弹塑性力学习题题库加问题详解
弹塑性力学习题集_很全有答案_
题 2—13 图
题 2—14 图
2—14* 如题 2—14 图所示的变截面杆,受轴向拉伸载荷 P 作用,试确定杆体两侧外 表面处应力 σ z (横截面上正应力)和在材料力学中常常被忽
略的应力 σ x 、 τ zx 之间的关系。 2—15 如题 2—15 图所示三角形截面水坝,材料的比重 为 γ ,水的比重为 γ 1 ,已求得其应力解为: σ x = ax + by ,
2—42 如题 2—42 图所示的圆截面杆扭转时得到的应变分量为: ε x = ε y = ε z = γ xy = 0,
γ zy = θ x, γ zx = −θ y 。试检查该应变是否满足变形连续性条件,并求位移分量 u、v、w。设
在原点处 u 0 = v 0 = w0 = 0, dz 在 xoz 和 yoz 平面内没有转动,dx 在 xoy 平面内没有转动。
弹塑性力学习题
第二章 应力理论·应变理论
2—1 试用材料力学公式计算:直径为 1cm 的圆杆,在轴向拉力 P = 10KN 的作用下杆 横截面上的正应力 σ 及与横截面夹角 α = 30° 的斜截面上的总应力 Pα 、正应力 σ α 和剪应力
τ α ,并按弹塑性力学应力符号规则说明其不同点。 2—2 试用材料力学公式计算:题 2—2 图所示单元体主应力和主平面方位(应力单位 MPa) ,并表示在图上。说明按弹塑性力学应力符号规则有何不同。
题 2—41 图
题 2—42 图
第三章 弹性变形·塑性变形·本构方程
试证明在弹性变形时,关于一点的应力状态,下式成立。 1 (1) γ 8 = τ 8 ; (2) σ = kε (设ν = 0.5 ) G 3—2* 试以等值拉压应力状态与纯剪切应力状态的关系, 由应变能公式证明 G、 E、 ν之 间的关系为: 1 G= 2(1 + ν ) 1 1 3—3* 证明:如泊松比ν = ,则 G = E , λ → ∞ , k → ∞ , e = 0 ,并说明此时上述 2 3 各弹性常数的物理意义。 3—4* 如设材料屈服的原因是形状改变比能(畸形能)达到某一极值时发生,试根据 单向拉伸应力状态和纯剪切应力状态确定屈服极限 σ s 与 τ s 的关系。 3—5 试依据物体单向拉伸侧向不会膨胀,三向受拉体积不会缩小的体积应变规律来 1 证明泊松比ν 的上下限为: 0 < ν < 。 2 2 3—6* 试由物体三向等值压缩的应力状态来推证:K = λ + G 的关系, 并验证是否与 3 E K= 符合。 3(1 − 2v) 3—7 已知钢材弹性常数 E1 = 210Gpa,v1 = 0.3, 橡皮的弹性常数 E 2 =5MPa,v 2 = 0.47, 试比较它们的体积弹性常数(设 K1 为钢材,K2 为橡皮的体积弹性模量) 。 3—8 有一处于二向拉伸应力状态下的微分体( σ 1 ≠ 0, σ 2 ≠ 0, σ 3 = 0 ) ,其主应变
工程弹塑性力学题库及答案(修订)
,再求应力偏张量
,
,
,
,
,
。
由此求得:
然后求得:
,
,解出
然后按大小次序排列得到
,
,
1.9 已知应力分量中
,求三个主应力
,以及每个
主应力所对应的方向余弦
。
解:特征方程为
记, , 应满足下列关系
由(a),(b)式,·11得
(a) (b) (c)
, ,由此求得
,代入(c)式,得
解:的定义、物理意义:
;
1) 表征 Sij 的形式;2) 相等,应力莫尔圆相似,Sij 形式相同;3) 由可确定 S1:S2:S3。
1.4设某点应力张量 的分量值已知,求作用在过此点平面
力矢量
,并求该应力矢量的法向分量 。
解:该平面的法线方向的方向余弦为
上的应
而应力矢量的三个分量满足关系
曲线基本上和简单拉伸时的
曲线一样。
7.4 比较两种塑性本构理论的特点: 解:增量理论和全量理论。增量理论将整个加载历史看成是一系列的微小增量加 载过程所组成,研究每个微小增量加载过程中应变增量与应力增量之间的关系, 再沿加载路径依次积分应变增量得最终的应变。全量理论不去考虑应力路径的影 响,直接建立应变全量与应力全量直接的关系。
z
且 利用平衡方程
当
时, 为(e)式。
(3)塑性阶段 平衡方程和几何方程同上。
本构方程 与(2)弹塑性阶段同样步骤:可得
(e) (f) (g)
5.9 如图所示等截面直杆,截面积为 ,且 。在 处作用一个逐渐增加 的力 。该杆材料为理想弹塑性,拉伸和压缩时性能相同。按加载过程分析
结构所处不同状态,并求力 作用截面的位移 与 的关系。 解:基本方程为
弹塑性力学习题集_很全有答案_
式中 a 0 L , a1 L , a 2 L 为常数,试证各点的应变分量为常数。 2—29 设已知下列位移,试求指定点的应变状态。
