微生物的诱变育种ppt课件

合集下载

微生物育种ppt课件

微生物育种ppt课件

出发菌株的纯化
纯种分离方法,常用划线分离法和稀释平板法。
在诱变育种中,出发菌株的纯化虽然是辅助手段,但 它是不可缺少的技术步骤,例如前面的例子中,灰黄 霉素变种B-53,经自然分离,获得的变株C-04的产 量比前者显著提高。 ▲
组织松,生长速度快
C-2 UV
C-3 NM C-4 X射线 C-7 UV+Lф C-8 UV C-15 NTG C-17 EMS C-19 NS C-20 EMS
213
548 829 1120 1610 2630 3028 3223 4000 8-11.5 7-8 6-8 4-5 4.5-5.2 8-9 8-9 乳白 柠檬黄 柠檬黄 柠檬黄 鹅黄 (边缘柠檬黄) 乳黄 粉玉色
一代诱变约需2~3个月

突变的机制
碱基置换(转换 颠换)
点突变 移码突位、倒位 突 变
自发突变
第一节 诱变育种
诱变育种:是以人工手段诱发微生物基因突变,改变其遗传 结构和功能,从中筛选出产量高、性状优良的突变株, 并 设计出适合该突变株最佳的培养基和条件,使其在最适的工 艺条件下最有效地合成产物。
当的知识和全面的了解。
2.
诱变育种工作量大,周期长,对一般周期为7~
10天的抗生素菌种来说,一代诱变需2~3月,因此 事先需作好充分准备,如全面了解菌种培养特征 和生化特征,以及有关培养条件对其影响等,最 后再进行严密设计,确定正确的选育程序和方法。
诱变育种的步骤 •出发菌株的选择与纯化 •单孢子(单细胞)悬液的制备 •诱变剂及诱变剂量的选择 •诱变处理方法 •高产菌株的分离
4、能诱变产生遗传性变异 5、产量高、收得率高

高产突变是一种数量遗传,是由多基因决定的,产量的提 高,需要通过多代诱发突变逐渐积累 诱变是不定向的,会产生各种突变体,从中筛选出复合要 求的菌种是诱变育种中一项重要而艰苦的工作

《诱变育种》课件

《诱变育种》课件

REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
04
诱变育种的应用
农业育种
抗逆性改良
通过诱变育种,可以培育出抗旱 、抗盐碱、抗病虫害等具有较强 抗逆性的农作物品种,提高农作 物的适应性和产量。
品质改良
诱变育种可以改善农作物的品质 特性,如蛋白质含量、脂肪含量 、纤维长度等,提高农产品的营 养价值和加工性能。
02
加速育种进程
03
解决传统育种局限
诱变育种可以大幅度提高突变频 率,加速育种进程,缩短育种周 期。
传统育种方法难以实现的一些性 状改良,如抗病、抗虫、抗逆等 ,可以通过诱变育种实现。
诱变育种的历史与发展
历史
发展
自20世纪初开始研究诱变育种,经历 了近百年的发展历程。最早的诱变育 种实践可以追溯到1927年美国科学家 通过X射线处理烟草种子,成功获得 了突变体。
DNA损伤修复机制包括同源重组修复、非同源末端连接修复 、碱基切除修复和错配修复等。这些修复机制在维持基因组 稳定性和防止突变发生中起着重要作用。
基因突变与表型变异
基因突变是指基因序列的改变,包括 点突变、插入和缺失等。这些突变可 以导致蛋白质结构和功能的改变,进 而影响表型变异。
表型变异是指基因突变导致的个体或 群体在形态、生理和行为等方面的可 观察变化。这些变化可能对生物的适 应性、生存和繁殖能力产生影响。
定义与特点
定义
诱变育种是一种利用物理、化学或生 物诱变剂诱发遗传物质发生突变,从 而产生具有优良性状的新品种的育种 方法。
特点
突变率高,可创造新的遗传资源;可 大幅度改良品种性状;方法简单易行 ,适用范围广。

