双横臂式独立悬架

合集下载

基于牛顿-辛普森迭代法的双横臂独立悬架运动分析

基于牛顿-辛普森迭代法的双横臂独立悬架运动分析

基于牛顿-辛普森迭代法的双横臂独立悬架运动分析第一章引言双横臂独立悬架是一种常见的车辆悬挂结构,在现代汽车中得到了广泛应用。

它能够提供更为舒适、稳定和安全的行车体验,同时也能够提高车辆的操控性能和路面附着力。

因此,对于双横臂独立悬架的运动特性的研究对于优化车辆性能和提高驾驶体验具有重要意义。

本文基于牛顿-辛普森迭代法探讨了双横臂独立悬架的运动特性,旨在进一步了解该悬架的运动规律和特点,为车辆动力学仿真和悬架优化设计提供理论支持。

第二章算法原理牛顿-辛普森迭代法是解决非线性方程组的一种经典数值方法,其核心思想是将非线性问题转化为一系列线性问题,并采用数值积分的方法求解。

对于双横臂独立悬架运动问题,我们可以将其转化为求解关于悬架各个节点位移和速度的方程组,并以时间为离散变量采用数值方法求解。

具体来说,我们可以采用牛顿-辛普森迭代法求解双横臂独立悬架的运动学方程和动力学方程。

对于运动学方程,我们可以根据悬架结构和运动学原理得到各节点位置和速度的函数表达式,然后采用数值方法逐步迭代求解。

对于动力学方程,我们需要考虑悬架与地面之间的接触力、悬架各部件之间的力学作用和阻尼作用,可以采用经典的牛顿-欧拉方程或拉格朗日方程进行建模,并通过数值方法求解。

通过采用牛顿-辛普森迭代法解决双横臂独立悬架的运动问题,可以避免复杂的微分方程求解和浮点运算,同时求解速度较快,精度较高,适用于车辆动力学仿真中的实时运算。

第三章模型建立本文中,我们采用一款现代SUV车型的双横臂独立悬架作为研究对象,建立了悬架的三维CAD模型并进行了仿真分析。

根据悬架结构和运动学原理,我们可以得到悬架各节点位置和速度的函数表达式,进而得到悬架的运动学方程和动力学方程。

对于悬架的动力学方程,我们采用拉格朗日动力学方法进行建模,将悬架各部件的质量、刚度、阻尼等参数考虑进去,并根据运动学方程和拉格朗日方程构建了一个涵盖悬架多自由度运动的非线性微分方程组。

汽车悬架哪种好?麦弗逊式独立悬架多连杆式双叉臂式双横臂式

汽车悬架哪种好?麦弗逊式独立悬架多连杆式双叉臂式双横臂式

汽车悬架哪种好?麦弗逊式独⽴悬架多连杆式双叉臂式双横臂式TAG:麦弗逊式独⽴悬架多连杆式独⽴悬架双叉臂式独⽴悬架(双连杆式,双摇臂式,双A臂式)双横臂式悬架拖曳臂式悬挂扭⼒梁式悬挂 ⼤多车型的前悬都为麦弗逊形式,虽然麦弗逊式悬挂技术含量并不⾼,但其是⼀种经久耐⽤的独⽴悬架,具有很强的道路适应能⼒。

多连杆式独⽴悬架的整体效果相对更优秀,由于成本较⾼,四轮多连杆的车屈指可数,⼤多数出于成本考虑⽤了前麦弗逊式悬挂。

麦弗逊式悬挂是当今世界⽤的最⼴泛的轿车前悬挂之⼀。

麦弗逊式悬挂由螺旋弹簧、减震器、三⾓形下摆臂组成,绝⼤部分车型还会加上横向稳定杆。

主要结构简单的来说就是螺旋弹簧套在减震器上组成,减震器可以避免螺旋弹簧受⼒时向前、后、左、右偏移的现象,限制弹簧只能作上下⽅向的振动,并可以⽤减震器的⾏程长短及松紧,来设定悬挂的软硬及性能。

麦弗逊式悬挂结构简单,所以它轻量、响应速度快。

并且在⼀个下摇臂和⽀柱的⼏何结构下能⾃动调整车轮外倾⾓,让其能在过弯时⾃适应路⾯,让轮胎的接地⾯积最⼤化,虽然麦弗逊式悬架并不是技术含量很⾼的悬架结构,但麦弗逊式悬挂在⾏车舒适性上的表现还是令⼈满意,不过由于其构造为直筒式,对左右⽅向的冲击缺乏阻挡⼒,抗刹车点头作⽤较差,悬挂刚度较弱,稳定性差,转弯侧倾明显。

