七年级数学几何证明基本步骤(平面图形及其位置关系)拔高练习

合集下载

初中生如何做好几何证明题(含答案)

初中生如何做好几何证明题(含答案)

14.若何做几何证实题【常识精读】1. 几何证实是平面几何中的一个主要问题,它对造就学生逻辑思维才能有着很大感化.几何证实有两种根本类型:一是平面图形的数目关系;二是有关平面图形的地位关系.这两类问题经常可以互相转化,如证实平行关系可转化为证实角等或角互补的问题.2. 控制剖析.证实几何问题的经常运用办法:(1)综正当(由因导果),从已知前提动身,经由过程有关界说.定理.正义的运用,慢慢向前推动,直到问题的解决;(2)剖析法(执果索因)从命题的结论斟酌,斟酌使其成立须要具备的前提,然后再把所需的前提算作要证的结论持续斟酌,如斯慢慢往上逆求,直到已知事实为止;(3)两端凑法:将剖析与综正当归并运用,比较起来,剖析法利于思虑,综正当易于表达,是以,在现实思虑问题时,可归并运用,灵巧处理,以利于缩短题设与结论的距离,最后达到证实目标.3. 控制结构根本图形的办法:庞杂的图形都是由根本图形构成的,是以要擅长将庞杂图形分化成根本图形.在更多时刻须要结构根本图形,在结构根本图形时往往须要添加帮助线,以达到分散前提.转化问题的目标.【分类解析】1.证实线段相等或角相等两条线段或两个角相等是平面几何证实中最根本也是最主要的一种相等关系.许多其它问题最后都可化归为此类问题来证.证实两条线段或两角相等最经常运用的办法是运用全等三角形的性质,其它如线段中垂线的性质.角等分线的性质.等腰三角形的剖断与性质等也经经常运用到.例1. 已知:如图1所示,∆ABC中,∠=︒===90,,,.C AC BC AD DB AE CF求证:DE=DF剖析:由∆ABC是等腰直角三角形可知,∠=∠=︒A B45,由D是AB中点,可斟酌贯穿连接CD,易得CD AD=,∠=︒DCF45.从而不难发明∆∆≅DCF DAE证实:贯穿连接CD解释:在直角三角形中,作斜边上的中线是经常运用的帮助线;在等腰三角形中,作顶角的等分线或底边上的中线或高是经常运用的帮助线.显然,在等腰直角三角形中,更应当贯穿连接CD,因为CD既是斜边上的中线,又是底边上的中线.本题亦可延伸ED到G,使DG=DE,贯穿连接BG,证∆EFG是等腰直角三角形.有兴致的同窗无妨一试.例2. 已知:如图2所示,AB=CD,AD=BC,AE=CF.求证:∠E=∠F证实:贯穿连接AC在∆ABC和∆CDA中,在∆BCE和∆DAF中,解释:运用三角形全等证实线段求角相等.常须添帮助线,制作全等三角形,这时应留意:(1)制作的全等三角形应分离包含求证中一量;(2)添帮助线可以或许直接得到的两个全等三角形.2.证实直线平行或垂直在两条直线的地位关系中,平行与垂直是两种特别的地位.证两直线平行,可用同位角.内错角或同旁内角的关系来证,也可经由过程边对应成比例.三角形中位线定理证实.证两条直线垂直,可转化为证一个角等于90°,或运用两个锐角互余,或等腰三角形“三线合一”来证.例3. 如图3所示,设BP.CQ是∆ABC的内角等分线,AH.AK分离为A到BP.CQ 的垂线.求证:KH∥BC剖析:由已知,BH等分∠ABC,又BH⊥AH,延伸AH交BC于N,则BA=BN,AH=HN.同理,延伸AK交BC于M,则CA=CM,AK=KM.从而由三角形的中位线定理,知KH∥BC.证实:延伸AH交BC于N,延伸AK交BC于M∵BH等分∠ABC又BH⊥AHBH=BH同理,CA=CM,AK=KM∴KH是∆AMN的中位线即KH//BC解释:当一个三角形中消失角等分线.中线或高线重应时,则此三角形必为等腰三角形.我们也可以懂得成把一个直角三角形沿一条直角边翻折(轴对称)而成一个等腰三角形.例4. 已知:如图4所示,AB=AC,∠,,90.A AE BF BD DC=︒==求证:FD⊥ED证实一:贯穿连接AD在∆ADE和∆BDF中,解释:有等腰三角形前提时,作底边上的高,或作底边上中线,或作顶角等分线是经常运用帮助线.证实二:如图5所示,延伸ED到M,使DM=ED,贯穿连接FE,FM,BM解释:证实两直线垂直的办法如下:(1)起首剖析前提,不雅察可否用供给垂直的定理得到,包含添经常运用帮助线,见本题证二.(2)找到待证三直线所构成的三角形,证实个中两个锐角互余.(3)证实二直线的夹角等于90°.3.证实一线段和的问题(一)在较长线段上截取一线段等一较短线段,证实其余部分等于另一较短线段.(截长法)例5. 已知:如图6所示在∆ABC中,∠=︒B60,∠BAC.∠BCA的角等分线AD.CE 订交于O.求证:AC=AE+CD剖析:在AC上截取AF=AE.易知∆∆B60,知≅,∴∠=∠AEO AFO12.由∠=︒,,.∴∠=∠=∠=∠=︒∠+∠=︒∠=︒∠+∠=︒566016023120123460,得:≅∴=,∆∆FOC DOC FC DC证实:在AC上截取AF=AE又∠=︒B60即AC AE CD=+(二)延伸一较短线段,使延伸部分等于另一较短线段,则两较短线段成为一条线段,证实该线段等于较长线段.(补短法)例6. 已知:如图7所示,正方形ABCD中,F在DC上,E在BC上,∠=︒EAF45.求证:EF=BE+DF剖析:此题若模仿例1,将会碰到艰苦,不轻易运用正方形这一前提.无妨延伸CB至G,使BG=DF.证实:延伸CB至G,使BG=DF在正方形ABCD中,∠=∠=︒=90,ABG D AB AD又∠=︒EAF45即∠GAE=∠FAE4.中考题:如图8所示,已知∆ABC为等边三角形,延伸BC到D,延伸BA到E,并且使AE=BD,贯穿连接CE.DE.求证:EC=ED证实:作DF//AC交BE于F∆ABC是正三角形∴∆BFD是正三角形又AE=BD即EF=AC题型展现:证实几何不等式:例题:已知:如图9所示,∠=∠>12,AB AC.求证:BD DC>证实一:延伸AC到E,使AE=AB,贯穿连接DE在∆ADE和∆ADB中,证实二:如图10所示,在AB上截取AF=AC,贯穿连接DF则易证∆∆≅ADF ADC解释:在有角等分线前提时,常以角等分线为轴翻折结构全等三角形,这是经常运用帮助线.【实战模仿】1. 已知:如图11所示,∆ABC 中,∠=︒C 90,D 是AB 上一点,DE⊥CD 于D,交BC 于E,且有AC AD CE ==.求证:DE CD =122. 已知:如图12所示,在∆ABC 中,∠=∠A B 2,CD 是∠C 的等分线. 求证:BC =AC +AD3. 已知:如图13所示,过∆ABC 的极点A,在∠A 内任引一射线,过B.C 作此射线的垂线BP 和CQ.设M 为BC 的中点.求证:MP =MQ4. ∆ABC 中,∠=︒⊥BAC AD BC 90,于D,求证:()AD AB AC BC <++14【试题答案】1. 证实:取CD 的中点F,贯穿连接AF又∠+∠=︒∠+∠=︒14901390,2. 剖析:本题从已知和图形上看仿佛比较简略,但一时又不知若何下手,那么在证实一条线段等于两条线段之和时,我们经常采取“截长补短”的手段.“截长”即将长的线段截成两部分,证实这两部分分离和两条短线段相等;“补短”即将一条短线段延伸出另一条短线段之长,证实其和等于长的线段.证实:延伸CA 至E,使CE =CB,贯穿连接ED在∆CBD 和∆CED 中,又∠=∠+∠BAC ADE E3. 证实:延伸PM 交CQ 于R又BM CM BMP CMR,=∠=∠∆斜边上的中线∴QM是Rt QPR4. 取BC中点E,贯穿连接AE。