微生物 诱变育种

微生物  诱变育种
见光的能量而被激活。
紫外损伤的光复活作用
DNA损伤的修复
切补修复 切补修复是在内切核酸酶、
外切核酸酶、DNA聚合酶以及 连接酶的协同作用下将嘧啶 二聚体酶切除去,继而重新 合成一段正常的DNA链以填补 酶切所留下的缺口,使损伤 的DNA分子恢复正常的修复方 式。由于整个过程不依赖于 可见光,所以切补修复也称 暗修复。切补修复几乎存在 于所有的微生物中。
也可用长了菌落的平板直接照射。 一般照射剂量4~10万伦琴。
此外还能引起染色体畸变,即因 染色体断裂引起染色体的倒位、 缺损和重组等。但发生了染色体
断裂的细胞常常不稳定。
化学诱变因素
化学诱变剂用量很少,诱变时设
备简单,只要一般实验室的玻璃 器皿就行,所以其应用发展较快。
碱基类似物
碱基类似物是指与DNA结构中的四种碱基 A、T、G、C在化学结构上相似的一类物 质。如5-溴尿嘧啶(BU)和5-溴脱氧尿
紫外损伤的切补修复
紫外线照射的操作方法
在暗室中安装的15瓦紫外线灯管最 好装有稳压装置,以求剂量稳定。
处理时,可将5毫升菌悬液放在直径 5厘米的培养皿中,置磁力搅拌器上, 使培养皿底部离灯管30厘米左右, 培养皿底要放平,处理前应先开灯 20~30分钟预热稳定。照射时启动磁 力搅拌器,以求照射均匀。
诱变育种
第一节基因突变
突变泛指细胞内(或病毒颗粒 内)的遗传物质的分子结构或 数量突然发生的可遗传的变化。
突变往往导致产生新的等位基 因及新的表现型。狭义的突变 专指基因突变,也称点突变, 而广义的突变则包括基因突变 和染色体畸变。
突变的几率一般很低,约为106~10-9。
突变是工业微生物产生变种 的根源,是育种的基础,但 也是菌种发生退化的主要原 因。

微生物诱变育种ppt课件

微生物诱变育种ppt课件
微生物诱变育种
理想的工业生产菌种必须具备: 1. 遗传性状稳定 2. 纯净无污染 3. 繁殖力强、生长速度快、短时间内能产生所需产物 4. 能诱变产生遗传性变异 5. 具有产量高、收得率高
第一节 诱变育种的步骤
• 出发菌株的选择
• 单孢子(单细胞)悬液的制备
• 诱变剂及诱变剂量的选择 • 诱变处理方法 • 高产菌株的分离
2. 最佳剂量的选择: 经长期诱变后的高产菌株、遗传性状不太稳定的菌株, 宜用较温和的诱变剂和较低剂量处理。
要筛选具有特殊性状的菌株、较大幅度提高产量的菌株, 则用强诱变剂和高剂量处理。
对野生低产菌株,开始用高剂量,然后逐步用低剂量处 理。对多核细胞菌株,用高剂量处理。
四、诱变处理方式
诱变处理方式: 单因子处理:是采用单一诱变剂处理(一般突变率低) 复合因子处理:是指采用两种以上诱变因素处理(突变率高) 分下列几种情况:
连续诱变育种过程中如何选择出发菌株? 突变株的产量是数量遗传,只能逐步累加,一次性大幅度提 高发酵水平不太容易。 在选择出发菌株时,应挑选每代诱变处理后均有一些表型上 改变的菌株,如发酵单位有一定程度的提高、形态上发生过 一次变异或产生过回复突变的菌株等,以利于突变率的增加
灰黄霉素高产菌D-756诱变系谱菌株表型变异与产量递增的关系
一、出发菌株
对出发菌株的要求: 1. 对诱变因素敏感,变异幅度大,正突变率高 2. 具有一定生产能力 3. 具有有利性状,如生长速度快、营养要求低以及产孢子 早而多的菌株
4. 有时可考虑选择已发生其他变异的菌株作为出发菌株。 5. 采用一类被称为“增变菌株”的变异菌株,它们对诱变 剂的敏感性比原始菌株大为提高,更适宜作为出发菌株。 6. 在选择产核苷酸或氨基酸的出发菌株时,应考虑能累积 少量所需产物或其前体的菌株; 而在选择产抗生素的出发 菌株时,最好选择已通过几次诱变并发现每次的效价都 有一定程度提高的菌株作为出发菌株。