需要特别说明的是作为超级跑车的保时捷911也采⽤了麦弗逊式前悬挂,这⾜以证明这款悬挂具有⼴泛的适应性。

连杆⽀柱式悬架则是由麦弗逊式悬挂⽽衍⽣出来的悬挂,⼀般出现在后悬架中,它的下部不再是A臂,⽽是两根平⾏连杆和⼀根纵向拉杆。

由于麦弗逊式悬挂先天性的侧向⽀撑不⾜,由此很多⼚家通过各种调整和变化以加强其侧向⽀撑的能⼒。

连杆⽀柱式独⽴悬挂其实是麦弗逊式的⼀个变种,结构特性与麦弗逊是完全相同的。

这种悬挂与前⾯所说的标准多连杆最⼤的差别在于,车轮上端不再有连杆作为⽀撑,⽆法与标准多连杆式相提并论。

这种结构也⽆法实现多连杆式悬挂那么精准的定位和调校,因此它与标准多连杆式是⽆法相提并论的。

汽车双横臂扭杆弹簧独立悬架设计

汽车双横臂扭杆弹簧独立悬架设计

汽车双横臂扭杆弹簧独立悬架设计悬挂系统在汽车中起到了关键的作用,它直接影响着汽车的操控性、行驶稳定性、乘坐舒适性等方面。

对于高性能车辆而言,悬挂系统的设计尤为重要。

双横臂扭杆弹簧独立悬架是一种高性能的悬挂系统,本文将对其进行详细的设计。

双横臂扭杆弹簧独立悬架是一种常见的汽车悬挂系统,其结构简单紧凑、重量轻、刚性优越、行驶稳定性好等特点使其成为高性能车辆中的首选。

该悬挂系统主要由两根横臂、一根扭杆和弹簧组成。

其中,横臂分别安装在车体和车轮悬架之间,扭杆则固定在两个横臂之间。

而弹簧则连接在横臂和车体之间,起到支撑和缓冲的作用。

在设计双横臂扭杆弹簧独立悬架时,需要考虑的因素包括悬挂系统的刚度、悬挂高度和行驶稳定性等。

首先,我们需要确定悬挂系统的刚度。

刚度对于悬挂系统来说非常重要,它直接影响着汽车的操控性和行驶稳定性。

刚度过高会降低乘坐舒适性,而刚度过低则会影响操控性能。

因此,我们需要根据车辆的使用环境、车型和车重等因素来确定悬挂系统的刚度。

其次,需要确定悬挂高度。

悬挂高度是指汽车底盘与地面的距离,它会影响到汽车的通过性、行驶平稳性和乘坐舒适性等方面。

在确定悬挂高度时,需要综合考虑不同因素的影响,如车身重心、悬挂系统刚度和弹簧等。

最后,需要考虑悬挂系统的行驶稳定性。

悬挂系统的行驶稳定性决定着汽车在高速行驶和急转弯等情况下的控制性能。

为了提高行驶稳定性,可以采用多种方式,如增加悬挂系统的刚度、调整悬挂系统的几何结构和采用电子控制悬挂系统等。

在进行双横臂扭杆弹簧独立悬架设计时,还需要对各组件的材料和结构进行选择。

材料的选择应考虑强度、刚度、重量等因素。

而结构的设计需要考虑各组件之间的连接方式、布局和受力情况等。

总之,汽车的悬挂系统是其性能表现和乘坐舒适性的重要因素之一、双横臂扭杆弹簧独立悬架作为一种高性能的悬挂系统,其设计需要综合考虑悬挂系统的刚度、悬挂高度和行驶稳定性等因素。

通过合理的选择和设计,可以使汽车的悬挂系统达到最佳的运行状态,提供出色的操控性、行驶稳定性和乘坐舒适性。

汽车双横臂扭杆弹簧独立悬架设计

汽车双横臂扭杆弹簧独立悬架设计

汽车双横臂扭杆弹簧独立悬架设计崔敏【摘要】This paper is mainly to analysis a light truck’s computing method of the front independent suspension design and testing of design experiment. Firstly, it goes with the stress analysis and the trajectory calculation of the double wishbone independent suspension, and then continues with the suspension design calculation such as the design of torsion bar spring , front suspension’s stiffness, offset frequency calculation, stabilizer bar’s design, roll stiffness calculation, shockabs orber’s design, and finally the suspension offset frequency and riding comfort can be verified through the test.%文章主要研究某轻型载货汽车前独立悬架的设计计算方法以及独立悬架的设计试验验证,首先对双横臂式独立悬架进行受力分析、运动轨迹计算,然后对悬架进行设计计算如扭杆弹簧的设计、前悬架的刚度、偏频计算、稳定杆的设计、侧倾刚度计算、减震器的设计,最后通过试验验证悬架的偏频、平顺性。

【期刊名称】《汽车实用技术》【年(卷),期】2016(000)006【总页数】4页(P11-14)【关键词】轻型载货汽车;双横臂式独立悬架;平顺性【作者】崔敏【作者单位】安徽江淮汽车股份有限公司技术中心,安徽合肥 230601【正文语种】中文【中图分类】U463.33+210.16638 /ki.1671-7988.2016.06.005CLC NO.: U463.33+2 Document Code: A Article ID: 1671-7988 (2016)06-11-04悬架是现代汽车上的一个重要总成,他把车架与车轴弹性地连接起来。

272 双横臂独立悬架的设计

272 双横臂独立悬架的设计
QQ 64134703
双横臂独立悬架的设计
作者: 导师:
QQ 64134703
主要设计内容
§ (1)对双横臂独立悬架的各主要部件如减振 器、横向稳定器、螺旋弹簧和导向机构进行选 型设计分析。 (2)用UG完成双横臂独立悬架的三维实体模 型。 (3)将悬架UG三维实体模型转换为CAD二 维图纸,完成两张A0设计图纸的图量。
QQ 64134703
二 对悬架提出的设计要求
1)保证汽车有良好的行驶平顺性。 2)具有合适的衰减振动能力。 3)保证汽车具有良好的操纵稳定性。 4)汽车制动或加速时要保证车身稳定,减少车身纵倾;转弯 时车身侧倾角要合适。 5)有良好的隔声能力。 6)结构紧凑、占用空间尺寸要小。 7)可靠地传递车身与车轮之间的各种力和力矩,在满足零部 件质量要小的同时,还要保证有足够的强度和寿命。
f
c1
5 = n 1