最新北师大版七年级数学上册基本平面图形知识点典型例题练习,推荐文档

最新北师大版七年级数学上册基本平面图形知识点典型例题练习,推荐文档
三角形、四边形、五边形等都是多边形,它们都是由若干条不在同一直线上的
线段首尾依次相连组成的封闭平面图形。
2、多边形的基本元素 顶点:如图,在多边形 ABCDEF 中,点 A,B,C,D,E,F 是多边形的顶点;
边:线段 AB,BC,CD,DE,EF,FA 是多边形的边;
内角:∠FAB, ∠ABC, ∠BCD, ∠CDE, ∠DEF, ∠AFE 是多边形的内角(可简称为多边形的角)。
岳劲松老师七年级数学精讲辅导专页
第四章:基本平面图形
知识梳理
一、线段、射线、直线
1、线段、射线、直线的定义 1 线段:线段可以近似地看成是一条有两个端点的崩直了的线。线段可以量出长度。 2 射线:将线段向一个方向无限延伸就形成了射线,射线有一个端点。射线无法量出长度。 3直线:将线段向两个方向无限延伸就形成了直线,直线没有端点。直线无法量出长度。 结论: 直线、射线、线段之间的区别:联系:射线是直线的一部分。线段是射线的一部分,也是
4、锐角、直角、钝角、平角、周角的概念和大小 ①平角:角的两边成一条直线时,这个角叫平角。②周角:角的一边旋转一周,与另一边重合时, Nhomakorabea个角叫周角。
③0°<锐角<90°,直角=90°,90°<钝角<180°,平角=180°,周角=360°。 ④ 角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。 5、画两个角的和,以及画两个角的差 ①用量角器量出要画的两个角的大小,再用量角器来画。 ②三角板的每个角的度数,30°、60°、90°、45°。
对角线:如图,AD,AE 都是连接不相邻两个顶点的线段,像这样的线段叫做多边形的对角线。
3、正多边形 各边相等,各角也相等的多边形叫做正多边形。例如:正方形是正四边形,它的各边都相等,

初中平面几何解题技巧与证明方法

初中平面几何解题技巧与证明方法

初中平面几何解题技巧与证明方法平面几何是初中数学课程中的一大重点内容,它涉及到图形的性质与关系、解题技巧等方面。

本文将介绍一些初中平面几何解题的技巧,并探讨一些常用的证明方法。

一、解题技巧1. 观察图形性质:在解题过程中,要善于观察图形的性质。

例如,对于平行四边形,我们可以利用对角线相等、同位角互补等性质来解题。

对于等腰三角形,我们可以利用底角相等、等腰三角形的高相等等性质来解题。

因此,在解题之前,仔细观察图形的性质对于解题是非常有帮助的。

2. 利用辅助线:辅助线是解决平面几何问题的常用方法。

通过引入辅助线,可以将原有的几何问题转化为更简单的几何问题。

例如,对于一个矩形,我们可以通过引入一条对角线将它分成两个等腰直角三角形,从而简化问题。

利用辅助线进行解题,可以帮助我们更好地理解图形,找到解题的关键。

3. 运用相似性质:相似是平面几何中一个非常重要的概念。

相似性质可以用来推导出一些未知的长度或角度。

在解题过程中,可以利用相似三角形的比例关系来求解未知量。

此外,相似性质还可以用来证明两个图形全等或相似。

二、证明方法1. 数学归纳法:数学归纳法是一种常用的证明方法,特别适用于证明一些与自然数有关的命题。

在平面几何中,数学归纳法可以用来证明一些与图形次数有关的命题,如证明正多边形的内角和公式。

数学归纳法的基本思想是,先证明命题在某个特定情况下成立,然后假设命题在某个情况下成立,证明它在下一个情况下也成立。

2. 反证法:反证法是证明一些命题的常用方法。

通过假设命题的否定,然后推导出一个矛盾的结论,从而证明了原命题的正确性。

在平面几何中,反证法可以用来证明一些关于垂直、平行关系的命题,如证明垂直平分线与角平分线互相垂直。

3. 作图法:在某些情况下,通过合理的作图可以帮助我们观察并找到证明的思路。

在平面几何中,作图法可以用来证明一些关于线段比例、角平分线等命题。

通过合理的构造和作图,可以帮助我们更好地理解几何问题,并找到证明的依据。

七年级上册数学证明题做法

七年级上册数学证明题做法

七年级上册数学证明题做法首先要会证明,必须记住相关的定理和性质。

平行线的判定共有五个:(1)内错角相等,两直线平行;(2)同位角相等,两直线平行;(3)同旁内角互补,两直线平行(4)平行于同一直线的两直线平行;(5)垂直于同一直线的两直线平行。

平行线的性质主要有三个:(1)两直线平行,内错角相等;(2)两直线平行,同旁内角互补;(3)两直线平行,同位角相等。

要注意理解判定和性质的区别和联系,弄清楚它们的题设和结论。

在数学试题中,立体几何题占有相当大的分值,考生要掌握基本的解题技巧。

下面是为大家整理的关于初一数学证明题解题技2/10巧总结,希望对您有所帮助!数学立体几何证明解题做法1平行、垂直位置关系的论证的策略:(1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。

(2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。

(3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。

2空间角的计算方法与技巧:主要步骤:一作、二证、三算;若用向量,那就是一证、二算。

(1)两条异面直线所成的角:①平移法:②补形法:③向量法:(2)直线和平面所成的角①作出直线和平面所成的角,关键是作垂线,找射影转化到同- -三角形中计算,或用向量计算。

②用公式计算.(3)二面角①平面角的作法:a.定义法;b.三垂线定理及其逆定理法c.垂面法。

②平面角的计算法:(i)找到平面角然后在三角形中计算(解三角形)或用向量计算;(ii)射影面积法;(iii)向量夹角公式.3空间距离的计算方法与技巧:(1)求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。

(2)求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。

在不能直接作出公垂线的情况下,可转化为线面距离求解(这种情况高考不做要求)。

(3)求点到平面的距离:一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法"直接求距离;有时直接利用已知点求距离比较困难时,”可以把点到平面的距离转化为直线到平面的距离,从而“转下一篇到另一点上去求"点到平面的距离”。

初中生如何做好几何证明题(含答案)

初中生如何做好几何证明题(含答案)

14、如何做几何证明题之阿布丰王创作【知识精读】1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很年夜作用.几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系.这两类问题经常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题.2. 掌握分析、证明几何问题的经常使用方法:(1)综合法(由因导果),从已知条件动身,通过有关界说、定理、公理的应用,逐步向前推进,直到问题的解决;(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;(3)两头凑法:将分析与综合法合并使用,比力起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处置,以利于缩短题设与结论的距离,最后到达证明目的.3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形.在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以到达集中条件、转化问题的目的.【分类解析】1、证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系.很多其它问题最后都可化归为此类问题来证.证明两条线段或两角相等最经常使用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经经常使用到.例 1. 已知:如图1所示,中求证:DE=DF分析:由D是AB中点,可考虑连结CD,易从而不难发现证明:连结CD说明:在直角三角形中,作斜边上的中线是经常使用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是经常使用的辅助线.显然,在等腰直角三角形中,更应该连结CD,因为CD既是斜边上的中线,又是底边上的中线.本题亦可延长ED到G,使DG=DE,连结BG,.有兴趣的同学无妨一试.例2. 已知:如图2所示,AB=CD,AD=BC,AE=CF.求证:∠E=∠F证明:连结AC,,说明:利用三角形全等证明线段求角相等.常须添辅助线,制造全等三角形,这时应注意:(1)制造的全等三角形应分别包括求证中一量;(2)添辅助线能够直接获得的两个全等三角形.2、证明直线平行或垂直在两条直线的位置关系中,平行与垂直是两种特殊的位置.证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明.证两条直线垂直,可转化为证一个角即是90°,或利用两个锐角互余,或等腰三角形“三线合一”来证.例3. 如图3所示,设BP、CQ,AH、AK分别为A到BP、CQ的垂线.求证:KH∥BC分析:由已知,BH平分∠ABC,又BH⊥AH,延长AH交BC于N,则BA =BN,AH=HN.同理,延长AK交BC于M,则CA=CM,AK=KM.从而由三角形的中位线定理,知KH∥BC.证明:延长AH交BC于N,延长AK交BC于M∵BH平分∠ABC又BH⊥AHBH=BH同理,CA=CM,AK=KM即KH//BC说明:当一个三角形中呈现角平分线、中线或高线重合时,则此三角形必为等腰三角形.我们也可以理解成把一个直角三角形沿一条直角边翻折(轴对称)而成一个等腰三角形.例4. 已知:如图4所示,AB=求证:FD⊥ED证明一:连结AD,说明:有等腰三角形条件时,作底边上的高,或作底边上中线,或作顶角平分线是经常使用辅助线.证明二:如图5所示,延长ED到M,使DM=ED,连结FE,FM,BM说明:证明两直线垂直的方法如下:(1)首先分析条件,观察能否用提供垂直的定理获得,包括添经常使用辅助线,见本题证二.(2)找到待证三直线所组成的三角形,证明其中两个锐角互余.(3)证明二直线的夹角即是90°.3、证明一线段和的问题(一)在较长线段上截取一线段等一较短线段,证明其余部份即是另一较短线段.(截长法)例5. 已知:如图6∠BAC、∠BCA的角平分线AD、CE相交于O.求证:AC=AE+CD分析:在AC上截取AF=AE.易由,知得:证明:在AC上截取AF=AE(二)延长一较短线段,使延长部份即是另一较短线段,则两较短线段成为一条线段,证明该线段即是较长线段.(补短法)例 6. 已知:如图7所示,正方形ABCD中,F在DC上,E在BC上求证:EF=BE+DF分析:此题若仿照例1,将会遇到困难,不容易利用正方形这一条件.无妨延长CB至G,使BG=DF.证明:延长CB至G,使BG=DF在正方形ABCD中即∠GAE=∠FAE4、中考题:如图8所示,,延长BC到D,延长BA到E,而且使AE=BD,连结CE、DE.求证:EC=ED证明:作DF//AC交BE于F又AE=BD即EF=AC题型展示:证明几何不等式:例题:已知:如图9所示证明一:延长AC到E,使AE=AB,连结DE,证明二:如图10所示,在AB上截取AF=AC,连结DF说明:在有角平分线条件时,常以角平分线为轴翻折构造全等三角形,这是经常使用辅助线.【实战模拟】1. 已知:如图11所示是AB上一点,DE⊥CD于D,交BC于E,2. 已知:如图12所示,是∠C的平分线.求证:BC=AC+AD3. 已知:如图13所示,A,在∠A内任引一射线,过B、C作此射线的垂线BP和CQ.设M为BC的中点.求证:MP=MQD,【试题谜底】1. 证明:取CD的中点F,连结AF2. 分析:本题从已知和图形上看好象比力简单,但一时又不知如何下手,那么在证明一条线段即是两条线段之和时,我们经常采纳“截长补短”的手法.“截长”即将长的线段截成两部份,证明这两部份分别和两条短线段相等;“补短”即将一条短线段延长出另一条短线段之长,证明其和即是长的线段.证明:延长CA至E,使CE=CB,连结ED,3. 证明:延长PM交CQ于R4. 取BC中点E,连结AE。

