T-11-2

合集下载

11-2 偏导数

11-2 偏导数
xy 求 lim 2 . 2 x0 x y y0
【解】令 x r cos ,y r sin ( r 0) 则有
xy lim 2 x 0 x y 2 y 0
lim cos sin
r 0
cos sin
极限值与 有关,说明此极限不存在.
Hale Waihona Puke 连续可微uz y e yz
1 y du dx ( cos z e yz ) dy ye yz dz 2 2 d u( 2, ,1) dx e dy e dz
【例3】若 d y z d x xzy z 1 d y xy z ln y d z , 求 ( x, y, z ).
z 0
( x , y ) (0,0)
f ( x x, y y) f ( x, y)
故 z = f (x, y)在 (x, y) 处连续. (2) 令 y 0, 则 z x z Ax o(| x |)
f ( x x , y ) f ( x , y ) Ax o(| x |) A 从而 lim lim x 0 x 0 x x
取 y x,则 2 | x | ,f | x | ,有
x 0 y x 0

0
lim
| x y |

lim
x 0
1 | x | 0 2 2 | x |
故在点 (0,0) 不可微.
z z 若 z = f (x, y)的偏导数 , 在点 (x, y) 处连续, x y 则函数在点 (x, y) 可微.
4 3
3
4
fx
3
1 3 x 3 , 4 x y 1

11-2 JY T 010-1996分析型扫描电子显微镜方法通则

11-2 JY T 010-1996分析型扫描电子显微镜方法通则

MV_RR_CNJ_0010分析型扫描电子显微镜方法通则1.分析型扫描电子显微镜方法通则的说明编号JY/T 010—1996名称(中文)分析型扫描电子显微镜方法通则(英文)General rules for analytical scanning electron microscopy归口单位国家教育委员会起草单位国家教育委员会主要起草人林承毅 万德锐批准日期 1997年1月22日实施日期 1997年4月1日替代规程号无适用范围本通则适用于各种类型的扫描电子显微镜和X射线能谱仪。

定义主要技术要求 1.2. 方法原理3. 仪器4. 样品5. 分析步骤6. 分析结果表述是否分级无检定周期(年)附录数目无出版单位科学技术文献出版社检定用标准物质相关技术文件备注2.分析型扫描电子显微镜方法通则的摘要本通则适用于各种类型的扫描电子显微镜和X射线能谱仪。

2 定义2.1二次电子 secondary electron在入射电子的作用下,从固体样品中出射的,能量小于50eV的电子,通常以SE表示。

2.2背散射电子 backscattered electron被固体样品中的原子反射回来的入射电子,包括弹性背散射电子和非弹性背散射电子,通常以BSE表示。

它又称为反射电子(Reflected Electron),以RE表示。

其中弹性背散射电子完全改变了入射电子的运动方向,但基本上没有改变入射电子的能量;而非弹性背散射电子不仅改变了入射电子的运动方向,在不同程度上还损失了部分能量。

2.3 放大倍数 magnification扫描电镜的放大倍数是指其图像的线性放大倍数,以M表示。

如果样品上长度为L s直线上的信息,在显像管上成像在L c 长度上,则放大倍数为M =-L L -c s扫描电镜的有效放大倍数与电子束直径有关。

如果样品上电子束编址的单位区域,即像素,小于电子束直径,每次取样传送的信息包含一个以上的像素,前后传送的信息互相部分重叠。

专题11-时态二(现在进行时)-备战2023年中考英语一轮复习语法专项练(通用版)(解析版)

专题11-时态二(现在进行时)-备战2023年中考英语一轮复习语法专项练(通用版)(解析版)

专题11-时态二(现在进行时)备战2023年中考英语一轮复习语法专项练(通用版)一、单项选择1.Look! Li Ming ________ a kite in the Guanyin Mountain Park .A.fly B.flew C.will fly D.is flying【答案】D【详解】句意:看!李明在观音山公园放风筝。

考查现在进行时。

根据“Look!”可知此句时态为现在进行时,故选D。

2.Justin can’t help me to move the piano because he ________ English online.A.is studying B.studied C.will study D.studies【答案】A【详解】句意:贾斯汀帮不了我搬钢琴,因为他正在网上学习英语。