(1) u = (3x 2 + 20) × 10 −2 , v = (4 yx) × 10 −2 ,在(0,2)点处。 (2) u = (6 x 2 + 15) × 10 −2 , v = (8 zy ) × 10 −2 , w = (3z 2 − 2 xy) × 10 −2 ,在(1,3,4)点处。 2—30 试证在平面问题中下式成立: εx + εy =ε′ x + ε′ y
题 2—15 图
12 6 0 2—17 已知一点处的应力张量为: σ ij = 6 10 0 MPa ,试求该点的最大主应力及 0 0 0 其主方向。 2—18* 在物体中某一点 σ x = σ y = σ z = τ xy = 0 ,试以 τ yz 和 τ zx 表示主应力。
2—39* 若位移分量 u i 和 u i′ 所对应的应变相同,试说明这两组位移有何差别? 2—40* 试导出平面问题的平面应变状态( ε x = γ zx = γ zy = 0 )的应变分量的不变量及
主应变的表达式。 2—41* 已知如题 2—41 图所示的棱柱形杆在自重作用下的应变分量为: γz νγz εz = , εx =εy = − ; γ xy = γ yz = γ zx = 0; E E 试求位移分量,式中 γ 为杆件单位体积重量,E、ν 为材料的弹性常数。
题 2—41 图
题 2—42 图
弹塑性力学试卷及弹性力学教材习题及解答
二、填空题:(每空2分,共8分)1、在表征确定一点应力状态时,只需该点应力状态的-------个独立的应力分量,它们分别是-------。
(参照oxyz直角坐标系)。
2、在弹塑性力学应力理论中,联系应力分量与体力分量间关系的表达式叫---------方程,它的缩写式为-------。
三、选择题(每小题有四个答案,请选择一个正确的结果。
每小题4分,共16分。
)1、试根据由脆性材料制成的封闭圆柱形薄壁容器,受均匀内压作用,当压力过大时,容器出现破裂。
裂纹展布的方向是:_________。
A、沿圆柱纵向(轴向)B、沿圆柱横向(环向)C、与纵向呈45°角D、与纵向呈30°角2、金属薄板受单轴向拉伸,板中有一穿透形小圆孔。
该板危险点的最大拉应力是无孔板最大拉应力__________倍。
A、2B、3C、4D、53、若物体中某一点之位移u、v、w均为零(u、v、w分别为物体内一点,沿x、y、z直角坐标系三轴线方向上的位移分量。
)则在该点处的应变_________。
A、一定不为零B、一定为零C、可能为零D、不能确定4、以下________表示一个二阶张量。
A、B、C、D、四、试根据下标记号法和求和约定展开下列各式:(共8分)1、;(i ,j = 1,2,3 );2、;五、计算题(共计64分。
)1、试说明下列应变状态是否可能存在:;()上式中c为已知常数,且。
2、已知一受力物体中某点的应力状态为:式中a为已知常数,且a>0,试将该应力张量分解为球应力张量与偏应力张量之和。
为平均应力。
并说明这样分解的物理意义。
3、一很长的(沿z轴方向)直角六面体,上表面受均布压q作用,放置在绝对刚性和光滑的基础上,如图所示。
若选取=ay2做应力函数。
试求该物体的应力解、应变解和位移解。
(提示:①基础绝对刚性,则在x=0处,u=0 ;②由于受力和变形的对称性,在y=0处,v=0 。
)题五、3图4、已知一半径为R=50mm,厚度为t=3mm的薄壁圆管,承受轴向拉伸和扭转的联合作用。
弹塑性力学习题及问题详解
本教材习题和参考答案与局部习题解答第二章2.1计算:(1)pi iq qj jk δδδδ,(2)pqi ijk jk e e A ,(3)ijp klp ki lj e e B B 。
答案 (1)pi iq qj jkpk δδδδδ=;答案 (2)pqi ijk jk pq qp e e A A A =-;解:(3)()ijp klp ki ljik jl il jk ki lj ii jj ji ij e e B B B B B B B B δδδδ=-=-。
2.2证明:假如ijji a a =,如此0ijk jk e a =。
〔需证明〕a 、b 和c 是三个矢量,试证明:2[,,]⋅⋅⋅⋅⋅⋅=⋅⋅⋅a a a b a cb a b b bc a b c c a c b c c证:因为123111123222123333i i i i i i i i i i i i i ii ii i a a a b a c b a b b b c c a c b c c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以123111123222123333123111123222123333det det()i ii i i i i ii i i i i ii ii i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即得 1231112123222123333[,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ⋅⋅⋅⋅⋅⋅=⋅⋅⋅==a a a b a c b a b b b c a b c c a c b c c 。
