=,令()2()x x e F x ϕ=-,则(2)()2()x xe x x e F x xϕ-'=-'=.()x ϕ∴在(0,2)上单调递减,在(2,)+∞上单调递增, ()x ϕ∴的最小值为ϕ(2)22e F =-(2)0=.()0x ϕ∴….又0x >,()0f x ∴'….()f x ∴在(0,)+∞单调递增.()f x ∴既无极大值也无极小值. 4.(2016•四川)已知a 为函数3()12f x x x =-的极小值点,则(a = ) A .4- B .2- C .4 D .2【答案】D【解析】2()312f x x '=-;2x ∴<-时,()0f x '>,22x -<<时,()0f x '<,2x >时,()0f x '>; 2x ∴=是()f x 的极小值点;又a 为()f x 的极小值点;2a ∴=.故选D .5.(2015•新课标Ⅰ)设函数()(21)x f x e x ax a =--+,其中1a <,若存在唯一的整数0x 使得0()0f x <,则a 的取值范围是( )A .3[,1)2e-B .33[,)24e -C .33[,)24e D .3[,1)2e【答案】D【解析】设()(21)x g x e x =-,y ax a =-,由题意知存在唯一的整数0x 使得0()g x 在直线y ax a =-的下方,()(21)2(21)x x x g x e x e e x '=-+=+Q ,∴当12x <-时,()0g x '<,当12x >-时,()0g x '>, ∴当12x =-时,()g x 取最小值122e --,当0x =时,(0)1g =-,当1x =时,g (1)0e =>, 直线y ax a =-恒过定点(1,0)且斜率为a , 故(0)1a g ->=-且1(1)3g e a a --=---…,解得312a e<…6.(2013•浙江)已知e 为自然对数的底数,设函数()(1)(1)(1,2)x k f x e x k =--=,则( ) A .当1k =时,()f x 在1x =处取得极小值 B .当1k =时,()f x 在1x =处取得极大值 C .当2k =时,()f x 在1x =处取得极小值 D .当2k =时,()f x 在1x =处取得极大值 【答案】C【解析】当1k =时,函数()(1)(1)x f x e x =--. 求导函数可得()(1)(1)(1)x x x f x e x e xe '=-+-=-,f '(1)10e =-≠,f '(2)2210e =-≠,则()f x 在在1x =处与在2x =处均取不到极值,当2k =时,函数2()(1)(1)x f x e x =--.2()(1)2(1)(1)(1)(2)x x x x f x e x e x x xe e '=-+--=-+-,∴当1x =,()0f x '=,且当1x >时,()0f x '>,当01x x <<时0(x 为极大值点),()0f x '<,故函数()f x 在(1,)+∞上是增函数;在0(x ,1)上是减函数,从而函数()f x 在1x =取得极小值.对照选项.故选C .7.(2013•福建)设函数()f x 的定义域为R ,00(0)x x ≠是()f x 的极大值点,以下结论一定正确的是( ) A .x R ∀∈,0()()f x f x … B .0x -是()f x -的极小值点 C .0x -是()f x -的极小值点 D .0x -是()f x --的极小值点【答案】D【解析】对于A 项,00(0)x x ≠是()f x 的极大值点,不一定是最大值点,因此不能满足在整个定义域上值最大,故A 错误;对于B :()f x -是把()f x 的图象关于y 轴对称,因此,0x -是()f x -的极大值点,故B 错误; 对于C :()f x -是把()f x 的图象关于x 轴对称,因此,0x 是()f x -的极小值点,故C 错误; 对于D :()f x --是把()f x 的图象分别关于x 轴、y 轴做对称,因此0x -是()f x --的极小值点,故D 正确.8.(2013•湖北)已知函数()()f x x lnx ax =-有两个极值点,则实数a 的取值范围是( ) A .(,0)-∞ B .1(0,)2C .(0,1)D .(0,)+∞【答案】B【解析】函数()()f x x lnx ax =-,则1()()21f x lnx ax x a lnx ax x'=-+-=-+,令()210f x lnx ax '=-+=得21lnx ax =-,函数()()f x x lnx ax =-有两个极值点,等价于()21f x lnx ax '=-+有两个零点,等价于函数y lnx =与21y ax =-的图象有两个交点, 在同一个坐标系中作出它们的图象(如图) 当12a =时,直线21y ax =-与y lnx =的图象相切, 由图可知,当102a <<时,y lnx =与21y ax =-的图象有两个交点. 则实数a 的取值范围是1(0,)2.简解:函数()()f x x lnx ax =-,则1()()21f x lnx ax x a lnx ax x'=-+-=-+,令()210f x lnx ax '=-+=得21lnx ax =-,可得12lnxa x+=有两个不同的解, 设1()lnxg x x+=,则2()lnx g x x -'=,当1x >时,()g x 递减,01x <<时,()g x 递增,可得g (1)取得极大值1,作出()y g x =的图象,可得021a <<,即102a <<,故选B .9.(2013•安徽)已知函数32()f x x ax bx c =+++有两个极值点1x ,2x ,若112()f x x x =<,则关于x 的方程23(())2()0f x af x b ++=的不同实根个数为( ) A .3 B .4 C .5 D .6【答案】A【解析】Q 函数32()f x x ax bx c =+++有两个极值点1x ,2x ,2()320f x x ax b ∴'=++=有两个不相等的实数根,∴△24120a b =->.解得2224123a a b a a bx -±--±-==.12x x <Q ,∴213a a b x ---=,223a a b x -+-=. 而方程23(())2()0f x af x b ++=的△1=△0>,∴此方程有两解且1()f x x =或2x . 不妨取120x x <<,1()0f x >.①把()y f x =向下平移1x 个单位即可得到1()y f x x =-的图象, 11()f x x =Q ,可知方程1()f x x =有两解.②把()y f x =向下平移2x 个单位即可得到2()y f x x =-的图象,11()f x x =Q ,12()0f x x ∴-<,可知方程2()f x x =只有一解.综上①②可知:方程1()f x x =或2()f x x =.只有3个实数解.即关于x 的方程23(())2()0f x af x b ++=的只有3不同实根.故选A .10.(2013•湖北)已知a 为常数,函数()()f x x lnx ax =-有两个极值点1x ,212()(x x x < ) A .121()0,()2f x f x >>-B .121()0,()2f x f x <<-C .121()0,()2f x f x ><- D .121()0,()2f x f x <>-【答案】D【解析】()12f x lnx ax '=+-Q ,(0)x >令()0f x '=,由题意可得21lnx ax =-有两个解1x ,2x ⇔函数()12g x lnx ax =+-有且只有两个零点()g x ⇔'在(0,)+∞上的唯一的极值不等于0.112()2axg x a x x'-=-=. ①当0a …时,()0g x '>,()f x '单调递增,因此()()g x f x ='至多有一个零点,不符合题意,应舍去.②当0a >时,令()0g x '=,解得12x a=, 1(0,)2x a ∈Q ,()0g x '>,函数()g x 单调递增;1(,)2x a∈+∞时,()0g x '<,函数()g x 单调递减. 12x a ∴=是函数()g x 的极大值点,则1()02g a >,即111(2)02ln ln a a+-=->, (2)0ln a ∴<,021a ∴<<,即102a <<. 故当102a <<时,()0g x =有两个根1x ,2x ,且1212x x a<<,又g (1)120a =->, 12112x x a∴<<<,从而可知函数()f x 在区间1(0,)x 上递减,在区间1(x ,2)x 上递增,在区间2(x ,)+∞上递减.1()f x f ∴<(1)0a =-<,2()f x f >(1)12a =->-.故选D .11.(2011•福建)若0a >,0b >,且函数32()422f x x ax bx =--+在1x =处有极值,则ab 的最大值等于( ) A .2 B .3 C .6 D .9【答案】D【解析】2()1222f x x ax b '=--Q ,又因为在1x =处有极值,6a b ∴+=, 0a >Q ,0b >,∴2()92a b ab +=…,当且仅当3a b ==时取等号,所以ab 的最大值等于9. 故选D .12.(2008•广东)设a R ∈,若函数x y e ax =+,x R ∈,有大于零的极值点,则( ) A .1a <- B .1a >-C .1a e<-D .1a e>-【答案】A【解析】x y e ax =+Q ,x y e a '∴=+.由题意知0x e a +=有大于0的实根,令1x y e =,2y a =-,则两曲线交点在第一象限,结合图象易得11a a ->⇒<-,故选:A .13.(2011•湖南)设直线x t =与函数2()f x x =,()g x lnx =的图象分别交于点M ,N ,则当||MN 达到最小时t 的值为( )A .1B .12C 5D 2 【答案】D 【解析】设函数2()()y f x g x x lnx =-=-,求导数得21212x y x x x -'=-= 当20x <时,0y '<,函数在2上为单调减函数, 当2x 时,0y '>,函数在2()+∞上为单调增函数 所以当2x =时,所设函数的最小值为11222ln + 所求t 2 二.填空题(共3小题)14.(2018•江苏)若函数32()21()f x x ax a R =-+∈在(0,)+∞内有且只有一个零点,则()f x 在[1-,1]上的最大值与最小值的和为 .【答案】-3【解析】Q 函数32()21()f x x ax a R =-+∈在(0,)+∞内有且只有一个零点, ()2(3)f x x x a ∴'=-,(0,)x ∈+∞,①当0a …时,()2(3)0f x x x a '=->,函数()f x 在(0,)+∞上单调递增,(0)1f =, ()f x 在(0,)+∞上没有零点,舍去;②当0a >时,()2(3)0f x x x a '=->的解为3a x >, ()f x ∴在(0,)3a 上递减,在(3a ,)+∞递增, 又()f x 只有一个零点,3()10327a a f ∴=-+=,解得3a =, 32()231f x x x =-+,()6(1)f x x x '=-,[1x ∈-,1],()0f x '>的解集为(1,0)-, ()f x 在(1,0)-上递增,在(0,1)上递减,(1)4f -=-,(0)1f =,f (1)0=,()(1)4min f x f ∴=-=-,()(0)1max f x f ==,()f x ∴在[1-,1]上的最大值与最小值的和为:()()413max min f x f x +=-+=-.15.(2018•新课标Ⅰ)已知函数()2sin sin 2f x x x =+,则()f x 的最小值是 .【答案】 【解析】由题意可得2T π=是()2sin sin 2f x x x =+的一个周期, 故只需考虑()2sin sin 2f x x x =+在[0,2)π上的值域,先来求该函数在[0,2)π上的极值点,求导数可得()2cos 2cos2f x x x '=+ 22cos 2(2cos 1)2(2cos 1)(cos 1)x x x x =+-=-+,令()0f x '=可解得1cos 2x =或cos 1x =-,可得此时3x π=,π或53π; 2sin sin 2y x x ∴=+的最小值只能在点3x π=,π或53π和边界点0x =中取到,计算可得(f )3π=()0f π=,(f 5)3π=(0)0f =,∴函数的最小值为 16.(2013•新课标Ⅰ)若函数22()(1)()f x x x ax b =-++的图象关于直线2x =-对称,则()f x 的最大值为 .【答案】16【解析】Q 函数22()(1)()f x x x ax b =-++的图象关于直线2x =-对称, (1)(3)0f f ∴-=-=且f (1)(5)0f =-=,即22[1(3)][(3)(3)]0a b ---+-+=g且22[1(5)][(5)(5)]0a b ---+-+=g , 解之得815a b =⎧⎨=⎩,因此,22432()(1)(815)814815f x x x x x x x x =-++=---++, 求导数,得32()424288f x x x x '=---+,令()0f x '=,得12x =-22x =-,32x =-当(,2x ∈-∞-时,()0f x '>;当(2x ∈-2)-时,()0f x '<;当(2,2x ∈--+时,()0f x '>; 当(2x ∈-,)+∞时,()0f x '<()f x ∴在区间(,2-∞--、(2,2--上是增函数,在区间(2--,2)-、(2-+)+∞上是减函数.又(2(216f f --=-=Q ,()f x ∴的最大值为16.故答案为:16.。
专题13 利用导数解决函数的极值、最值
专题13利用导数解决函数的极值、最值【高考地位】导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大.类型一利用导数研究函数的极值万能模板内容使用场景一般函数类型解题模板第一步计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ;第二步求方程'()0f x =的根;第三步判断'()f x 在方程的根的左、右两侧值的符号;第四步利用结论写出极值.例1已知函数x xx f ln 1)(+=,求函数()f x 的极值.【答案】极小值为1,无极大值.试题解析:第一步,计算函数()f x 的定义域并求出函数()f x 的导函数'()f x :因为x xx f ln 1)(+=,所以()f x 的定义域为()0+∞,,所以()22111'x f x x x x -=-+=;第二步,求方程'()0f x =的根:令()'0f x =得,1x =;第三步,判断'()f x 在方程的根的左、右两侧值的符号:当01x <<时()'0f x <,当1x >时,()'0f x >;第四步,利用结论写出极值:所以1x =时,()f x 有极小值为1,无极大值.【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值.【变式演练1】(极值概念)下列说法正确的是()A .当0'()0f x =时,则0()f x 为()f x 的极大值B .当0'()0f x =时,则0()f x 为()f x 的极小值C .当0'()0f x =时,则0()f x 为()f x 的极值D .当0()f x 为()f x 的极值且0'()f x 存在时,则有0'()0f x =【答案】D 【解析】【分析】由导函数及极值定义得解.【详解】不妨设函数3()f x x =则可排除ABC由导数求极值的方法知当0()f x 为()f x 的极值且0'()f x 存在时,则有0'()0f x =故选:D【变式演练2】(图像与极值)已知函数()3()ln (,,)f x ax bx c a b c =++∈R 的定义域为(3,)-+∞,其图象大致如图所示,则()A .b a c <<B .b c a <<C .a b c <<D .a c b<<【答案】A 【分析】设3()g x ax bx c =++,利用导数求得函数的单调性,以及结合图象中的函数单调性,即可求得,,a b c 的大小关系,得到答案.【详解】设3()g x ax bx c =++,可得2()3g x ax b '=+,由图象可知,函数()f x 先递增,再递减,最后递增,且当1x =时,()g x 取得极小值,所以函数()g x 既有极大值,也有极小值,所以2()30g x ax b '=+=有两个根,即3a x b=-31ab=-,可得0,0a b ><且3a b =-,又由()0ln 0f c =>,可得1c >,由()1ln()0ln1f a b c =++>=,可得1a b c ++>,所以11312c a b a a a a >--=-+=+>,所以c a b >>.故选:A.【变式演练3】(解析式中不含参的极值)已知函数()ln xf x x x=-,则()A .()f x 的单调递减区间为()0,1B .()f x 的极小值点为1C .()f x 的极大值为1-D .()f x 的最小值为1-【答案】C【分析】先对函数求导()221ln x x f x x --'=,令()21ln x x x ϕ=--,再利用导数判断其单调性,而()1=0ϕ,从而可求出()f x 的单调区间和极值【详解】()2221ln 1ln 1x f x x x x x ---=='-.令()21ln x x x ϕ=--,则()120x x x ϕ'=--<,所以()21ln x x x ϕ=--在()0,∞+上单调递减.因为()1=0ϕ,所以当01x <<时,()0x ϕ>;当1x >时,()0x ϕ<.所以()f x 的单调递增区间为()0,1,单调递减区间为()1,+∞,故()f x 的极大值点为1,()f x 的极大值为()11f =-故选:C【变式演练4】(解析式中含参数的极值)已知函数()2ln 2f x ax x =--,()4xg x axe x =-.(1)求函数()f x 的极值;(2)当0a >时,证明:()()()2ln 12ln ln 2g x x x a --+≥-.【答案】(1)答案见解析;(2)证明见解析.【解析】【分析】(1)对函数进行求导,分为0a ≤和0a >两种情形讨论单调性即可得极值;(2)令()()()2ln 1h x g x x x =--+,根据导数判断函数的单调性证明即可.【详解】(1)∵()2ln 2f x ax x =--,()0x >,∴()22ax f x a x x-'=-=,当0a ≤时,()0f x '<恒成立,函数()f x 单调递减,函数()f x 无极值;当0a >时,20,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<,函数()f x 单调递减;2,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,函数()f x 单调递增;故函数()f x 的极小值为2222=2ln 22ln f a a a a a ⎛⎫⨯--=-⎪⎝⎭,无极大值.(2)证明:令()()42ln 2222ln 20,0xxh x axe x x x axe x x a x =--+-=--->>,()()()211=22x x x x h x a e xe ae x x x +'+--=+-,故()()=21xh x x ae x '+-⎛⎫ ⎪⎝⎭,令()0h x '=的根为0x ,即02=x ae x ,两边求对数得:00ln ln 2ln a x x +=-,即00ln ln 2ln x x a +=-,∴当()0x x ∈+∞,时,()0h x '>,()h x 单调递增;当()00,x x ∈时,()0h x '<,()h x 单调递减;∴()()()0000000min 22ln 222ln 2ln 2ln xh x h x ax e x x x x a =---=-=--=-,∴()2ln 2ln 2h x a ≥-,即原不等式成立.【变式演练5】(由极值求参数范围)若函数()221e e 22x x f m x x m=--有两个极值点,则实数m 的取值范围是()A .1,2⎛⎫+∞ ⎪⎝⎭B .()1,+∞C .e ,2⎛⎫+∞ ⎪⎝⎭D .()e,+∞【答案】B 【分析】依题意,()2e e xxm f m x x =--'有两个变号零点,由()0f x '=,可得21e e xx x m +=,设()2e ex x g x x +=,求出函数()g x 的单调性及取值情况即可得解.【详解】解:依题意,()2e e x xm f m x x =--'有两个变号零点,令()0f x '=,即2e e 0x x m mx --=,则()2e e x xm x =+,显然0m ≠,则21e ex x xm +=,设()2e e x x g x x+=,则()()22421212()x x x x x x x e e e x e e x g x e e+⋅-+⋅--='=,设()1e 2x x h x =--,则()e 20xh x -'=-<,∴()h x 在R 上单调递减,又()00h =,∴当(),0x ∈-∞时,()0h x >,()0g x '>,()g x 单调递增,当()0,x ∈+∞时,()0h x <,()0g x '<,()g x 单调递减,∴()()max 01g x g ==,且x →-∞时,()g x →-∞,x →+∞时,()0g x →,∴101m<<,解得1m >.故选:B .【点睛】方法点睛:函数零点问题的求解常用的方法有:(1)方程法(直接解方程求解);(2)图象法(画出函数()f x 的图象分析得解);(3)方程+图象法(令()=0f x 得()()g x h x =,分析函数(),()g x h x 的图象得解).要根据已知条件灵活选择方法求解.【变式演练6】(由极值求其他)已知函数321()(,)3f x x ax bx a b R =++∈在3x =-处取得极大值为9.(1)求a ,b 的值;(2)求函数()f x 在区间[4,4]-上的最大值与最小值.【答案】(1)13a b =⎧⎨=-⎩;(2)最大值为763,最小值为53-.【解析】【分析】(1)先对函数求导()22f x x ax b '=++,根据题意,列出方程组求解,即可得出结果;(2)根据(1)的结果,确定函数极大值与极小值,再计算出端点值,比较大小,即可得出结果.【详解】(1)由题意得:()22f x x ax b '=++,()()396039939f a b f a b ⎧-=-+=⎪∴⎨-=-+='-⎪⎩,解得:13a b =⎧⎨=-⎩.当13a b =⎧⎨=-⎩时,()32133f x x x x =+-,()()()22331f x x x x x '=+-=+-,∴当(),3x ∈-∞-和()1,+∞时,()0f x '>;当()3,1x ∈-时,()0f x '<,()f x ∴在(),3-∞-,()1,+∞上单调递增,在()3,1-上单调递减,()f x ∴的极大值为()39f -=,满足题意.