七年级几何证明严谨性训练(平面图形及其位置关系)拔高练习(含答案)

七年级几何证明严谨性训练(平面图形及其位置关系)拔高练习(含答案)

七年级几何证明严谨性训练(平面图形及其位置关系)拔高练习试卷简介:全卷共4道选择题,主要考察的是学生们对几何步骤的书写的严谨性的训练,题目虽然简单,但是需要学生们灵活运用平行线的性质及其判定、三角形内角和、三角形外角定理等。

学习建议:熟练掌握平行线的性质及其判定、三角形内角和、外角定理等概念并灵活应用,在做题的时候要注意书写的规范性。

一、单选题(共4道,每道25分)1.下列填写正确的是()如图,如果∠1=∠2,那么根据_,可得_∥_A.内错角相等,两直线平行;AD,BCB.两直线平行,内错角相等;AD,BCC.内错角相等,两直线平行;CD,ABD.两直线平行,内错角相等;CD,AB答案:C解题思路:根据平行线的判定知道:∠1和∠2是直线CD与直线AB被直线BD所截形成的内错角,所以内错角相等,两条被截的直线平行,故答案选择C易错点:分不清楚平行的判定和性质试题难度:三颗星知识点:平行线的判定2.下列填写正确的是()如图:当_∥_时,根据_,可得∠3=∠C.A.CD,AB;内错角相等,两直线平行B.AD,BC;两直线平行,内错角相等C.AD,BC;内错角相等,两直线平行D.CD,AB;两直线平行,内错角相等答案:B解题思路:根据平行线的判定知道:∠3和∠C是直线AD与直线BC被直线DC所截形成的内错角,所以两平行直线被第三条直线所截,内错角相等故答案选择B易错点:分不清楚平行的判定和性质试题难度:三颗星知识点:平行线的性质3.三角形外角是2:3:4,则三角形内角的度数分别是()A.40°,60°,80°B.140°,120°,100°C.100°,60°,20°D.60°,30°,90°答案:C解题思路:设外角分别是2x,3x,4x,则根据三角形内角和等于180°,得到:180°-2x+180°-3x+180°-4x=180°,解得x=40°,所以三个内角是180°-2x=100°,180°-3x=60°,180°-3x=20°易错点:审题不清,外角的定义不清楚试题难度:三颗星知识点:三角形内角和定理4.如图:在△ABC中,∠ABC的平分线与∠ACB的外角平分线交于点P,已知∠P=25°则∠A的度数是()A.25°B.50°C.45°D.60°答案:B解题思路:由角平分线得到:∠PCD=∠ACD,∠PBC=∠ABC根据三角形的外角定理知道:∠P=∠PCD-∠PBC=∠ACD-∠ABC=(∠ACD-∠ABC)=∠A,所以∠A=2∠P=50°易错点:不能综合应用角平分线和外角定理试题难度:三颗星知识点:三角形的外角性质。

北师版七年级数学上第四章 平面图形及其位置关系1-4练习

北师版七年级数学上第四章 平面图形及其位置关系1-4练习

1.线段、射线、直线习题精选一、选择题1.下列语句错误的是()A.画出3厘米长的直线B.点A在直线AB上C.两条直线相交,只有一个交点D.点A在直线l上和直线l经过点A意义一样2.经过三点中的任意两点能画直线()A.1条B.3条C.l条或3条D.无数条3.下列写法中,正确的是().A.直线ac,bd相交于点m B.直线AB,CD相交于点mC.直线ac,bd相交于点M D.直线AB,CD相交于点M4.如下图,下列四个语句中,叙述正确的是().A.点A在直线l上B.点B在直线l上C.点B在直线l内D.点D在直线l里5.平面内四点,任何三点都不在一条直线上,过每两点引一条直线共能引().A.3条B.4条C.5条D.6条6.下列说法错误的是().A.两条直线相交只一个交点B.无数条直线可经过同一点C.三条直线相交,有三个交点D.直线MN 和直线NM是同一条直线7.已知同一平面内的四点,过其中任意两点画直线,仅能画四条,则这四条的位置关系是().A.任意三点不在同一条直线上B.四点都不在同一直线上C.最多三点在一直线上D.三点在一直线上,第四点在直线外8.下图中表示正确的是().A.点a B.直线ab C.直线AB D.直线l9.下列语句中不正确的是()A.射线无法度量它的长度B.两条射线可能没有公共点C.直线没有端点D.线段AB可以向两方无限延伸10. 如图,下列两条线中能相交的是()11. 如图,共有线段()A.4条B.5条C.6条D.7条12. 如图中四个点,过这四个可画线段的条数为()A.4条B.5条C.6条D.7条13.下列说法正确的是().A.延长射线OA B.延长直线ABC.延长线段AB D.作直线AB=CD14. 下面的说法错误的是().A.直线AB与直线BA是同一条直线B.射BA与射线AB是同一条射线C.线段AB与线段BA表示同一条线段D.直线、射线、线段上都有无限多个点15. 三条直线两两相交的图形中,线段有()条.A.0 B.3 C.0或3 D.与交点个数相同二、填空题1.线段有_______个端点,直线_______端点;2.如图,直线a与b交于点_______,点A在直线_______上,又在直线_______外.图中共有_______条线段.3.木匠在木料上画线,先确定两个点的位置,就能把线画得很准,这是因为_______.4.课桌的棱长可以看做是一条_______两个车站之间的路程可以看做是一条_______。

初中几何证明题步骤

初中几何证明题步骤

初中几何证明题步骤
初中几何证明题的步骤可以归纳为以下三点:
1. 审题:题目一般由条件和结论两部分组成,常见题目结构有:“如果……那么……”,比如“如果在等腰三角形中分别作两底角的平行线,那么这两条平分线长度相等。