考查动词时态。

根据“Justin can’t help me to move the piano”可知,此处是正在网上学习,不能帮忙,可知用现在进行时,其结构是be doing的形式,主语是he,是第三人称单数,be动词用is,study“学习”,是动词,现在分词是studying。

故选A。

3.—Tina, what’s your dad doing?— He ________ my computer.A.repairs B.is repairing C.has repaired D.will repair【答案】B【详解】句意:——Tina, 你的爸爸正在做什么?——他正在修我的电脑。

考查现在进行时。

根据问句“Tina, what’s your dad doing?”可知,本题是问爸爸正在做什么,所以答语要用现在进行时来回答。

故选B。

4.—Can you answer the door, Jimmy? I ________ the dishes.—I’m coming, Mom.A.do B.did C.am doing D.have done【答案】C【详解】句意:——吉米,你能去开门吗?我正在洗碗。

DB11!T~1322.90-2020 安全生产等级评定技术规范 第90部分:化工企业

DB11!T~1322.90-2020 安全生产等级评定技术规范 第90部分:化工企业

ICS 13.100C 65 DB11 北京市地方标准DB11/T 1322.90—2020安全生产等级评定技术规范第 90 部分:化工企业Technical specification for grade assessment of work safetyPart 90: Chemical manufacturing enterprises2020-09-17发布2021-01-01实施目次前言 (II)1 范围 (1)2 规范性引用文件 (1)3 术语和定义 (2)4 评定内容 (2)4.1 基础管理要求 (2)4.2 场所环境 (3)4.3 生产设备设施 (4)4.4 特种设备 (5)4.5 公用辅助用房及设备设施 (5)4.6 用电 (6)4.7 消防 (6)4.8 危险化学品 (6)4.9 职业病危害预防与控制 (7)4.10 劳动防护用品使用 (8)4.11 操作人员行为规范 (8)5 评定细则 (8)附录A(规范性附录)安全生产等级评定一级否决条款 (10)附录B(规范性附录)基础管理要求指标的安全生产等级评定细则 (11)附录C(规范性附录)场所环境要素的安全生产等级评定细则 (28)附录D(规范性附录)生产设备设施要素的安全生产等级评定细则 (48)附录E(规范性附录)特种设备要素的安全生产等级评定细则 (54)附录F(规范性附录)公用辅助用房及设备设施要素的安全生产等级评定细则 (62)附录G(规范性附录)用电要素的安全生产等级评定细则 (70)附录H(规范性附录)消防要素的安全生产等级评定细则 (85)附录I(规范性附录)危险化学品要素的安全生产等级评定细则 (99)附录J(规范性附录)职业病危害预防与控制要素的安全生产等级评定细则 (112)附录K(规范性附录)劳动防护用品使用要素的安全生产等级评定细则 (113)附录L(规范性附录)操作人员行为规范要素的安全生产等级评定细则 (114)前言DB11/T 1322《安全生产等级评定技术规范》分为若干部分:——第1部分:总则;——第2部分:安全生产通用要求;——第3部分:加油站;……——第90部分:化工企业;……本部分为DB11/T 1322的第90部分。

DB441900T 11-2006 糯米糍荔枝鲜果质量.pdf

DB441900T 11-2006 糯米糍荔枝鲜果质量.pdf

B 31广东省质量技术监督局备案号:381-2006广东省东莞市农业地方标准DB 441900/T 11-2006糯米糍荔枝鲜果质量2006-05-10发布 2006-09-01实施 广东省东莞市质量技术监督局 发布目 次前言 (Ⅱ)1 范围 (1)2 规范性引用文件 (1)3 术语和定义 (1)4 外观要求 (2)5 质量要求 (2)6 试验方法 (3)7 检验规则 (4)8 包装、标志、贮存和运输 (5)前 言本标准由东莞市农业局提出并归口。