(2)由(1)得:()f x 的极大值为()39f -=,极小值为()1511333f =+-=-,又()2043f -=,()7643f =,()f x ∴在区间[]4,4-上的最大值为763,最小值为53-.类型二求函数在闭区间上的最值例2已知函数()ln f x x x =-,()22g x ax x =+()0a <.(1)求函数()f x 在1,e e ⎡⎤⎢⎥⎣⎦上的最值;(2)求函数()()()h x f x g x =+的极值点.【答案】(1)最大值为1-,最小值为1e -;(2)见解析.【解析】试题分析:(1)对函数()f x 进行求导可得()11f x x'=-,求出极值,比较端点值和极值即可得函数的最大值和最小值;(2)对()h x 进行求导可得()h x '=221ax x x++,利用求根公式求出导函数的零点,得到导数与0的关系,判断单调性得其极值.试题解析:第一步,求出函数()f x 在开区间(,)a b 内所有极值点:依题意,()11f x x '=-,令110x-=,解得1x =;第二步,计算函数()f x 在极值点和端点的函数值:()11f =-,111e e f ⎛⎫=-- ⎪⎝⎭,()e 1ef =-;第三步,比较其大小关系,其中最大的一个为最大值,最小的一个为最小值:因为11e 11e -<--<-,故函数()f x 在1,e e ⎡⎤⎢⎥⎣⎦上的最大值为1-,最小值为1e -.(2)第一步,计算函数()f x 的定义域并求出函数()f x 的导函数'()f x :依题意,()()()h x f x g x =+=2ln x ax x ++,()121h x ax x =++'=221ax x x++,第二步,求方程'()0f x =的根:当0a <时,令()0h x '=,则2210ax x ++=.因为180a ∆=->,所以()221ax x h x x'++==()()122a x x x x x--,其中11184x a =-,21184x a+=-第三步,判断'()f x 在方程的根的左、右两侧值的符号:.因为0a <,所以10x <,20x >,所以当20x x <<时,()0h x '>,当2x x >时,()0h x '<,所以函数()h x 在()20,x 上是增函数,在()2,x +∞上是减函数,第四步,利用结论写出极值:故214x a+=-为函数()h x 的极大值点,函数()h x 无极小值点.【变式演练7】(极值与最值关系)已知函数()f x 在区间(),a b 上可导,则“函数()f x 在区间(),a b 上有最小值”是“存在()0,x a b ∈,满足()00f x '=”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】【分析】由开区间最小值点必为极小值点可知极小值点导数值为0,充分性成立;利用()3f x x =可验证出必要性不成立,由此得到结论.【详解】(),a b 为开区间∴最小值点一定是极小值点∴极小值点处的导数值为0∴充分性成立当()3f x x =,00x =时,()00f x '=,结合幂函数图象知()f x 无最小值,必要性不成立∴“函数()f x 在区间(),a b 上有最小值”是“存在()0,x a b ∈,满足()00f x '=”的充分不必要条件故选:A【变式演练8】(由最值求参数范围)若函数()()()2ln 2010a x x x f x x a x x ⎧-->⎪=⎨++<⎪⎩的最大值为()1f -,则实数a 的取值范围为()A .20,2e ⎡⎤⎣⎦B .30,2e ⎡⎤⎣⎦C .(20,2e ⎤⎦D .(30,2e ⎤⎦【答案】B 【解析】由12f a -=-+(),可得222alnx x a --≤-+在0x >恒成立,即为a (1-lnx )≥-x 2,当x e =时,0e->2显然成立;当0x e <<时,有10lnx ->,可得21x a lnx ≥-,设201x g x x e lnx =-(),<<,222(1)(23)(1)(1)x lnx x x lnx g x lnx lnx (),---'==--由0x e <<时,223lnx <<,则0g x g x ()<,()'在0e (,)递减,且0g x ()<,可得0a ≥;当x e >时,有10lnx -<,可得21x a lnx ≤-,设22(23)1(1)x x lnx g x x e g x lnx lnx -='=--(),>,(),由32e x e <<时,0gx g x ()<,()'在32e e (,)递减,由32x e >时,0g x g x '()>,()在32 ,x e ⎛⎫+∞ ⎪⎝⎭递增,即有)g x (在32x e =处取得极小值,且为最小值32e ,可得32a e ≤,综上可得302a e ≤≤.故选B .【变式演练9】(不含参数最值)已知函数2()cos sin 2f x x x =,若存在实数M ,对任意12,R x x ∈都有()()12f x f x M -≤成立.则M 的最小值为()A .338B .32C .334D .233【答案】C 【解析】【分析】令2sin t x =,则[]0,1t ∈,设()()31h t t t =-,则()2()f x h t =,利用导数可求()max 27256h t =,从而得到()f x 的最值,故可得M 的取值范围,从而得到正确的选项.【详解】3()2cos sin f x x x =,故622()4cos sin f x x x =,令2sin t x =,则[]0,1t ∈,设()()31h t t t =-,则()2()4f x h t =,又()()()()()322131114h t t t t t t '=---=--,若10,4t ⎛⎫∈ ⎪⎝⎭,则()0h t '>,故()h t '在10,4⎡⎤⎢⎥⎣⎦为增函数;若1,14t ⎛⎫∈ ⎪⎝⎭,则()0h t '<,故()h t '在1,14⎛⎤ ⎥⎝⎦为减函数;故()max 27256h t =,故2max 27()64f x =,所以max ()8f x =,min ()8f x =-,当且仅当1sin 415cos 4x x ⎧=⎪⎪⎨⎪=⎪⎩时取最大值,当且仅当1sin 415cos 4x x ⎧=-⎪⎪⎨⎪=-⎪⎩时取最小值,故4M ≥即M的最小值4.故选:C.【变式演练10】(含参最值)已知函数121()(1),02x f x x a ex ax x -=---+>(1)若()f x 为单调增函数,求实数a 的值;(2)若函数()f x 无最小值,求整数a 的最小值与最大值之和.【答案】(1)1a =.(2)3【解析】【分析】(1)求出()f x ',再令()0f x '=,求出两个根,函数()f x 为单调函数,所以()f x 有两个相同的根,得到1a =,再进行检验即可;(2)由()0f x '=得11x =,或2x a =和a Z ∈,分别当0a ≤、1a =和1a >三种情况进行讨论;0a ≤时不成立,1a =时成立,1a >时,利用函数单调性,当()f x 无最小值时,(0)()f f a <,构造关于a 的函数,求出a 的范围,即可得到答案.【详解】(1)由题意,11()()()(1)x x f x x a e x a x a e --'=--+=--,()0f x '=,解得11x =,或2x a =,因为函数()f x 为单调函数,所以()f x 有两个相同的根,即1a =,1a =时,()0f x '≥,()f x 为增函数,故1a =适合题意;(2)由(1)知,()0f x '=,解得11x =,或2x a =,①当0a ≤时,则(0,1)()0x f x '∈⇒<⇒()f x 在(0,1]上为减函数,(1,)()0x f x '∈+∞⇒>⇒()f x 在[1,)+∞上为增函数,当1x =时,()f x 有最小值1(1)2f =-,故0a ≤不适合题意;②当1a =时,则(0,1)()0x f x '∈⇒>⇒()f x 在(0,1]上为增函数,(1,)()0x f x '∈+∞⇒>⇒()f x 在[1,)+∞上为增函数,∴()f x 在(0,)+∞上为增函数,()f x 无最小值,故1a =适合题意;③当1a >时,则(0,1)()0x f x '∈⇒>⇒()f x 在(0,1]上为增函数,(1,)()0x a f x '∈⇒<⇒()f x 在[1,]a 上为减函数,(,)()0x a f x '∈+∞⇒>⇒()f x 在[,)a +∞上为增函数,因为()f x 无最小值,所以(0)()f f a <21121111(1)022a a a a e e a e a e -----⇒<-⇒--+<,()()()121111112a a g a e a a e a g a e a e ----'=--+>⇒=--,,由()110a g a e -''=->在()1+∞,上恒成立,()11a g a e a e --'=--在()1+∞,上单调递增,且110g e -'=-<(),()()12200g e e g a ->''=--⇒=存在唯一的实根()112a ∈,() g a ⇒在()11a ,上单调递减;() g a 在()1a +∞,上单调递增增,且()()()2e 439410220302e 2g g e g e e e-=<=--<=-->,,()0g a ⇒=存在唯一的实根()223a ∈,,由()12121102a e a a e a a ----+<⇒<,()f x 无最小值,则21a a <<,()223a ∈,,综上,21a a ≤<,()223a ∈,,a Z ∈ ,123min max a a +=+=.【变式演练11】(恒成立转求最值)已知函数32()ln x f x e x x x ax -=+--满足()0f x ≥恒成立,则实数a 的取值范围是()A .(,e]-∞B .(,2]-∞-C .[2,e]D .[2,2]-【答案】B【分析】由()0f x ≥转化为3ln x e a x x x -≤+-,设33ln ()ln ln x x x e g x x x e x x x---=+-=+-,利用3ln ln (3ln 1)ln x x e x x x x x x --+-≥--++-,即可求解.【详解】由题意,函数32()ln x f x e x x x ax -=+--满足()0f x ≥恒成立,可得32ln x ax e x x x -≤+-恒成立,即3ln x e a x x x -≤+-,设33ln ()ln ln x x x e g x x x e x x x---=+-=+-,又由函数()(1)1x x h x e x e x =-+=--,可得()1x h x e '=-,当0x >时,可得()10x h x e '=->,所以()h x 为单调递增函数,且(0)0h =,所以0x >时,可得()(0)0h x h >=,即1x e x >+,则3ln ()ln (3ln 1)ln 2x x g x e x x x x x x --=+-≥--++-=-,当且仅当3ln 0x x --=,即3ln x x =+时取“=”号,所以2a ≤-,即实数a 的取值范围是(,2]-∞-.故选:B.【点睛】对于利用导数研究不等式的恒成立与有解问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立或有解求解参数的取值时,一般涉及分类参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.【变式演练12】(构造函数求最值)函数()22(0)f x x x =-+<,()ln x g x x x =+.若()()12f x g x =,则212x x -的最小值为()A .1-B .24e -C .2D .1【答案】C【分析】让()()12f x g x =,得到212222ln x x x x -+=+,再构造22122222ln x x x x x -=+-,然后令()22ln x u x x x =+-,研究()u x 的最小值即可.【详解】由题120x x <<,且()()12f x g x =,2120x x ->.有212222ln x x x x -+=+,则22122222ln x x x x x -=+-,令()22ln x u x x x=+-(0x >且1x ≠,()0u x >).(1)当01x <<时,易知()0u x <,不满足条件.(2)当1x >时,知()0u x >,由222ln ln 1(2ln 1)(ln 1)()ln ln 2x x x x u x x +--+'==,令()0u x '=,则1 x =,212x =(舍去),若1x <<()0u x '<;若x >()0u x '>,则 x =时取得极小值2u=-,也为最小值,则()u x u ≥,即21242x x -≥-,所以212x x -的最小值为2.故选:C.【点睛】关键点睛:解决本题的关键一是构造出212x x 的表达式并要统一变量,二是对构造的函数求最小值.。
利用导数研究函数的极值、最值
利用导数研究函数的极值、最值【例1-1】设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是( )A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(-2)和极小值f(1)C.函数f(x)有极大值f(2)和极小值f(-2)D.函数f(x)有极大值f(-2)和极小值f(2)角度2已知函数求极值【例1-2】已知函数f(x)=ln x-ax(a∈R).(1)当a=12时,求f(x)的极值;(2)讨论函数f(x)在定义域内极值点的个数.【训练1】(1)(角度1)已知函数f(x)的定义域为(a,b),导函数f′(x)在(a,b)上的图象如图所示,则函数f(x)在(a,b)上的极大值点的个数为( )A.1B.2C.3D.4(2)(角度2) 设函数f(x)=(x-a)(x-b)(x-c),a,b,c∈R,f′(x)为f(x)的导函数.①若a=b=c,f(4)=8,求a的值;②若a≠b,b=c,且f(x)和f′(x)的零点均在集合{-3,1,3}中,求f(x)的极小值.考点二已知函数的极值求参数【例2】设函数f(x)=[ax2-(4a+1)x+4a+3]e x.(1)若曲线y=f(x)在点(1,f(1))处的切线与x轴平行,求a;(2)若f (x )在x =2处取得极小值,求a 的取值范围.【训练2】 已知函数f (x )=ax 3+bx 2+cx -17(a ,b ,c ∈R)的导函数为f ′(x ),f ′(x )≤0的解集为{x |-2≤x ≤3},若f (x )的极小值等于-98,则a 的值是( ) A.-8122 B.13C.2D.5考点三 利用导数求函数的最值 【例3】 已知函数f (x )=2x 3-ax 2+2. (1)讨论f (x )的单调性;(2)(经典母题)当0<a <3时,记f (x )在区间[0,1]的最大值为M ,最小值为m ,求M -m 的取值范围.【迁移 】 把本例(2)改为“是否存在正实数a ,使得f (x )在[0,1]上的最小值为-2,且最大值为2?若存在,求出实数a 的值;若不存在,说明理由.”【训练3】 已知函数f (x )=x -1x -ln x .(1)求f (x )的单调区间;(2)求函数f (x )在⎣⎡⎦⎤1e ,e 上的最大值和最小值(其中e 是自然对数的底数).强化训练 一、选择题1.函数y =x e x 的最小值是( ) A.-1 B.-eC.-1eD.不存在2. 设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =x ·f ′(x )的图象可能是( )3. 若x =-2是函数f (x )=(x 2+ax -1)·e x -1的极值点,则f (x )的极小值为( ) A.-1 B.-2e -3 C.5e -3D.14. 函数f (x )=3x 2+ln x -2x 的极值点的个数是( ) A.0 B.1 C.2 D.无数5. 已知函数f (x )=2ln x +ax 2-3x 在x =2处取得极小值,则f (x )的极大值为( ) A.2 B.-52 C.3+ln 2 D.-2+2ln 2二、填空题6.若商品的年利润y (万元)与年产量x (百万件)的函数关系式为y =-x 3+27x +123(x >0),则获得最大利润时的年产量为________百万件.7. 已知x =1是函数f (x )=(x 2+ax )e x 的一个极值点,则曲线y =f (x )在点(0,f (0))处的切线斜率为________.8. 直线y =b 分别与直线y =2x +1和曲线y =ln x 相交于点A ,B ,则|AB |的最小值为________.三、解答题9.已知函数f (x )=e x cos x -x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )在区间⎣⎡⎦⎤0,π2上的最大值和最小值.10.设函数f (x )=(x -t 1)(x -t 2)(x -t 3),其中t 1,t 2,t 3∈R ,且t 1,t 2,t 3是公差为d 的等差数列. (1)若t 2=0,d =1,求曲线y =f (x )在点(0,f (0))处的切线方程; (2)若d =3,求f (x )的极值.11.若函数f (x )=12x 2+(a -1)x -a ln x 存在唯一的极值,且此极值不小于1,则a 的取值范围为( )A.⎣⎡⎭⎫32,2B.⎣⎡⎭⎫32,+∞C.⎣⎡⎭⎫0,32D.(-1,0)∪⎣⎡⎭⎫32,+∞ 12. 若函数f (x )=(1-x )(x 2+ax +b )的图象关于点(-2,0)对称,x 1,x 2分别是f (x )的极大值点与极小值点,则x 2-x 1=( ) A.- 3B.2 3C.-2 3D. 313.传说中孙悟空的“如意金箍棒”是由“定海神针”变形得来的.这定海神针在变形时永远保持为圆柱体,其底面半径原为12 cm 且以每秒1 cm 等速率缩短,而长度以每秒20 cm 等速率增长.已知神针的底面半径只能从12 cm 缩到4 cm ,且知在这段变形过程中,当底面半径为10 cm 时其体积最大.假设孙悟空将神针体积最小时定形成金箍棒,则此时金箍棒的底面半径为________ cm.14.已知函数f (x )=14x 3-x 2+x .(1)求曲线y =f (x )的斜率为1的切线方程; (2)当x ∈[-2,4]时,求证:x -6≤f (x )≤x .(3)设F (x )=|f (x )-(x +a )|(a ∈R),记F (x )在区间[-2,4]上的最大值为M (a ).当M (a )最小时,求a 的值.15.(多填题)设函数f (x )=⎩⎪⎨⎪⎧x 3-3x ,x ≤a ,-2x ,x >a .(1)若a =0,则f (x )的最大值为________;(2)若f (x )无最大值,则实数a 的取值范围是________.答 案利用导数研究函数的极值、最值【例1-1】 设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( )A.函数f (x )有极大值f (2)和极小值f (1)B.函数f (x )有极大值f (-2)和极小值f (1)C.函数f (x )有极大值f (2)和极小值f (-2)D.函数f (x )有极大值f (-2)和极小值f (2) 解析 由题图可知,当x <-2时,f ′(x )>0; 当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0; 当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值, 在x =2处取得极小值. 答案 D规律方法 由图象判断函数y =f (x )的极值,要抓住两点:(1)由y =f ′(x )的图象与x 轴的交点,可得函数y =f (x )的可能极值点;(2)由导函数y =f ′(x )的图象可以看出y =f ′(x )的值的正负,从而可得函数y =f (x )的单调性.两者结合可得极值点. 角度2 已知函数求极值【例1-2】 已知函数f (x )=ln x -ax (a ∈R). (1)当a =12时,求f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.解 (1)当a =12时,f (x )=ln x -12x ,函数的定义域为(0,+∞)且f ′(x )=1x -12=2-x2x ,令f ′(x )=0,得x =2,于是当x 变化时,f ′(x ),f (x )的变化情况如下表.x (0,2) 2 (2,+∞) f ′(x ) + 0 - f (x )ln 2-1故f (x )极大值(2)由(1)知,函数的定义域为(0,+∞), f ′(x )=1x -a =1-ax x.当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,则函数在(0,+∞)上单调递增,此时函数在定义域上无极值点; 当a >0时,若x ∈⎝⎛⎭⎫0,1a ,则f ′(x )>0, 若x ∈⎝⎛⎭⎫1a ,+∞,则f ′(x )<0, 故函数在x =1a处有极大值.综上可知,当a ≤0时,函数f (x )无极值点, 当a >0时,函数y =f (x )有一个极大值点,且为x =1a .规律方法 运用导数求导函数f (x )极值的一般步骤:(1)确定函数的定义域;(2)求导数f ′(x );(3)解方程f ′(x )=0,求出函数定义域内的所有根; (4)列表检验f ′(x )在f ′(x )=0的根x 0左右两侧值的符号;(5)求出极值.【训练1】 (1)(角度1)已知函数f (x )的定义域为(a ,b ),导函数f ′(x )在(a ,b )上的图象如图所示,则函数f (x )在(a ,b )上的极大值点的个数为( )A.1B.2C.3D.4解析 由函数极值的定义和导函数的图象可知,f ′(x )在(a ,b )上与x 轴的交点个数为4,但是在原点附近的导数值恒大于零,故x =0不是函数f (x )的极值点.其余的3个交点都是极值点,其中有2个点满足其附近的导数值左正右负,故极大值点有2个. 答案 B(2)(角度2) 设函数f (x )=(x -a )(x -b )(x -c ),a ,b ,c ∈R ,f ′(x )为f (x )的导函数. ①若a =b =c ,f (4)=8,求a 的值;②若a ≠b ,b =c ,且f (x )和f ′(x )的零点均在集合{-3,1,3}中,求f (x )的极小值. 解 ①因为a =b =c ,所以f (x )=(x -a )(x -b )(x -c )=(x -a )3. 因为f (4)=8,所以(4-a )3=8,解得a =2.②因为b =c ,所以f (x )=(x -a )(x -b )2=x 3-(a +2b )x 2+b (2a +b )x -ab 2,从而f ′(x )=3(x -b )·⎝⎛⎭⎫x -2a +b 3. 