第七章微生物的遗传变异和育种_微生物学_PPT幻灯片

第七章微生物的遗传变异和育种_微生物学_PPT幻灯片
遗传物质是核酸(RNA)而非蛋白质
二、朊病的发现与思考
亚病毒的一种:具有传染性的蛋白质致病因子,迄今为止 尚为发现该蛋白内含有核酸。
其致病作用是由于动物体内正常的蛋白质PrP c改变折叠 状态为PrP sc所致,而这二种蛋白质的一级结构并没有改 变。
思考
1)蛋白质是否可以作为遗传物质? prion是生命的一个特例?还是仅仅为表达调控的一种形式?
Ti质粒是一种200kb的环状质粒,包括毒性区(vir)、 接合转移(con)、复制起始区(ori)和T-DNA区4部分。
T-DNA区可携带任何外源基因整合到植物基因组中, Ti质粒是植物基因工程中使用最广、效果最佳的克隆载体。
Agrobacterium tumefaciens(根癌土壤杆菌或 根癌农杆菌)释放出的Ti质粒上的T-DNA片断与植 物细胞的核基因组整合,合成冠瘿碱类(opines), 破坏控制细胞分裂的激素调节系统,使之变成癌 细胞。
1. 定义和特点
质粒:
一种独立于染色体外,能进行自主复制的细胞质 遗传因子,主要存在于各种微生物细胞中。
ocDNA lDNA cccDNA
质粒是一种独立存在于细胞内的复制子(replicon)。
严紧型复制控制(stringent replication control)
质粒的复制与核染色体的复制同步, 在这类细胞中,一般只含1~2个质粒;
抗性决定因子(r-determinant)
大小不很固定,相对分子量从几百万至11×108以上, 无转移功能,含各种抗性基因,如抗青霉素、氨苄青 霉素、氯霉素、链霉素、卡那霉素和磺胺等基因。
由RTF和r决定子结合而形成R质粒的过程:
抗性质粒在细菌间的传递是细菌产生抗药性 的重要原因之一。

《诱变育种》课件

《诱变育种》课件

04 诱变育种的挑战与前景
面临的挑战
突变频率低
自然突变或诱变处理的 突变频率通常较低,需
要处理大量材料。
突变的不定向性
突变通常是不定向的, 可能涉及多个基因位点, 难以实现精确的基因改
造。
突变的有害性
突变可能导致产生新的 有害基因或丧失原有优 良性状,影响突变体的
筛选和利用。
突变后处理难度
突变后处理工作量大, 需要大量的人力和时间 进行突变体的筛选、鉴
定和繁殖。
发展前景
提高突变频率
通过改进诱变方法和技术,提高突变 频率,加速育种进程。
定向突变
利用现代基因编辑技术,实现定向突 变,提高育种精度和效率。
拓展应用领域
诱变育种不仅应用于植物,还可应用 于动物、微生物等领域,具有广阔的 应用前景。
与其他育种方法的结合
结合传统育种方法和现代生物技术, 提高育种效率和成功率。
物的生产菌种的改良。
THANKS FOR WATCHING
感谢您的观看
诱变育种的历史与发展
历史
自1927年缪勒发现X射线能诱发果蝇变异后,诱变育种逐渐 成为一种重要的育种方法。随着科技的发展,诱变育种技术 不断改进和完善,现已成为创造新种质和培育新品种的重要 手段之一。
发展
随着基因工程、细胞工程等生物技术的不断发展,诱变育种 与这些新技术相结合,如转基因技术、基因编辑技术等,使 得诱变育种更加高效、精准。
案例三:生物诱变育种在微生物育种中的应用
总结词
利用某些具有诱变作用的微生物或其代谢产物处理微生物细胞,诱发基因突变,进而筛 选有益突变体。
详细描述
生物诱变育种常用的微生物包括某些细菌、放线菌等,这些微生物能够产生一些具有诱 变作用的代谢产物。在微生物育种中,生物诱变育种常用于抗生素、酶制剂等工业微生