弹塑性力学习题集 很全有答案
为 ε1 = 1.7 ×10−4 , ε 2 = 0.4 ×10−4 。已知ν = 0.3,试求主应变 ε 3 。 3—9 如题 4—9 图示尺寸为 1×1×1cm 的铝方块,无间隙地嵌入——有槽的钢块中。
2—9 已知一点的应力张量为:
50 50 80
σ ij
=
0 − 75MPa
(对称)
− 30
试求外法线
n
的方向余弦为: nx
=
1 2
,ny
=
1 2
, nz
=
1 2
的微斜面上的全应力 Pα
,正
应力 σ α 和剪应力τ α 。
2—10 已知物体的应力张量为:
50 30 − 80
σ ij
=
0 − 30MPa
主应变的表达式。 2—41* 已知如题 2—41 图所示的棱柱形杆在自重作用下的应变分量为:
εz
=
γz E
,
εx
=εy
=
− νγz E
;
γ xy = γ yz = γ zx = 0;
试求位移分量,式中 γ 为杆件单位体积重量,E、ν 为材料的弹性常数。
2—42 如题 2—42 图所示的圆截面杆扭转时得到的应变分量为:ε x = ε y = ε z = γ xy = 0,
2
3
各弹性常数的物理意义。
3—4* 如设材料屈服的原因是形状改变比能(畸形能)达到某一极值时发生,试根据
单向拉伸应力状态和纯剪切应力状态确定屈服极限 σ s 与τ s 的关系。 3—5 试依据物体单向拉伸侧向不会膨胀,三向受拉体积不会缩小的体积应变规律来
(完整版)弹塑性力学习题题库加答案
第二章 应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为:σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=⎧⎪⎨--+-=⎪⎩化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得:(()()31.233331210102217.0831******* 6.082810 4.9172410x yPa σσσ⎡++⎢=±=⨯⎢⎣⨯=⨯=±⨯=⨯则显然:3312317.08310 4.917100Pa Pa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)()22612sin 22612102cos 2xyx ytg τθθσσθ--⨯-++====+=--+显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°题图1-3则:θ=+40.268840°16' 或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。
弹塑性力学习题集很全有答案
直边及斜边上的边界条件,确定常数 a、b、c、d。
2—16* 已知矩形截面高为 h,宽为 b 的梁受弯曲时的正
应力σ z
=
My J
=
12M bh 3
y ,试求当非纯弯时横截面上的剪应力公
式。(利用弹塑性力学平衡微分方程)
题 2—15 图
12 6 0
2—17
已知一点处的应力张量为: σ ij
=
6
10
题 2—4 图
2—5* 如题 2—5 图,刚架 ABC 在拐角 B 点处受 P 力,已知刚架的 EJ,求 B、C 点的 转角和位移。(E 为弹性模量、J 为惯性矩)
2—6 悬挂的等直杆在自重 W 的作用下如题 2—6 图所示。材料比重为 γ ,弹性模量为 E,横截面积为 A。试求离固定端 z 处一点 c 的应变 ε z 与杆的总伸长 ∆l 。
P8 ,正应力 σ 8 ,剪应力τ 8 。 2—25 试求各主剪应力τ1 、τ 2 、τ 3 作用面上的正应力。 2—26* 用应力圆求下列(a)、(b) 图示应力状态的主应力及最大剪应力,并讨论若(b)
图中有虚线所示的剪应力τ ′ 时,能否应用平面应力圆求解。
题 2—26 图
2—27* 试求:如(a) 图所示,ABC 微截面与 x、y、z 轴等倾斜,但τ xy ≠ 0, τ yz ≠ 0, τ zx ≠ 0, 试问该截面是否为八面体截面?如图(b) 所示,八面体各截面上的τ 8 指向是否垂直棱边?