2. 标记:标记就是在读题的时候根据所给出的条件,在图形中标记出来,比如对边平行,就用剪头表现出来。

另一个意思是指将题目所给出的条件标记在脑海中,做到不看题就能把条件复述出来。

3. 推导:根据已知条件使用几何定理进行推导。

根据已知条件,我们可以得到两个垂直的直线AB和CD,可以使用垂直定理来推导出结论。

垂直定理指出,如果两条直线相交,且相交的角度为90度,则这两条直线是垂直的。

由于AB与CD之间的夹角为90度,所以根据垂直定理,我们可以得出AB和CD是平行的。

几何证明的一般步骤

几何证明的一般步骤

几何证明的一般步骤几何证明是通过逻辑推理和基于一些已知事实或已经证明的定理来证明一个几何命题或定理的正确性。

虽然每个证明都有其独特的步骤和方法,但是可以总结出一般的几何证明步骤如下:1.给出所要证明的命题或定理:首先明确所要证明的几何命题或定理。

这一步是非常重要的,因为它指导了整个证明的方向。

2.给出已知条件和辅助线:列出与几何命题相关的已知条件和所需要的一些额外线段或角度。

这些已知条件和辅助线可以帮助我们推导出要证明的结论。

3.假设角度和线段的等于或比例关系:根据已知条件和辅助线,我们可以使用几何等式、相似三角形、平行线定理等来假设角度和线段之间的等于或比例关系。

这些假设将为后续的推理提供基础。

4.推理过程:使用逻辑推理来逐步推导出结论。

这可以通过运用几何定理、定义、公设以及之前建立的等于或比例关系来完成。

5.检查证明的逻辑:确保证明每一步的逻辑都是正确的,并且推导的结论是从已知条件和辅助线出发的。

这一步非常重要,因为一旦证明中的任何一个步骤有错误,整个证明将是无效的。

6.写出证明的最终形式:整理推理步骤,确保逻辑的连贯性和清晰度。

可以使用几何术语和符号来简化说明过程。

这些是几何证明的一般步骤,但是需要根据具体的几何命题或定理进行调整和应用。

有时候证明可能会需要附加的辅助线、逆向思维或者先证明一个辅助的引理等。

而在一些情况下,证明可能会变得复杂,需要更多的步骤和推理。

因此,灵活性和创造力在几何证明中是非常重要的。

几何证明不仅需要数学知识和技巧,还需要耐心和细致的观察力。

透彻理解已知条件和掌握几何定理是成功进行几何证明的关键。

同时,随着经验和实践的积累,几何证明的能力也会逐渐提升。

初中数学-平面图形及其位置关系能力提升课

初中数学-平面图形及其位置关系能力提升课

AOB 180 EOD 90 OD OE
15.点C、D顺次将线段AB分成三部分,且AC= 2CD,CD:DB=1:3,M、N分别为AC、BD的中点, AB=12cm,求MN
A M C D N B
解:∵AC=2CD,CD:DB=1:3,AB=12cm ∴AC=4cm,CD=2cm,DB=6cm ∵M、N分别为AC、BD的中点 ∴MC=2cm,DN=3cm ∴MN=MC+CD+DN=2+2+3=7(cm)
有关线段的计算:
练习
1、点C、D顺次将线段AB分成
三部分,且AC = 2CD,CD :DB = 1 :3, M、N分别为AC、BD的中点,MN = 7cm, 求 AB
2、已知:E、F两点顺次把线段AB分成2 :3 :4 三部分,D是线段AB的中点,FB =12 求:(1)DF;(2)AE :ED
5.如图,AD=AB-____=AC BD + _____ CD
6. 在直线 l 上顺次取 A 、 B 、 C 三点,使得 AB=4cm , BC=3cm,如果O是线段AC的中点,则线段 0.5 OB=_____cm 。
1°的 1′的
1 即1°=60′. 60 为1分, 记作“1′”, 1 即1′=60″. 60 为1秒, 记作“1″”,
解:∠BAD=∠CAD
A
1
B
(3)右图中,有几个 角,分别用适当的方 式表示出来。
α
D
C
解:有7个角。分别是:∠BAC、∠1、∠CAD、 ∠B、∠C、∠ADB、∠α
10.判断: × × ×
(1)在同一平面内,两条不相交的线段平行。
(2)在同一平面内,两条不平行的射线相交。
(3)两条射线或线段平行,是指它们所在的直线平行。

初一数学几何题解题步骤图解

初一数学几何题解题步骤图解

初一数学几何题解题步骤图解1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。

当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线(7)相似三角形:相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。

初中几何证明基本方法

初中几何证明基本方法

初中几何证明基本方法几何证明是数学中的一种重要方法,通过构建逻辑链条和运用几何定理,来解决几何问题并验证结论的正确性。

在初中数学学习过程中,几何证明是一个必不可少的内容。

本文将介绍初中几何证明的基本方法,帮助学生提高几何证明的能力和水平。

一、直接证明法直接证明法是最常用的一种几何证明方法,它通过说明给定条件和已知结论之间存在直接的逻辑关系,从而得出结论。

具体步骤如下:1. 根据题目中给出的已知条件,画出相应的图形。

2. 根据图形特点和给定条件中的几何定理或性质,推导出需要证明的结论。

3. 用文字叙述或符号表示,清晰地陈述证明过程。

二、间接证明法间接证明法是一种通过反设法来证明某个结论的方法。

具体步骤如下:1. 根据已知条件,画出相应的图形。

2. 假设需要证明的结论不成立,并根据这个假设进行推理。

3. 利用假设的不成立,推导出与已知条件或已有结论矛盾的结论。

4. 从而得出反设法的结论,证明原结论的正确性。

三、反证法反证法是一种通过假设结论不成立,然后通过推导得出矛盾结论,从而证明结论的正确性的方法。

具体步骤如下:1. 假设需要证明的结论不成立,并根据这个假设进行推理。

2. 推导出与已知条件或已有结论矛盾的结论。

3. 得出矛盾结论后,说明这种情况是不存在的,从而证明原结论的正确性。

四、数学归纳法数学归纳法主要用于证明关于正整数的结论,它基于一个基础情况成立和一个由前一情况导出下一情况的假设。

具体步骤如下:1. 证明第一个情况成立,即基础情况成立。

2. 假设第n个情况成立,推导出第n+1个情况成立。

3. 基于以上推理,得出结论在所有情况下成立。

五、反证法证明等腰三角形定理等腰三角形定理:在三角形中,如果两边的边长相等,那么两个对应的角度也相等。

下面通过反证法来证明等腰三角形定理。

假设有一个三角形ABC,边AB = AC,但∠B ≠ ∠C。

根据夹角和定理,∠A + ∠B + ∠C = 180°。

初中数学专题复习平面图形及其位置关系(含答案)

初中数学专题复习平面图形及其位置关系(含答案)