令f ′(x )=0,得x =b 或x =2a +b3. 令f (x )=0,得x =a 或x =b . 因为a ,b ,2a +b3都在集合{-3,1,3}中,且a ≠b , 所以2a +b 3=1,a =3,b =-3.此时,f (x )=(x -3)(x +3)2,f ′(x )=3(x +3)(x -1). 令f ′(x )=0,得x =-3或x =1. 当x 变化时,f ′(x )变化如下表:考点二 已知函数的极值求参数【例2】 (2018·北京卷)设函数f (x )=[ax 2-(4a +1)x +4a +3]e x . (1)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; (2)若f (x )在x =2处取得极小值,求a 的取值范围. 解 (1)因为f (x )=[ax 2-(4a +1)x +4a +3]e x , 所以f ′(x )=[ax 2-(2a +1)x +2]e x . f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e≠0. 所以a 的值为1.(2)f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x . 若a >12,则当x ∈⎝⎛⎭⎫1a ,2时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0.所以2不是f (x )的极小值点. 综上可知,a 的取值范围是⎝⎛⎭⎫12,+∞.规律方法 1.已知函数极值,确定函数解析式中的参数时,要注意:根据极值点的导数为0和极值这两个条件列方程组,利用待定系数法求解.2.导数值为0不是此点为极值点的充要条件,所以用待定系数法求解后必须检验.【训练2】 已知函数f (x )=ax 3+bx 2+cx -17(a ,b ,c ∈R)的导函数为f ′(x ),f ′(x )≤0的解集为{x |-2≤x ≤3},若f (x )的极小值等于-98,则a 的值是( ) A.-8122 B.13C.2D.5 解析 易知f ′(x )=3ax 2+2bx +c , 因为f ′(x )≤0的解集为{x |-2≤x ≤3}, 所以a >0,且-2+3=-2b 3a ,-2×3=c 3a ,则3a =-2b ,c =-18a ,依题意f (x )的极小值为f (3)=27a +9b +3c -17=-98. 解得a =2,b =-3,c =-36. 答案 C考点三 利用导数求函数的最值 【例3】 已知函数f (x )=2x 3-ax 2+2. (1)讨论f (x )的单调性;(2)(经典母题)当0<a <3时,记f (x )在区间[0,1]的最大值为M ,最小值为m ,求M -m 的取值范围.解 (1)f (x )的定义域为R ,f ′(x )=6x 2-2ax =2x (3x -a ). 令f ′(x )=0,得x =0或x =a3.若a >0,则当x ∈(-∞,0)∪⎝⎛⎭⎫a3,+∞时,f ′(x )>0, 当x ∈⎝⎛⎭⎫0,a3时,f ′(x )<0, 故f (x )在(-∞,0),⎝⎛⎭⎫a 3,+∞单调递增,在⎝⎛⎭⎫0,a3单调递减; 若a =0,则f (x )在(-∞,+∞)单调递增;若a <0,则当x ∈⎝⎛⎭⎫-∞,a3∪(0,+∞)时,f ′(x )>0,当x ∈⎝⎛⎭⎫a3,0时,f ′(x )<0, 故f (x )在⎝⎛⎭⎫-∞,a 3,(0,+∞)单调递增,在⎝⎛⎭⎫a3,0单调递减. (2)当0<a <3时,由(1)知,f (x )在⎝⎛⎭⎫0,a 3单调递减,在⎝⎛⎭⎫a3,1单调递增,所以f (x )在[0,1]的最小值为f ⎝⎛⎭⎫a 3=-a327+2,最大值为f (0)=2或f (1)=4-a . 于是m =-a 327+2,M =⎩⎪⎨⎪⎧4-a ,0<a <2,2,2≤a <3.所以M -m =⎩⎨⎧2-a +a 327,0<a <2,a327,2≤a <3.①当0<a <2时,可知y =2-a +a 327单调递减,所以M -m 的取值范围是⎝⎛⎭⎫827,2. ②当2≤a <3时,y =a 327单调递增,所以M -m 的取值范围是⎣⎡⎭⎫827,1. 综上,M -m 的取值范围是⎣⎡⎭⎫827,2.【迁移 】 把本例(2)改为“是否存在正实数a ,使得f (x )在[0,1]上的最小值为-2,且最大值为2?若存在,求出实数a 的值;若不存在,说明理由.” 解 假设存在正实数a ,使得f (x )min =-2,且f (x )max =2. ①若a ≥3时,由例题(1)知,f (x )在[0,1]上是减函数, 当x ∈[0,1]时,f (x )max =f (0)=2,f (x )min =f (1)=4-a . 由题意,必有4-a =-2,则a =6.②若0<a <3时,由例题第(2)问知,f (x )在[0,1]的最小值f ⎝⎛⎭⎫a 3=2-a327,最大值为2或4-a . 由2-a 327=-2,得a =334>3,与0<a <3矛盾.综上,存在正数a =6时,f (x )在[0,1]的最小值为-2,最大值为2. 规律方法 1.利用导数求函数f (x )在[a ,b ]上的最值的一般步骤:(1)求函数在(a ,b )内的极值;(2)求函数在区间端点处的函数值f (a ),f (b );(3)将函数f (x )的各极值与f (a ),f (b )比较,其中较大的一个为最大值,较小的一个为最小值.2.研究含参数的最值,必要时要进行分类讨论.如本例迁移中,分类讨论的标准是单调区间的端点与0,1的大小关系,从而确定函数在[0,1]上的最值. 【训练3】 已知函数f (x )=x -1x-ln x .(1)求f (x )的单调区间;(2)求函数f (x )在⎣⎡⎦⎤1e ,e 上的最大值和最小值(其中e 是自然对数的底数). 解 (1)f (x )=x -1x -ln x =1-1x-ln x , f (x )的定义域为(0,+∞). ∵f ′(x )=1x 2-1x =1-xx2,由f ′(x )>0,得0<x <1,由f ′(x )<0,得x >1,∴f (x )=1-1x -ln x 在(0,1)上单调递增,在(1,+∞)上单调递减.(2)由(1)得f (x )在⎣⎡⎦⎤1e ,1上单调递增,在[1,e]上单调递减, ∴f (x )在⎣⎡⎦⎤1e ,e 上的极大值为f (1)=1-11-ln 1=0. 又f ⎝⎛⎭⎫1e =1-e -ln 1e=2-e , f (e)=1-1e -ln e =-1e ,且f ⎝⎛⎭⎫1e <f (e)<0, ∴f (x )在⎣⎡⎦⎤1e ,e 上的最大值为0,最小值为2-e.A 级 基础巩固一、选择题1.函数y =x e x 的最小值是( ) A.-1B.-eC.-1eD.不存在解析 因为y =x e x ,所以y ′=e x +x e x =(1+x )e x ,当x >-1时,y ′>0;当x <-1时,y ′<0,所以当x =-1时,函数取得最小值,且y min =-1e .答案 C2. 设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =x ·f ′(x )的图象可能是( )解析∵函数f(x)在R上可导,其导函数为f′(x),且函数f(x)在x=-2处取得极小值,当x>-2时,f′(x)>0;当x=-2时,f′(x)=0;当x<-2时,f′(x)<0.∴当x>0时,xf′(x)>0;当-2<x<0时,xf′(x)<0;当x=-2或0时,xf′(x)=0;当x<-2时,xf′(x)>0.因此y=xf′(x)的图象应为选项C.答案 C3. 若x=-2是函数f(x)=(x2+ax-1)·e x-1的极值点,则f(x)的极小值为()A.-1B.-2e-3C.5e-3D.1解析f′(x)=[x2+(a+2)x+a-1]·e x-1,则f′(-2)=[4-2(a+2)+a-1]·e-3=0⇒a=-1,则f(x)=(x2-x-1)·e x-1,f′(x)=(x2+x-2)·e x-1,又e x-1>0恒成立,令f′(x)=0,得x=-2或x=1,当x<-2或x>1时,f′(x)>0;当-2<x<1时,f′(x)<0,所以x=1是函数f(x)的极小值点,则f(x)极小值为f(1)=-1.答案 A4. 函数f(x)=3x2+ln x-2x的极值点的个数是()A.0B.1C.2D.无数解析函数定义域为(0,+∞),且f′(x)=6x+1x-2=6x2-2x+1x,由于x>0,g(x)=6x2-2x+1的Δ=-20<0,所以g(x)>0恒成立,故f′(x)>0恒成立,即f(x)在定义域上单调递增,无极值点.答案 A5. 已知函数f(x)=2ln x+ax2-3x在x=2处取得极小值,则f(x)的极大值为()A.2B.-52C.3+ln 2D.-2+2ln 2解析 由题意得,f ′(x )=2x +2ax -3,∵f (x )在x =2处取得极小值,∴f ′(2)=4a -2=0,解得a =12,∴f (x )=2ln x +12x 2-3x ,f ′(x )=2x +x -3=(x -1)(x -2)x , ∴f (x )在(0,1),(2,+∞)上单调递增,在(1,2)上单调递减, ∴f (x )的极大值为f (1)=12-3=-52.答案 B 二、填空题6.若商品的年利润y (万元)与年产量x (百万件)的函数关系式为y =-x 3+27x +123(x >0),则获得最大利润时的年产量为________百万件.解析 y ′=-3x 2+27=-3(x +3)(x -3),当0<x <3时,y ′>0;当x >3时,y ′<0. 故当x =3时,该商品的年利润最大. 答案 37. 已知x =1是函数f (x )=(x 2+ax )e x 的一个极值点,则曲线y =f (x )在点(0,f (0))处的切线斜率为________.解析 由f (x )=(x 2+ax )e x ,得f ′(x )=(x 2+ax +2x +a )e x , 因为x =1是函数f (x )=(x 2+ax )e x 的一个极值点, 所以f ′(1)=(3+2a )e =0,解得a =-32.∴f ′(x )=⎝⎛⎭⎫x 2+12x -32e x ,所以f ′(0)=-32. 所以曲线f (x )在点(0,f (0))处的切线斜率为-32.答案 -328. 直线y =b 分别与直线y =2x +1和曲线y =ln x 相交于点A ,B ,则|AB |的最小值为________. 解析 设两个交点分别为A ⎝⎛⎭⎫b -12,b ,B (e b ,b ),则|AB |=e b -b -12. 令g (x )=e x -x -12,则g ′(x )=e x -12. 由g ′(x )=0,得x =-ln 2.所以g (x )在区间(-∞,-ln 2)单调递减,在区间(-ln 2,+∞)上单调递增, ∴g (x )min =g (-ln 2)=1+ln 22.答案 1+ln 22三、解答题9.已知函数f (x )=e x cos x -x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )在区间⎣⎡⎦⎤0,π2上的最大值和最小值. 解 (1)因为f (x )=e x cos x -x ,所以f ′(x )=e x (cos x -sin x )-1,f ′(0)=0. 又因为f (0)=1,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =1. (2)设h (x )=e x (cos x -sin x )-1则h ′(x )=e x (cos x -sin x -sin x -cos x )=-2e x sin x . 当x ∈⎝⎛⎭⎫0,π2时,h ′(x )<0, 所以h (x )在区间⎣⎡⎦⎤0,π2上单调递减, 所以对任意x ∈⎝⎛⎦⎤0,π2有h (x )<h (0)=0,即f ′(x )<0, 所以函数f (x )在区间⎣⎡⎦⎤0,π2上单调递减, 因此f (x )在区间⎣⎡⎦⎤0,π2上的最大值为f (0)=1,最小值为f ⎝⎛⎭⎫π2=-π2. 10.(2018·天津卷选编)设函数f (x )=(x -t 1)(x -t 2)(x -t 3),其中t 1,t 2,t 3∈R ,且t 1,t 2,t 3是公差为d 的等差数列.(1)若t 2=0,d =1,求曲线y =f (x )在点(0,f (0))处的切线方程; (2)若d =3,求f (x )的极值.解 (1)由已知,得f (x )=x (x -1)(x +1)=x 3-x , 故f ′(x )=3x 2-1.因此f (0)=0,f ′(0)=-1, 又因为曲线y =f (x )在点(0,f (0))处的切线方程为 y -f (0)=f ′(0)(x -0), 故所求切线方程为x +y =0.(2)由已知得f (x )=(x -t 2+3)(x -t 2)(x -t 2-3)=(x -t 2)3-9(x -t 2)=x 3-3t 2x 2+(3t 22-9)x -t 32+9t 2.故f ′(x )=3x 2-6t 2x +3t 22-9.令f ′(x )=0,解得x =t 2-3,或x =t 2+ 3. 当x 变化时,f ′(x ),f (x )的变化情况如下表:(3)3-9×3=-6 3.11.若函数f (x )=12x 2+(a -1)x -a ln x 存在唯一的极值,且此极值不小于1,则a 的取值范围为( ) A.⎣⎡⎭⎫32,2 B.⎣⎡⎭⎫32,+∞C.⎣⎡⎭⎫0,32 D.(-1,0)∪⎣⎡⎭⎫32,+∞解析 对函数求导f ′(x )=x -1+a ⎝⎛⎭⎫1-1x =(x +a )(x -1)x ,令f ′(x )=0,解得x =1或x =-a .因为函数f (x )=12x 2+(a -1)x -a ln x 存在唯一的极值,所以x =1,此时a ≥0.所以当x ∈(0,1)时,f ′(x )<0,函数f (x )单调递减;当x ∈(1,+∞)时,f ′(x )>0,函数f (x )单调递增,所以f (x )的极小值为f (1)=12+a -1=a -12,故f (1)≥1,即a -12≥1,解得a ≥32.答案 B12. 若函数f (x )=(1-x )(x 2+ax +b )的图象关于点(-2,0)对称,x 1,x 2分别是f (x )的极大值点与极小值点,则x 2-x 1=( ) A.- 3B.2 3C.-2 3D. 3解析 不妨假设点(-2,0)在f (x )图象上, 则f (-2)=3(4-2a +b )=0,因为函数图象关于点(-2,0)对称,且f (1)=0, 所以f (-5)=0,即f (-5)=6(25-5a +b )=0,联立⎩⎪⎨⎪⎧b -2a +4=0,b -5a +25=0,解得⎩⎪⎨⎪⎧b =10,a =7.故f (x )=(1-x )(x 2+7x +10)=-x 3-6x 2-3x +10, 则f ′(x )=-3x 2-12x -3=-3(x 2+4x +1), 由于x 1,x 2分别是f (x )的极大值点与极小值点. ∴x 1,x 2是f ′(x )的零点, 则x 1+x 2=-4,x 1x 2=1. 从而x 1<0,x 2<0,且x 1>x 2.因此x 2-x 1=-(x 1+x 2)2-4x 1x 2=-2 3. 答案 C13.传说中孙悟空的“如意金箍棒”是由“定海神针”变形得来的.这定海神针在变形时永远保持为圆柱体,其底面半径原为12 cm 且以每秒1 cm 等速率缩短,而长度以每秒20 cm 等速率增长.已知神针的底面半径只能从12 cm 缩到4 cm ,且知在这段变形过程中,当底面半径为10 cm 时其体积最大.假设孙悟空将神针体积最小时定形成金箍棒,则此时金箍棒的底面半径为________ cm. 解析 设神针原来的长度为a cm ,t 秒时神针的体积为V (t ) cm 3,则V (t )=π(12-t )2·(a +20t ),其中0≤t ≤8,所以V ′(t )=[-2(12-t )(a +20t )+(12-t )2·20]π.因为当底面半径为10 cm 时其体积最大,所以10=12-t ,解得t =2,此时V ′(2)=0,解得a =60,所以V (t )=π(12-t )2·(60+20t ),其中0≤t ≤8.V ′(t )=60π(12-t )(2-t ),当t ∈(0,2)时,V ′(t )>0,当t ∈(2,8)时,V ′(t )<0,从而V (t )在(0,2)上单调递增,在(2,8)上单调递减,V (0)=8 640π,V (8)=3 520π,所以当t =8时,V (t )有最小值3 520π,此时金箍棒的底面半径为4 cm. 答案 414.(2019·北京卷)已知函数f (x )=14x 3-x 2+x .(1)求曲线y =f (x )的斜率为1的切线方程; (2)当x ∈[-2,4]时,求证:x -6≤f (x )≤x .(3)设F (x )=|f (x )-(x +a )|(a ∈R),记F (x )在区间[-2,4]上的最大值为M (a ).当M (a )最小时,求a 的值.(1)解 由f (x )=14x 3-x 2+x ,得f ′(x )=34x 2-2x +1.令f ′(x )=1,即34x 2-2x +1=1,得x =0或x =83.又f (0)=0,f ⎝⎛⎭⎫83=827,所以曲线y =f (x )的斜率为1的切线方程是y =x 与y -827=x -83,即y =x 与y =x -6427. (2)证明 令g (x )=f (x )-x ,x ∈[-2,4]. 由g (x )=14x 3-x 2得g ′(x )=34x 2-2x .令g ′(x )=0得x =0或x =83.当x 变化时,g ′(x ),g (x )的变化情况如下:故-6≤g (x )≤0,即x -6≤f (x )≤x . (3)解 由第(2)问知,当a <-3时,M (a )≥F (0)=|g (0)-a |=-a >3; 当a >-3时,M (a )≥F (-2)=|g (-2)-a |=6+a >3; 当a =-3时,M (a )=3; 综上,当M (a )最小时,a =-3.15.(多填题)设函数f (x )=⎩⎪⎨⎪⎧x 3-3x ,x ≤a ,-2x ,x >a .(1)若a =0,则f (x )的最大值为________;(2)若f (x )无最大值,则实数a 的取值范围是________.解析 (1)若a =0,则f (x )=⎩⎪⎨⎪⎧x 3-3x ,x ≤0,-2x ,x >0.当x >0时,f (x )=-2x <0;当x ≤0时,f ′(x )=3x 2-3=3(x -1)(x +1), 当x <-1时,f ′(x )>0,f (x )是增函数; 当-1<x <0时,f ′(x )<0,f (x )是减函数, ∴f (x )≤f (-1)=2.∴f (x )的最大值为2.(2)在同一平面直角坐标系中画出y =-2x 和y =x 3-3x 的图象, 如图所示,当a <-1时,f (x )无最大值; 当-1≤a ≤2时,f (x )max =2; 当a >2时,f (x )max =a 3-3a .综上,当a ∈(-∞,-1)时,f (x )无最大值. 答案 (1)2 (2)(-∞,-1)。
高考数学之利用导数研究函数的极值和最值
高考数学之利用导数研究函数的极值和最值一.知识点睛1.可导函数的极值:①如果函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,我们就把a叫做函数的极小值点,f(a)叫做函数的极小值.②如果函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,我们就把b叫做函数的极大值点,f(b)叫做函数的极大值.注意:①.可导函数y=f(x)在点x0取得极值的充要条件是f′(x0)=0,且在点x0左侧和右侧,f′(x)异号②.导数为0的点不一定是极值点,比如y=x3即导数为0的点是该点为极值点的必要条件,而不是充分条件。
③.若极值点处的导数存在,则一定为02.求可导函数极值的步骤:①.确定函数的定义域②求导f′(x)③求方程f′(x)=0的根④把定义域划分为部分区间,并列成表格,检查f′(x)在方程根左右的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值。
二.方法点拨:1.已知具体函数求极值2.已知含参函数的极值点和极值,确定参数:①极值点处导数为0②由极值点,极值组成的坐标在曲线上,由这两点建立有关参数的方程,求出参数值以后还须检验,看参数是否符合函数取得极值的条件。
3.已知含参函数极值点个数,确定参数范围:函数f(x)的极值点导函数f′(x) 的异号零点f′(x)=0的根函数y=k与函数y=g(x)图像交点的横坐标注意:导函数f′(x)的零点并不是函数f(x)的极值点,导函数f′(x)的异号零点才对应函数f(x)的极值点。
因此方程f′(x)=0的根及函数y=k与函数y=g(x)图像交点的横坐标,必须对应f′(x) 的异号零点。
方法总结:解决函数的零点,极值点,及方程根的关系问题时,优先考虑分离参数法,若分离参数不容易实现或者分离后依然不好解决问题,再考虑以下解题思路:(1)研究函数图像与X轴的位置关系⑵研究非水平的动直线(定点直线系或者斜率不为0的平行直线系)与固定函数曲线的位置关系⑶研究动态曲线与曲线的位置关系。
高考数学复习、高中数学 利用导数研究函数的极值、最值附答案解析
3
3 27
27
3
3
,解得 x a 或 x a ,又 f (x) 在 ( a , a 6) 上有最大值,所以 a a 6 „ a ,即
3
6
23
33 6
a„ 4 ,
9.答案:(-∞,-3)∪(6,+∞)
( ) 2
10.答案: ,+∞ 2
解 析 : f′(x)= 3x2- 3a2= 3(x+ a)(x- a), 由 f′(x)= 0 得 x= ±a, 当 - a<x<a 时 ,
{ ) { ) 3+2a+b=-1,
a=0,
且在 x=±1 处的切线斜率均为-1,∴ 3-2a+b=-1, 解得 b=-4, ∴f(x)=x3-
23 4x.所以①正确.又由 f′(x)=3x2-4=0 得 x=± ∈[-2,2],所以②不正确.可得
3
( ) ( ) ( ) 2 3
2323
23
f(x)在 -2,- 上单调递增,在 - , 上单调递减,在 ,2 上单调递
第 3 节 利用导数研究函数的极值、最值
基础巩固题组 (建议用时:40 分钟) 一、单项选择题 1.若函数 f(x)=aex-sin x 在 x=0 处有极值,则 a 的值为( ) A.-1 B.0 C.1 D.e 2.已知 x=2 是函数 f(x)=x3-3ax+2 的极小值点,那么函数 f(x)的极大值为( ) A.15 B.16 C.17 D.18
f(x)单调递减.所以 f(x)在 x=1 处取得极大值,符合题意.综上可知,实数 a 的取值范
( ) 1
围为 ,+∞ . 2
16.设 f(x)=xln x-ax2+(2a-1)x,a∈R. (1)令 g(x)=f′(x),求 g(x)的单调区间; (2)已知 f(x)在 x=1 处取得极大值,求实数 a 的取值范围.