题 2—13 图
题 2—14 图
2—14* 如题 2—14 图所示的变截面杆,受轴向拉伸载荷 P 作用,试确定杆体两侧外
表面处应力 σ z (横截面上正应力)和在材料力学中常常被忽 略的应力 σ x 、τ zx 之间的关系。
(完整版)弹塑性力学习题题库加答案
第二章 应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为:σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=⎧⎪⎨--+-=⎪⎩化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得:(()()31.233331210102217.0831******* 6.082810 4.9172410x yPa σσσ⎡++⎢=±=⨯⎢⎣⨯=⨯=±⨯=⨯则显然:3312317.08310 4.917100Pa Pa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)()22612sin 22612102cos 2xyx ytg τθθσσθ--⨯-++====+=--+显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°题图1-3则:θ=+40.268840°16' 或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。
(完整版)弹塑性力学习题题库加答案.docx
第二章 应力理论和应变理论2— 15.如 所示三角形截面水 材料的比重 γ,水的比重 γ 1。
己求得 力解 :σ x = ax+by , σy =cx+dy- γy , τxy =-dx-ay ;根据直 及斜 上的 界条件,确定常数 a 、b 、c 、 d 。
解:首先列出OA 、 OB 两 的 力 界条件:OA :l 1=-1 ;l 2=0 ;T x= γ1 y ; T y =0σx =-γ1y ; τxy =0代入: σx =ax+by ; τxy =-dx-ay 并 注 意 此 : x =0得 : b=- γ1; a=0;OB : l 1=cos β ; l 2=-sin β, T x =T y =0:x cosxy sin0 yx cosy sin⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( a )将己知条件: σ x=1xy=-dxyγ y-γ y ; τ; σ =cx+dy-代入( a )式得:1 y cos dx sin0L L L L L L L L L bdx coscxdyy sin L L L L L L L L L化 ( b )式得: d = γ12β;ctgT4n2τ 30° δ 30°30°化 ( c )式得: c =γctg β -2γ 13y10x10Ox12 6τxy103 Pa2— 17.己知一点 的 力 量6 10 00 0δ y求 点的最大主 力及其主方向。
x题1-3 图解:由 意知 点 于平面 力状 ,且知:σx =12×O103σ y =10× 103 τ xy =6× 103,且 点的主 力可由下式求得:β212 101221.2xyxy21023n 22xy22610βγ 1y113710311 6.0828 10317.083 10 3 Paγ34.91724 10BA然:y117.083 10 3Pa2 4.917 10 3Pa30σ 1 与 x 正向的 角 : (按材力公式 算)c2 xy2 6 12 sin 2tg 2121026xycos2然 2θ 第Ⅰ象限角: 2θ=arctg ( +6) =+80.5376 °则:θ=+40.2688 B 40° 16'或(-139° 44')2— 19.己知应力分量为:σx=σy=σz=τxy=0,τzy=a,τzx=b,试计算出主应力σ1、σ2、σ3 并求出σ2 的主方向。
弹塑性力学部分习题及答案
解
根据梁的弯曲变形公式,y = Fx/L(L - x),其中y为挠度,F 为力,L为梁的长度。代入题目给定的数据,得y = (frac{300 times (4 - x)}{8})。当x = 2时,y = (frac{300 times (4 - 2)}{8}) = 75mm。
习题三答案及解析
解析
和变形情况。
04
弹塑性力学弹塑性力学的基本假设。
答案
弹塑性力学的基本假设包括连续性假设、均匀性假设、各向同性假设和非线性假设。连 续性假设认为物质是连续的,没有空隙;均匀性假设认为物质的性质在各个位置都是相 同的;各向同性假设认为物质的性质在不同方向上都是相同的;非线性假设认为弹塑性