2
5 = 1
2
= 250
mm
QQ 64134703
刚度:
P 416 3 C1 = = = 1.7kg / mm = 16.66 × 10 N / mm f c1 250
QQ 64134703
二、转向轮定位参数
主销后倾角 :γ 主销内倾角 :β 前轮外倾角 :α 前轮前束 :(A-B)
QQ 64134703
储油筒直径 Dc=1.45D=1.45×40=58mm 前减振器的安装角α=18°; 根据QC/T491—1999《汽车 筒式减振器 尺寸系列及技术 条件》中规定的,取 L2=140mm,外径 D1=65mm,外径 D2=75mm,活塞行程 S=120mm。 GH型减振器
QQ 64134703

双横臂独立悬架设计毕业设计说明

双横臂独立悬架设计毕业设计说明

双横臂独立悬架设计摘要双横臂式独立悬架,是一种车轮在汽车横向平面内摆动的独立悬架,这种独立悬架被广泛应用在轿车前轮上。

双横臂式独立悬架按上、下横臂是否等长,又分为等长双横臂式和不等长双横臂式两种悬架。

等长双横臂式悬架在车轮上下跳动时,能保持主销倾角不变,但轮距变化大(与单横臂式相类似),造成轮胎磨损严重,现已很少用。

对于不等长双横臂式悬架,只要适当选择、优化上下横臂的长度,并通过合理的布置,就可以使轮距及前轮定位参数变化均在可接受的限定范围内,这种结构有利于减少轮胎磨损,提高汽车行驶平顺性和方向稳定性,保证汽车具有良好的行驶稳定性。

目前不等长双横臂式悬架已广泛应用在轿车的前后悬架上,部分运动型轿车及赛车的后轮也采用这一悬架结构。

本次课题设计根据悬架系统设计的基本要求和给定的参数,完成了双横臂独立悬架的设计。

关键词:汽车;双横臂独立悬架;螺旋弹簧;减振器The design of double-wishbone independent suspensionAbstractDouble wishbone-type independent suspension, of which the wheels swing in a horizontal plane in the car, an independent suspension that has been widely used in cars on the front.Double wishbone-type independent suspension in accordance with the upper and lower arm length, etc. are also divided into equal length double wishbone and a long range two-type double wishbone suspension. Such as long double wishbone suspension in the wheel up and down beat, the kingpin inclination to maintain the same, but changes in Tread large (with a single arm is similar), resulting in severe tire wear, is now seldom used. The length double wishbone suspension, as long as the appropriate choice, to optimize the length of upper and lower arm, and a reasonable layout, you can make Tread and the front wheel alignment parameters are within acceptable limits the scope of this structure helps to reduce tire wear and improve vehicle ride comfort and directional stability, and ensure the car has a good driving stability. The current length double wishbone suspension has been widely used in the front and rear suspension cars, some sports and racing cars of the rear wheel is also used in this suspension structure.The subject of the design of suspension system design complete a double wishbone- independent suspension design in accordance with the basic requirements and the given parameters .Keywords: Vehicle; Double-wishbone suspension; Coil spring; Shock absorbers目录摘要 (I)Abstract (II)绪论 (1)第一章悬架概述 (2)1.1 悬架设计的要求 (3)1.2 悬架对汽车性能的影响 (3)1.2.1 悬架对汽车行驶平顺性的影响 (3)1.2.2 悬架对汽车行驶稳定性的影响 (5)第二章独立悬架及弹性元件的结构形式与分析 (7)2.1 独立悬架的结构型式与分析 (7)2.2 弹性元件的特定分析比较 (8)第三章螺旋弹簧悬架设计 (10)3.1 悬架基本参数的选定 (10)3.1.1 悬架静挠度 (10)3.1.2 上下横臂长度的确定 (11)3.1.3 簧载质量的确定 (11)3.1.4 其他参数的确定 (11)3.2 螺旋弹簧的选择 (12)3.3 减振器的选择 (14)3.3.1 减振器类型的选择 (14)3.3.2 减振器主要参数的选择 (15)3.4 接头 (17)谢辞 (19)参考文献 (20)附录A外文翻译-原文部分 (21)附录B 外文翻译-译文部分 (36)附录C 实体图 (46)绪论随着社会经济和物质文化生活水平的提高,人们对汽车行驶的平顺性、操纵稳定性及安全性提出了愈来愈高的要求。

汽车悬挂系统结构原理详细图解

汽车悬挂系统结构原理详细图解

汽车悬挂系统结构原理图解Post by:2010-10-419:48:00什么是悬挂系统舒适性是轿车最重要的使用性能之一。

舒适性与车身的固有振动特性有关,而车身的固有振动特性又与悬架的特性相关。

所以,汽车悬架是保证乘坐舒适性的重要部件。

同时,汽车悬架做为车架(或车身)与车轴(或车轮)之间作连接的传力机件,又是保证汽车行驶安全的重要部件。

因此,汽车悬架往往列为重要部件编入轿车的技术规格表,作为衡量轿车质量的指标之一。

汽车车架(或车身)若直接安装于车桥(或车轮)上,由于道路不平,由于地面冲击使货物和人会感到十分不舒服,这是因为没有悬架装置的原因。

汽车悬架是车架(或车身)与车轴(或车轮)之间的弹性联结装置的统称。

它的作用是弹性地连接车桥和车架(或车身),缓和行驶中车辆受到的冲击力。

保证货物完好和人员舒适;衰减由于弹性系统引进的振动,使汽车行驶中保持稳定的姿势,改善操纵稳定性;同时悬架系统承担着传递垂直反力,纵向反力(牵引力和制动力)和侧向反力以及这些力所造成的力矩作用到车架(或车身)上,以保证汽车行驶平顺;并且当车轮相对车架跳动时,特别在转向时,车轮运动轨迹要符合一定的要求,因此悬架还起使车轮按一定轨迹相对车身跳动的导向作用。