高二数学利用导数求最值和极值试题答案及解析
高二数学利用导数求最值和极值试题答案及解析1.若函数,当时,函数有极值-.求函数的解析式.【答案】【解析】(1)利用函数的极值与导数的关系;(2)解决类似的问题时,函数在极值点处的导数为零,注意区分函数的最值和极值.求函数的最值时,要先求函数在区间内使的点,再计算函数在区间内所有使的点和区间端点处的函数值,最后比较即得.(3)若可导函数在指定的区间上单调递增(减),求参数问题,可转化为恒成立,从而构建不等式,要注意“=”是否可以取到.试题解析:解:由题意可知于是,,解得经检验符合题意,因此函数的解析式为.【考点】函数的导数与极值.2.已知函数,其中。
(1)若,求函数的极值点和极值;(2)求函数在区间上的最小值。
【答案】(1)极小值点为,极小值为;极大值点为,极大值为;(2)【解析】(1)把代入原函数,求出的导函数,令导函数等于求出根即可得极值点,把极值点代入原函数得极值。
(2)因为,所以把分两种情况来讨论,当时,函数在区间为单调递增函数,最小值为,当时,求出函数的导函数,并令得增区间,令得减区间,最后得出的最小值。
试题解析:解:(1)当时,。
2分令,得或。
所以,在区间上,,函数是增函数;在区间上,,函数是减函数;在区间上,,函数是增函数。
4分[所以,函数的极小值点为,极小值为;极大值点为,极大值为。
8分(2)当时,是R上的增函数,在区间上的最小值为。
10分当时,。
在区间上是减函数,在区间上,是增函数。
12分所以,在区间上的最小值为, 13分。
14分综上,函数在区间上的最小值为。
【考点】导数在求极值及最值中的应用;3.已知函数在处有极大值.(Ⅰ)求的值;(Ⅱ)若过原点有三条直线与曲线相切,求的取值范围;(Ⅲ)当时,函数的图象在抛物线的下方,求的取值范围.【答案】(Ⅰ)(Ⅱ)(Ⅲ)【解析】(Ⅰ)通过对函数f(x)求导,根据函数在x=2处有极值,可知f'(2)=0,解得a的值.(Ⅱ)把(1)求得的a代入函数关系式,设切点坐标,进而根据导函数可知切线斜率,则切线方程可得,整理可求得b的表达式,令g'(x)=0解得x1和x2.进而可列出函数g(x)的单调性进而可知-64<b<0时,方程b=g(x)有三个不同的解,结论可得.(Ⅲ)当x∈[-2,4]时,函数y=f(x)的图象在抛物线y=1+45x-9x2的下方,进而可知x3-12x2+36x+b<1+45x-9x2在x∈[-2,4]时恒成立,整理可得关于b的不等式,令h(x)=-x3+3x2+9x+1,对h(x)进行求导由h'(x)=0得x1和x2.分别求得h,h(-1),h(3),h(4),进而可知h(x)在[-2,4]上的最小值是,进而求得b的范围.试题解析:(Ⅰ),或,当时,函数在处取得极小值,舍去;当时,,函数在处取得极大值,符合题意,∴.(3分)(Ⅱ),设切点为,则切线斜率为,切线方程为,即,∴.令,则,由得,.函数的单调性如下:↗极大值↘极小值↗∴当时,方程有三个不同的解,过原点有三条直线与曲线相切.(8分)(Ⅲ)∵当时,函数的图象在抛物线的下方,∴在时恒成立,即在时恒成立,令,则,由得,.∵,,,,∴在上的最小值是,.(12分)【考点】等比关系的确定;利用导数研究函数的极值.4.已知函数在处取得极值为(1)求的值;(2)若有极大值28,求在上的最小值.【答案】(1)(2)在上的最小值为【解析】(1)由,又知在处取得极值,,即可解得的值.(2)由(1)可得,即可求得函数在处有极大值,再由,可得,,再利用单调性易判断在上的最小值为.试题解析:(1)∵,∴又∵在处取得极值,∴且,即且,解得:.(2)由(1)得:,,令,解得:,极大值极小值∴函数在处有极大值,且,∴,此时,,在上的最小值为.【考点】利用函数极值求参数;利用导数求函数最值.5.函数在[0,3]上的最大值和最小值分别是A.5,15B.5,-14C.5,-15D.5,-16【答案】C【解析】,;令得;令得;函数在递减,在递增;又,.【考点】利用导数求闭区间上的最值.6.函数的定义域为开区间,导函数在内的图象如图所示,则函数在开区间内有极小值点()A.个B.个C.个D.个【答案】A【解析】由导函数的图像知,的图像先增后减再增再减,故只有一个极小值点,故选A.【考点】函数导数与极值的关系7.若函数在[-1,1]上有最大值3,则该函数在[-1,1]上的最小值是__________【答案】【解析】求导得=,当-1<<0时,,当时,<0,所以该函数在(-1,0)上是增函数,在(0,1)是减函数,故当=0时,=,所以=3,所以当=-1时,y=,当=1时,=,所以该函数在[-1,1]上的最小值为.【考点】利用导数求函数在某个闭区间上的最值8.设函数在上的导函数为,在上的导函数为,若在上,恒成立,则称函数在上为“凸函数”.已知当时,在上是“凸函数”.则在上 ( )A.既有极大值,也有极小值B.既有极大值,也有最小值C.有极大值,没有极小值D.没有极大值,也没有极小值【答案】C【解析】由题设可知:在(-1,2)上恒成立,由于从而,所以有在(-1,2)上恒成立,故知,又因为,所以;从而,得;且当时,当时,所以在上在处取得极大值,没有极小值.【考点】新定义,函数的极值.9.函数的定义域为开区间,导函数在内的图像如图所示,则函数在开区间内有极小值点()A.1个B.个C.个D.个【答案】A【解析】设导函数在内的图像与轴的交点(自左向右)分别为,其中,则由导函数的图像可得:当时,,时,且,所以是函数的极大值点;当时,,时,且,所以是函数的极小值点;当或时,,故不是函数的极值点;当时,,而当时,,且,所以是函数的极大值点;综上可知,函数在开区间内有极小值点只有1个,故选A.【考点】1.函数的图像;2.函数的导数与极值.10.已知函数在处取得极值,求函数以及的极大值和极小值.【答案】在处取得极大值,在处取得极小值.【解析】先求出导函数,进而根据条件得出,列出方程组,从中解出的值,进而根据函数的极值与导数的关系求解出函数的极大值与极小值即可.试题解析:因为,所以因为函数在处取得极值所以即∴,令,得或当变化时,与的变化情况如下表:1+0—+∴在处取得极大值,在处取得极小值.【考点】函数的极值与导数.11.求函数的极值【答案】,当时,有极大值且极大值为;当时,有极小值且极小值为【解析】求函数的极值,首先找到定义域使得函数有意义,其次求导函数,令其等于零,分析函数的单调性,从而找到极值点,求出极值.试题解析:根据题意可知函数定义域为,因为,所以,令,可得,当变化时,有下表-↗↗由上表可知,当时,有极大值且极大值为;当时,有极小值且极小值为【考点】导数法求极值.12.已知在与处都取得极值.(1)求,的值;(2)设函数,若对任意的,总存在,使得、,求实数的取值范围.【答案】(1);(2).【解析】(1)根据条件,可得,由在与处都取得极值,可知,故可建立关于的二元一次方程组,从而解得,此时,需要代回检验是否确实是的极值点,经检验符合题意,从而;(2)由(1)可得由(1)知:函数在上递减,∴,因此问题就等价于求使当时,恒成立的的取值范围,而二次函数图像的对称轴是,因此需对的取值作出以下三种情况的分类讨论:①:;②:;③,分别用含的代数式表示上述三种情况下的最小值表示出来,从而可以建立关于的不等式,进而求得的取值范围为.试题解析:(1)∵,∴. 1分∵在与处都取得极值,∴,∴ 4分经检验,当时,,∴函数在与处都取得极值,∴ 6分;(2)由(1)知:函数在上递减,∴ 8分,又∵函数图象的对称轴是,①:当时:,显然有成立,∴.②:当时:,∴,解得:,又∵,∴.③:当时:,∴,∴,又,∴综上所述: 12分,∴实数的取值范围为 13分.【考点】1.导数的运用;2.二次函数与恒成立问题.13.若函数在[-1,1]上有最大值3,则该函数在[-1,1]上的最小值是__________【答案】【解析】由函数得,令0得x=0或x=1,<0得,>0得x>1或x<0,所以函数在(0,1)上是减函数,在上是增函数,故最大值为f(0)=a=3,f(1)=,f(-1)=,故最小值为,【考点】导数与函数的极值.14.若函数有极值点,且,若关于的方程的不同实数根的个数是()A.3B.4C.5D.6【答案】A【解析】,因为函数有极值点,则是方程的两根。
高考数学利用导数研究函数的单调性、极值与最值问题(解析版)题型一:利用导数研究函数的单调性
题型一:利用导数研究函数的单调性1、讨论函数的单调性(或区间)1.已知函数211()(1)ln (,0)22f x x a x a a =-+-∈≠R . (1)讨论函数的单调性;【答案】(1)答案见解析;(2)0a ≤.【详解】解:(1)由已知定义域为()0,∞+,()211'()x a a f x x x x-++=-= 当10a +≤,即1a ≤-时,()'0f x >恒成立,则()f x 在()0,∞+上单调递增;当10a +>,即1a >-时,x =或x =所以()f x 在(上单调递减,在)+∞上单调递增.所以1a ≤-时,()f x 在()0,∞+上单调递增;1a >-时,()f x 在(上单调递减,在)+∞上单调递增. (2)由(1)可知,当1a ≤-时,()f x 在()1,+∞上单调递增,若()0f x ≥对任意的[1,)x ∈+∞恒成立,只需(1)0f ≥,而(1)0f =恒成立,所以1a ≤-成立;当1a >-1≤,即10a -<≤,则()f x 在()1,+∞上单调递增,又(1)0f =,所以10a -<≤成立;若0a >,则()f x 在(上单调递减,在)+∞上单调递增,又(1)0f =,所以(0x ∃∈,()0()10f x f <=,不满足()0f x ≥对任意的[1,)x ∈+∞恒成立.所以综上所述:0a ≤.2.已知函数32()f x x x mx =+-.(1)若函数()f x 在2x =处取到极值,求曲线()y f x =在(1,())f x 处的切线方程;(2)讨论函数()f x 的单调性.【答案】(1)113y x =--;(2)()f x 在⎛-∞ ⎝⎭和⎫+∞⎪⎪⎝⎭上单调递增,在⎝⎭上单调递减. 【详解】(1)依题意,2()32f x x x m '=+-,(2)1240f m '=+-=,解得16m =,经检验,16m =符合题意;故32()16f x x x x =+-,2()3216f x x x '=+-,故(1)21614f =-=-,(1)11f '=-,故所求切线方程为1411(1)y x +=--,即113y x =--;(2)依题意2()32f x x x m '=+-,412m ∆=+,若0∆,即13m -时,()0f x ',()f x 在R 上单调递增;若0∆>,即13m >-时,令()0,f x x '===令12x x == 故当()1,x x ∈-∞时,()0f x '>,当()12,x x x ∈时,()0f x '<,当()2,x x ∈+∞时,()0f x '>,故函数()f x 在⎛-∞ ⎝⎭和⎫+∞⎪⎪⎝⎭上单调递增,在⎝⎭上单调递减. 3.已知函数()ln a f x x x=+(a 为常数) (1)讨论函数()f x 的单调性;【答案】(1)0a ≤时,(0,)+∞递增,0a >时,在(0,)a 递减,(,)a +∞递增;【详解】(1)函数定义域是(0,)+∞,221()a x a f x x x x-'=-=, 0a ≤时,()0f x '>恒成立,()f x 在(0,)+∞上是增函数;0a <时,0x a <<时,()0f x '<,()f x 递减,x a >时,()0f x '>,()f x 递增.2、根据函数的单调性求参数的取值范围1.已知函数321()23f x ax x x =+-+,其中a R ∈. (1)若函数()f x 恰好有三个单调区间,求实数a 的取值范围;【答案】(1)()()1,00,a ∈-+∞; 【详解】(1)由321()23f x ax x x =+-+,得2()21f x ax x '=+-. ∵()f x 存在三个单调区间∴()0f x '=有两个不相等的实数根,即2210ax x .∴00a ≠⎧⎨∆>⎩,即0440a a ≠⎧⎨+>⎩,故()()1,00,a ∈-+∞.2.已知函数()321f x x ax =++,a R ∈. (1)讨论函数()f x 的单调区间;(2)若函数()f x 在区间2,03⎛⎫- ⎪⎝⎭内是减函数,求a 的取值范围; (3)若函数()f x 的单调减区间是2,03⎛⎫- ⎪⎝⎭,求a 的值. 【答案】(1)答案见解析(2)[)1,+∞(3)1(1) 由题意知,22()323()3a f x x ax x x '=+=+, 当0a =时,2()30f x x '=≥恒成立,所以()f x 的单调递增区间是()-∞+∞,; 当0a >时,令2()0()(0)3a f x x '>⇒∈-∞-+∞,,,令2()0(0)3a f x x '<⇒∈-,, 所以()f x 的单调递增区间为2(),(0)3a -∞-+∞,,,单调递减区间为2(0)3a -,, 当0a <时,令2()0(0)()3a f x x '>⇒∈-∞-+∞,,,令2()0(0)3a f x x '<⇒∈-,, 所以()f x 的单调递增区间为2(0)()3a -∞-+∞,,,,单调递减区间为2(0)3a -,; (2)由(1)知,当0a >时,有22(0)(0)33a -⊆-,,,所以2233a -≤-, 解得1a ≥,即a 的取值范围为[1)+∞,; (3)由(1)知,当0a >时,有22(0)(0)33a -=-,,,所以2233a -=-, 解得1a =.3.已知函数()3f x x ax =-+,a R ∈(1)若()f x 在)1,⎡+∞⎣上为单调减函数,求实数a 取值范围;【答案】(1)3a ≤;(2)最大值为0,最小值为16-.【详解】解:(1)因为()3f x x ax =-+,则()'23f x x a =-+.依题意得()'230f x x a =-+≤在[)1,x ∈+∞恒成立,∴23a x ≤在[)1,x ∈+∞恒成立. 因为当1≥x 时,233x ≥,所以 3a ≤.(2)当12a =时,()312f x x x =-+,()()()'2312322f x x x x =-+=-+-,令'0f x 得[]123,0x =∉-,22x =-,所以当32x -<<-时,()'0f x <,()f x 单调递减,当20x -<<时,()'>0f x ,()f x 单调递增,又()327369f -=-=-,()282416f -=-=-,()00f =.∴()f x 在[]3,0-上最大值为0,最小值为16-.。
高三数学利用导数求最值和极值试题答案及解析
高三数学利用导数求最值和极值试题答案及解析1.函数y=x4-4x+3在区间[-2,3]上的最小值为()A.72B.36C.12D.0【答案】D【解析】因为y′=4x3-4,令y′=0即4x3-4=0,解得x=1.当x<1时,y′<0,当x>1时,y′>0,所以函数的极小值为y|=1=0,而在端点处的函数值y|x=-2=27,y|x=3=72,所以y min=0.x2.若函数f(x)=x3-3x在(a,6-a2)上有最小值,则实数a的取值范围是()A.(-,1)B.[-,1)C.[-2,1)D.(-2,1)【答案】C【解析】f′(x)=3x2-3=3(x+1)(x-1),令f′(x)=0,得x=±1,所以f(x)的大致图象如图所示,f(1)=-2,f(-2)=-2,若函数f(x)在(a,6-a2)上有最小值,则,解得-2≤a<1.3.函数的极小值是 .【答案】.【解析】,令,解得,列表如下:极大值极小值故函数在处取得极小值,即.【考点】函数的极值4.若函数在(0,1)内有极小值,则实数a的取值范围是( )A.(0,3)B.(-∞,3)C.(0,+∞)D.【答案】D 【解析】∵,且f(x)在(0,1)内有极小值. ∴.5. 已知是奇函数,当时,,当时,的最小值为1,则的值等于( ) A .B .C .D .1【答案】D . 【解析】由已知是奇函数,且当时,的最小值为1,而奇函数图象关于原点对称性,可得当时,有最大值.,当,即时,,在上单调递增;当,即时,,在上单调递减.当时,取最大值,故选D .【考点】1.函数的奇偶性;2.导数与函数的最大值最小值.6. 如图,某自来水公司要在公路两侧铺设水管,公路为东西方向,在路北侧沿直线铺设线路l 1,在路南侧沿直线铺设线路l 2,现要在矩形区域ABCD 内沿直线将l 1与l 2接通.已知AB = 60m ,BC = 80m ,公路两侧铺设水管的费用为每米1万元,穿过公路的EF 部分铺设水管的费用为每米2万元,设∠EFB= α,矩形区域内的铺设水管的总费用为W .(1)求W 关于α的函数关系式; (2)求W 的最小值及相应的角α. 【答案】(1)=80+60tanα;(2),.【解析】(1)过E 作,垂足为M ,由题意得∠MEF="α," 故有,,,化简即可;(2),利用导数求出的最大值和相应的角度即可.试题解析:(1)如图,过E 作,垂足为M ,由题意得∠MEF=α,故有,,, 3分所以=80+ 60tanα(其中8分 (2)W. 设,则. 11分令得,即,得.列表+0所以当时有,此时有. 14分答:铺设水管的最小费用为万元,相应的角. 16分【考点】函数模型的应用、利用导数求函数极值、三角函数综合.7.已知函数.(1)若在处取得极大值,求实数的值;(2)若,求在区间上的最大值.【答案】(1);(2)详见解析.【解析】(1) 本小题首先利用导数的公式和法则求得原函数的导函数,通过列表分析其单调性,进而寻找极大值点;(2) 本小题结合(1)中的分析可知参数的取值范围影响函数在区间上的单调性,于是对参数的取值范围进行分段讨论,从而求得函数在区间上的单调性,进而求得该区间上的最大值.试题解析:(1)因为令,得,所以,随的变化情况如下表:↗↘↗(2)因为所以当时,对成立所以当时,取得最大值当时,在时,,单调递增在时,,单调递减所以当时,取得最大值当时,在时,,单调递减所以当时,取得最大值当时,在时,,单调递减在时,,单调递增又,当时,在取得最大值当时,在取得最大值当时,在,处都取得最大值0. 14分综上所述,当或时,取得最大值当时,取得最大值当时,在,处都取得最大值0当时,在取得最大值.【考点】1.导数公式;2.函数的单调性;3.分类讨论.8.记函数的最大值为M,最小值为m,则的值为( ) A.B.C.D.【答案】A【解析】由已知得,,解得,所以函数的定义域是. 已知函数求导得,,时,当时,,当时,,所以在区间上先增后减,最大值是,因为,,所以,所以.【考点】1.利用导数研究函数的最值;2.函数的单调性与导数的关系9.设.(Ⅰ)若对一切恒成立,求的取值范围;(Ⅱ)设,且是曲线上任意两点,若对任意的,直线AB的斜率恒大于常数,求的取值范围;(Ⅲ)求证:.【答案】(Ⅰ);(Ⅱ);(Ⅲ)详见解析【解析】(Ⅰ)∴对一切恒成立等价于恒成立.这只要求出函数的最小值即可.(Ⅱ)直线的斜率为:由题设有,不妨设则这样问题转化为函数,在上单调递增所以恒成立,即对任意,恒成立这样只需求出的最小值即可.(Ⅲ)不等式可变为由(Ⅰ) 知(时取等号),在此不等式中取得:变形得:取得:变形得:取得:变形得:取得:变形得:将以上不等式相加即可得证.试题解析:(Ⅰ)令,则由得.所以在上单调递增, 在单调递减.所以由此得:又时,即为此时取任意值都成立综上得:(II)由题设得,直线AB的斜率满足:,不妨设,则即:令函数,则由以上不等式知:在上单调递增,所以恒成立所以,对任意,恒成立又=故(Ⅲ)由(Ⅰ) 知时取等号),取,得即累加得所以【考点】1、函数的导数及其应用;2、不等关系及重要不等式;3、不等式的证明.10.已知函数(1)当时,求函数在上的极值;(2)证明:当时,;(3)证明:.【答案】(1);(2)证明过程详见解析;(3)证明过程详见解析.【解析】本题主要考查导数的运算,利用导数研究函数的单调性、极值和最值、不等式等基础知识,考查函数思想,考查综合分析和解决问题的能力.第一问,将代入,得到解析式,对它求导,列出表格,通过单调性,判断极值;第二问,证明不等式转化为求函数的最小值大于0;第三问,利用第二问的结论,令,利用放缩法得到,再利用对数的性质和裂项相消法求和,得到所证不等式.试题解析:(1)当时,1分变化如下表+00+极大值, 4分(2)令则 6分∴在上为增函数。
高中数学利用导数研究函数的最值精选题