第二章平面图形及其位置关系一、基础知识梳理(一)主要概念1.线段、射线、直线(1)线段:绷紧的琴弦、人行道横线都可以近似地看做线段.线段的特点:是直的,它有两个端点.(2)射线:将线段向一方无限延伸就形成了射线.射线的特点:是直的,有一个端点,向一方无限延伸.(3)直线:将线段向两个方向无限延长就形成了直线.直线的特点:是直的,没有端点,向两方无限延伸.2.线段的中点把一条线段分成两条相等的线段的点,叫做线段的中点.利用线段的中点定义,可以得到下面的结论:(1)因为AM=BM=12AB,所以M是线段AB的中点.(2)因为M是线段AB的中点,所以AM=BM=12AB或AB=2AM=2BM.3.角由两条具有公共端点的射线组成的图形叫做角,公共端点叫做角的顶点,两条射线叫做角的边.角也可以看成是由一条射线绕着它的端点旋转而成的.一条射线绕着它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角.终边继续旋转,当它又和始边重合时,所成的角叫做周角.4.角平分线从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.5.平行线在同一个平面内,不相交的两条直线叫做平行线.平行的关系是相互的,如果AB∥CD,则CD∥AB,其中符号“∥”读作“平行”.6.两条直线垂直当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,其交点叫做垂足,•如直线AB•与直线CD垂直,记作AB⊥CD.7.两点之间的距离两点之间的线段的长度,叫做这两点之间的距离.8.点到直线的距离从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.(二)主要性质1.直线的性质经过两点有且只有一条直线,其中“有”表示“存在性”,“只有”表示“惟一性”.2.线段的性质两点之间的所有连线中,线段最短.3.与平行线有关的一些性质(1)平行公理.经过直线外一点,有且只有一条直线与这条直线平行.(2)平行公理的推论.如果两条直线都与第三条直线平行,那么这两条直线也互相平行.4.垂线性质(1)经过一点有且只有一条直线与已知直线垂直.(2)直线外一点与直线上各点连接的所有线段中,垂线段最短.二、考点命题趋向分析(一)能力1.了解线段、射线、直线的意义.2.角.(1)通过丰富的实例,进一步认识角.(2)会比较角的大小,能估计一个角的大小,会计算角度的和与差,认识度、•分、秒,会进行简单换算(3)了解角平分线的概念.3.了解垂线、垂线段等概念,了解垂线段最短的性质,•体会点到直线的距离的意义. 4.知道过一点有且只有一条直线垂直于已知直线,•会用三角尺或量角器过一点画一条直线的垂线.5.知道过直线外一点有且仅有一条直线平行于已知直线,•会用三角尺和直尺过已知直线外一点画这条直线的平行线.(二)命题趋向分析1.考查学生发现问题、解决问题的能力.【例1】(2003年黑龙江)从哈尔滨开往A市的特快列车,途中要停靠两个站点,如果任意两站间的票价都不同,不同的票价有()A.4种 B.6种 C.10种 D.12种【分析】先建立数学模型,在一条线段上任取两点,有432⨯=6条线段,因此有6种不同的票价.【解】选B.【例2】(无锡)L1与L2是同一平面内的两条相交直线,它们有1个交点,•如果在这个平面内,再画第三条直线L3,那么这3条直线最多可有_______个交点;•如果在这个平面内再画第4条直线L4,那么这4条直线最多可有_______个交点;由此我们可以猜想在同一平面内,6条直线最多可有_______个交点,n(n为大于1的整数)条直线最多可有_______个交点(用含n的代数式表示).【分析】本题是从特殊到一般发现规律;还可以想n条直线两两相交,•每条直线上最多有(n-1)个交点,是n条直线上最多n(n-1)个交点,考虑到每个交点被重复计算一次,故n条直线最多可有(1)2n n-个交点.【解】3 6 16(1)2n n-2.线段长度的计算,线段的中点问题等在考题中常以填空题、选择题为主,重点考查学生发现问题、解决问题的能力.【例3】某大公司员工分别住在A,B,C三个住宅区,A区有60人,B区有30人,C 区有20人,三个区在同一条直线上,位置如图所示,该公司的接送车打算只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在()A.A区 B.C区 C.B区 D.A,B两区之间【分析】此题考查两点间的距离在实际生活中的运用,•根据实际问题建立数学模型,进而转化为线段的计算问题,分五种情况讨论:在A区,B区,C区,A与B之间,B•与C 之间,经过研究得出正确答案.【解】选A3.角的度量与换算在中考题中常以填空题,选择题为主,重点考查基础知识和基本技能.【例4】(山西)时钟在3点半时,它的时针和分针所成的锐角是()A.70° B.75° C.85° D.90°【分析】时针每分钟转3060︒=0.5°,分针每分钟转36060︒=6°,从3点整到3点半时针转了0.5°×30=15°,分针转了6°×30=180°,3点钟时时针与分针夹角90°,所以3•点半时针与分针夹角为180°-15°-90°=75°,故正确答案为B项.【解】选B4.七巧板问题在中考中主要考查图形的拼摆.【例5】(2002年济南)如图1,用一块边长为ABCD厚纸板,•按照下面做法,做了一套七巧板:作对角线AC,分别取AB、BC中点E、F,连结EF;作DG⊥EF于G,•交AC于H;过G作GL∥BC,交AC于L,再由E作EK∥DG,交AC于K;将正方形ABCE沿画出的线剪开.现用它拼出一座桥(如图2),这座桥的阴影部分的面积是().(1)(2)A.8 B.6 C.4 D.5【分析】本题考查了七巧板的拼摆及有关面积的计算.观察图形发现,桥的非阴影部分是两个大三角板,是正方形ABCD面积的一半,而阴影部分恰好是七巧板的剩余五块,其面积也应是正方形面积的一半.所以阴影部分面积为2=4.【解】选C.三、解题方法与技巧方法1:见比设元【例1】如图所示,B、C两点把线段AD分成2:4:3三部分,M是AD的中点,CD=9,求线段MC的长.【分析】题中给出了线段的长度比,那么设每一分为K是常见的解法.【解】∵AB:BC:CD=2:4:3∴设AB=2K BC=4K CD=3K∴AD=3K+2K+4K=9K∵CD=9∴3K=9 ∴K=3∴AB=6 BC=12 AD=27∵M为AD中点,∴MD=12AD=12×27=13.5∴MC=MD-CD=13.5-9=4.5【规律总结】不论是有关线段还是有关角的问题,只要有比值,就设未知数.方法2:利用线段的和差判断三点共线【例2】判断以下三点A、B、C是否共线.(1)有三点A、B、C,且AB=10cm,AC=2cm,CB=8cm;(2)AB=10cm,AC=3cm,CB=9cm.【解】(1)∵AB=10cm,AC=2cm,CB=8cm,∴AB=AC+CB∴A、C、B三点在同一条直线上(2)∵AB=10cm,AC=3cm,CB=9cm,∴AB≠AC+CB∴A、C、B三点不共线方法3:寻找规律(一)数直线条数:过任三点不在同一直线上的n点一共可画(1)2n n-条直线.(二)数n个人两两握手能握(1)2n n-次.(三)数线段条数:线段上有n个点(包括线段两个端点)时,共有(1)2n n-条线段.(四)数角的个数:以0为端点引n条射线,当∠AOD<180°时,则(如图)•小于平角的角个数为(1)2n n-.(五)数交点个数:n条直线最多有(1)2n n-个交点.(六)数对顶角对数:n条直线两两相交有n(n-1)对对顶角.(七)数直线分平面的份数:平面内n条直线最多将平面分成1+(1)2n n-个部分.【例3】同一平面内有四点,每过两点画一条直线,则直线的条数是()A.1条 B.4条 C.6条 D.1条或4条或6条【分析】同一平面内四点,可能四点共线,此时直线有一条;可能四点中有三点共线,此时直线有四条;也可能四条直线中任意三点都不共线,此时可画432⨯=6条直线.【解】选D【例4】一张饼上切七刀,最多可得到几块饼.【分析】从原始状态开始,当切1刀时,一张饼被分成两部分;当切2刀时,一张饼最多可被分成四部分;当切了3刀时,一张饼被最多分成七部分;……若用n•表示切的刀数,饼被最多分成S 部分.则:n=1时S=2;n=2时S=4;n=3时,S=7;n=4时,S=11.【解】设一张饼被切n 刀,最多分成S 部分,如图2-6可知:n=1时 S=1+1n=2时 S=1+1+2n=3时 S=1+1+2+3n=4时 S=1+1+2+3+4……则S=1+1+2+3+4+…+n=1+(1)2n n - ∴当n=7时,S=1+782⨯=29 答:当上张饼上切7切时,最多可得到29块饼.【规律总结】许多规律性问题应回到原始状态,按照从特殊到一般的方法寻找规律,再按照从一般到特殊的方法应用规律解决问题.方法4:钟表问题【例5】钟表现在是1点15分,分针再转多少度,时针与分针首次重合.【分析】分针1分钟走(36060)°=6°,时针1分钟走(3060)°=0.5°(分针1小时走一圈,即60分钟走360°,时针1小时走一格,即60分钟走30°).因此,分针速度是时针速度的12倍,故设分针走12x °,时针走x °时时针与分针首次重合,因为从1点整到1点15°,•分针走一圈的14,此时时针走一格的14,因此1点15分时时针与分针夹角(1+34)×30°=52.5°.•列方程可求解. 【解】设时针走x °时,时针与分针首次重合.依题意,得: 12x-x=360-(74×30) 解得: x=61522, ∴12x=369011=335511答:分针再转335511度,时针与分针首次重合.方法5:最优策略问题直线上有两点(如图)A 1和A 2,要在直线上找一点P ,使A 1、A 2到P 的距离之和最小,则P 点可放在A 1、A 2之间任意位置(包括A 1和A 2).此时PA 1+PA 2=A 1A 2.直线上有三点A 1、A 2、A 3(如图).要找到一点P ,使PA 1+PA 2+PA 3的和最小.不妨设P 在A 1、A 2之间,此时PA 1+PA 2+PA 3=A 1A 3+PA 2;若P 在A 2、A 3之间,此时PA 1+PA 2+PA 3=A 1A 3+PA 2;若P 在A 1上,则PA 1+PA 2+PA 3=A 1A 3+A 1A 2;若P 在A 2上,则PA 1+PA 2+PA 3=A 1A 3.若P 在A 3上,则PA 1+PA 2+PA 3=A 1A 3+A 2+A 3结论:当P 选在A 2点时PA 2+PA 2+PA 3的和最小,其最小值为A 1A 3.不难发现,当直线上有四个点时,如图所示.P 点选在A 2A 3上(包括端点).•可使P 到A 1、A 2、A 3、A 4的距离之和最小.其最小值为A 1A 4+A 2A 3.当直线上有五个点时,如图所示P 点选在A 3上,可使P 到A 1、A 2、A 3、A 4、A 5的距离之和最小,其最小值为A 1A 5+A 2A 4.【规律总结】当直线上有偶数个点时,P 应选在最中间两点之间(可与这两点重合);当直线上有奇数个点时,P 点与最中间的点重合,可使P 到各点距离之和最小.四、中考试题归类解析(一)线段,角【例1】(2003,青海),如图,C 是AB 的中点,D 是BC 的中点,下面等式不正确的是(• )A .CD=AC-DB B .CD=AD-BC C .CD=12AB-BD D .CD=12AB 【思路分析】∵C 是AB 的中点,∵AC=BC又∵D 是BC 的中点,∴CD=DB【解析】根据题意结合图形可得,应选D【规律总结】此类题基本上都是以选择题填空题出现.【例2】(2004,黑龙江)一束光线垂直照射水平地面,在地面上放一个平面镜,欲使这束光线经过平面镜反射后成水平光线,则平面镜与地面所成锐角的度数为()A.45° B.60° C.75° D.80°【思路分析】由垂直照射水平地面到反射后成水平光线说明入射光线与反射光线成90°的角根据入射角与反射角相等可得入射角为45°,也得出平面镜与地面所成的锐角度数为45°【解】应选A【规律总结】象这样数学整合其它学科的题将是今后中考命题的趋势.(二)平行【例1】(2003,安徽)如图,已知AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.1个 B.2个 C.3个 D.4个【思路分析】由AC⊥BC,可知∠ABC与∠CAB互余,又因为AB∥CD,所以∠ABC=•∠BCD,又由对顶角的性质∠ABC=∠1 【解】答案:C【规律总结】考查平行线段性质的问题是中考命题中常出现的.【例2】(2004,安徽)如图,已知AB∥DE,∠ABC=80°,∠CDE=•140•°,•则∠BCD=_______.【解】答案:40 °【规律总结】这类题目作平行线是解题的关键,通过作平等线把所求角与已知角加以沟通.五、中考试题集萃一、填空题1.(2003年,青海)如图1,两平面镜α、β的夹角为θ,入射光线AO平行于β入射到α上,经过两次反射后的出射光线O′B平行于α,则角θ=________度.2.(2003,长沙)如图2,AB∥CD,EF分别交AB、CD于点E、F,∠1=70°,则∠2=•____度.B(1) (2) (3) (4)3.(2003,河南)如图3,直线L 1∥L 2,AB ⊥L 1,垂足为O ,BC 与L 2相交于点E ,若∠1=43°则∠2=_______度.4.(2003,福州)如图4,直线a 、b 被直线c 所截,且a ∥b ,如果∠1=60•°,•那么∠2=______度.5.(2004,太原)如图5,Rt △ABC 中,∠C=90°,沿过点B 的一条直线BE 折叠△ABC ,使点C 恰好落在AB 边的中点D 处,则∠A 的度数等于_________.(5) (6) (7) (8)6.(2004,福州)如图6,两条直线a 、b 被第三条直线C 所截,如果a ∥b ,∠C=70°,那么∠2=_______.7.(2004,贵阳)如图7,直线a ∥b ,则∠ACB=_____度.8.(2004,镇江)已知∠α=36°,若∠β是∠α的余角,则∠β=______,sin β=_______.(•结果保留四个有效数字)9.(2004.岳阳)已知一个角的余角为60°,则这个角的补角为_________.二、选择题1.(2003,北京海淀区)若∠α=30°,则∠α的补角是( )A .30°B .60°C .120°D .150°2.(2003,北京海淀区)如图8,直线c 与a 、b 相交,且a ∥b ,则下列结论:①∠1=•∠2②∠1=∠3 ③∠3=6∠2中正确的个数为( )A .0B .1C .2D .33.(2003,南通)已知:如图9,下列条件中,不能判断直线L 1∥L 2的是( )A .∠1=∠3B ∠5 D .∠2+∠4=180°(9)(11) (12)4.(2003,湘潭)如图10,从A 地到B 地有多条道路,一般地,人 们会走中间的直路,•而不会走其他的曲折的路,这是因为()A.两点之间线段最短 B.两直线相交只有一个交点C.两点确定一条直线 D.垂线段最短5.(2004,台州)天安门广场上五星红旗的旗杆与地面的位置关系属于()A.直线与直线平行 B.直线与直线垂直C.直线与平面平行 D.直线与平面垂直6.(2004,河南)如图11,从A地到C地,可供选择的方案是走水路,走陆路,走空中.从A地到B地有2条水路,2条陆路,从B地到C地有3条陆路可代选择,走空中从A•地直接到C地,则从A地到C地可供选择的方案有()A.20种 B.8种 C.5种 D.13种7.(2004,南京)如果∠α=20°,那么,∠α的补有等于()A.20° B.70° C.110° D.160°8.(2004,日照)如图12,已知直线AB∥CD.当点E在直线AB与CD之间时,有∠BED=•∠ABE+∠CDE成立;而当点E在直线AB与CD之外时,下列关系式成立的是()A.∠BED=∠ABE+∠CDE或∠BED=∠ABE-∠CDEB.∠BED=∠ABE-∠CDEC.∠BED=∠CDE-∠ABE或∠BED=∠ABE-∠CDED.∠BED=∠CDE-∠ABE三、解答题1.(2003,山东)某市召集20名特级老师参加教研教改研讨会,与会的特级老师每两人之间都握手一次,那么他们之间一共握手________次.2.(2003,天津)如图,在△ABC中,CE⊥AB于E,DF⊥AB于F,AC∥ED,CE是∠ACB的平分线,求证:∠EDF=∠BDF.3.(2003,青海)如图,OM是∠AOB的平分线,射线OC在∠BOM内部,ON是∠BOC•的平分线,已知∠AOC=80°,求∠MON的度数.4.(2004,武汉)如图,已知AB∥CD,∠EAF=14∠EAB,∠ECF=14∠ECD。