习题二答案及解析
01 02 03 04
解析
选择题主要考察基本概念的理解,如能量守恒定律、牛顿第二定律等 。
填空题涉及简单的力学计算,如力的合成与分解、牛顿第二定律的应 用等。
计算题要求应用能量守恒定律和牛顿第二定律进行计算,需要掌握基 本的力学原理和公式。
习题三答案及解析
01
答案
02
选择题
03
1. A
2. 解
根据牛顿第二定律,F = ma,其中F为力,m为质量,a 为加速度。代入题目给定的数据,得a = (frac{400}{5}) = 80m/s(}^{2})。再根据运动学公式s = ut + (frac{1}{2})at(}^{2}),得s = 10 × 2 + (frac{1}{2} times 80 times (2)^2) = 108m。
04
计算题要求应用胡克定律和动量守恒定律进行计算,需要掌握基本的 力学原理和公式。
习题二答案及解析
弹塑性力学习题集很全有答案
cxy cy 2
0 0
0
0 0
axy 2
(2)
ε ij
=
0
1 2
(ax 2
+
by 2 )
0 ax 2 y 1 (az 2 + by 2 ) 2
1
2 1
2
(ax 2 (az 2
+ +
by
2
)
by 2 )
0
c(x 2 + y 2 ) (3) ε ij = cxyz
cxyz cy 2 x
0 0
2—35* 已知物体中一点的应变分量为
10 4 − 2
ε ij
=
4
5
3
×
10
−4
− 2 3 − 1
试确定主应变及最大主应变的方向。 2—36* 某一应变状态的应变分量 γ xy 和 γ yz =0,试证明此条件能否表示 ε x 、ε y 、ε z 中
之一为主应变? 2—37 已知下列应变状态是物体变形时产生的:
主应变的表达式。 2—41* 已知如题 2—41 图所示的棱柱形杆在自重作用下的应变分量为:
εz
=
γz E
,
εx
=εy
=
− νγz E
;
γ xy = γ yz = γ zx = 0;
试求位移分量,式中 γ 为杆件单位体积重量,E、ν 为材料的弹性常数。
2—42 如题 2—42 图所示的圆截面杆扭转时得到的应变分量为:ε x = ε y = ε z = γ xy = 0,
题 2—27 图
2—28 设一物体的各点发生如下的位移:
u = a0 + a1x + a2 y + a3 z v = b0 + b1x + b2 y + b3 z w = c0 + c1x + c2 y + c3 z 式中 a0 L, a1 L, a2 L 为常数,试证各点的应变分量为常数。 2—29 设已知下列位移,试求指定点的应变状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件:OA边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=⎧⎪⎨--+-=⎪⎩L L L L L L L L L L L L L L L L L L 化简(b )式得:d =γ1ctg 2β;试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得:(()()31.233331210102217.0831******* 6.082810 4.9172410x yPa σσσ⎡++⎢=±=⨯⎢⎣⨯=⨯=±⨯=⨯则显然:3312317.08310 4.917100Pa Pa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)()22612sin 22612102cos 2xyx ytg τθθσσθ--⨯-++====+=--+显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°题图1-3则:θ=+40.2688B 40°16' 或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。
解:由2—11题计算结果知该题的三个主应力分别为:1σ=20σ=;3σ=设σ2与三个坐标轴x 、y 、z 的方向余弦为:l 21、l 22、l 23,于是将方向余弦和σ2值代入下式即可求出σ2的主方向来。