利用导数研究函数的最值精选题25道一.选择题(共9小题)1.已知f(x)=ln(x2+1),g(x)=()x﹣m,若∀x1∈[0,3],∃x2∈[1,2],使得f(x1)≥g(x2),则实数m的取值范围是()A.[,+∞)B.(﹣∞,]C.[,+∞)D.(﹣∞,﹣] 2.设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为()A.1B.C.D.3.函数f(x)=x3﹣3x﹣1,若对于区间[﹣3,2]上的任意x1,x2都有|f(x1)﹣f(x2)|≤t,则实数t的最小值是()A.20B.18C.3D.04.已知函数f(x)=lnx﹣x+﹣1,g(x)=x2﹣2bx+4,若对任意的x1∈(0,2)存在x2∈[1,2],使f(x1)≥g(x2),则实数b的取值范围是()A.[,+∞)B.(﹣∞,]C.(﹣∞,2]D.[2,+∞)5.已知函数f(x)=e x﹣aln(ax﹣a)+a(a>0),若关于x的不等式f(x)>0恒成立,则实数a的取值范围为()A.(0,e2]B.(0,e2)C.[1,e2]D.(1,e2)6.若函数f(x)=x3+x2﹣在区间(a,a+5)内存在最小值,则实数a的取值范围是()A.[﹣5,0)B.(﹣5,0)C.[﹣3,0)D.(﹣3,0)7.f(x)=x3﹣3x2+2在区间[﹣1,1]上的最大值是()A.﹣2B.0C.2D.48.直线x=t(t>0)与函数f(x)=x2+1,g(x)=lnx的图象分别交于A、B两点,当|AB|最小时,t值是()A.1B.C.D.9.已知关于x的不等式﹣x﹣alnx≥1对于任意x∈(1,+∞)恒成立,则实数a的取值范围为()A.(﹣∞,1﹣e]B.(﹣∞,﹣3]C.(﹣∞,﹣2]D.(﹣∞,2﹣e2]二.填空题(共13小题)10.已知函数f(x)=2sin x+sin2x,则f(x)的最小值是.11.若函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[﹣1,1]上的最大值与最小值的和为.12.f(x)=x3﹣3x2+2在区间[﹣1,1]上的最大值是.13.设实数λ>0,若对任意的x∈(0,+∞),不等式eλx﹣≥0恒成立,则λ的取值范围是14.已知不等式e x﹣1≥kx+lnx,对于任意的x∈(0,+∞)恒成立,则k的最大值15.函数y=x+2cos x在区间上的最大值是.16.函数在(0,e2]上的最大值是.17.设函数与g(x)=a2lnx+b有公共点,且在公共点处的切线方程相同,则实数b的最大值为.18.已知函数f(x)=xe x﹣mx,若f(x)≥lnx+x+1对x∈(0,+∞)恒成立,则实数m的取值范围是.19.已知函数f(x)=ae x+ln﹣2(a>0),若f(x)>0恒成立,则实数a的取值范围为.20.函数f(x)=(x+1)e x的最小值是21.已知函数f(x)=x﹣1﹣lnx,对定义域内的任意x都有f(x)≥kx﹣2,则实数k的取值范围是.22.函数f(x)=x2+x﹣2lnx的最小值.三.解答题(共3小题)23.已知函数f(x)=ae x﹣lnx﹣1.(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;(2)证明:当a≥时,f(x)≥0.24.已知函数f(x)=e x cos x﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.25.已知f(x)=a(x﹣lnx)+,a∈R.(Ⅰ)讨论f(x)的单调性;(Ⅱ)当a=1时,证明f(x)>f′(x)+对于任意的x∈[1,2]成立.利用导数研究函数的最值精选题25道参考答案与试题解析一.选择题(共9小题)1.已知f(x)=ln(x2+1),g(x)=()x﹣m,若∀x1∈[0,3],∃x2∈[1,2],使得f(x1)≥g(x2),则实数m的取值范围是()A.[,+∞)B.(﹣∞,]C.[,+∞)D.(﹣∞,﹣]【分析】先利用函数的单调性求出两个函数的函数值的范围,再比较其最值即可求实数m的取值范围.【解答】解:因为x1∈[0,3]时,f(x1)∈[0,ln10];x2∈[1,2]时,g(x2)∈[﹣m,﹣m].故只需0≥﹣m⇒m≥.故选:A.【点评】本题主要考查函数恒成立问题以及函数单调性的应用,考查计算能力和分析问题的能力,属于中档题.2.设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为()A.1B.C.D.【分析】将两个函数作差,得到函数y=f(x)﹣g(x),再求此函数的最小值对应的自变量x的值.【解答】解:设函数y=f(x)﹣g(x)=x2﹣lnx,求导数得=当时,y′<0,函数在上为单调减函数,当时,y′>0,函数在上为单调增函数所以当时,所设函数的最小值为所求t的值为故选:D.【点评】可以结合两个函数的草图,发现在(0,+∞)上x2>lnx恒成立,问题转化为求两个函数差的最小值对应的自变量x的值.3.函数f(x)=x3﹣3x﹣1,若对于区间[﹣3,2]上的任意x1,x2都有|f(x1)﹣f(x2)|≤t,则实数t的最小值是()A.20B.18C.3D.0【分析】对于区间[﹣3,2]上的任意x1,x2都有|f(x1)﹣f(x2)|≤t,等价于对于区间[﹣3,2]上的任意x,都有f(x)max﹣f(x)min≤t,利用导数确定函数的单调性,求最值,即可得出结论.【解答】解:对于区间[﹣3,2]上的任意x1,x2都有|f(x1)﹣f(x2)|≤t,等价于对于区间[﹣3,2]上的任意x,都有f(x)max﹣f(x)min≤t,∵f(x)=x3﹣3x﹣1,∴f′(x)=3x2﹣3=3(x﹣1)(x+1),∵x∈[﹣3,2],∴函数在[﹣3,﹣1]、[1,2]上单调递增,在[﹣1,1]上单调递减∴f(x)max=f(2)=f(﹣1)=1,f(x)min=f(﹣3)=﹣19∴f(x)max﹣f(x)min=20,∴t≥20∴实数t的最小值是20,故选:A.【点评】本题考查导数知识的运用,考查恒成立问题,正确求导,确定函数的最值是关键.4.已知函数f(x)=lnx﹣x+﹣1,g(x)=x2﹣2bx+4,若对任意的x1∈(0,2)存在x2∈[1,2],使f(x1)≥g(x2),则实数b的取值范围是()A.[,+∞)B.(﹣∞,]C.(﹣∞,2]D.[2,+∞)【分析】利用导数研究函数f(x)的最值问题,根据题意对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),只要f(x)的最小值大于等于g(x)的最小值即可.【解答】解:∵函数f(x)=lnx﹣x﹣1,(x>0)∴f′(x)=﹣+==,若f′(x)>0,1<x<3,f(x)为增函数;若f′(x)<0,x>3或0<x<1,f(x)为减函数;f(x)在x∈(0,2)上有极值,f(x)在x=1处取极小值也是最小值f(x)min=f(1)=﹣+﹣1=﹣;∵g(x)=x2﹣2bx+4=(x﹣b)2+4﹣b2,对称轴x=b,x∈[1,2],当b<1时,g(x)在x=1处取最小值g(x)min=g(1)=1﹣2b+4=5﹣2b;当1<b<2时,g(x)在x=b处取最小值g(x)min=g(b)=4﹣b2;当b>2时,g(x)在[1,2]上是减函数,g(x)min=g(2)=4﹣4b+4=8﹣4b;∵对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),∴只要f(x)的最小值大于等于g(x)的最小值即可,当b<1时,≥5﹣2b,解得b≥,故b无解;当b>2时,≥8﹣4b,解得b≥,综上:b≥,故选:A.【点评】本题考查不等式恒成立问题,利用导数求闭区间上函数的最值,根据不等式恒成立转化为最值恒成立是解决本题的关键.综合性较强,运算较大,有一定的难度.5.已知函数f(x)=e x﹣aln(ax﹣a)+a(a>0),若关于x的不等式f(x)>0恒成立,则实数a的取值范围为()A.(0,e2]B.(0,e2)C.[1,e2]D.(1,e2)【分析】根据f(x)>0恒成立可得e x﹣lna+x﹣lna>e ln(x﹣1)+ln(x﹣1),构造函数g(x)=e x+x,由g(x)的单调性可得x﹣lna>ln(x﹣1),用放缩法求出ln(x﹣1)﹣x的最大值,从而得到a的取值范围.【解答】解:∵f(x)=e x﹣aln(ax﹣a)+a>0(a>0)恒成立,∴,∴e x﹣lna+x﹣lna>ln(x﹣1)+x﹣1,∴e x﹣lna+x﹣lna>e ln(x﹣1)+ln(x﹣1).令g(x)=e x+x,易得g(x)在(1,+∞)上单调递增,∴x﹣lna>ln(x﹣1),∴﹣lna>ln(x﹣1)﹣x.∵ln(x﹣1)﹣x≤x﹣2﹣x=﹣2,∴﹣lna>﹣2,∴0<a<e2,∴实数a的取值范围为(0,e2).故选:B.【点评】本题考查了函数恒成立问题和放缩法的应用,考查了转化思想和计算能力,属难题.6.若函数f(x)=x3+x2﹣在区间(a,a+5)内存在最小值,则实数a的取值范围是()A.[﹣5,0)B.(﹣5,0)C.[﹣3,0)D.(﹣3,0)【分析】由题意,求导f′(x)=x2+2x=x(x+2)确定函数的单调性,从而作出函数的简图,由图象求实数a的取值范围.【解答】解:由题意,f′(x)=x2+2x=x(x+2),故f(x)在(﹣∞,﹣2),(0,+∞)上是增函数,在(﹣2,0)上是减函数,作其图象如右图,令x3+x2﹣=﹣得,x=0或x=﹣3;则结合图象可知,;解得,a∈[﹣3,0);故选:C.【点评】本题考查了导数的综合应用及学生作图识图的能力,属于中档题.7.f(x)=x3﹣3x2+2在区间[﹣1,1]上的最大值是()A.﹣2B.0C.2D.4【分析】由题意先对函数y进行求导,解出极值点,然后再根据函数的定义域,把极值点和区间端点值代入已知函数,判断函数在区间上的增减性,比较函数值的大小,求出最大值,从而求解.【解答】解:f'(x)=3x2﹣6x=3x(x﹣2),令f'(x)=0可得x=0或2(2舍去),当﹣1<x<0时,f'(x)>0,当0<x<1时,f'(x)<0,∴当x=0时,f(x)取得最大值为f(0)=2.故选:C.【点评】此题考查导数的定义及利用导数来求闭区间函数的最值,解题的关键是求导要精确.8.直线x=t(t>0)与函数f(x)=x2+1,g(x)=lnx的图象分别交于A、B两点,当|AB|最小时,t值是()A.1B.C.D.【分析】将两个函数作差,得到函数y=f(x)﹣g(x),再求此函数的最小值对应的自变量x的值.【解答】解:设函数y=f(x)﹣g(x)=x2﹣lnx+1,求导数得y′=2x﹣=当0<x<时,y′<0,函数在(0,)上为单调减函数,当x>时,y′>0,函数在(,+∞)上为单调增函数所以当x=时,所设函数的最小值为+ln2,所求t的值为.故选:B.【点评】可以结合两个函数的草图,发现在(0,+∞)上x2>lnx恒成立,问题转化为求两个函数差的最小值对应的自变量x的值.9.已知关于x的不等式﹣x﹣alnx≥1对于任意x∈(1,+∞)恒成立,则实数a的取值范围为()A.(﹣∞,1﹣e]B.(﹣∞,﹣3]C.(﹣∞,﹣2]D.(﹣∞,2﹣e2]【分析】分离参数,构造函数,对x﹣3e x=e x﹣3lnx变形以及e x﹣1≥x,即可求得a的取值范围.【解答】解:由题意可知,分离参数,令,由题意可知,a≤f(x)min,由,又e x﹣1≥x,当x=0时等号成立,所以≥=﹣3,当x﹣3lnx=0时等号成立,由,令,,易知h(x)在(0,e)上单增,在(e,+∞)单减,所以,所以方程有解.所以a≤﹣3,故选:B.【点评】本题考查利用导数的综合应用,考查分离参数方法的应用,考查e x﹣1≥x恒等式的应用,在选择及填空题可以直接应用,在解答题中,需要构造函数证明,然后再利用,考查转化思想,属于中档题.二.填空题(共13小题)10.已知函数f(x)=2sin x+sin2x,则f(x)的最小值是.【分析】由题意可得T=2π是f(x)的一个周期,问题转化为f(x)在[0,2π)上的最小值,求导数计算极值和端点值,比较可得.【解答】解:由题意可得T=2π是f(x)=2sin x+sin2x的一个周期,故只需考虑f(x)=2sin x+sin2x在[0,2π)上的值域,先来求该函数在[0,2π)上的极值点,求导数可得f′(x)=2cos x+2cos2x=2cos x+2(2cos2x﹣1)=2(2cos x﹣1)(cos x+1),令f′(x)=0可解得cos x=或cos x=﹣1,可得此时x=,π或;∴y=2sin x+sin2x的最小值只能在点x=,π或和边界点x=0中取到,计算可得f()=,f(π)=0,f()=﹣,f(0)=0,∴函数的最小值为﹣,故答案为:.【点评】本题考查三角函数恒等变换,涉及导数法求函数区间的最值,属中档题.11.若函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[﹣1,1]上的最大值与最小值的和为﹣3.【分析】推导出f′(x)=2x(3x﹣a),x∈(0,+∞),当a≤0时,f′(x)=2x(3x ﹣a)>0,f(0)=1,f(x)在(0,+∞)上没有零点;当a>0时,f′(x)=2x(3x ﹣a)>0的解为x>,f(x)在(0,)上递减,在(,+∞)递增,由f(x)只有一个零点,解得a=3,从而f(x)=2x3﹣3x2+1,f′(x)=6x(x﹣1),x∈[﹣1,1],利用导数性质能求出f(x)在[﹣1,1]上的最大值与最小值的和.【解答】解:∵函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,∴f′(x)=2x(3x﹣a),x∈(0,+∞),①当a≤0时,f′(x)=2x(3x﹣a)>0,函数f(x)在(0,+∞)上单调递增,f(0)=1,f(x)在(0,+∞)上没有零点,舍去;②当a>0时,f′(x)=2x(3x﹣a)>0的解为x>,∴f(x)在(0,)上递减,在(,+∞)递增,又f(x)只有一个零点,∴f()=﹣+1=0,解得a=3,f(x)=2x3﹣3x2+1,f′(x)=6x(x﹣1),x∈[﹣1,1],f′(x)>0的解集为(﹣1,0),f(x)在(﹣1,0)上递增,在(0,1)上递减,f(﹣1)=﹣4,f(0)=1,f(1)=0,∴f(x)min=f(﹣1)=﹣4,f(x)max=f(0)=1,∴f(x)在[﹣1,1]上的最大值与最小值的和为:f(x)max+f(x)min=﹣4+1=﹣3.【点评】本题考查函数的单调性、最值,导数的运算及其应用,同时考查逻辑思维能力和综合应用能力,是中档题.12.f(x)=x3﹣3x2+2在区间[﹣1,1]上的最大值是2.【分析】求出函数的导函数,令导函数为0,求出根,判断根是否在定义域内,判断根左右两边的导函数符号,求出最值.【解答】解:f′(x)=3x2﹣6x=3x(x﹣2),令f′(x)=0得x=0或x=2(舍),当﹣1<x<0时,f′(x)>0;当0<x<1时,f′(x)<0,所以当x=0时,函数取得极大值即最大值,所以f(x)的最大值为2,故答案为:2.【点评】本题主要考查利用导数研究函数的最值,属于基础题.13.设实数λ>0,若对任意的x∈(0,+∞),不等式eλx﹣≥0恒成立,则λ的取值范围是[,+∞)【分析】法一:由题意可得(eλx﹣)min≥0,设f(x)=eλx﹣,x>0,求出导数和单调区间、极小值点m和最小值点,可令最小值为0,解方程可得m,λ,进而得到所求最小值;法二:由于y=eλx与y=互为反函数,故图象关于y=x对称,采用极限思想求解.【解答】解:实数λ>0,若对任意的x∈(0,+∞),不等式eλx﹣≥0恒成立,即为(eλx﹣)min≥0,设f(x)=eλx﹣,x>0,f′(x)=λeλx﹣,令f′(x)=0,可得eλx=,由指数函数和反比例函数在第一象限的图象,可得y=eλx和y=有且只有一个交点,设为(m,n),当x>m时,f′(x)>0,f(x)递增;当0<x<m时,f′(x)<0,f(x)递减.即有f(x)在x=m处取得极小值,且为最小值.即有eλm=,令eλm﹣=0,可得m=e,λ=.则当λ≥时,不等式eλx﹣≥0恒成立.则λ的最小值为另解:由于y=eλx与y=互为反函数,故图象关于y=x对称,考虑极限情况,y=x恰为这两个函数的公切线,此时斜率k=1,再用导数求得切线斜率的表达式为k=,即可得λ的最小值为.故答案为:[,+∞).【点评】本题考查不等式恒成立问题的解法,注意运用转化思想,以及运用导数求得单调区间、极值和最值,考查方程思想,以及运算能力,属于中档题.14.已知不等式e x﹣1≥kx+lnx,对于任意的x∈(0,+∞)恒成立,则k的最大值e﹣1【分析】不等式e x﹣1≥kx+lnx,对于任意的x∈(0,+∞)恒成立.等价于对于任意的x∈(0,+∞)恒成立.求得,(x>0),的最小值即可k 的取值.【解答】解:不等式e x﹣1≥kx+lnx,对于任意的x∈(0,+∞)恒成立.等价于对于任意的x∈(0,+∞)恒成立.令,(x>0),,令g(x)=e x(x﹣1)+lnx,(x>0),则g′(x)=xe x+>0∴g(x)在(0,+∞)单调递增,g(1)=0,∴x∈(0,1)时,g(x)<0,x∈(1,+∞)时,g(x)>0.∴x∈(0,1)时,f′(x)<0,x∈(1,+∞)时,f′(x)>0.∴x∈(0,1)时,f(x)单调递减,x∈(1,+∞)时,f(x)单调递增.∴f(x)min=f(1)=e﹣1∴k≤e﹣1.故答案为:e﹣1.【点评】本题考查不等式恒成立问题的解法,考查构造函数法,以及导数的运用:求单调性和最值,考查运算能力,属于中档题.15.函数y=x+2cos x在区间上的最大值是.【分析】对函数y=x+2cos x进行求导,研究函数在区间上的极值,本题极大值就是最大值.【解答】解:∵y=x+2cos x,∴y′=1﹣2sin x令y′=0而x∈则x=,当x∈[0,]时,y′>0.当x∈[,]时,y′<0.所以当x=时取极大值,也是最大值;故答案为【点评】本题考查了利用导数求闭区间上函数的最大值问题,属于导数的基础题.16.函数在(0,e2]上的最大值是.【分析】求出导函数,求解极值点,然后判断函数的单调性求解函数的最大值即可.【解答】解:函数,,令f′(x)=0,解得x=e.因为0<e<e2,函数f(x)在x∈(0,e]上单调递增,在x∈[e,e2]单调递减;x=e时,f(x)取得最大值,f(e)=.故答案为:.【点评】本题考查函数的导数的应用,熟练掌握利用导数研究函数的单调性、极值与最值是解题的关键.17.设函数与g(x)=a2lnx+b有公共点,且在公共点处的切线方程相同,则实数b的最大值为.【分析】设公共点坐标为(x0,y0),求出两个函数的导数,利用f'(x0)=g'(x0),推出,然后构造函数,利用导函数单调性求解函数的最值即可.【解答】解:设公共点坐标为(x0,y0),则,所以有f'(x0)=g'(x0),即,解出x0=a(舍去),又y0=f(x0)=g(x0),所以有,故,所以有,对b求导有b'=﹣2a(1+lna),故b关于a的函数在为增函数,在为减函数,所以当时b有最大值.故答案为:.【点评】本题考查函数的导数的应用,切线方程以及函数的单调性、最值的求法,考查计算能力.18.已知函数f(x)=xe x﹣mx,若f(x)≥lnx+x+1对x∈(0,+∞)恒成立,则实数m的取值范围是(﹣∞,0].【分析】函数f(x)=xe x﹣mx,若f(x)≥lnx+x+1对x∈(0,+∞)恒成立,等价于:m+1≤e x﹣,x∈(0,+∞)恒成立.令g(x)=e x﹣,x∈(0,+∞),利用导数研究函数的单调性极值与最值即可得出结论.另解:令g(x)=e x﹣x﹣1,可得g(x)在R上的单调性,原命题等价于:xe x﹣(x+lnx)﹣1≥mx.即e x+lnx﹣(x+lnx)﹣1≥mx.令h(x)=x+lnx,利用其单调性即可证明结论.【解答】解:函数f(x)=xe x﹣mx,若f(x)≥lnx+x+1对x∈(0,+∞)恒成立,等价于:m+1≤e x﹣,x∈(0,+∞)恒成立.令g(x)=e x﹣,x∈(0,+∞),则g′(x)=e x+=,令h(x)=x2e x+lnx,则h′(x)=(x2+2x)e x+>0,∴函数h(x)在x∈(0,+∞)上单调递增,又h()=﹣1<0,h(1)=e>0,∴存在唯一x0∈(,1),使得+lnx0=0,化为:x0=,两边取对数可得:x0+lnx0=ln(﹣lnx0)+(﹣lnx0),令u(x)=x+lnx,可得函数u(x)在x∈(0,+∞)上单调递增,因此x0=﹣lnx0,可得=.∴函数g(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增.∴g(x)min=g(x0)=﹣=﹣=1,∴m+1≤1,解得m≤0.故实数m的取值范围是(﹣∞,0].另解:令g(x)=e x﹣x﹣1,g′(x)=e x﹣1,可得g(x)在(﹣∞,0)上单调递减,在(0,+∞)上单调递增.∴g(x)=e x﹣x﹣1≥g(0)=0,即e x﹣x﹣1≥0.原命题等价于:xe x﹣(x+lnx)﹣1≥mx.即e x+lnx﹣(x+lnx)﹣1≥mx.令h(x)=x+lnx,可得:h(x)在(0,+∞)上单调递增.h()=﹣1<0,h(1)=1>0,∴存在唯一x0∈(,1),使得h(x0)=0,∴≥0,因此m≤0.故答案为:(﹣∞,0].【点评】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、同构法、等价转化方法,注意对于函数零点存在又无法求出的问题的解决方法,考查了推理能力与计算能力,属于难题.19.已知函数f(x)=ae x+ln﹣2(a>0),若f(x)>0恒成立,则实数a的取值范围为(e,+∞).【分析】求出e x+lna+x+lna>e ln(x+2)+ln(x+2),得到lna>ln(x+2)﹣x,令g(x)=ln (x+2)﹣x,(x>﹣2),根据函数的单调性求出g(x)的最大值,求出a的取值范围即可.【解答】解:f(x)=ae x+ln﹣2(a>0),函数f(x)的定义域是(﹣2,+∞),若f(x)>0恒成立,则e x+lna+lna>ln(x+2)+2,两边加上x得到:e x+lna+x+lna>x+2+ln(x+2)=e ln(x+2)+ln(x+2),∵y=e x+x单调递增,∴x+lna>ln(x+2),即lna>ln(x+2)﹣x,令g(x)=ln(x+2)﹣x,(x>﹣2),则g′(x)=﹣1=,∵x∈(﹣2,﹣1)时,g′(x)>0,g(x)递增,x∈(﹣1,+∞)时,g′(x)<0,g(x)递减,故lna>g(x)max=g(﹣1)=1,故a>e,故答案为:(e,+∞).【点评】本题考查了函数的单调性,最值问题,考查导数的应用以及函数恒成立问题,考查转化思想,是中档题.20.函数f(x)=(x+1)e x的最小值是【分析】求出函数f(x)=(x+1)e x的导数,进一步求出函数f(x)=(x+1)e x的单调区间,得到函数f(x)=(x+1)e x的最小值;【解答】解:由f(x)=(x+1)e x,得f′(x)=(x+2)e x;当x<﹣2时,f′(x)<0,当x>﹣2时,f′(x)>0,所以函数f(x)=(x+1)e x在(﹣∞,﹣2)上单调递减,在(﹣2,+∞)上单调递增;所以当x=﹣2时,函数f(x)=(x+1)e x有最小值;故答案为:.【点评】本题考查函数最值,考查利用函数导数分析函数单调性从而得到函数最值,属于基础题.21.已知函数f(x)=x﹣1﹣lnx,对定义域内的任意x都有f(x)≥kx﹣2,则实数k的取值范围是(﹣∞,1﹣].【分析】先分离出k,得到k≤1+﹣在x>0时恒成立,再处理g(x)=1+,x>0的最小值即可解决问题.【解答】解:∵f(x)=x﹣1﹣lnx≥kx﹣2,∴kx≤x+1﹣lnx,x>0,也即k≤1+﹣在x>0时恒成立.令g(x)=1+,x>0,则g′(x)=,x>0,令g′(x)=0⇒x=e2.易知g(x)在x∈(0,e2)上单调递减,g(x)在x∈(e2,+∞)上单调递增,故g(x)min=g(e2)=1﹣,∴k.故填:(﹣∞,1﹣].【点评】本题主要考查导数在处理最值问题中的简单应用,属于基础题.22.函数f(x)=x2+x﹣2lnx的最小值.【分析】求出函数的导数,利用函数的单调性转化求解函数的最小值.【解答】解:因为,易知f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,所以.