悬架结构形式和性能参数的选择合理与否,直接对汽车行驶平顺性、操纵稳定性和舒适性有很大的影响。

由此可见悬架系统在现代汽车上是重要的总成之一。

一般悬架由弹性元件、导向机构、减振器和横向稳定杆组成。

弹性元件用来承受并传递垂直载荷,缓和由于路面不平引起的对车身的冲击。

弹性元件种类包括钢板弹簧、螺旋弹簧、扭杆弹簧、油气弹簧、空气弹簧和橡胶弹簧。

减振器用来衰减由于弹性系统引起的振动,减振器的类型有筒式减振器,阻力可调式新式减振器,充气式减振器。

导向机构用来传递车轮与车身间的力和力矩,同时保持车轮按一定运动轨迹相对车身跳动,通常导向机构由控制摆臂式杆件组成。

种类有单杆式或多连杆式的。

钢板弹簧作为弹性元件时,可不另设导向机构,它本身兼起导向作用。

双横臂悬架设计

双横臂悬架设计

5. 7双横臂式悬架设计5.7.1双横臂悬架的结构与力学模型简化图5. 7.1某货车的双横臂前悬架图5. 7. 1采纳前置转向梯形的货车的前悬架。

一根横梁用作副车架,通过螺栓连接在车架下方。

弹簧、限位块、减振器和两对横臂支承在横梁这一“受力中心”上。

只有横向稳定杆、转向器、转向直拉杆和下横臂的拉杆固定在车架纵梁上。

拉杆前部支承着一个具有纵向弹性的橡胶支座。

该支座缓和带束轮胎的纵向刚度。

双横臂式悬架的主要优点在于其运动规律的可设计性。

依据横臂的相互位置,即角度α和〃的大小,可定出侧倾中心和纵倾中心的高度,转变横臂长度,还会影响上下跳动的车轮的角运动,即车轮的外倾角变化和(在极限状况下)与此相关的轮距变化。

当双横臂较短时,车轮上跳导致外倾角沿负值方向变化而车轮下落时导致外倾角沿正值方向变化,因此车身侧倾时的外倾变化规律正好与此相反。

纵倾中心0,对于前悬架来说,处在车轮后方;而对于后悬架来说,则在车轮前方。

假如Oh置于车轮中心上方,不仅可以获得良好的抗转动纵倾性,而且还会减小驱动桥的启动下沉量。

这也是双横臂式悬架愈来愈多地在较高级的轿车中用于后驱动桥的缘由。

图5.7.2弯长臂式汽车的前轮转向节图5. 7. 2 Daimlcr Benz 260 SE/560 SEC型车的前轮转向节。

它的有效距离C较大。

上横臂6上带有导向球锐链的壳体。

下承载钱链7压入车轮转向节5中。

图中可清晰的看到可通风的制动盘34,他正对直径较大的轮毂9自里向外伸出。

深槽轮辆43的底部不对称,从而为制动钳(图中未画出)留出了位置。

图5.7. 3双横臂式前悬架图5. 7. 3 DaimlCjBOnZ牌260 SE/560 SEC型车的前悬架。

为了使得主销偏移距r s=0mm时, 可通风的制动盘具有较大的直径,该悬架的下承载钱链必需大致位于车轮中心处。

拉伸和压缩行程限位块布置在充气的单筒式减振器中。

先后伸出的支撑杆支撑着一根附S的隔音横梁。

双横臂式—双叉臂式独立悬架

双横臂式—双叉臂式独立悬架

双横臂式独立悬架。

上下两摆臂不等长,选择长度比例合适,可使车轮和主销的角度及轮距变化不大。

这种独立悬架被广泛应用在轿车前轮上。

双横臂的臂有做成A字形或V字形,V形臂的上下2个V形摆臂以一定的距离,分别安装在车轮上,另一端安装在车架上。

不等臂双横臂上臂比下臂短。

当汽车车轮上下运动时,上臂比下臂运动弧度小。

这将使轮胎上部轻微地内外移动,而底部影响很小。

这种结构有利于减少轮胎磨损,提高汽车行驶平顺性和方向稳定性。

(先上传22张)麦弗逊式悬架『典型的麦弗逊式前悬挂示意图』麦弗逊式悬挂结构简单所以它轻量、响应速度快。

并且在一个下摇臂和支柱的几何结构下能自动调整车轮外倾角,让其能在过弯时自适应路面,让轮胎的接地面积最大化,虽然麦弗逊式悬架并不是技术含量很高的悬架结构,但麦弗逊式悬挂在行车舒适性上的表现还是令人满意,不过由于其构造为直筒式,对左右方向的冲击缺乏阻挡力,抗刹车点头作用较差,悬挂刚度较弱,稳定性差,转弯侧倾明显。

双叉臂式独立悬架•从结构上来看,双叉臂式悬架和麦弗逊式悬架有着紧密的血缘关系,它们的共同点为:下控制臂都由一根V字形或A字形的叉形控制臂构成,液压减震器充当支柱支撑整个车身。