初一数学几何图形的性质与证明练习题及答案

初一数学几何图形的性质与证明练习题及答案

初一数学几何图形的性质与证明练习题及答案几何图形是数学中的一个重要概念,它们具有独特的性质和特征。

在初一的数学学习中,学生需要了解不同几何图形的性质,并且能够通过证明来验证这些性质。

本文将提供一些初一数学几何图形的性质与证明练习题及答案,帮助学生深入理解几何图形。

一、直线和线段的性质及证明性质1:两点确定一条直线。

证明:设有两点A和B,我们可以通过连接这两个点的直线来得到一条直线。

性质2:直线上的任意一点都在直线的同一侧。

证明:设直线上有一点C,在直线上我们可以找到一点D,并通过连接点C和D得到一条直线。

点C和点D的连接线与原始直线重合,因此点C和原始直线上的点A、B都在直线的同一侧。

性质3:线段的中点即为线段上到两个端点距离相等的点。

证明:设线段AB上有一点E,若点E到点A和点B的距离相等,则点E为线段AB的中点。

二、三角形的性质及证明性质4:三角形的内角和等于180度。

证明:设三角形ABC,我们可以通过在点B处做一条平行于边AC的直线,连接点A和点C,构成直线ABCD。

由于直线ABCD是一条直线,所以角ABC + 角BCD = 180度。

因此,三角形ABC的内角和等于180度。

性质5:等腰三角形的底边上的高线也是中位线。

证明:设等腰三角形ABC中,AB = AC,点D为底边BC上的中点,我们需要证明AD是三角形ABC的高线。

通过连接点A和点D,我们可以得到线段AD。

由于AB=AC,所以角BAD =角CAD,即角B = 角C。

又因为线段AD是BC的中点,所以BD = CD。

根据三角形的SAS相等性质,我们可以得知三角形ABD与三角形ACD全等。

根据全等三角形的性质,我们可以得出AD是三角形ABC的高线。

性质6:直角三角形的斜边平方等于两直角边平方和。

证明:设直角三角形ABC ,其中∠C为直角。

我们需要证明AB² = AC² + BC²。

通过在边AC上做一条垂直于AC的高线AD,我们可以将直角三角形ABC分为两个矩形,分别为ABCD和ABDE。

华师大版七年级数学上册立体几何证明专题

华师大版七年级数学上册立体几何证明专题

华师大版七年级数学上册立体几何证明专题简介本文档介绍了华师大版七年级数学上册立体几何证明专题。

立体几何是数学中的一个重要分支,主要研究空间中的图形和对象。

本文档将涵盖常见的立体几何证明题目和解题方法,帮助读者提高解题能力。

目录1. 证明题目一: 零件的组合2. 证明题目二: 三棱柱的表面积3. 证明题目三: 平行四边形棱台的体积4. 证明题目四: 正方体的表面积和体积证明题目一: 零件的组合这个题目要求证明一个图形由几个零件组合而成。

我们需要分析每个零件的特征和位置,然后通过证明每个零件的特征是相等的,进而得出整个图形的特征是相等的。

具体的证明步骤和思路将在文中详细解释。

证明题目二: 三棱柱的表面积这个题目要求证明一个三棱柱的表面积的公式。

我们可以通过拆解三棱柱为几个简单的平面图形,然后计算每个平面图形的面积,最后将它们相加得出整个三棱柱的表面积。

在文中,将详细解释这个证明过程。

证明题目三: 平行四边形棱台的体积这个题目要求证明一个平行四边形棱台的体积的公式。

我们可以将平行四边形棱台拆解为两个三棱柱和一个平行四边形棱台,然后分别计算它们的体积并相加得出整个平行四边形棱台的体积公式。

具体的证明过程将在文中详细解释。

证明题目四: 正方体的表面积和体积这个题目要求证明一个正方体的表面积和体积的公式。

我们可以通过拆解正方体为六个面,然后计算每个面的面积和体积,最后将它们相加得出整个正方体的表面积和体积。

在文中,将详细解释这个证明过程。

总结立体几何证明题目需要通过分析和推理,来得出图形特征或公式的证明过程。

通过理解每个题目的要求,我们可以运用合适的解题方法,来解决立体几何证明题目。

本文档提供了一些常见题目的证明方法,希望读者能够在学习立体几何的过程中有所帮助。

几何证明题的一般步骤

几何证明题的一般步骤

几何证明题的一般步骤1、几何证明题的一般步骤:一“标"二“想”三“整理”(1)标出已知条件,如线段相等可以用单杆双杆等表示,角相等可以用单弧线双弧线等表示;(2)一要想出题目或图中的隐含的相等条件:如①对顶角相等、②(部分)公共边、③(部分)公共角、④等(同)角的余(补)角相等,⑤BD=CE BD+DC=EC+CD即BC=ED等;二要想出已知条件、隐含条件与所求证之间的关系,进而得到解题的思路;(3)整理时,须按照三角形全等的对应关系和判定条件一一整理,如果(三个或两个)条件不够,那么需要提前做好铺垫,再通过对应关系进行整理,保证思路清晰,书写条理;思路:证明两条边相等、两个角相等或两边平行的一个重要方法是利用这两条边或这两个角所在的两个三角形全等;2、证明文字叙述的真命题的一般步骤:(1)分清条件和结论;(2)画出图形;(3)根据条件写出已知,根据结论写出求证;(4)证明3、选择证明三角形全等的方法与技巧(“题目中找,图形中看”)(1)已知两边对应相等①证第三边相等,再用S.S.S。