诱变育种的特点课件.ppt

诱变育种的特点课件.ppt
变为1居里. 通常用mCi (10-3Ci) μCi (10-8Ci) 贝可(Bq), 即1Bq/sec≈2.703×10-11Ci。
20
第8章 诱变育种
第2节 常用物理诱变剂及其处理方法
2.照射剂量: 伦(伦琴,R):1g空气中吸收83尔格(erg)的能量。
是 X和γ射线的剂量单位。 库伦/千克:(1库仑/千克=3.876×103R) 3.吸收剂量:
❖略高于适宜剂量的后代中较易获得矮秆突变。
31
第4节 诱变育种程序
第8章 诱变育种
种植方式 (1)系谱法 M1不选择,收主穗; M2种穗行(小麦条播或点播,20-100粒/行,隔20行播 3行未处理亲本作对照),观察比较,发现突变体。 M3种穗行,观察突变体的性状是否重现和整齐一致, 是否符合育种目标,混收整齐一致的。 M4及以后世代,系内鉴定。
1.选择适宜的育种材料。例如:大麦极敏感型品种 突变率5.34%,敏感4.57%,中间4.21%,迟钝3.14 %,极迟钝2.43%。
24
第8章 诱变育种
第3节 化学诱变剂及其处理方法
三、化学诱变剂处理方法 1.处理材料和方法 材料:种子,芽、插条、块茎、球茎等,活株幼穗、 花粉、合子和原胚。 浸泡:把种子、芽、休眠插条浸泡在诱变剂溶液中。 滴液:在植物茎上作一浅切口,将浸透诱变剂溶液 的棉球经切口浸入(完整植株或发育完整的花序)。
7
第8章 诱变育种
第1节 诱变育种的成就及特点
一、主要成就 (一)育成大量植物新品种 1995年: 全世界在 158种植物上育成和推广了1932 个品种;中国459个,占世界总数的1/4。 1985年以来: 种植面积基本稳定在900万hm2左右。 (二)提供大量优异的种质资源 收集24种植物的突变遗传资源1700余份,并对其 进行了鉴定、编制名录及育种价值的研究。