不同处则在于双叉臂式悬架多了一根连接支柱减震器的上控制臂,这样一来有效增强了悬架整体的可靠性和稳定性。

通用悍马H3的双叉臂前悬(能承受住越野时崎岖路面对底盘的强大冲击)•其实双叉臂式悬架还有一个有趣的名字——双愿骨式悬架(Doublewishbone)。

据说这个有趣的名字来源于西方圣诞节上人们喜欢吃的一种火鸡的骨头,当人们开始吃的时候要对火鸡身上一根类似V字形的骨头许愿,而这根骨头就叫愿骨(Wishbone)。

因为在双叉臂悬架结构中有两根“愿骨”,故得名双愿骨式悬架。

•双叉臂式悬架构造较为复杂,不过这却使车轮拥有更好的贴地性•在文章开头我们已经提到了,双叉臂悬架的灵感来源于麦弗逊式悬架。

从结构上来看,麦弗逊悬架只有一根下控制臂和一根支柱式减震器,结构上的最简单化使它的组成部件通常要一专多能。

详解双叉臂独立悬挂

详解双叉臂独立悬挂

在常见的几种独立悬挂结构中,双叉臂式悬架被公认是操控性最出色一种,绝大多数的性能跑车乃至于F1赛车使用的都是双叉臂的悬架结构。

那么下面车168就带大家一起了解一下这种最具有运动基因的悬挂形式。

历史及概述:由于叉臂长的很像许愿骨,所以得名double wishbone suspension(双愿骨式悬架)双叉臂悬挂也叫做双A臂悬挂或者双摇臂悬挂,属于双横臂悬架中的一种,英文名为double wishbone suspension(双愿骨式悬架),这个名字据说来源于西方圣诞节上一种吃火鸡的习俗,当人们开始吃的时候,首先要对火鸡身上一根V字形的骨头许愿,而这根骨头就叫许愿骨(Wish bone)。

而因为在双叉臂悬架结构中的A臂或者是V臂和许愿骨的形状非常相似,故得名双愿骨(double wishbone)式悬架。

packard 120是首款使用了双叉臂悬挂的量产车双叉臂悬架最早出现于上世纪30年代,当时的方程式赛车已经开始使用类似双叉臂的悬挂结构,而1935年,来自美国底特律的汽车制造商packard在旗下车型packard 120上首次使用了双叉臂悬挂,作为当时豪华汽车的代表,pachard创造性的在量产车上首次使用了这种结构复杂的悬架,从而提升车辆的操控性能。

时至今日,双叉臂悬挂仍旧在除了各种性能跑车、豪华轿车和大型SUV上广泛使用。

关于双叉臂悬架起源的误区相似的结构让不少人误以为双叉臂悬挂来源于麦弗逊悬挂(左:麦弗逊;右:双叉臂)此前,在网络上流传着一种错误的说法,认为双叉臂悬挂的灵感来自于麦弗逊悬挂,是由麦弗逊悬挂改进得来的。

这个说法的根据就是双叉臂悬挂和麦弗逊悬挂都拥有相似的A 字形下摆臂和支柱式减震器的结构,所不同的是双叉臂结构在减震器上方还增加了连接车轮的A臂。

不过在事实上,双叉臂悬挂和麦弗逊悬挂并没有任何亲缘关系。

为何这么说呢?前面我们说过,早在上世纪30年代,双叉臂悬挂就已经开始在赛车运动上大量使用,而1935年则首次被使用在了量产的商品车上,而麦弗逊悬挂开始研发的时间为上世纪30年代中期,其设计灵感则是来源于飞机的起落架,而首次出现在商品车上则是在1949年的福特Vedette上。

汽车悬挂系统结构原图解讲解

汽车悬挂系统结构原图解讲解

汽车悬挂系统结构原理图解系统结构, 汽车, 原理, 图解, 悬挂汽车悬挂系统结构原理图解教程什么是悬挂系统舒适性是轿车最重要的使用性能之一。

舒适性与车身的固有振动特性有关,而车身的固有振动特性又与悬架的特性相关。

所以,汽车悬架是保证乘坐舒适性的重要部件。

同时,汽车悬架做为车架(或车身)与车轴(或车轮)之间作连接的传力机件,又是保证汽车行驶安全的重要部件。

因此,汽车悬架往往列为重要部件编入轿车的技术规格表,作为衡量轿车质量的指标之一。

汽车车架(或车身)若直接安装于车桥(或车轮)上,由于道路不平,由于地面冲击使货物和人会感到十分不舒服,这是因为没有悬架装置的原因。

汽车悬架是车架(或车身)与车轴(或车轮)之间的弹性联结装置的统称。

它的作用是弹性地连接车桥和车架(或车身),缓和行驶中车辆受到的冲击力。

保证货物完好和人员舒适;衰减由于弹性系统引进的振动,使汽车行驶中保持稳定的姿势,改善操纵稳定性;同时悬架系统承担着传递垂直反力,纵向反力(牵引力和制动力)和侧向反力以及这些力所造成的力矩作用到车架(或车身)上,以保证汽车行驶平顺;并且当车轮相对车架跳动时,特别在转向时,车轮运动轨迹要符合一定的要求,因此悬架还起使车轮按一定轨迹相对车身跳动的导向作用。