故答案为:.【点评】本题考查函数的导数的应用,函数的最值的求法,考查计算能力.三.解答题(共3小题)23.已知函数f(x)=ae x﹣lnx﹣1.(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;(2)证明:当a≥时,f(x)≥0.【分析】(1)推导出x>0,f′(x)=ae x﹣,由x=2是f(x)的极值点,解得a=,从而f(x)=e x﹣lnx﹣1,进而f′(x)=,由此能求出f(x)的单调区间.(2)法一:当a≥时,f(x)≥﹣lnx﹣1,设g(x)=﹣lnx﹣1,x>0,则﹣,由此利用导数性质能证明当a≥时,f(x)≥0.法二:f(x)≥0,即a≥,x>0,令g(x)=,x>0,则,利用导数性质得g(x)在(0,1)单调递增,在(1,+∞)单调递减,g(x)≤g(1)=,由此能证明当a≥时,f(x)≥0.法三:当a时,f(x)≥,即只需证明,再通过构造函数,利用导数研究函数的单调性,即可求解.【解答】解:(1)∵函数f(x)=ae x﹣lnx﹣1.∴x>0,f′(x)=ae x﹣,∵x=2是f(x)的极值点,∴f′(2)=ae2﹣=0,解得a=,∴f(x)=e x﹣lnx﹣1,∴f′(x)=,当0<x<2时,f′(x)<0,当x>2时,f′(x)>0,∴f(x)的单调递减区间是(0,2),单调递增区间是(2,+∞).(2)证法一:当a≥时,f(x)≥﹣lnx﹣1,设g(x)=﹣lnx﹣1,x>0,则﹣,由﹣=0,得x=1,当0<x<1时,g′(x)<0,当x>1时,g′(x)>0,∴x=1是g(x)的最小值点,故当x>0时,g(x)≥g(1)=0,∴当a≥时,f(x)=ae x﹣lnx﹣1≥0.证法二:∵函数f(x)=ae x﹣lnx﹣1,∴f(x)≥0,即a≥,x>0,令g(x)=,x>0,则,x>0,∴g′(1)=0,当0<x<1时,,﹣lnx>0,g′(x)>0,当x>1时,,﹣lnx<0,g′(x)<0,∴g(x)在(0,1)单调递增,在(1,+∞)单调递减,g(x)≤g(1)=,∵a≥,∴a≥g(x).∴当a≥时,f(x)≥0.证法三:当a时,f(x)≥,即只需证明,由于,则e x≥elnex⇔xe x≥exlnex⇔xe x≥e lnex lnex,令g(x)=xe x,则g'(x)=e x(x+1)>0,即g(x)为增函数,又易证x≥lnex=lnx+1,故g(x)≥g(lnex),即xe x≥e lnex lnex成立,故当时,f(x)≥0.【点评】本题考查函数的单调性、导数的运算及其应用,同时考查逻辑思维能力和综合应用能力,是中档题.24.已知函数f(x)=e x cos x﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.【分析】(1)求出f(x)的导数,可得切线的斜率和切点,由点斜式方程即可得到所求方程;(2)求出f(x)的导数,再令g(x)=f′(x),求出g(x)的导数,可得g(x)在区间[0,]的单调性,即可得到f(x)的单调性,进而得到f(x)的最值.【解答】解:(1)函数f(x)=e x cos x﹣x的导数为f′(x)=e x(cos x﹣sin x)﹣1,可得曲线y=f(x)在点(0,f(0))处的切线斜率为k=e0(cos0﹣sin0)﹣1=0,切点为(0,e0cos0﹣0),即为(0,1),曲线y=f(x)在点(0,f(0))处的切线方程为y=1;(2)函数f(x)=e x cos x﹣x的导数为f′(x)=e x(cos x﹣sin x)﹣1,令g(x)=e x(cos x﹣sin x)﹣1,则g(x)的导数为g′(x)=e x(cos x﹣sin x﹣sin x﹣cos x)=﹣2e x•sin x,当x∈[0,],可得g′(x)=﹣2e x•sin x≤0,即有g(x)在[0,]递减,可得g(x)≤g(0)=0,则f(x)在[0,]递减,即有函数f(x)在区间[0,]上的最大值为f(0)=e0cos0﹣0=1;最小值为f()=cos﹣=﹣.【点评】本题考查导数的运用:求切线的方程和单调区间、最值,考查化简整理的运算能力,正确求导和运用二次求导是解题的关键,属于中档题.25.已知f(x)=a(x﹣lnx)+,a∈R.(Ⅰ)讨论f(x)的单调性;(Ⅱ)当a=1时,证明f(x)>f′(x)+对于任意的x∈[1,2]成立.【分析】(Ⅰ)求出原函数的导函数,然后对a分类分析导函数的符号,由导函数的符号确定原函数的单调性;(Ⅱ)方法一、构造函数F(x)=f(x)﹣f′(x),令g(x)=x﹣lnx,h(x)=.则F(x)=f(x)﹣f′(x)=g(x)+h(x),利用导数分别求g(x)与h(x)的最小值得到F(x)>恒成立.由此可得f(x)>f′(x)+对于任意的x∈[1,2]成立;方法二、不等式f(x)>f′(x)+对于任意的x∈[1,2]成立,即x﹣lnx+﹣>0,结合x﹣1≥lnx,利用放缩法可得x﹣lnx+﹣>,然后说明不等式右侧的代数式恒大于等于0,则结论得证.【解答】(Ⅰ)解:由f(x)=a(x﹣lnx)+,得f′(x)=a(1﹣)+==(x>0).若a≤0,则ax2﹣2<0恒成立,∴当x∈(0,1)时,f′(x)>0,f(x)为增函数,当x∈(1,+∞)时,f′(x)<0,f(x)为减函数;当a>0,若0<a<2,当x∈(0,1)和(,+∞)时,f′(x)>0,f(x)为增函数,当x∈(1,)时,f′(x)<0,f(x)为减函数;若a=2,f′(x)≥0恒成立,f(x)在(0,+∞)上为增函数;若a>2,当x∈(0,)和(1,+∞)时,f′(x)>0,f(x)为增函数,当x∈(,1)时,f′(x)<0,f(x)为减函数;(Ⅱ)方法一、解:∵a=1,令F(x)=f(x)﹣f′(x)=x﹣lnx﹣1=x﹣lnx+.令g(x)=x﹣lnx,h(x)=.则F(x)=f(x)﹣f′(x)=g(x)+h(x),由,可得g(x)≥g(1)=1,当且仅当x=1时取等号;又,设φ(x)=﹣3x2﹣2x+6,则φ(x)在[1,2]上单调递减,且φ(1)=1,φ(2)=﹣10,∴在[1,2]上存在x0,使得x∈(1,x0)时φ(x0)>0,x∈(x0,2)时,φ(x0)<0,∴函数h(x)在(1,x0)上单调递增;在(x0,2)上单调递减,由于h(1)=1,h(2)=,因此h(x)≥h(2)=,当且仅当x=2取等号,∴f(x)﹣f′(x)=g(x)+h(x)>g(1)+h(2)=,∴F(x)>恒成立.即f(x)>f′(x)+对于任意的x∈[1,2]成立.方法二、不等式f(x)>f′(x)+对于任意的x∈[1,2]成立,即x﹣lnx+﹣>0,令h(x)=x﹣lnx﹣1,得h′(x)=1﹣=,可得当x∈[1,2]时,h′(x)≥0,h(x)单调递增,h(x)≥0,即x﹣1≥lnx,于是,x﹣lnx+﹣≥=.当且仅当x=1时上式等号成立.又x∈[1,2]时,3x2﹣2>0,2﹣x≥0,2x3>0,∴x﹣lnx+﹣=≥0.等号当且仅当x=2时取得,故两个等号不能同时取到,∴x﹣lnx+﹣>0,即f(x)>f′(x)+对于任意的x∈[1,2]成立.【点评】本题考查利用导数加以函数的单调性,考查了利用导数求函数的最值,考查了分类讨论的数学思想方法和数学转化思想方法,是压轴题。
历年高考数学真题精选12利用导数研究函数的极值与最值
历年高考数学真题精选(按考点分类)专题十二 极值与最值(学生版)一.选择题(共13小题) (2017-新课标II)若x = -2是函数/(x) = (x 2+ox-l)e^的极值点,则/(劝的极小值为( A ・-1方程3(f(x))2+2af(x) + b = 0的不同实根个数是()(2016・四川)已知a 为函数f(x) = x 3 -I2x 的极小值点,贝lj“ = ( )(2015-新课标I)设函数加"("一1)一or + “,其中a<l,若存在唯一的整数兀。
使 得/(x o )<o,则Q 的取值范围是(6. (2013・浙江)已知壬为自然对数的底数,设函数/(x) = (^-l)(x-l/伙= 1,2),贝lj( )A. 当k = l 时,/(x)在x = l 处取得极小值B. 当& = 1时,/(x)在x = l 处取得极大值C. 当£ = 2时,“V)在x = l 处取得极小值D. 当《=2时,/⑴在x = l 处取得极大值7. (2013-福建)设函数/(X)的泄义域为X ()(A O^O)是/(x)的极大值点,以下结论一宦第]页(共13页)正确的是( )1.D ・1 2. (2013•安徽)若函数f(x) = x y+ax 2+bx + c 有极值点且贝I 」关于X 的A. 3 B ・4C. 5D ・63・(2013-辽宁)设函数/(X)满足 x 2f f(x) + 2Af(x) = -, f X (2) A. 有极大值,无极小值 B. 有极小值•无极大值 C. 既有极大值又有极小值D. 既无极大值也无极小值4. A ・-4B. -2C. 4D. 25. 3 A.[―討 3 3B •旨) 3 °•刘)C. -%是-/(x)的极小值点D. -竝是-/(-劝的极小值点8.(2013-湖北)已知函数f(x) = x(l f ix-ax)有两个极值点,则实数"的取值范用是( )A. (-QO.0)B. (0,丄)C. (0,1)D. (O.+x)29.(2013・安徽)已知函数f(x) = x3 + ax2+hx + c有两个极值点舛,心,若/(A-)=^,<X2,则关于A-的方程3(/(x))2 + 2af(x) + b = 0的不同实根个数为( )A. 3B. 4C. 5D. 610.(2013*湖北)已知a为常数,函数f (x) = x{bix - ax)有两个极值点舛,x2(x}<A,)( )A. /(Aj)>0./(x,)>-|B. /(x1)<0,/(x,)<—C. /(^)>0,/(^2)<-1D. /(^)<0,/^2)>-111.(2011 •福建)若“>0, b>0,且函数f(x) = 4x3-ux2-2bx + 2在x = l 处有极值,则"的最大值等于( )A. 2B. 3C. 6D. 912.(2008-广东)设ueR,若函数$=疋+心,xeRf有大于零的极值点,贝lj( )A・ci <—1 B・ 6/ > — 1 C・ a<——D・ci > ——e e13.(2011-湖南)设直线x = /与函数f(x) = x2,g(x) = /”x的图象分别交于点M, N,则当I MN I达到最小时/的值为( )A. 1B. -C.遁D.遲2 2 2二.填空题(共3小题)14.(2018-江苏)若函数/a)= 2x3-</A-2+l(</e/?)在(0,2)内有且只有一个零点,则/'(x)在[-1, 1]上的最大值与最小值的和为_•15.(2018*新课标I )已知函数/(A)= 2sin.v + sin2x,则/(x)的最小值是_______ .16.(2013-新课标I )若函数f(x) = (\-x2)(x2+ax + b)的图象关于直线x = -2对称,则/(x)的最大值为 ____ ・第2页(共13页)专题十二极值与最值(教师版)一.选择题(共13小题)I. (2017-新课标II)若x = —2是函数fdrX+Q-T 的极值点,则/⑴的极小值为A・-1 【答案】A【解析】函数/(x) = (x2 +心—1)严,可得f (x) = (2x + “)严+ (F + ov _ 1)严,x = -2是函数/(x) = (x2 +心-1)严的极值点,可得:•厂(_2) = (-4 + “)*'+(4_2^_1)*'=0.即7 + “ + (3_2^)= 0・解得a = _l・可得f\x} = (2x - De^1 + (x2 - x - De1-1 = (x2 + x - 2)^ ,函数的极值点为:x = -2, x = l,当x<-2或x>l时,f\x) > 0函数是增函数,A-e(-2J)时,函数是减函数,x = l时,函数取得极小值:f(1)=(12-1-1)^-*=-1.故选A.2. (2013-安徽)若函数f(x) = ^+ax z^bx + c有极值点舛,心,且/(x,) = x,,则关于x的方程3(/(x))2 + 2af(x) + b = 0的不同实根个数是( )A. 3 B・4 C・5 D・6【答案】A【解析】f\x) = 3x2 + lax + b , X],兀是方程3x2+2tix + b = 0的两根,由3(f(X))2 + 2cif (x) + /? = 0 •得兀或x = x2,即 3(/(x))2 + 2iif(x) + b = 0 的根为/(x) = x)或f(x2) = x2的解.如图所示由图象可知f(x) = x,有2个解,/(A) = x2有1个解,因此3(f(x))2+2iif(x) + h = 0的不同实根个数为3.3・(2013-辽宁)设函数/(X)满足x2f(x) + 2xf(x)^—9 f (2)=—,则x>0时,f(x)() x 8A.有极大值,无极小值B.有极小值,无极大值C.既有极大值又有极小值D.既无极大值也无极小值【答案】D【解析】•••函数 f(X)满足x2f\x} + 2xf(x) = —, :. [x2/(X)]1 =—X X令F(x) = x2f(x),则F f(x) = — , F (2) =4>/ (2)=:匚. x 2由x2f f(x) + 2^f(x) = —f得厂(x)=e ~2Hx).X •X令 0(x) = - 2F(x),则 0(0 = / — 2F(x) = "U ・x:.(p(x)在(0,2)上单调递减,在(2,+oc)上单调递增,「.祕朗的最小值为卩(2) =e2-2F (2) =0.二倾x)R.又x>0, ••-.WO..”)在(0,乜)单调递增.二.心)既无极大值也无极小值.4.(2016-四川)已知"为函数f(x) = x3-\2x的极小值点,则“=()A. -4B. -2C. 4D. 2【答案】D【解析】r(x) = 3x2-12; ,-.A<-2 时,f(x)>0, —2<xv2 时,f(x)<0tX>2时,f(x) > 0 :.-.x = 2是.f(x)的极小值点;又“为_/(x)的极小值点: a 故选D.5.(2015-新课标I)设函数f(x) = e x(2X-\)-a X + a,其中“<1,若存在唯一的整数兀使得/(x o)<0,则d的取值范围是(【答案】D 【解析】设g(x) =讥2兀-1) , y — ax —a > 由题意知存在唯一的整数X 。
高考数学专题:利用导数研究函数的极值、最值
高考数学专题:利用导数研究函数的极值、最值考点一 用导数研究函数的极值 【例1】 求下列函数的极值: (1)f (x )=x 2-2x -4ln x ;(2)f (x )=ax 3-3x 2+1-3a (a ∈R 且a ≠0). 解 (1)f (x )的定义域为(0,+∞), f ′(x )=2x -2-4x =2(x -2)(x +1)x ,令f ′(x )=0得x =2或-1(舍).随着x 的变化,f ′(x )与f (x )的变化情况如下表:∴f (x )有极小值f (2)(2)由题设知a ≠0,f ′(x )=3ax 2-6x =3ax ⎝ ⎛⎭⎪⎫x -2a .令f ′(x )=0得x =0或2a .当a >0时,随着x 的变化,f ′(x )与f (x )的变化情况如下表:∴f (x )极大值=f (0)=1-3a , f (x )极小值=f ⎝ ⎛⎭⎪⎫2a =-4a 2-3a +1.当a <0时,随着x 的变化,f ′(x )与f (x )的变化情况如下表:∴f (x )极大值=f (0)=1-3a ,f (x )极小值=f ⎝ ⎛⎭⎪⎫2a =-4a 2-3a +1.综上,f (x )极大值=f (0)=1-3a , f (x )极小值=f ⎝ ⎛⎭⎪⎫2a =-4a 2-3a +1.规律方法 函数极值的两类热点问题(1)求函数f (x )极值这类问题的一般解题步骤为:①确定函数的定义域;②求导数f ′(x );③解方程f ′(x )=0,求出函数定义域内的所有根;④列表检验f ′(x )在f ′(x )=0的根x 0左右两侧值的符号,如果左正右负,那么f (x )在x 0处取极大值,如果左负右正,那么f (x )在x 0处取极小值. (2)由函数极值求参数的值或范围.讨论极值点有无(个数)问题,转化为讨论f ′(x )=0根的有无(个数).然后由已知条件列出方程或不等式求出参数的值或范围,特别注意:极值点处的导数为0,而导数为0的点不一定是极值点,要检验极值点两侧导数是否异号.【训练1】 (1)设函数f (x )=ax 3-2x 2+x +c .若f (x )在R 上无极值点,则实数a 的取值范围为________.(2)设a ∈R ,若函数y =e ax +3x ,x ∈R 有大于零的极值点,则( ) A.a >-3 B.a <-3 C.a >-13D.a <-13解析 (1)由题得f ′(x )=3ax 2-4x +1.若f (x )在R 上无极值点,则f (x )在R 上是单调函数,即f ′(x )≥0或f ′(x )≤0恒成立. ①当a =0时,f ′(x )=-4x +1,显然不满足条件;②当a ≠0时,f ′(x )≥0或f ′(x )≤0恒成立的充要条件是Δ=(-4)2-4×3a ×1≤0,即16-12a ≤0,解得a ≥43.综上,实数a 的取值范围为⎣⎢⎡⎭⎪⎫43,+∞.(2)y ′=f ′(x )=a e ax +3,当a ≥0时,f ′(x )>0在R 上恒成立,∴f (x )无极值点; 当a <0时,令f ′(x )=0得x =1a ln ⎝ ⎛⎭⎪⎫-3a ,∴1a ln ⎝ ⎛⎭⎪⎫-3a >0得a <-3,故选B.答案 (1)⎣⎢⎡⎭⎪⎫43,+∞ (2)B考点二 利用导数研究函数的最值【例2】 (·郑州质检)已知函数f (x )=(4x 2+4ax +a 2)x ,其中a <0. (1)当a =-4时,求f (x )的单调递增区间; (2)若f (x )在区间[1,4]上的最小值为8,求a 的值. 解 (1)当a =-4时,由f ′(x )=2(5x -2)(x -2)x=0得x =25或x =2,由f ′(x )>0得x ∈⎝ ⎛⎭⎪⎫0,25或x ∈(2,+∞),故函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,25和(2,+∞).(2)因为f ′(x )=(10x +a )(2x +a )2x,a <0,由f ′(x )=0得x =-a 10或x =-a2.当x ∈⎝ ⎛⎭⎪⎫0,-a 10时,f (x )单调递增.当x ∈⎝ ⎛⎭⎪⎫-a10,-a 2时,f (x )单调递减;当x ∈⎝ ⎛⎭⎪⎫-a 2,+∞时,f (x )单调递增.易知f (x )=(2x +a )2x ≥0,且f ⎝ ⎛⎭⎪⎫-a 2=0.①当-a2≤1时,即-2≤a <0时,f (x )在[1,4]上的最小值为f (1),由f (1)=4+4a +a 2=8,得a =±22-2,均不符合题意. ②当1<-a2≤4时,即-8≤a <-2时,f (x )在[1,4]上的最小值为f ⎝ ⎛⎭⎪⎫-a 2=0,不符合题意.③当-a2>4时,即a <-8时,f (x )在[1,4]上的最小值可能在x =1或x =4处取得,而f (1)≠8, 由f (4)=2(64+16a +a 2)=8得a =-10或a =-6(舍去),当a =-10时,f (x )在(1,4)上单调递减,f (x )在[1,4]上的最小值为f (4)=8,符合题意. 综上有,a =-10.规律方法 (1)求函数f (x )在[a ,b ]上的最大值和最小值的步骤:①求函数在(a ,b )内的极值;②求函数在区间端点的函数值f (a ),f (b );③将函数f (x )的极值与 f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.(2)含参数的函数的最值一般不通过比值求解,而是先讨论函数的单调性,再根据单调性求出最值.含参函数在区间上的最值通常有两类:一是动极值点定区间,二是定极值点动区间,这两类问题一般根据区间与极值点的位置关系来分类讨论. 【训练2】 已知函数f (x )=(ax -2)e x 在x =1处取得极值. (1)求a 的值;(2)求函数在区间[m ,m +1]上的最小值. 解 (1)f ′(x )=(ax +a -2)e x , 由已知得f ′(1)=(a +a -2)e =0, 解得a =1,经检验a =1符合题意, 所以a 的值为1.(2)由(1)得f (x )=(x -2)e x ,f ′(x )=(x -1)e x . 令f ′(x )>0得x >1,令f ′(x )<0得x <1.所以函数f (x )在(-∞,1)上递减,在(1,+∞)上递增.当m ≥1时,f (x )在[m ,m +1]上递增,f (x )min =f (m )=(m -2)e m ,当0<m <1时,f (x )在[m ,1]上递减,在(1,m +1]上递增,f (x )min =f (1)=-e. 当m ≤0时,m +1≤1,f (x )在[m ,m +1]上单调递减, f (x )min =f (m +1)=(m -1)e m +1. 综上,f (x )在[m ,m +1]上的最小值为f (x )min =⎩⎨⎧(m -2)e m ,m ≥1-e ,0<m <1,(m -1)e m +1,m ≤0.考点三用导数解决函数的优化问题【例3】某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=ax-3+10(x-6)2,其中3<x<6,a为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求a的值;(2)若该商品的成本为3元千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.解(1)因为x=5时,y=11,所以a2+10=11,a=2.(2)由(1)知,该商品每日的销售量为y=2x-3+10(x-6)2. 所以商场每日销售该商品所获得的利润为f(x)=(x-3)[2x-3+10(x-6)2]=2+10(x-3)(x-6)2,3<x<6.从而,f′(x)=10[(x-6)2+2(x-3)(x-6)]=30(x-4)(x-6).