()()()()()()21222232321222232321222322122010203x yx xz xz yx y yz zy zx zy z yx zy l l l l l l l l l l l l l σσττττσσττττσσττ⎧-++==⎪⎪+-+==⎨⎪++-=+=⎪⎩L L L L L L L L L 以及:()22221222314l l l ++=L L L由(1)(2)得:l 23=0 由(3)得:2122l a l b =-;2221l bl a=-; 将以上结果代入(4)式分别得:21l ===;22l ===;2122al l b =-22l ∴==同理21l = 于是主应力σ2的一组方向余弦为:(,,0);σ3的一组方向余弦为(2±); 2—20.证明下列等式: (1):J 2=I 2+2113I ; (3):()212ii kk ik ik I σσσσ=--; 证明(1):等式的右端为:()()22211223311231133I I σσσσσσσσσ+=-+++++()()22212312233112233112223σσσσσσσσσσσσσσσ=+++++-++ ()()()222123122331122331246666σσσσσσσσσσσσσσσ=+++++-++22212312233126σσσσσσσσσ⎡⎤=++---⎣⎦22222211222233331112226σσσσσσσσσσσσ⎡⎤=-++-++-+⎣⎦()()()222122331216J σσσσσσ⎡⎤=-+-+-=⎣⎦故左端=右端 证明(3):()212ii kk ik ik I σσσσ=-- 右端=()12ii kk ik ik σσσσ- ()()()222222122x y z xy yz zx x y z x y z σσστττσσσσσσ⎡⎤=+++++-++++⎣⎦ ()()2222222221222x y z xy yz zx x y z x y y z z x σσστττσσσσσσσσσ⎡⎤=+++++----++⎣⎦()2222x y y z z x xy yz zx I σσσσσστττ=-++---=2—32:试说明下列应变状态是否可能(式中a 、b 、c 均为常数)(1):()22200000ij c x y cxy cxy cy ε⎡⎤+⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦(2): ()()()()222222222210210211022ij axy ax by ax y az by ax by az by ε⎡⎤+⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥++⎢⎥⎣⎦(3): ()22200000ij c x y z cxyz cxyz cy z ε⎡⎤+⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦ 解(1):由应变张量εij 知:εxz =εyz =εzx =εzy =εz =0 而εx 、εy 、εxy 及εyx 又都是x 、y 坐标的函数,所以这是一个平面应变问题。
将εx 、εy 、εxy 代入二维情况下,应变分量所应满足的变形协调条件知:22222y xyx y x x yεγε∂∂∂+=∂∂∂∂ 也即:2c +0=2c 知满足。
所以说,该应变状态是可能的。
解(2):将己知各应变分量代入空间问题所应满足的变形协调方程得:222222222222222222222y xyx y yzz x zxz xy yz zx x xy yz y zx yz xy zx z y x x yz y y z x z z x x y z x y z y z x y z x z x y z x y εγεεγεεγεγγγεγγεγγγγε⎫∂∂∂+=⎪∂∂∂∂⎪⎪∂∂∂⎪+=∂∂∂∂⎪⎪∂∂∂+=∂∂∂∂⎬∂∂⎛⎫∂∂∂+-= ⎪∂∂∂∂∂∂⎝⎭∂∂∂⎛⎫∂∂+-=⎪∂∂∂∂∂∂⎝⎭∂∂⎛⎫∂∂∂+-= ⎪∂∂∂∂∂∂⎝⎭⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭………………………………(1) 202000002220cz cz cy cy cx +=⎫⎪+≠⎪⎪=⎬⎪=⎪≠⎪⎭不满足,因此该点的应变状态是不可能的。
第三章:弹性变形及其本构方程3-10.直径为D=40mm 的铝圆柱体,紧密地放入厚度为=δ2mm 的钢套中,圆柱受轴向压力P =40KN 。
若铝的弹性常数据E 1=70G a p .V 1=0.35,钢的弹性常数E =210G a p 。
试求筒内的周向应力。
钢钢钢E q q E 10102.02104122=⨯⨯⨯⨯=--ε∵ 钢铝εε= q =2.8MN /m 2钢套 228/2qDMN m t θσ==t qv r 2=σ ; tqr=θσ ; 0=z σ ; 1εσ⋅=E r ;4-14.试证明在弹性范围内剪应力不产生体积应变,并由纯剪状态说明v =0。