悬架结构形式和性能参数的选择合理与否,直接对汽车行驶平顺性、操纵稳定性和舒适性有很大的影响。

由此可见悬架系统在现代汽车上是重要的总成之一。

一般悬架由弹性元件、导向机构、减振器和横向稳定杆组成。

弹性元件用来承受并传递垂直载荷,缓和由于路面不平引起的对车身的冲击。

弹性元件种类包括钢板弹簧、螺旋弹簧、扭杆弹簧、油气弹簧、空气弹簧和橡胶弹簧。

减振器用来衰减由于弹性系统引起的振,减振器的类型有筒式减振器,阻力可调式新式减振器,充气式减振器。

导向机构用来传递车轮与车身间的力和力矩,同时保持车轮按一定运动轨迹相对车身跳动,通常导向机构由控制摆臂式杆件组成。

种类有单杆式或多连杆式的。

基于ADAMS的双横臂独立悬架的仿真分析及优化设计

基于ADAMS的双横臂独立悬架的仿真分析及优化设计

基于ADAMS的双横臂独立悬架的仿真分析及优化设计双横臂独立悬架是一种常见的汽车悬架结构,在承载、减震等方面都有良好的表现。

本文将基于ADAMS软件对双横臂独立悬架进行仿真分析及优化设计。

首先,建立模型。

模型包括车辆、轮胎和悬架三部分。

车辆和轮胎可以在ADAMS软件库中选择合适的模型,而悬架部分需要根据实际情况进行建模。

本文选用的汽车型号为A车型,采用铝合金材料制作。

悬架部分包括上下控制臂、防滚杆、弹簧和减震器。

其次,进行初始仿真分析。

在初始状态下,车辆是静止的,因此只需分析悬架部分的静态特性。

通过仿真分析,可以得出悬架的几何参数、弹簧刚度和减震器阻尼等关键参数,为后续优化设计提供依据。

接着,进行参数优化设计。

通过改变几何参数、弹簧刚度和减震器阻尼等参数,分析对悬架性能的影响。

优化的目标是使悬架在承载和减震方面达到最佳性能。

可以采用遗传算法等优化算法进行参数优化,以求得最优解。

最后,进行动态仿真分析。

在动态情况下,车辆会受到外部力的作用,因此需要对悬架进行动态特性分析。

通过动态仿真分析,可以得出悬架的动态特性,包括自然频率、振幅和动态刚度等重要参数。

根据这些参数,可以进一步改进悬架的设计,使其在动态工况下具有更好的性能表现。

综上所述,基于ADAMS的双横臂独立悬架的仿真分析及优化设计有着广泛的应用前景。

通过仿真分析和参数优化设计,可以大大缩短产品研发周期,降低研发成本,提高产品的可靠性和性能表现。

为了更好地进行双横臂独立悬架的仿真分析及优化设计,需要对其相关数据进行收集和分析。

以下是一些重要数据及其分析:1. 车辆重量:车辆重量是影响悬架设计和性能的重要因素。

一般来说,车辆重量越大,悬架需要承受的压力也就越大,因此需要更强的支撑力来保证悬架的性能。

在优化设计过程中,需要充分考虑车辆重量对悬架性能的影响,以使悬架在承载方面具有较好的表现。

2. 弹簧刚度:弹簧刚度是指在径向方向施加单位力量时,弹簧产生的变形量。

各种SUV后悬挂和几款SUV的对比

各种SUV后悬挂和几款SUV的对比

SUV车型:城市用途越野用途一、双连杆式独立悬挂1. 北京现代途胜(狮跑)后轮悬挂类型:双连杆带稳定杆式独立悬挂,SUV车型中属最柔弱的后轮悬挂,完全不是用来越野的,无需买四驱车型。

2.广汽丰田汉兰达后轮悬挂类型:双连杆式独立悬挂。

和凯美瑞相同的底盘和一样粗细的双连杆后悬,这么细的连杆根本无法越野。

这样的悬挂只有一种好处:在市区里行走的时候很轻盈,悬挂的感觉很软很舒适。

优点是全系标配电脑控制的HAC上坡辅助,只不过和羸弱的底盘功力没有任何关系。

汉兰达是一辆升高的凯美瑞。

二、多连杆式独立后悬挂1. 新胜达:新胜达比CRV、RAV4等紧凑型SUV车型、排量大,但车身结构并没有本质的区别。

新胜达的悬挂看上去还算壮实,用在紧凑型SUV上肯定是绰绰有余,但用在大尺寸的它身上,虽能应付但多少让人觉得有点力不从心。

2.科帕奇:雪佛兰的车型一直以来给人的感觉就是没什么特点,销量和口碑也是中规中距,但却有一款进口车型科帕奇的口碑相当好,销量也不错。

凭借着出色的外观设计,科帕奇是进口SUV中性价比很高的一款车型。

说到悬挂的话,科帕奇的后悬挂是和轿车基本类似的多连杆结构,而且不管是副车架还是下摆臂的用料也都比较厚实,对得起它20多万进口车的售价。

三、双横臂式后悬挂1. 东风本田CRV后轮悬挂类型:双横臂式独立悬挂。

它和思域采用相同的平台,所以悬挂类型也是一样的双横臂式独立悬挂。

这样的悬挂在紧凑型SUV中不在少数,它的强度远胜于上面的双连杆,在舒适和操控性上优于扭力梁,略逊于多连杆,比纯正越野车的整体桥式有了明显的优势,所以主流的城市型SUV包括RAV4、CRV、森林人使用的都是这种后悬挂类型。

在越野能力上, CRV确实不是强项,最主要的原因就是它的中央差速器是粘性联轴节的结构,原理是当前后轴的转速不一样时,差速器内的硅油受热升温而变得粘度增大,从而带动后轴转动,实现四驱功能。