于是,当x变化时,f′(x),f(x)的变化情况如下表:x(3,4)4(4,6)f′(x)+0-f(x)单调递增极大值42单调递减由上表可得,x=4所以,当x=4时,函数f(x)取得最大值,且最大值等于42.答:当销售价格为4元千克时,商场每日销售该商品所获得的利润最大.规律方法函数的优化问题即实际问题中的最值问题,其一般解题步骤为:一设:设出自变量、因变量;二列:列出函数关系式,并写出定义域;三解:解出函数的最值,一般常用导数求解;四答:回答实际问题.【训练3】要做一个圆锥形漏斗,其母线长为30 cm,要使其体积最大,则其高应为()A.12 3 cmB.10 3 cmC.8 3 cmD.5 3 cm解析设圆锥的高为x cm,则底面半径为900-x2,∴圆锥体积V=13π(900-x2)·x(0<x<30),∴V′=π(300-x2),令V′=0得x=10 3.当0<x<103时,V′>0;当103<x<30时,V′<0,∴当x=103时,V取最大值.答案 B[思想方法]1.求函数的极值、最值,通常转化为对函数的单调性的分析讨论,所以,研究函数的单调性、极值、最值归根结底都是对函数单调性的研究.2.研究函数的性质借助数形结合的方法有助于问题的解决.函数的单调性常借助导函数的图象分析导数的正负;函数的极值常借助导函数的图象分析导函数的变号零点;函数的最值常借助原函数图象来分析最值点.3.解函数的优化问题关键是从实际问题中抽象出函数关系,并求出函数的最值.[易错防范]1.求函数的极值、函数的优化问题易忽视函数的定义域.2.已知极值点求参数时,由极值点处导数为0求出参数后,易忽视对极值点两侧导数异号的检验.3.由极值、最值求参数时,易忽视参数应满足的前提范围(如定义域),导致出现了增解.基础巩固题组(建议用时:40分钟)一、选择题1.(·四川卷)已知a为函数f(x)=x3-12x的极小值点,则a=()A.-4B.-2C.4D.2解析f′(x)=3x2-12,∴x<-2时,f′(x)>0,-2<x<2时,f′(x)<0,x>2时,f ′(x )>0,∴x =2是f (x )的极小值点. 答案 D2.函数f (x )=12x 2-ln x 的最小值为( ) A.12B.1C.0D.不存在解析 f ′(x )=x -1x =x 2-1x ,且x >0.令f ′(x )>0,得x >1;令f ′(x )<0,得0<x <1.∴f (x )在x =1处取得极小值也是最小值,且f (1)=12-ln 1=12. 答案 A3.(·合肥模拟)已知函数f (x )=x 3+bx 2+cx 的图象如图所示,则x 21+x 22等于( ) A.23 B.43 C.83D.163解析 由图象可知f (x )的图象过点(1,0)与(2,0),x 1,x 2是函数f (x )的极值点,因此1+b +c =0,8+4b +2c =0,解得b =-3,c =2,所以f (x )=x 3-3x 2+2x ,所以f ′(x )=3x 2-6x +2.x 1,x 2是方程f ′(x )=3x 2-6x +2=0的两根,因此x 1+x 2=2,x 1x 2=23,所以x 21+x 22=(x 1+x 2)2-2x 1x 2=4-43=83. 答案 C4.做一个无盖的圆柱形水桶,若要使其体积是27π,且用料最省,则圆柱的底面半径为( ) A.3B.4C.6D.5解析 设圆柱的底面半径为R ,母线长为l ,则V =πR 2l =27π,∴l =27R 2,要使用料最省,只须使圆柱的侧面积与下底面面积之和S 最小. 由题意,S =πR 2+2πRl =πR 2+2π·27R .∴S ′=2πR -54πR 2,令S ′=0,得R =3,则当R =3时,S 最小.故选A. 答案 A5.(·东北四校联考)已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的取值范围是( ) A.(-1,2) B.(-∞,-3)∪(6,+∞) C.(-3,6)D.(-∞,-1)∪(2,+∞)解析 ∵f ′(x )=3x 2+2ax +(a +6), 由已知可得f ′(x )=0有两个不相等的实根. ∴Δ=4a 2-4×3(a +6)>0,即a 2-3a -18>0, ∴a >6或a <-3. 答案 B 二、填空题6.(·肇庆模拟)已知函数f (x )=x 3+ax 2+3x -9,若x =-3是函数f (x )的一个极值点,则实数a =________.解析 f ′(x )=3x 2+2ax +3.依题意知,-3是方程f ′(x )=0的根, 所以3×(-3)2+2a ×(-3)+3=0,解得a =5. 经检验,a =5时,f (x )在x =-3处取得极值. 答案 57.(·北京卷改编)设函数f (x )=⎩⎨⎧x 3-3x ,x ≤0,-2x ,x >0,则f (x )的最大值为________.解析 当x >0时,f (x )=-2x <0;当x ≤0时,f ′(x )=3x 2-3=3(x -1)(x +1),当x <-1时,f ′(x )>0,f (x )是增函数,当-1<x <0时,f ′(x )<0,f (x )是减函数.∴f (x )≤f (-1)=2,∴f (x )的最大值为2. 答案 28.设a ∈R ,若函数y =e x +ax 有大于零的极值点,则实数a 的取值范围是________. 解析 ∵y =e x +ax ,∴y ′=e x +a . ∵函数y =e x +ax 有大于零的极值点, 则方程y ′=e x +a =0有大于零的解, ∵x >0时,-e x <-1,∴a =-e x <-1. 答案 (-∞,-1) 三、解答题9.(·安徽卷)已知函数f(x)=ax(x+r)2(a>0,r>0).(1)求f(x)的定义域,并讨论f(x)的单调性;(2)若ar=400,求f(x)在(0,+∞)内的极值.解(1)由题意可知x≠-r,所求的定义域为(-∞,-r)∪(-r,+∞).f(x)=ax(x+r)2=axx2+2rx+r2,f′(x)=a(x2+2rx+r2)-ax(2x+2r)(x2+2rx+r2)2=a(r-x)(x+r)(x+r)4.所以当x<-r或x>r时,f′(x)<0;当-r<x<r时,f′(x)>0.因此,f(x)的单调递减区间为(-∞,-r),(r,+∞);f(x)的单调递增区间为(-r,r).(2)由(1)的解答可知f′(r)=0,f(x)在(0,r)上单调递增,在(r,+∞)上单调递减. 因此,x=r是f(x)的极大值点,所以f(x)在(0,+∞)内的极大值为f(r)=ar(2r)2=a4r=4004=100,f(x)在(0,+∞)内无极小值;综上,f(x)在(0,+∞)内极大值为100,无极小值. 10.已知函数f(x)=(x-k)e x.(1)求f(x)的单调区间;(2)求f(x)在区间[0,1]上的最小值.解(1)由题意知f′(x)=(x-k+1)e x.令f′(x)=0,得x=k-1.f(x)与f′(x)随x的变化情况如下表:所以,f(x)(2)当k-1≤0,即k≤1时,f(x)在[0,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (0)=-k ; 当0<k -1<1,即1<k <2时,f (x )在[0,k -1]上单调递减,在[k -1,1]上单调递增, 所以f (x )在区间[0,1]上的最小值为f (k -1)=-e k -1; 当k -1≥1,即k ≥2时,f (x )在[0,1]上单调递减, 所以f (x )在区间[0,1]上的最小值为f (1)=(1-k )e. 综上,当k ≤1时,f (x )在[0,1]上的最小值为f (0)=-k ; 当1<k <2时,f (x )在[0,1]上的最小值为 f (k -1)=-e k -1;当k ≥2时,f (x )在[0,1]上的最小值为f (1)=(1-k )e.能力提升题组 (建议用时:25分钟)11.(·石家庄质检)若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,若t =ab ,则t 的最大值为( ) A.2B.3C.6D.9解析 f ′(x )=12x 2-2ax -2b ,则f ′(1)=12-2a -2b =0,则a +b =6, 又a >0,b >0,则t =ab ≤⎝⎛⎭⎪⎫a +b 22=9,当且仅当a =b =3时取等号. 答案 D12.(·长沙调研)若函数f (x )=13x 3+x 2-23在区间(a ,a +5)上存在最小值,则实数a 的取值范围是( ) A.[-5,0) B.(-5,0) C.[-3,0)D.(-3,0)解析 由题意,f ′(x )=x 2+2x =x (x +2),故f (x )在(-∞,-2),(0,+∞)上是增函数,在(-2,0)上是减函数,作出其图象如图所示. 令13x 3+x 2-23=-23得,x =0或x =-3,则结合图象可知,⎩⎨⎧-3≤a <0,a +5>0,解得a ∈[-3,0),故选C. 答案 C13.函数f (x )=x 3-3ax +b (a >0)的极大值为6,极小值为2,则f (x )的单调递减区间是________.解析 令f ′(x )=3x 2-3a =0,得x =±a , 则f (x ),f ′(x )随x 的变化情况如下表:从而⎩⎨⎧(a )3-3a a +b =2,⎩b =4.所以f (x )的单调递减区间是(-1,1). 答案 (-1,1)14.(·济南模拟)设函数f (x )=ln(x +a )+x 2.(1)若当x =-1时,f (x )取得极值,求a 的值,并讨论f (x )的单调性; (2)若f (x )存在极值,求a 的取值范围,并证明所有极值之和大于ln e 2. 解 (1)f ′(x )=1x +a+2x ,依题意,有f ′(-1)=0,故a =32. 从而f ′(x )=(2x +1)(x +1)x +32,且f (x )的定义域为⎝ ⎛⎭⎪⎫-32,+∞, 当-32<x <-1时,f ′(x )>0; 当-1<x <-12时,f ′(x )<0; 当x >-12时,f ′(x )>0.∴f (x )在区间⎝ ⎛⎭⎪⎫-32,-1,⎝ ⎛⎭⎪⎫-12,+∞上单调递增,在⎝ ⎛⎭⎪⎫-1,-12上单调递减.(2)f (x )的定义域为(-a ,+∞),f ′(x )=2x 2+2ax +1x +a .方程2x 2+2ax +1=0的判别式Δ=4a 2-8,①若Δ≤0,即-2≤a ≤2时,f ′(x )≥0,故f (x )无极值.②若Δ>0,即a <-2或a >2,则2x 2+2ax +1=0有两个不同的实根,x 1=-a -a 2-22,x 2=-a +a 2-22.当a <-2时,x 1<-a ,x 2<-a , 故f ′(x )>0在定义域上恒成立, 故f (x )无极值.当a >2时,-a <x 1<x 2,故f (x )在(-a ,x 1)上递增,(x 1,x 2)上递减,(x 2,+∞)上递增. 故f (x )在x =x 1,x =x 2取得极值.综上,f (x )存在极值时,a 的取值范围为(2,+∞). 由上可知,x 1+x 2=-a ,x 1x 2=12.所以,f (x )的极值之和为f (x 1)+f (x 2)=ln(x 1+a )+x 21+ln(x 2+a )+x 22 =ln(-x 2)+ln(-x 1)+(x 21+x 22)=ln(x 1x 2)+(x 1+x 2)2-2x 1x 2 =ln 12+a 2-1>ln 12+(2)2-1=ln e 2.。
利用导数研究函数的极值和最值(原卷版)
考点22 利用导数研究函数的极值和最值【命题解读】从高考对导数的要求看,考查分三个层次,一是考查导数公式,求导法则与导数的几何意义;二是导数的简单应用,包括求函数的单调区间、极值、最值等;三是综合考查,如研究函数零点、证明不等式、恒成立问题、求参数范围等.除压轴题,同时在小题中也加以考查,难度控制在中等以上.应特别是注意将导数内容和传统内容中有关不等式、数列、函数图象及函数单调性有机结合,设计综合题,考查学生灵活应用数学知识分析问题、解决问题的能力【基础知识回顾】1、函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a 附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b 附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.2、函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.3、常用结论1.若函数f(x)的图象连续不断,则f(x)在[a,b]上一定有最值.2.若函数f(x)在[a,b]上是单调函数,则f(x)一定在区间端点处取得最值.3.若函数f(x)在区间(a,b)内只有一个极值点,则相应的极值点一定是函数的最值点.1、函数f(x)=x2-ln x的最小值为()A.1+ln 2 B.1-ln 2C.1+ln 22D.1-ln 222、函数f (x )的定义域为R ,导函数f ′(x )的图象如图所示,则函数f (x )( )A .无极大值点、有四个极小值点B .有三个极大值点、一个极小值点C .有两个极大值点、两个极小值点D .有四个极大值点、无极小值点 3、设函数f (x )=2x +ln x ,则( ) A .x =12为f (x )的极大值点 B .x =12为f (x )的极小值点 C .x =2为f (x )的极大值点 D .x =2为f (x )的极小值点4、已知a 为函数f (x )=x 3-12x 的极小值点,则a 等于( ) A .-4 B .-2 C .4 D .25、函数()()3230f x x a x a a =-+>的极大值是正数,极小值是负数,则a 的取值范围是________.考向一 利用导数研究函数的极值例1、已知函数()32331(R,0)f x ax x a a a=-+-∈≠,求函数()f x 的极大值与极小值.变式1、已知函数f(x)=1x +ln x ,求函数f(x)的极值.方法总结:(1)求函数()f x 极值的步骤: ①确定函数的定义域; ②求导数()f x ';③解方程()0f x '=,求出函数定义域内的所有根;④列表检验在()0f x '=的根0x 左右两侧值的符号,如果左正右负,那么()f x 在0x 处取极大值,如果左负右正,那么()f x 在0x 处取极小值.(2)若函数()y f x =在区间内有极值,那么()y f x =在(),a b 内绝不是单调函数,即在某区间上单调函数没有极值.考向二 利用导数研究函数的最值例2、(2020届山东省潍坊市高三上期中)已知函数. (1)当时,求曲线在点处的切线方程;(2)若函数处有极小值,求函数在区间上的最大值.变式1、已知a R ∈,函数()ln 1af x x x=+-. ()32112f x x x ax =-++2a =()y f x =()()0,0f ()1f x x =在()f x 32,2⎡⎤-⎢⎥⎣⎦(1)当1a =时,求曲线()y f x =在点()()2,2f 处的切线方程; (2)求()f x 在区间(]0,e 上的最小值.变式2、已知函数f (x )=ax +ln x ,其中a 为常数.(1)当a =-1时,求f (x )的最大值;(2)若f (x )在区间(0,e]上的最大值为-3,求a 的值.考向三 极值(最值)的综合性问题例3、已知函数()323(,)f x ax bx x a b R =+-∈在1x =-处取得极大值为2.(1) 求函数()f x 的解析式;(2) 若对于区间[]2,2-上任意两个自变量的值12,x x 都有()()12f x f x c -≤,求实数c 的最小值.变式1、已知函数f (x )=ax 2+bx +ce x(a >0)的导函数f ′(x )的两个零点为-3和0. (1)求f (x )的单调区间;(2)若f (x )的极小值为-e 3,求f (x )在区间[-5,+∞)上的最大值.变式2、(2020届山东省枣庄市高三上学期统考)已知函数(是自然对数的底数).(Ⅰ)讨论极值点的个数;(Ⅰ)若是的一个极值点,且,证明:.方法总结: 1. 当面对不等式恒成立(有解)问题时,往往是转化成函数利用导数求最值; 2. 当面对多次求导时,一定要清楚每次求导的目的是什么.1、(2017年高考全国Ⅱ卷理数)若2x =-是函数21()(1)e x f x x ax -=+-的极值点,则()f x 的极小值为A .1-B .32e --C .35e -D .12、【2019年高考北京理数】设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________.()()211e 22xf x x ax ax =+++e ()f x ()002x x ≠-()f x ()22e f -->()01f x≤3、【2018年高考全国Ⅰ卷理数】已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.4、(2020届山东实验中学高三上期中)已知函数且a≠0). (1)求曲线y=f (x )在点(1,f (1))处的切线方程; (2)若函数f (x )的极小值为,试求a 的值.5、(2020全国Ⅰ理21)已知函数()2e xf x ax x =+-.(1)当1a =时,讨论()f x 的单调性; (2)当0x ≥时,()3112f x x ≥+,求a 的取值范围.6、(2020全国Ⅱ文21)已知函数()2ln 1f x x =+. (1)若()2f x x c ≤+,求c 的取值范围; (2)设0a >,讨论函数()()()f x f a g x x a-=-的单调性.22()(24)ln 4(f x ax x x ax x a R =+--∈1a。
高三数学利用导数求最值和极值试题答案及解析
高三数学利用导数求最值和极值试题答案及解析1.函数在上的最大值为2,则a的取值范围是()A.B.C.D.【答案】D【解析】先画出分段函数f(x)的图象,如图.当x∈[-2,0]上的最大值为2;欲使得函数在上的最大值为2,则当时,的值必须小于等于2,即,解得:,故选D.【考点】函数最值的应用.2.若函数f(x)=x3-3x在(a,6-a2)上有最小值,则实数a的取值范围是()A.(-,1)B.[-,1)C.[-2,1)D.(-2,1)【答案】C【解析】f′(x)=3x2-3=3(x+1)(x-1),令f′(x)=0,得x=±1,所以f(x)的大致图象如图所示,f(1)=-2,f(-2)=-2,若函数f(x)在(a,6-a2)上有最小值,则,解得-2≤a<1.3.定义在[1,+∞)上的函数f(x)满足:①f(2x)=cf(x)(c为正常数);②当2≤x≤4时,f(x)=1-|x-3|.若函数的所有极大值点均落在同一条直线上,则c=________.【答案】1或2【解析】易知当2≤x≤4时,其极大值点为(3,1);当1≤x≤2时,2≤2x≤4,从而由条件得f(x)=f(2x)=(1-|2x-3|).因为c>0,故极大值点为;当2≤x≤4时,4≤2x≤8,从上述步骤得f(2x)=cf(x)=c(1-|4x-3|).因为c>0,故极大值点为(6,c);上述三点在同一直线上,所以=,解得c=2或1.4.已知函数,,其中.(1)若是函数的极值点,求实数的值;(2)若对任意的(为自然对数的底数)都有成立,求实数的取值范围.【答案】(1);(2).【解析】(1)利用函数极值点的导数等于0,且此点的左侧和右侧导数的符号相反,求得实数的值;(2)问题等价于对任意的时,都有,分类讨论,利用导数的符号判断函数的单调性,由单调性求出函数的最小值及的最大值,根据它们之间的关系求出实数的取值范围.试题解析:(1)∵,其定义域为,∴.∵是函数的极值点,∴,即.∵,∴.经检验当时,是函数的极值点,∴.(2)对任意的都有成立等价于对任意的,都有.当时,.∴函数在上是增函数,∴.∵,且,.①当且时,,∴函数在上是增函数,∴.由,得a≥,又,∴不合题意.②当时,若,则,若,则.∴函数在上是减函数,在上是增函数.∴.由,得.又,∴.③当且时,,函数在上是减函数.∴.由,得.又,∴.综上所述,的取值范围为.【考点】1、函数在某点取得极值的条件;2、利用导数求闭区间上函数的最值.5.已知常数a,b,c都是实数,f(x)=ax3+bx2+cx-34的导函数为f′ (x),f′(x)≤0的解集为{x|-2≤x≤3},若f(x)的极小值等于-115,则a的值是()A.-B.C.2D.5【答案】C【解析】依题意得f′(x)=3ax2+2bx+c≤0的解集是[-2,3],于是有3a>0,-2+3=-,-2×3=,解得b=-,c=-18a,函数f(x)在x=3处取得极小值,于是有f(3)=27a+9b+3c-34=-115,-a=-81,a=2,故选C.6.设函数f(x)的定义域为R,x0(x≠0)是f(x)的极大值点,以下结论一定正确的是()A.∀x∈R,f(x)≤f(x)B.-x是f(-x)的极小值点C.-x是-f(x)的极小值点D.-x是-f(-x)的极小值点【答案】D【解析】取函数f(x)=x3-x,则x=-为f(x)的极大值点,但f(3)>f,排除A.取函数f(x)=-(x-1)2,则x=1是f(x)的极大值点,但-1不是f(-x)的极小值点,排除B;-f(x)=(x-1)2,-1不是-f(x)的极小值点,排除C.7.设函数f(x)=+ln x,则().A.x=为f(x)的极大值点B.x=为f(x)的极小值点C.x=2为f(x)的极大值点D.x=2为f(x)的极小值点【答案】D【解析】∵f(x)=+ln x(x>0),∴f′(x)=-+.由f′(x)=0解得x=2.当x∈(0,2)时,f′(x)<0,f(x)为减函数;当x∈(2,+∞)时,f′(x)>0,f(x)为增函数.∴x=2为f(x)的极小值点.8.已知函数在时有极值0,则.【答案】11【解析】对函数求导得,由题意得 ,即解得: 或,当时,故,【考点】函数的极值9.已知函数在处有极值,则等于( )A.或B.C.或18D.【答案】A【解析】,依题意,解得故当时,;当时,.故答案为11或18.【考点】函数的极值.10.已知函数在处取得极大值,则的值为 .【答案】.【解析】,,依题意知,于是有,,整理得,解得或.①当时,,此时,此时函数在处取得极小值,不合乎题意!②当时,,此时,此时函数在处取得极大值,合乎题意!故.【考点】函数的极值11.定义在上的函数满足:①(为正常数);②当时,.若函数的所有极大值点均在同一条直线上,则_____________.【答案】或.【解析】当时,,故函数在上单调递增,在上单调递增,故函数在处取得极大值,当时,则,此时,此时,函数在处取得极大值,对任意,当时,函数在处取得极大值,故函数的所有极大值点为,由于这些极大值点均在同一直线上,则直线的斜率为定值,即为定值,故或,即或.【考点】1.函数的极值;2.直线的斜率12.设函数,其中为实常数.(Ⅰ)当时,求函数的单调区间;(Ⅱ)讨论在定义域上的极值.【答案】(Ⅰ)单调递增区间为,单减区间是;(Ⅱ)当时,无极值;当时,在点处取得极大值,且为,无极小值.【解析】(Ⅰ)先把代入,对函数求导,令导数大于0,求出函数的单调递增区间,令导数小于0,求出函数的单调递减区间(Ⅱ)对参数进行讨论,分和两种情况.试题解析:(Ⅰ)由得,;由得,.所以函数的单调递增区间为,单减区间是. 6分(Ⅱ)当时, ,在上始终单增,无极值.当时,,. 9分当时,;当时,.此时,在点处取得极大值,且为,无极小值. 12分【考点】1.利用导数求单调区间;2.利用导数求极值.13.函数的最大值记为g(t),当t在实数范围内变化时g(t)最小值为【答案】10【解析】因为函数的最大值记为g(t),当t在实数范围内变化时g(t)最小值为10.14.已知函数在点x=1处连续,则a的值是()A.2B.3C.-2D.-4【答案】B【解析】解:因为函数在店x=1处连续,因此该点的函数值等于该点的极限值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