诱变育种(n)ppt课件

诱变育种(n)ppt课件
诱变育种(n)
二)选择最适诱变剂量
亚热带链霉菌(白霉素)与X射线剂量之间的变异关系
五、影响突变率的因素
1 菌种遗传特性
(有的诱变剂只作用于DNA复制期,有的可作用于各期细胞)
2 菌体细胞壁结构
(有的菌种孢子壁厚、有保护层、均减弱诱变剂的作用效果)
3 培养条件和环境条件 ⑴前培养(诱变前预培养)
第七章 突变株的分离筛选
常见分离筛选方法 1.随机挑选
随机挑选上 百个菌落, 发酵测试。
诱变处理
平板分离
常见分离筛选方法 2.平板菌落预筛
1)根据菌落形态变异筛选。 高产菌株的形态往往处在常态的正常型范围内,又有微 小变异。 2)利用平板生化反应筛选。(见前章)
常见分离筛选方法
前培养一般加入咖啡因、蛋白胨、酵母膏、吖啶黄、b-重氮尿嘧 啶、嘌呤等物质,能显著提高突变率。若加入氯霉素、胱氨酸等还 原性物质,会使突变率下降。
⑵后培养
后培养一般加入酪素水解物、酵母膏等富含氨基酸、生长因子、 ATP等,有利于突变体重新调节代谢。
⑶温度、pH、氧气等外界条件对诱变效应的影响
第三,可大幅度地提高参选量,比常规的筛选提高15~20倍。
三、筛选(初筛)后的工作
1、摇瓶液体培养 2、产物活性的测定 3、摇瓶数据的确认 4、培养基和培养产物耐受性好 的菌株,常用于抗 生素产生菌的筛选。
4)琼脂块法
琼脂块法的优点
琼脂块法比一般直接分离在平皿上判断活性的反应圈要准确。
首先,限制了所有菌落都在同一面积的琼脂块上生长,避免 了相互间的干扰; 其次,每个菌落的产物都在同一体积的琼脂块中,从环境中 摄取的营养是一致的,避免由于扩散不同造成的误差,这样 能较准确地反映每个菌落的生产能力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3. 移种的密度
4. 温度
5. 湿度
6. 药品和原材料质量
1.4 对其它条件的了解
了解菌种有效产物中的各种组分在代谢合成过程中
与培养条件的关系
建立一个准确、简便、快速检测产物的方法 研究最佳的菌种保藏培养基和培养条件
第二节 诱变育种的步骤与方法
诱变育种的原则
诱变育种具有方法简单、投资少、收获大等优点, 最大缺点是缺乏定向性。因此,除了深入开展诱变机 制研究外,在诱变育种过程中应注意:

其它原因:非遗传因素,如培养基组成或培养条件的改变 等

非遗传因素产生的“变异”是一种假变异,不能遗传;菌 种重新移回原来的培养基和培养条件,形态可恢复原状。
为了研究遗传因素引起的不同菌落类型,应尽量避 免非遗传因素引起的菌落形态变化,以免鱼目混珠、 干扰试验结果。
1.2 菌种特性与生产性能关系
2.3 单孢子(或单细胞)悬液的制备
2. 菌悬液制备方法
(2) 产孢子菌类
处理材料是孢子,而不是菌丝。
成熟而新 鲜的孢子
液体培养基 振荡培 离心洗涤 振荡打碎孢子 过滤 菌体计数, 养至孢子刚刚萌发 加入缓冲液 团块 调整浓度
(3) 不产孢子的真菌
直接采用年幼的菌丝体进行诱变处理。 三种方法:
挑选优良易诱的出发菌株
处理均匀的单胞或孢悬液
选择简便有效的诱变剂 选用最适剂量及作用时间 充分利用致变剂的协同效应 寻求可见的选择性相关指标
设计高效筛选方案与方法
2.1 出发菌株
1. 对一般出发菌株的要求

野生菌株:产量低,但对诱变因素敏感,变异幅 度大,正突变率高;


筛选条件(培养基和培养条件)、便捷的筛选方法等
3. 最佳环境条件的调整

突变株最佳培养条件的确定
1.1 诱变前对出发菌株的了解
1. 区分不同菌落类型
1.1 诱变前对出发菌株的了解
2. 出现不同菌落类型的原因

主要原因:遗传因素

由遗传因素造成的不同类型菌落是一种变异现象,属不同 遗传特性的个体,而且可以遗传给下一代。
素菌种来说,一代诱变需2~3月,因此事先需作好充分准备, 如全面了解菌种培养特征和生化特征,以及有关培养条件对 其影响等,最后再进行严密设计,确定正确的选育程序和方 法。
诱变育种的主要环节
诱变育种工作的三个主要环节:
1. 诱发突变