这个系统是纯机械结构,只有在前轮打滑的时候才会介入,而且硅油的传输效率很低,最多只能把50%的动力传递给后轮,而且温度过高之后还会失效,所以从这方面讲的话, CRV 的越野能力只能说是入门级的。

独立悬架的类型和特点

独立悬架的类型和特点

独立悬架的分类:
按车轮运动形式分: 一 横臂式独立悬架(图a),车轮可以在汽车横向平面内摆动 的悬架。 二 纵臂式独立悬架(图b),车轮可以在汽车纵向平面内摆动 的悬架。 三 麦弗逊式悬架(图d)和烛式悬架(图c),车轮沿主销移 动的悬架。 四 多连杆式悬架,车轮可以在由摆臂,推力杆等多杆件共同 决定的斜向平面内摆动的悬架。
总结
优点 • 多连杆悬架具备多根连杆支杆,并且连杆可对车轮进行多个方面作用 力控制,在做车轮定位时可对车轮进行单独调整,并且多连杆悬架有很 大的调校空间及改装可能性。 • 多连杆悬架能实现主销后倾角的最佳位置,大幅度减少来自路面的前后 方向力,从而改善加速和制动时的平顺性和舒适性,同时也保证了直线 行驶的稳定性。 • 因为由螺旋弹簧拉伸或压缩导致的车轮横向偏移量很小,不易造成非直 线行驶。 • 在车辆转弯或制动时,多连杆悬挂结构可使后轮形成正前束,提高了车 辆的控制性能,减少转向不足的情况。 缺点 • 多连杆悬挂由于结构复杂、成本高、零件多、组装费时,并且要达到非 独立悬架的耐用度,始终需要保持连杆不变形、不移位,在材料使用和 结构优化上也会很考究。 • 多连杆悬架是以追求优异的操控性和行驶舒适性为主要诉求的。而并非 适合所有情况。中小型车出于成本和空间的考虑一般不采用此种悬架。
双横臂式独立悬架
双叉臂式悬架又称双A臂式独 立悬架,双叉臂悬架拥有上 下两个叉臂,横向力由两个 叉臂同时吸收,支柱只承载 车身重量,因此横向刚度大。
改进型
双叉臂式独立悬架
定位精确、贴地良好 出色的抗扭强度和横向刚性 操纵性好,是超跑的首选如阿尔法· 罗密欧159 一汽丰田皇冠和一汽丰田锐志,以及奥迪的豪 华SUV Q7、大众途锐等。
优点:结构简单,紧凑,布置方便,用于后桥。

双横臂式前独立悬架的优化设计本科

双横臂式前独立悬架的优化设计本科

摘要悬架是汽车上的重要总成之一,悬架的作用是弹性地连接车桥和车架,减缓行驶中车辆受到由路面不平引起的冲击力,保证乘坐舒适和货物完好,迅速衰减由于弹性系统引起的振动,使车轮按一定轨迹相对车身运动。

悬架决定着汽车的稳定性、舒适性和安全性,所以研究悬架成为研究汽车中的重要一个环节,ADAMS软件为研究汽车悬架运动学分析提供了帮助。

本次毕业设计首先利用ADAMS软件的View功能给定设计点,创建悬架模型,通过测试悬架模型得到一些曲线和数据,对比这些曲线和数据之后得出轮胎接地点的侧向滑移量变化是影响悬架的重要因素。

所以将目标函数定为车轮接地点的侧向滑移量。

然后通过ADAMS软件的后处理功能优化前悬架模型,最后得出使轮胎接地点的侧向滑移量变化最小的一组数据。

从而达到优化的效果。

关键词:双横臂独立悬架;运动学分析;ADAMSAbstractSuspense is one of the important parts in a car. Suspense serves as a role that connects the axles and frames in a much bouncing way which can kill the unavoidable shock when the car is on a unsmooth road, thus making sure that the goods in the car cannot be damaged as well as guaranteeing a better driving pleasure. It can quickly kill the shock from the bouncing system to let the wheel move a the course of the car. Suspense determines the stability, riding comfort, and safety. Therefore, analyzing the suspense becomes one of the greatest parts of the whole analysis. ADAMS software did a great help to the analysis of suspense kinematics.The design of ADAMS software first given design points, View function to create suspension model, through the test suspension model get some curves and data, contrast these curves and data that pick up the tyres after the change of lateral sliding site is the important factors affect suspension. So will the objective function as the wheels of lateral slippage pick site. Then through the ADAMS software post-processing function optimization model of the suspension, finally come to pick up the tire place lateral sliding the smallest quantity of set of data. This group of data is finally wanted results.Key words: double wishbone suspension; kinematics analysis; ADAMS目录1 绪论 (1)1.1课题引言 (1)1.2 汽车悬架简介 (1)1.3 汽车悬架分类....................................................................................................................................1.4 ADAMS简介 .....................................................................................................................................1.5 本文研究的内容 (2)2前悬架模型的建立 (3)2.1 创建新模型 (3)2.2 添加约束 (4)2.3本章小结 (6)3前悬架模型运动学分析 (7)3.1 添加驱动 (7)3.2测量主销内倾角 (7)3.3测量主销后倾角 (10)3.4测量前轮外倾角 (12)3.5测量前轮前束倾角 (14)3.6测量车轮接地点侧向滑移量 (17)3.7本章小结 (19)4细化前悬架模型 (21)4.1 创建设计变量 (21)4.2将设计点参数化 (21)4.3将物体参数化 (25)4.4本章小结 (25)5定制界面 (32)5.1 创建修改参数对话窗 (32)5.2 修改菜单栏 (36)5.3 本章小结 (37)6 优化前悬架模型 (26)6.1 定义目标函数 (26)6.2 优化模型 (26)6.3 察看优化结果 (27)6.4 本章小结 (31)本文总结 (40)致谢 (41)参考文献 (42)附录A 汉语原文 (43)附录B 英文翻译 (52)1 绪论1.1 课题引言在马车出现的时候,为了乘坐更舒适,人类就开始对马车的悬架进行孜孜不倦的探索,随着社会的日益进步和科学技术的不断发展,汽车开始普及,人们对汽车平顺性、稳定性、操控性及其舒适性也有了更高要求。