本标准起草单位:东莞市农业科学研究中心。

本标准主要起草人:尹金华、罗 诗、赖永超。

本标准首次发布日期:2006年5月10日。

糯米糍荔枝鲜果质量1 范围本标准规定了糯米糍荔枝(Litchi chinensis Sonn.Nuomici)鲜果的质量要求、试验方法、检验规则、包装、标志和贮运要求。

本标准适用于糯米糍荔枝鲜果的生产和销售。

2 规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。

凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否使用这些文件的最新版本。

凡是不注日期的引用文件,其最新版本适用于本标准。

GB/T 5009.11 食品中总砷测定方法GB/T 5009.12 食品中铅的测定方法GB/T 5009.15 食品中镉的测定方法GB/T 5009.17 食品中总汞测定方法GB/T 5009.18 食品中氟的测定方法GB/T 5009.20 食品中有机磷农药残留量的测定方法GB/T 5737 食品塑料周转箱GB/T 6543 瓦楞纸箱GB/T 7718 食品标签通用标准GB/T 8855 新鲜水果和蔬菜的取样方法GB/T 9687 食品包装用聚乙烯成型品卫生标准GB/T 12293 水果、蔬菜制品 可滴定酸度的测定GB/T 12295 水果、蔬菜制品 可溶性固形物含量的测定——折射仪法GB 16319 食品中敌百虫最大残留限量标准GB 16333 双甲脒等农药在食品中的最大残留限量GB/T 16335 食品中亚胺硫磷残留量的测定方法GB/T 17329 食品中双甲脒残留量的测定GB/T 17331 食品中有机磷和氨基甲酸酯类农药多种残留的测定GB/T 17332 食品中有机氯和拟除虫菊酯类农药多种残留的测定3 术语和定义下列术语和定义适用本标准。

11-2 平面简谐波的波函数

11-2 平面简谐波的波函数

-
x u
)=
Acos ω
t
-
x u
+
0
上页 下页 返回 退出
P处质点在时刻t 的位移为:
yP (t) =
Acos ω
t
-
x u
+
0
波 函 数
因此,波线上任一点在任一时刻的位移都能 由上式给出。此即所求的沿x 轴正方向前进 的平面简谐波的波函数。
沿x轴负方向传播的平面简谐波的波函数:
上页 下页 返回 退出
2
1
2
x2 x1
2
x
x、t 都变化:
实线:t1 时刻波形;虚线:t2 时刻波形
y
u
o
x
x x
上页 下页 返回 退出
当t=t1时,y
A
cos
t1
x u
0
当t=
t1+Δt时,y
A
cos
t1
t
x u
0
在t1和t1+Δt时刻,对应的位移用x1和x2表示,则
y(t1)
A cos
t1
x1 u
0
y
A cos
2
(
t
mx
)
0
y Acos(t mkx 0 )
k 2 角波数
y
y
A cos(t
Aei
(t
mx u
)0
m2 x
i (t
Ae
0
mk ) u
)
上页 下页 返回 退出
波动表式的意义:
x 一定:令x=x1,则质点位移y 仅是时间t 的函数。

y
A
cos

T型钢规格尺寸、重量及回转半径(Q235)

T型钢规格尺寸、重量及回转半径(Q235)

TM74X100X6X9
74
100
6
9
10.3
1.98
2.38
TM97X150X6X9
97
150
6
9
15
2.55
3.64
TM122X175X7X11
122 175
7
11
21.8
3.22
4.21
TM147X200X8X12
147 200
8
12
27.9
4
4.74
TM149X201X9X14
149 201
55.4
6.93
6.91
TM244X300X11X18
244
300
11
18
62.5
6.73
7.13
TM272X300X11X15
272
300
11
15
58.1
8.04
6.75
TM275X300X11X18
275
300
11
18
65.2
7.82
6.98
TM291X300X12X17
291
300
12
17
66.4
16
28
120
13.8
6.42
TN456X302X18X34
456 302
18
34
141
13.8
6.59
注:截面材料类型:Q235
150
300
10
15
46.5
3.67
7.55
TW150X305X15X15
150
305
15
15
52.4