证全等②证已知边的夹角相等,再用S。

A。

S.证全等③找直角,再用H.L。

证全等(2)已知一角及其邻边相等①证已知角的另一邻边相等,再用S。

A。

S。

证全等②证已知边的另一邻角相等,再用A。

S.A.证全等③证已知边的对角相等,再用A.A。

S。

证全等(3)已知一角及其对边相等证另一角相等,再用A。

A。

S.证全等(4)已知两角对应相等①证其夹边相等,再用A。

S。

A。

证全等②证一已知角的对边相等,再用A。

A。

S。

证全等4、全等三角形中的基本图形的构造与运用(1)出现角平分线时,常在角的两边截取相等的线段,构造全等三角形(2)出现线段的中点(或三角形的中线)时,可利用中点构造全等三角形(常用加倍延长中线)(3)利用加长(或截取)的方法解决线段的和、倍问题(转移线段)。

七年级数学几何证明大体步骤平面图形及其位置关系拔高练习

七年级数学几何证明大体步骤平面图形及其位置关系拔高练习

七年级数学几何证明大体步骤(平面图形及其位
置关系)拔高练习
试卷简介:全卷共3道单项选择道,共30分。

整套试卷立足于几何证明方式的解题步骤,考察学生对解题步骤的标准性,严谨性的把握,题目设计源于讲义,尽管只是30分钟的小测试,但包括了关于线段和角的基础知识,同时重点考察思维严谨性。

学生在做题进程当中应该清楚的熟悉线段中点的六种表达方式和角平分线的六种表达方式,做到灵活运用。

学习建议:本讲要紧内容是证明的严谨性训练,超级重要,尤其关于同窗们在下学期学到三角形全等的时候作用极大。

因此大伙儿需要在熟练把握基础知识的基础上,还要能够熟练标准的表达出来。

一、单项选择题(共3道,每道10分)
为AB的三等分点,且AM=6,那么AB的长为()
或18
D.不确定
2.如图,已知∠1∶∠3∶∠4=1∶2∶4,∠2=80°,∠一、∠3、∠4的度数别离是()
°,40°,120°
°,60°,120°
°,80°,160°
°,40°,160°
3.如图,将书角斜折过去,直角极点A落在F处,BC为折痕,∠FBD = ∠DBE,那么∠CBD的
度数()
°
°
°
°
东区总校:郑州市文化路与黄河路交叉口中孚大厦7楼B室:西区总校:郑州市陇海路与桐柏路交叉口凯旋门大厦B座405室:。

七年级数学第四章《平面图形及其位置关系》专项练习(含答案)

七年级数学第四章《平面图形及其位置关系》专项练习(含答案)