双横臂和双叉臂的区别

双横臂和双叉臂的区别

双横臂和双叉臂的区别
双横臂和双叉臂两者在设计上存在不同,双横臂是两条平行线,而双叉臂是相互交叉的,所以双叉臂稳定性要更好,特别是快速过弯的时候。

双横臂式悬挂和双叉臂式悬挂有着许多的共性,只是结构比双叉臂式简单些,也可以称之为简化版的双叉臂式悬挂。

同双叉臂式悬挂一样双横臂式悬挂的横向刚度也比较大,一般也采用上下不等长的摇臂设置。

而有的双横臂的上下臂不能起到纵向导向作用,还需要另加拉杆导向。

这种结构较双叉臂更简单的双横臂悬挂性能介于麦弗逊悬挂和双叉臂悬挂之间,拥有不错的运动性能,一般使用在A级或者B 级家用车上。

双叉臂式悬架又称双A臂式独立悬架,双叉臂悬架拥有上下两个叉臂,横向力由两个叉臂同时吸收,支柱只承载车身重量,因此横向刚度大。

双叉臂式悬架的上下两个A字形叉臂可以精确的定位前轮的各种参数,前轮转弯时,上下两个叉臂能同时吸收轮胎所受的横向力,加上两叉臂的横向刚度较大,所以转弯的侧倾较小。

双横臂式独立悬架

双横臂式独立悬架

独立悬架的优点: 1)两侧车轮可以单独运动而互不影响,可减少车架和车身 的振动,而且有助于消除转向轮不断偏摆的不良现象。 2)减少了汽车的非簧载质量,使悬架所受到的冲击载荷小, 可以提高汽车的平均行驶速度。 3)可使汽车质心下降,提高了汽车行驶稳定性;同时能给 予车轮较大的上下运动的空间,因而可以将悬架刚度设计 得较小,使车身振动频率降低,以改善行驶平顺性。 独立悬架的缺点: 结构复杂,制造成本高;保养维修不便;轮胎磨损较 严重。
特性
侧倾中心高度 车轮相对车身跳动时车轮定 位参数的变化 轮距 悬架侧倾角刚度 横向刚度 占用的空间尺寸 其他
双横臂式
比较低 车轮外倾角与主销内倾角均 有变化 变化小,故轮胎磨损速度慢 较小,需要用横向稳定器 横向刚度大 占用较多的空间 结构稍复杂,前悬架用的较 多
侧倾中心位置的确定方法
将上下横臂内外转动点的连线延长,以便得到极点P,并 同时获得P点的高度。将P点与车轮接地点N连接,即可在 汽车轴线上获得侧倾中心W。
双横臂式独立悬架
两横臂长度相等 两横臂长度不等
时,上臂比下臂运动弧度小。这将使轮胎上部轻微 地内外移动,而底部影响很小。这种结构有利于减 不等:如果两臂长度适当,可以使车轮和主销的角度以及轮距的变化都不太大。不大 少轮胎磨损,提高汽车行驶平顺性和方向稳定性。 的轮距变化在轮胎较软时可以由轮胎变形来适应,目前轿车的轮胎可容许轮距 的变化在每个车轮上达到4~5mm而不致沿路面滑移。 不等长双横臂式独立悬架性 2.具有良好的衰减振动能力 3.保证汽车有良好的操纵稳定性 4.汽车制动或加速时要保证车身稳定, 减少车身纵倾,转弯时车身侧倾角要合适 5.有良好的隔声能力 6.结构紧凑、占用空间尺寸要小 7.可靠地传递各种力,力矩,在满足零 部件质量要小的同时,还要保证有足够的 强度和寿命
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双横臂独立悬架是独立悬架中一种比较典型的结构形式。

按照上、下横臂的长短可分为等长和不等长两种。

等长双横臂悬架在其车轮上下跳动时,虽然可以保持主销的倾角和车轮外倾角不变,但是论据变化大,导致轮胎的磨损严重,现在已经很少采用;不等长双横臂独立悬架只要合理的选择结构参数和适当的布置,就可以将轮距和前轮的定位参数变化限制在一定的范围之内,保证良好的行驶稳定性,故这种形式的独立悬架在现代高级轿车中得到了广泛的应用。

双横臂式独立悬架。

上下两摆臂不等长,选择长度比例合适,可使车轮和主销的角度及轮距变化不大。

这种独立悬架被广泛应用在轿车前轮上。

双横臂的臂有做成A字形或V字形,V形臂的上下2个V形摆臂以一定的距离,分别安装在车轮上,另一端安装在车架上。

不等臂双横臂上臂比下臂短。

当汽车车轮上下运动时,上臂比下臂运动弧度小。

这将使轮胎上部轻微地内外移动,而底部影响很小。

这种结构有利于减少轮胎磨损,提高汽车行驶平顺性和方向稳定性。

(先上传22张)。

相关文档
最新文档