证明:在外力作用下,物体将产生变形,也即将产生体积的改变和形状的改变。
前者称为体变,后者称为形变。
并且可将一点的应力张量σij 和应变张量εij 分解为,球应力张量、球应变张量和偏应力张量、偏应变张量。
ij m ij ijijm ij ij s e σσδεεδ=+⎧⎨=+⎩ 而球应变张量只产生体变,偏应变张量只引起形变。
通过推导,我们在小变形的前提下,对于各向同性的线弹体建立了用球应力、球应变分量和偏应力分量,偏应变分量表示的广义胡克定律:()()3122m m e ijij k k s Ge σε⎧==⎪⎨=⎪⎩L L L L L L L L L L L L (1) 式中:e 为体积应变 1231x y z e I εεεεεε'=++=++= 由(1)式可知,物体的体积应变是由平均正力σm 确定,由e ij 中的三个正应力之和为令,以及(2)式知,应变偏量只引起形变,而与体变无关。
这说明物体产生体变时,只能是平均正应力σm 作用的结果,而与偏应力张量无关进一步说就是与剪应力无关。
物体的体积变形只能是并且完全是由球应力张量引起的。
由单位体积的应变比能公式:3122o ov od m m ij ij u u u s e σε=+=+;也可说明物体的体变只能是由球应力分量引起的。
当某一单元体处于纯剪切应力状态时:其弹性应变比能为:221102o ov od xy xy v u u u G Eττ+=+=+= 由u o 的正定性知:E >0,1+v >0.得:v >-1。
由于到目前为止还没有v <0的材料,所以,v 必须大于零。
即得:v >0。
3-16.给定单向拉伸曲线如图所示,εs 、E 、E ′均为已知,当知道B 点的应变为ε时,试求该点的塑性应变。
解:由该材料的σ—ε曲线图可知,该种材料为线性强化弹塑性材料。
由于B 点的应变已进入弹塑性阶段,故该点的应变应为:εB =ε=εe +εp 故:εp =ε-εe()()11e e s s E E E EE Eσεεσεεεεεε''=-=-+-=-+-⎡⎤⎡⎤⎣⎦⎣⎦ 111s s s E E E E E E E E E E εεεεεε'''⎛⎫⎛⎫=--+=--- ⎪ ⎪⎝⎭⎝⎭()1s E E εε'⎛⎫=-- ⎪⎝⎭;3-19.已知藻壁圆筒承受拉应力2sz σσ=及扭矩的作用,若使用Mises 条件,试求屈服时扭转应力应为多大?并求出此时塑性应变增量的比值。
解:由于是藻壁圆筒,所可认圆筒上各点的应力状态是均匀分布的。
据题意圆筒内任意一点的应力状态为:(采用柱坐标表示)0θσ=,0r σ=,2sz σσ=;0r θτ=,z θττ=;0zr τ=;于是据miess 屈服条件知,当该藻壁圆筒在轴向拉力(固定不变)ρ及扭矩M (遂渐增大,直到材料产生屈服)的作用下,产生屈服时,有:()()()()122222226s r z z r r z zr θθθθσσσσσσστττ⎡⎤=-+-+-+++⎣⎦11222222266222s s sσσσττ⎡⎤⎡⎤⎛⎫⎛⎫=-++=+⎢⎥⎥⎪ ⎪⎝⎭⎝⎭⎢⎥⎦⎣⎦解出τ得:2sστ=;τ就是当圆筒屈服时其横截面上的扭转应力。
任意一点的球应力分量σm 为:36r zsm θσσσσσ++==应力偏量为:6sm s θθσσσ=-=-;6sr r m s σσσ=-=-;263sssz z m s σσσσσ=-=-=;0r rz r rz s s θθττ====;2sz z s θθσττ===;由增量理论知:pij ij d s d ελ= 于是得:6psd d s d θθσελλ==-;6p sr r d d s d σελλ==-;3p s z z d d s d σελλ==; 0p r r d d s θθελ==;0prz rz d d s ελ==;2p sz z d d s d θθσελλ==BAC Otg E-1tg E-1εεstg E ′-1σsσε所以此时的塑性应变增量的比值为:p d θε:p r d ε:p z d ε:p r d θε:p rz d ε:pz d θε=6sσ⎛⎫- ⎪⎝⎭:6s σ⎛⎫- ⎪⎝⎭:3sσ:0:0:2sσ也即:p d θε:p r d ε:p z d ε:p r d θγ:p rz d γ:pz d θγ=(-1):(-1):2:0:0:6;3-20.一藻壁圆筒平均半径为r ,壁厚为t ,承受内压力p 作用,且材料是不可压缩的,12v =;讨论下列三种情况: (1):管的两端是自由的; (2):管的两端是固定的; (3):管的两端是封闭的;分别用mises 和Tresca 两种屈服条件讨论p 多大时,管子开始屈服,如已知单向拉伸试验σr 值。