历年高考数学真题精选(按考点分类)专题十二 极值与最值(学生版)一.选择题(共13小题)1.(2017•新课标Ⅱ)若2x =-是函数21()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为() A .1-B .32e --C .35e -D .12.(2013•安徽)若函数32()f x x ax bx c =+++有极值点1x ,2x ,且11()f x x =,则关于x 的方程23(())2()0f x af x b ++=的不同实根个数是( ) A .3B .4C .5D .63.(2013•辽宁)设函数()f x 满足2()2()x e x f x xf x x '+=,f (2)28e =,则0x >时,()(f x)A .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值也无极小值4.(2016•四川)已知a 为函数3()12f x x x =-的极小值点,则(a = ) A .4-B .2-C .4D .25.(2015•新课标Ⅰ)设函数()(21)x f x e x ax a =--+,其中1a <,若存在唯一的整数0x 使得0()0f x <,则a 的取值范围是( ) A .3[,1)2e-B .33[,)24e -C .33[,)24e D .3[,1)2e6.(2013•浙江)已知e 为自然对数的底数,设函数()(1)(1)(1,2)x k f x e x k =--=,则( ) A .当1k =时,()f x 在1x =处取得极小值 B .当1k =时,()f x 在1x =处取得极大值 C .当2k =时,()f x 在1x =处取得极小值 D .当2k =时,()f x 在1x =处取得极大值7.(2013•福建)设函数()f x 的定义域为R ,00(0)x x ≠是()f x 的极大值点,以下结论一定正确的是( ) A .x R ∀∈,0()()f x f x B .0x -是()f x -的极小值点 C .0x -是()f x -的极小值点D .0x -是()f x --的极小值点8.(2013•湖北)已知函数()()f x x lnx ax =-有两个极值点,则实数a 的取值范围是( ) A .(,0)-∞B .1(0,)2C .(0,1)D .(0,)+∞9.(2013•安徽)已知函数32()f x x ax bx c =+++有两个极值点1x ,2x ,若112()f x x x =<,则关于x 的方程23(())2()0f x af x b ++=的不同实根个数为( ) A .3B .4C .5D .610.(2013•湖北)已知a 为常数,函数()()f x x lnx ax =-有两个极值点1x ,212()(x x x < ) A .121()0,()2f x f x >>-B .121()0,()2f x f x <<-C .121()0,()2f x f x ><-D .121()0,()2f x f x <>-11.(2011•福建)若0a >,0b >,且函数32()422f x x ax bx =--+在1x =处有极值,则ab 的最大值等于( ) A .2B .3C .6D .912.(2008•广东)设a R ∈,若函数x y e ax =+,x R ∈,有大于零的极值点,则( ) A .1a <-B .1a >-C .1a e<-D .1a e>-13.(2011•湖南)设直线x t =与函数2()f x x =,()g x lnx =的图象分别交于点M ,N ,则当||MN 达到最小时t 的值为( )A .1B .12C D 二.填空题(共3小题)14.(2018•江苏)若函数32()21()f x x ax a R =-+∈在(0,)+∞内有且只有一个零点,则()f x 在[1-,1]上的最大值与最小值的和为 .15.(2018•新课标Ⅰ)已知函数()2sin sin 2f x x x =+,则()f x 的最小值是 . 16.(2013•新课标Ⅰ)若函数22()(1)()f x x x ax b =-++的图象关于直线2x =-对称,则()f x 的最大值为 .历年高考数学真题精选(按考点分类)专题十二 极值与最值(教师版)一.选择题(共13小题)1.(2017•新课标Ⅱ)若2x =-是函数21()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( ) A .1- B .32e -- C .35e - D .1【答案】A【解析】函数21()(1)x f x x ax e -=+-,可得121()(2)(1)x x f x x a e x ax e --'=+++-, 2x =-是函数21()(1)x f x x ax e -=+-的极值点,可得:33(2)(4)(421)0f a e a e --'-=-++--=,即4(32)0a a -++-=.解得1a =-. 可得121()(21)(1)x x f x x e x x e --'=-+--21(2)x x x e -=+-,函数的极值点为:2x =-,1x =, 当2x <-或1x >时,()0f x '>函数是增函数,(2,1)x ∈-时,函数是减函数, 1x =时,函数取得极小值:f (1)211(111)1e -=--=-.故选A .2.(2013•安徽)若函数32()f x x ax bx c =+++有极值点1x ,2x ,且11()f x x =,则关于x 的方程23(())2()0f x af x b ++=的不同实根个数是( ) A .3 B .4C .5D .6【答案】A【解析】2()32f x x ax b '=++,1x ,2x 是方程2320x ax b ++=的两根, 由23(())2()0f x af x b ++=,得1x x =,或2x x =,即23(())2()0f x af x b ++=的根为1()f x x =或22()f x x =的解. 如图所示,由图象可知1()f x x =有2个解,2()f x x =有1个解,因此23(())2()0f x af x b ++=的不同实根个数为3.3.(2013•辽宁)设函数()f x 满足2()2()x e x f x xf x x '+=,f (2)28e =,则0x >时,()f x ( ) A .有极大值,无极小值 B .有极小值,无极大值 C .既有极大值又有极小值 D .既无极大值也无极小值【答案】D【解析】函数()f x 满足2()2()x e x f x xf x x '+=,∴2[()]x e x f x x'=令2()()F x x f x =,则()x e F x x '=,F (2)4f =(2)22e =.由2()2()x e x f x xf x x '+=,得32()()x e F x f x x -'=,令()2()x x e F x ϕ=-,则(2)()2()x xe x x e F x xϕ-'=-'=.()x ϕ∴在(0,2)上单调递减,在(2,)+∞上单调递增, ()x ϕ∴的最小值为ϕ(2)22e F =-(2)0=.()0x ϕ∴.又0x >,()0f x ∴'.()f x ∴在(0,)+∞单调递增.()f x ∴既无极大值也无极小值. 4.(2016•四川)已知a 为函数3()12f x x x =-的极小值点,则(a = ) A .4- B .2- C .4 D .2【答案】D【解析】2()312f x x '=-;2x ∴<-时,()0f x '>,22x -<<时,()0f x '<,2x >时,()0f x '>; 2x ∴=是()f x 的极小值点;又a 为()f x 的极小值点;2a ∴=.故选D .5.(2015•新课标Ⅰ)设函数()(21)x f x e x ax a =--+,其中1a <,若存在唯一的整数0x 使得0()0f x <,则a 的取值范围是( )A .3[,1)2e-B .33[,)24e -C .33[,)24e D .3[,1)2e【答案】D【解析】设()(21)x g x e x =-,y ax a =-,由题意知存在唯一的整数0x 使得0()g x 在直线y ax a =-的下方,()(21)2(21)x x x g x e x e e x '=-+=+,∴当12x <-时,()0g x '<,当12x >-时,()0g x '>, ∴当12x =-时,()g x 取最小值122e --,当0x =时,(0)1g =-,当1x =时,g (1)0e =>, 直线y ax a =-恒过定点(1,0)且斜率为a , 故(0)1a g ->=-且1(1)3g e a a --=---,解得312a e<6.(2013•浙江)已知e 为自然对数的底数,设函数()(1)(1)(1,2)x k f x e x k =--=,则( ) A .当1k =时,()f x 在1x =处取得极小值 B .当1k =时,()f x 在1x =处取得极大值 C .当2k =时,()f x 在1x =处取得极小值 D .当2k =时,()f x 在1x =处取得极大值 【答案】C【解析】当1k =时,函数()(1)(1)x f x e x =--. 求导函数可得()(1)(1)(1)x x x f x e x e xe '=-+-=-,f '(1)10e =-≠,f '(2)2210e =-≠,则()f x 在在1x =处与在2x =处均取不到极值,当2k =时,函数2()(1)(1)x f x e x =--.2()(1)2(1)(1)(1)(2)x x x x f x e x e x x xe e '=-+--=-+-,∴当1x =,()0f x '=,且当1x >时,()0f x '>,当01x x <<时0(x 为极大值点),()0f x '<,故函数()f x 在(1,)+∞上是增函数;在0(x ,1)上是减函数,从而函数()f x 在1x =取得极小值.对照选项.故选C .7.(2013•福建)设函数()f x 的定义域为R ,00(0)x x ≠是()f x 的极大值点,以下结论一定正确的是( ) A .x R ∀∈,0()()f x f x B .0x -是()f x -的极小值点 C .0x -是()f x -的极小值点 D .0x -是()f x --的极小值点【答案】D【解析】对于A 项,00(0)x x ≠是()f x 的极大值点,不一定是最大值点,因此不能满足在整个定义域上值最大,故A 错误;对于B :()f x -是把()f x 的图象关于y 轴对称,因此,0x -是()f x -的极大值点,故B 错误; 对于C :()f x -是把()f x 的图象关于x 轴对称,因此,0x 是()f x -的极小值点,故C 错误; 对于D :()f x --是把()f x 的图象分别关于x 轴、y 轴做对称,因此0x -是()f x --的极小值点,故D 正确.8.(2013•湖北)已知函数()()f x x lnx ax =-有两个极值点,则实数a 的取值范围是( ) A .(,0)-∞ B .1(0,)2C .(0,1)D .(0,)+∞【答案】B【解析】函数()()f x x lnx ax =-,则1()()21f x lnx ax x a lnx ax x'=-+-=-+,令()210f x lnx ax '=-+=得21lnx ax =-,函数()()f x x lnx ax =-有两个极值点,等价于()21f x lnx ax '=-+有两个零点,等价于函数y lnx =与21y ax =-的图象有两个交点, 在同一个坐标系中作出它们的图象(如图) 当12a =时,直线21y ax =-与y lnx =的图象相切, 由图可知,当102a <<时,y lnx =与21y ax =-的图象有两个交点. 则实数a 的取值范围是1(0,)2.简解:函数()()f x x lnx ax =-,则1()()21f x lnx ax x a lnx ax x'=-+-=-+,令()210f x lnx ax '=-+=得21lnx ax =-,可得12lnxa x+=有两个不同的解, 设1()lnxg x x+=,则2()lnx g x x -'=,当1x >时,()g x 递减,01x <<时,()g x 递增,可得g (1)取得极大值1,作出()y g x =的图象,可得021a <<,即102a <<,故选B .9.(2013•安徽)已知函数32()f x x ax bx c =+++有两个极值点1x ,2x ,若112()f x x x =<,则关于x 的方程23(())2()0f x af x b ++=的不同实根个数为( ) A .3 B .4 C .5 D .6【答案】A【解析】函数32()f x x ax bx c =+++有两个极值点1x ,2x ,2()320f x x ax b ∴'=++=有两个不相等的实数根,∴△24120a b =->.解得2224123a a b a a bx -±--±-==.12x x <,∴213a a b x ---=,223a a b x -+-=. 而方程23(())2()0f x af x b ++=的△1=△0>,∴此方程有两解且1()f x x =或2x . 不妨取120x x <<,1()0f x >.①把()y f x =向下平移1x 个单位即可得到1()y f x x =-的图象, 11()f x x =,可知方程1()f x x =有两解.②把()y f x =向下平移2x 个单位即可得到2()y f x x =-的图象,11()f x x =,12()0f x x ∴-<,可知方程2()f x x =只有一解.综上①②可知:方程1()f x x =或2()f x x =.只有3个实数解.即关于x 的方程23(())2()0f x af x b ++=的只有3不同实根.故选A .10.(2013•湖北)已知a 为常数,函数()()f x x lnx ax =-有两个极值点1x ,212()(x x x < ) A .121()0,()2f x f x >>-B .121()0,()2f x f x <<-C .121()0,()2f x f x ><- D .121()0,()2f x f x <>-【答案】D【解析】()12f x lnx ax '=+-,(0)x >令()0f x '=,由题意可得21lnx ax =-有两个解1x ,2x ⇔函数()12g x lnx ax =+-有且只有两个零点()g x ⇔'在(0,)+∞上的唯一的极值不等于0.112()2axg x a x x'-=-=. ①当0a 时,()0g x '>,()f x '单调递增,因此()()g x f x ='至多有一个零点,不符合题意,应舍去.②当0a >时,令()0g x '=,解得12x a=, 1(0,)2x a ∈,()0g x '>,函数()g x 单调递增;1(,)2x a∈+∞时,()0g x '<,函数()g x 单调递减. 12x a ∴=是函数()g x 的极大值点,则1()02g a >,即111(2)02ln ln a a+-=->, (2)0ln a ∴<,021a ∴<<,即102a <<. 故当102a <<时,()0g x =有两个根1x ,2x ,且1212x x a<<,又g (1)120a =->, 12112x x a∴<<<,从而可知函数()f x 在区间1(0,)x 上递减,在区间1(x ,2)x 上递增,在区间2(x ,)+∞上递减.1()f x f ∴<(1)0a =-<,2()f x f >(1)12a =->-.故选D .11.(2011•福建)若0a >,0b >,且函数32()422f x x ax bx =--+在1x =处有极值,则ab 的最大值等于( ) A .2 B .3C .6D .9【答案】D 【解析】2()1222f x x ax b '=--,又因为在1x =处有极值,6a b ∴+=,0a >,0b >,∴2()92a b ab +=,当且仅当3a b ==时取等号,所以ab 的最大值等于9. 故选D .12.(2008•广东)设a R ∈,若函数x y e ax =+,x R ∈,有大于零的极值点,则( ) A .1a <- B .1a >-C .1a e<-D .1a e>-【答案】A【解析】x y e ax =+,x y e a '∴=+.由题意知0x e a +=有大于0的实根,令1x y e =,2y a =-,则两曲线交点在第一象限,结合图象易得11a a ->⇒<-,故选:A .13.(2011•湖南)设直线x t =与函数2()f x x =,()g x lnx =的图象分别交于点M ,N ,则当||MN 达到最小时t 的值为( )A .1B .12C 5D 2 【答案】D 【解析】设函数2()()y f x g x x lnx =-=-,求导数得21212x y x x x -'=-= 当20x <时,0y '<,函数在2上为单调减函数, 当2x 时,0y '>,函数在2()+∞上为单调增函数 所以当2x =时,所设函数的最小值为11222ln + 所求t 2 二.填空题(共3小题)14.(2018•江苏)若函数32()21()f x x ax a R =-+∈在(0,)+∞内有且只有一个零点,则()f x 在[1-,1]上的最大值与最小值的和为 .【答案】-3 【解析】函数32()21()f x x ax a R =-+∈在(0,)+∞内有且只有一个零点, ()2(3)f x x x a ∴'=-,(0,)x ∈+∞,①当0a 时,()2(3)0f x x x a '=->,函数()f x 在(0,)+∞上单调递增,(0)1f =, ()f x 在(0,)+∞上没有零点,舍去;②当0a >时,()2(3)0f x x x a '=->的解为3a x >, ()f x ∴在(0,)3a 上递减,在(3a ,)+∞递增, 又()f x 只有一个零点,3()10327a a f ∴=-+=,解得3a =, 32()231f x x x =-+,()6(1)f x x x '=-,[1x ∈-,1],()0f x '>的解集为(1,0)-, ()f x 在(1,0)-上递增,在(0,1)上递减,(1)4f -=-,(0)1f =,f (1)0=,()(1)4min f x f ∴=-=-,()(0)1max f x f ==,()f x ∴在[1-,1]上的最大值与最小值的和为:()()413max min f x f x +=-+=-.15.(2018•新课标Ⅰ)已知函数()2sin sin 2f x x x =+,则()f x 的最小值是 .【答案】 【解析】由题意可得2T π=是()2sin sin 2f x x x =+的一个周期, 故只需考虑()2sin sin 2f x x x =+在[0,2)π上的值域,先来求该函数在[0,2)π上的极值点,求导数可得()2cos 2cos2f x x x '=+ 22cos 2(2cos 1)2(2cos 1)(cos 1)x x x x =+-=-+,令()0f x '=可解得1cos 2x =或cos 1x =-,可得此时3x π=,π或53π; 2sin sin 2y x x ∴=+的最小值只能在点3x π=,π或53π和边界点0x =中取到,计算可得(f )3π=()0f π=,(f 5)3π=(0)0f =,∴函数的最小值为 16.(2013•新课标Ⅰ)若函数22()(1)()f x x x ax b =-++的图象关于直线2x =-对称,则()f x 的最大值为 .【答案】16 【解析】函数22()(1)()f x x x ax b =-++的图象关于直线2x =-对称, (1)(3)0f f ∴-=-=且f (1)(5)0f =-=,即22[1(3)][(3)(3)]0a b ---+-+=且22[1(5)][(5)(5)]0a b ---+-+=,解之得815a b =⎧⎨=⎩,因此,22432()(1)(815)814815f x x x x x x x x =-++=---++, 求导数,得32()424288f x x x x '=---+,令()0f x '=,得12x =-22x =-,32x =-当(,2x ∈-∞-时,()0f x '>;当(2x ∈-2)-时,()0f x '<;当(2,2x ∈--+时,()0f x '>; 当(2x ∈-,)+∞时,()0f x '<()f x ∴在区间(,2-∞--、(2,2--上是增函数,在区间(2--,2)-、(2-+)+∞上是减函数.又(2(216f f --=-=,()f x ∴的最大值为16.故答案为:16.。