第四章《平面图形及其位置关系》专项练习在本章中,我们不仅能从测量、折纸、画图等活动中学到线段、直线、射线、角等简单的平面图形,以及两直线平行、垂直的位置关系和特征,而且还可以自己创作出新颖、有趣的七巧板拼图,用尺规设计出精美、别致的图案,这样,你自己也会成为一名小小的设计师,更会感受到美就在我们身边.考点一:直线、射线线段 1.考点分析:考查直线、射线、线段的性质以及直线与线段计数问题,线段的计算及简单的语言的认识与应用,多以填空、选择的形式出现2.典例剖析例1.在表示直线时,常常要用到直线上的两个点表示,这条直线为什么不用一个点,三个点或更多的点表示直线?答:因为过一点可作无数条直线,即一点不能确定一条直线,所以不能用一点表示一条直线,而两点确定一直线,用直线上三个点或更多的点表示太繁,一般来说也没必要,因此用两点最简单明了.例2.(1)如图1,从教室门A 到图书馆B ,总有少数同学不走边上的路而横穿草坪,这是为什么?请你用所学的数学知识来说明这个问题.(2)如图2,A 、B 是河流L 两旁的两个村庄,现在要在河边修一个引水站向两村供水,问引水站修在什么地方才能使所需要的管道最短?请在图中表示出点P 的位置,并说明你的理由.(3)你赞同以上的做法吗?你认为应用 科学知识为人民服务应注意什么?分析:利用“两点之间,线段最短”.答:(1利用的是两点之间,线段最短.(2)连接A 、B两点与L 相交,交点就是P 的位置,根据两点之间,线段最短. (3)第一种做法不对,践踏草坪不道德;第二种做法对,节省物质.例3.已知线段AB=8cm ,在直线AB 上画线段BC ,使它等于3cm ,求线段AC 的长. 解:当点C 在线段AB 的延长线时,如图3, AC=AB+BC=8+3=11(cm ) 当点C 在射线BA 上时,如图4,AC=AB-BC=8-3=5(cm ) 所以线段AC 的长为11cm 或5cm .评注:这是一道读句画图计算题,只要按照题意,正确地画出图形,这里还要注意分类讨论的数学思想,否则容易漏解. 专练一: 1.一般来说,把门安装在门框上需要两个合页,这是为什么呢?2.“已知线段AB ,在BA 的延长线上取一点C ,使CA=3AB ,(1)线段CB 是线段AB 的几倍?(2)线段AC 是线段CB 的几分之几?”3.如图5,平原上有A 、B 、C 、D 四个村庄,为了解决当地缺水问题,政府准备投资修建一个蓄水池.不考虑其他因素,A L图2·· · A C B 图4 ·· · B A C 图3H B · A · ·C ·D E F ┒ ≈ ≈ ≈≈ ≈ ≈图5请你画图确定蓄水池H 点的位置,使它与四个村庄的距离之和最小. 4. 如图6,在正方体两个相距最远的顶点处有一只苍蝇B 和蜘蛛A , 蜘蛛可从哪条最短的路径爬到苍蝇处?试说明你的理由.5.在同一平面上,1条直线把一个平面分成22112++=2个部分,2条直线把一个平面最多分成22222++=4个部分,3条直线把一个平面最多分成22332++=7个部分,那么8条直线把一个平面最多分成 部分, n 条直线把一个平面最多分成 部分.6.问题:在直线上有n 个不同点,则此直线上共有多少条线段?考点二:角的度量、表示与比较 1.考点分析:角的度、分、秒的转换与计算,角的计数等内容是中考的热点,多以填空题、选择题的形式出现2.典例剖析例1.下图中有几个角?是哪几个角?分析:由一点引n 条射线所组成的角的个数共有(1)1234(1)2n n n -+++++-=L 个,此题从O 出发有4条射线,n=4,此时(1)62n n -=.解:图中有6个角,分别为∠AOB 、∠AOC 、∠AOD 、∠BOC 、∠BOD 、∠COD . 例2.如图7,一幅三角板的两个直角顶点重合在一起,(1)比较∠EOM 和∠FON 的大小,并说明为什么?(2)∠EON 与∠FOM 的和是多少度?为什么?解:由三角板可知∠EOM+∠FOM=900,∠FOM+∠FON=900, 所以∠EOM=∠FON ,又因为∠EON=∠EOM+∠FOM+∠FON , 所以∠EON+∠FOM=∠EOM+∠FOM+∠FON+∠FOM= 900+900=1800.例3.如图8,OA 是表示北偏东300方向的一条射线,仿照这条射线,画出展示下列方向的射线:(1)南偏东250;(2)北偏西600.分析:(1)以正南方向的射线为始边,向东旋转250, 所成的角的终边OB 即为所求的射线.(2)以正北方向的射线为始边,向西旋转600, 所成的角的终边OC 即为所求的射线.解:如图8所示:B图6 O A BCD图6东 O 西 南 北 30A 600东 O 西 南 北 250B C 图8 图9 图7O A B P QR图1专练二: 1.(2006年潍坊市)用A B C ,,分别表示学校、小明家、小红家,已知学校在小明家的南偏东25︒,小红家在小明家正东,小红家在学校北偏东35︒,则ACB ∠等于( ) A .35︒ B .55︒ C .60︒ D .65︒ 2.如图10,已知∠AOC =∠BOD =75°,∠BOC =30°,求∠A OD.3.如图11,已知O 是直线AB 上的点,OD 是∠AOC 的平分线,OE 是∠COB 的平分线,求∠DOE 的度数.4.如图12,∠AOB=900,ON 是∠AOC 的平分线,OM 是∠BOC 的平分线, 求∠MON 的大小.考点三:直线与直线的位置关系1.考点分析:直线与直线的位置关系有两种:平行与垂直,有关平行线的定义的辨析题和平行线性质的应用以及垂线、垂线段的概念、性质是中考的主要考点,多以填空题、选择题为主2.典例剖析例1.已知:如图1,∠A0B 的两边 0A 、0B 均为平面反光镜, ∠A0B =40o.在0B 上有一点P,从P 点射出一束光线经0A 上的Q 点反射后,反射光线QR 恰好与0B 平行,则∠QPB 的度数是( )A .60°B .100 °C . 80°D .120°分析:本题考察相交线、平行线的问题,题目非常简单. 答案为C .评注:本题把考察相交线、平行线的问题,放置在生活中的实际背景中,贴近生活,体现了数学的现实性、实用性,题目灵活,重点考察学生的数学素养.例2.按如图所示的方法将圆柱切开,所得的截面中 有没有互相平行的线段?答案:有.即:AB ∥CD AD ∥BC评注:由于圆柱的上、下底面平行,按照这样截法 阴影部分为平行四边形例3.体育课上,老师是怎样测量同学们的跳远成绩的? 你能尝试说明其中的理由吗?理由:将尺子拉直与踏板边沿所在的直线垂直,量取最近的脚印与踏板边沿之间的距离. “垂线段最短”.专练三:1.下列说法错误的是( )A.直线a ∥b ,若c 与a 相交,则b 与c 也相交BAC M N O图12图10图12G C FMA HED BNB.直线a 与b 相交,c 与a 相交,则b ∥cC.直线a ∥b ,b ∥c ,则a ∥cD.直线AB 与CD 平行,则AB 上所有点都在CD 同侧2.如右图,过C 点作线段AB 的平行线,说法正确的是( )A.不能作B.只能作一条C.能作两条D.能作无数条 3.将一张长方形纸对折,使OA 与OB 重合,这时∠AOC 是什么角?为什么?4.如图,哪些线段是互相垂直的,请利用量角器或直尺等工具将它们找出来.5.如图,所示是楼梯台阶的一部分,与面AB-DC 垂直的棱有哪些?6.读下列语句作图(1)任意作一个∠AOB . (2)在角内部取一点P .(3)过P 分别作PQ ∥OA ,PM ∥OB .(4)若∠AOB =30°,猜想∠MPQ 是多少度?考点四:平面图形问题1.考点分析:这部分内容主要是指:有趣的七巧板与图案设计两部分,利用七巧板的原理拼图以及用基本的图形,通过想象,设计一些个性化的图案,多以填空题、选择题为主2.典例剖析例1.如图1,用一块边长为22的正方形ABCD 厚纸板,按照下面的作法,做了一套七巧板:作对角线AC ,分别取AB 、BC 中点E 、F ,连结EF ;作DG ⊥EF 于G ,交AC 于H ;过G 作GL ∥BC ,交AC 于L ,再由E 作EK ∥DG ,交AC 于K ;将正方形ABCD 沿画出的线剪开,现用它拼出一座桥(如图2),这座桥的阴影部分的面积是( )A.8B.6C.4D.5分析:本题先将正方形割成七巧板,然后再拼成一座桥,因此不难发现阴影部分是由5个小板构成的,由于拼图前后图形的总面积以及7个小板的面积不变,所以这座桥的阴影部分的面积应是正方形面积的一半,即阴影部分的面积为4,故选C例2.(1)在七巧板中(如图1),找几组平行线或垂直的线段? (2)在七巧板中(如图),直角、锐角、钝角有哪些? 分析:根据七巧板中每个图形的特点可以得到: (1)平行线有:AB ∥DC ;EK ∥HG ;LG ∥CF 等; 垂直的线段有:EK ⊥AC ;GH ⊥AC ;EG ⊥HG 等(2)锐角12个:∠BAH ;∠FGL ;∠HGL 等,它们均为450 直角有:∠AHG ;∠HKE ;∠LHG ;∠KEG 等; 钝角有:∠CLG ;∠CFG ,它们均内为1350例3.如图3,将标号为A 、B 、C 、D 的正方形沿图中的虚线剪开后得到标号为P 、Q 、M 、N 的四组图形.试按照“哪个正方形剪开后得到哪组图形”的对应关系,填空:A 、与____对应B 、与____对应C 、与____对应D 、与_____对应分析:根据剪拼前后,小块图形的大小,形状不变的特点,仔细观察每个正方形中的小块图形的特征,以此判断出:A 与M 对应;B 与P 对应;C 与Q 对应;D 与N 对应专练四:1.如图1是利用七巧拼成风的图案,在这个图案中找出二组平行线是_ __.(1)E C FM A HD BG(2)EC FA DBG(3)2.如图2是利用七巧板拼成的山峰的图案, 在这个图案中找出二组互相垂直的线段是___________________.3.如图3是利用七巧板拼成的数字3,这个图案中直角的个数是( ) A.5 B.9 C.7 D.8图3 图2 图14.七巧板是我国祖先创造的一种智力玩具,它来源于勾股法,如图4①整幅七巧板是由正方形ABCD 分割成七小块(其中:五块等腰直角三角形、一块正方形和一块平行四边形)组成,如图4②是由七巧板拼成的一个梯形,若正方形ABCD 的边长为12 cm ,则梯形MNGH 的周长是____cm (结果保留根号).5.用你所制作的七巧板,拼成一个等腰直角三角形与一个梯形,并在纸上画出所拼的图案. 6.今有一块正方形土地,要在其上修筑两条笔直的道路,使道路把这片土地分成形状相同且面积相等的4部分,若道路的宽度忽略不计,请你设计三种不同的修筑方案.(只需画简图)7种不同形状的平面图形?请你画出拼成的图形.参考答案专练一:1.答:是因为经过两点有一条直线且只有一条直线.2.若学生不会画图,很难得到其数量关系,但学生只要把图画出来,其数量关系就一目了然.3.解:如图5所示:连结AD 、BC ,交于点H ,则H 为所求蓄水池点. 4.解:分析:我们可以借助正方体的展开图找到解题的办法,由于正方体的 展开有不同的方法,因而从A 到B 可用6种不同的方法选取最短的 路径,但每条路径都通过连接正方体两个顶点的棱的中点.因为蜘蛛只能在正方体的表面爬行,所以只要找到这个正方体的展开图,应用“两点之间,线段最短”就可确定最短路径(如图6). 5.分析:在同一平面上,1条直线把一个平面分成22112++=2个部分,2条直线把一个平面最多分成22222++=4个部分,3条直线把一个平面最多分成22332++=7个部分,可以猜想:8条直线把一个平面最多分成部分2882372++=部分,那么n 条直线把一个平面图5图6A 图6图4最多分成222n n++部分.6.1+2+3+4+…+n=2)1(-⨯nn条线段,专练二:1.1100;2.120°;3.90°4.450.专练三:1.B;2.B;3.90°4.BC⊥AB BC⊥BE BC⊥AE BC⊥CD5.有棱DF,CE,HN,GM6.如图;30°或150°专练四:1.AB∥DC,HG∥BC;2.AG⊥AB,BC⊥CD ___3.B;4.略;5.如答图所示:(1)(2) 6.答案不唯一(如图7)7.答案不唯一(如图8)图7①②③④⑤图8。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学几何证明基本步骤(平面图形及其位置关系)拔高练习
试卷简介:全卷共3道单选道,共30分.整套试卷立足于几何证明方法地解题步骤,考察学生对解题步骤地规范性,严谨性地掌握,题目设计源于课本,虽然只是30分钟地小测试,但包含了关于线段和角地基础知识,同时重点考察思维严谨性.学生在做题过程当中应该清楚地认识线段中点地六种表达方式以及角平分线地六种表达方式,做到灵活运用.
学习建议:本讲主要内容是证明地严谨性训练,非常重要,尤其对于同学们在下学期学到三角形全等地时候作用极大.所以大家需要在熟练掌握基础知识地基础上,还要能够熟练规范地表达出来.
一、单选题(共3道,每道10分)
1.M为AB地三等分点,且AM=6,则AB地长为()
A.9
B.18
C.9或18
D.不确定
2.如图,已知∠1∶∠3∶∠4=1∶2∶4,∠2=80°,∠1、∠3、∠4地度数分别是()
A.20°,40°,120°
B.40°,60°,120°
C.40°,80°,160°
D.20°,40°,160°
3.如图,将书角斜折过去,直角顶点A落在F处,BC为折痕,∠FBD = ∠DBE,则∠CBD地度数()
A.80°
B.90°
C.100°
D.110°
/curriculum/index.jsp?do=ok 东区总校:郑州市文化路与黄河路交叉口中孚大厦7楼B室电话:65335902 西区总校:郑州市陇海路与桐柏路交叉口凯旋门大厦B座405室电话:68856662。

相关文档
最新文档