出发菌株、诱变剂及其剂量的选择、影响诱变效果的因素等
2. 突变株的筛选
微生物的诱变育种
诱变育种的目标及用途
概念:选用理、化致变剂处理均匀而分散的微生物细胞群,
促使其突变率显著提高;采用简便、快速和高效的筛选法 筛选出少数符合育种目的的突变株来供生产实践与研究应 用。
目标:提高有效产物的产量
改善菌种特性、提高产品质量
简化工艺条件
开发新品种
诱变育种的目标及用途
青酶素产生菌选育历史
1. 多方面考查菌种的生活史,了解它们的形态、生理、生
化等生物学特性,以及这些特性与代谢产物合成的关系。 土霉素产生菌斜面孢子培养3~4天好于9~10天
2. 研究菌种的某些生物学特性与产量合成的相关性。
头孢霉素产量与孢子大小和数量成正比.
1.3 影响菌种生长发育的主要因素
1. 培养基
2. 培养基斜面制备技术

对于丝状菌来说,制备菌悬液时力求90%以上为单孢子,并务必
除去菌丝片段,因为一般菌丝是多核的。

Байду номын сангаас
菌悬液的孢子或细菌数可用平板计数、血球计数器计数和光密度 法测定。

制备菌悬液通常采用生理盐水,如果用化学诱变剂处理时,则应 采用相应的缓冲液配制。
2.3 单孢子(或单细胞)悬液的制备
2. 菌悬液制备方法
些每次诱变后有1~2个控制产量的基因突变,使产物合成稍有
增加,又能维持其最起码代谢平衡的菌株才能生存下来。
3. 高产菌株的环境适应能力差,育种时必须注意调整环境条件。
诱变育种的注意事项
1. 在诱变育种前,应该对大生产的设备和工艺具有相当的知
识和全面的了解。
2. 诱变育种工作量大,周期长,对一般周期为7~10天的抗生
第一节 诱变育种的试验设计和准备工作
诱变的不可预测性
正变株 微生物 诱变育种 负变株
高产菌株的缺陷: (1)孢子数量减少 (2)生活周期延长 (3)可能发生回复突变 发生概率大
诱变育种的复杂性
高产突变型菌株是一种数量性状的遗传变异,是由多基因
决定的:
1. 这些基因不可能通过一次诱变全部引起突变 2. 高产菌株产量的提高,是多代诱发突变积累的结果。只有那
得之后,都要进行自然分离,即菌种纯化。
常用的纯化方法有划线分离法和稀释分离法;若仍
达不到要求,则需采用显微镜操纵器分离单孢子,
培养形成单菌落,得到纯菌株。
2.3 单孢子(或单细胞)悬液的制备
1. 供试菌株的孢子或菌体要年轻、健壮


细胞生理活性方面既要同步,又要处于最旺盛的对数期。
对于细菌来说,常常通过前培养达到要求。

最好是由生产育种中的自发变异株
采用具有有利性状的菌株


考虑选择己发生过其他变异的菌株
选择增变菌株的变异株以堤高致变敏度

选取能累积少量所需产物或前体物菌株
2.1 出发菌株
2. 对出发菌株的具体要求
1. 选择具备一定生产能力或某种特性的菌株作为出
发菌株 2. 选择纯种作出发菌株 3. 选择出发菌株应考虑其稳定性 4. 连续诱变育种过程中如何选择出发菌株
2.1 出发菌株
2. 对出发菌株的具体要求
–4. 连续诱变育种过程中如何选择出发菌株
2.1 出发菌株
2. 对出发菌株的具体要求
5. 选择出发菌株的其它因素 6. 采用多出发菌株(3-4个) 7. 菌种代谢特点
2.2 出发菌株的纯化
一般丝状菌的野生菌株多数为异核体,如果菌种背
景复杂,用诱变剂处理后的变株中,负变率将增加。 因此,微生物菌种选育之前的出发菌株和新变种获

(1) 细菌

采用同步化的预培养方法:
20~24h 培养 的新鲜斜面
基本培养基 35~37℃振 荡培养至对数期
6℃培养1h , 使之同步生长
含玻璃珠三角瓶 菌体计数, 振荡10min
调整浓度
制备菌悬液
低温(2℃)10min 离心洗涤
过滤
加入适量嘧啶、嘌呤 或酵母膏,继续振荡 培养20~60 min
相关文档
最新文档