Amazfit T-Rex 2 使用手冊说明书

Amazfit T-Rex 2 使用手冊说明书

Amazfit T-Rex 2 使用手冊-海外版連接與配對使用手機掃描說明書或手錶上的 QR 碼,下載並安裝 Zepp App。

為了獲得更好的使用體驗,請按照提示及時將 App 升級至最新版本。

附註:手機系統要求為 Android 7.0 或 iOS 12.0 及以上版本。

首次配對:手錶首次啟動時,會在螢幕上顯示用於綁定的 QR 碼;在手機上開啟 Zepp App,登入後,按照提示掃描手錶上顯示的 QR 碼來綁定手錶。

與新手機配對:1. 在舊手機的 App 上完成手錶資料同步;2. 在舊手機中,進入需要重新配對的手錶的資訊頁面,然後進入底部的更多設定中解除綁定;3. 將手錶還原出廠設定並重新啟動,啟動完畢即可按照首次啟動的流程,將手錶與新手機配對。

手錶系統更新保持手錶與手機的連接狀態,開啟 Zepp App >「我的」>「Amazfit T-Rex 2」>「系統更新」,即可檢視或更新手錶系統。

建議在手錶收到系統更新的推播時,點一下以立即更新。

基礎操作常用手勢及按鍵操作控制中心在手錶錶盤頁面向下滑動螢幕,進入控制中心,可使用手錶的系統功能支援:手電筒、勿擾模式、劇院模式、持續開啟螢幕、行事曆、蜂鳴強度、電池、亮度、尋找手機、設定、鬧鐘、氣壓計、指南針、計時器、碼錶尋找手機1. 保持手錶與手機的連接狀態;2. 在錶盤下拉以開啟控制中心,點一下尋找手機按鈕,手機將震動並響鈴;3. 在應用程式清單 >「更多」中,點一下尋找手機,手機將震動並響鈴。

尋找手錶當手錶與手機處於連接狀態時,開啟 Zepp App >「我的」>「Amazfit T-Rex 2」>「尋找手錶」,手錶將震動。

錶盤錶盤元件部分錶盤支援錶盤元件,您可以透過錶盤元件檢視步數、消耗、天氣等各類資訊,也可以編輯需要的資訊。

編輯錶盤元件:1. 喚醒手錶後,按住錶盤介面可進入錶盤管理頁面,在此頁面上可以更換其他錶盤或編輯錶盤;2. 左右滑動可預覽目前手錶內可使用的錶盤,支援設定錶盤元件的錶盤下方會顯示編輯按鈕,輕點按鈕可進入此錶盤的元件編輯頁面;3. 選取需要編輯的元件,點一下元件或上下滑動螢幕可更換元件;4. 完成編輯後,點按右上鍵,即可完成編輯並啟用此錶盤。

11-2 简谐运动的描述

11-2 简谐运动的描述

第2节简谐运动的描述学习目标:1.理解振幅、全振动、周期、频率.2.了解相位、初相位及相位差,知道简谐运动的表达式和式中各物理量的含义.3.能用公式和图象描述简谐运动的特征.一、描述简谐运动的物理量[课本导读]预习教材第5页~第7页“描述简谐运动的物理量”部分,请同学们关注以下问题:1.什么是全振动?什么是振幅?它的物理意义是怎样的?2.什么是周期、频率,它们各自的单位、物理意义是什么?它们之间有什么关系?3.什么是相位?它的物理意义是怎样的?[知识识记]1.振幅是指振动物体离开平衡位置的最大距离,通常用字母A 表示,是标量.2.振子完成一次完整的振动过程称为一次全振动,不论从哪一位置开始计时,弹簧振子完成一次全振动所用的时间总是相同的.3.做简谐运动的物体完成一次全振动所需要的时间,叫做振动的周期,用字母T 表示.其物理意义是表示物体振动的快慢.4.单位时间内完成全振动的次数,叫做振动的频率,用字母f 表示;其单位是赫兹,符号是Hz.5.周期与频率的关系是T =1/f .频率的大小表示振动的快慢.6.用来描述周期性运动在各个时刻所处的不同状态的物理量叫相位,当t =0时的相位称做初相位,用字母φ表示.二、简谐运动的表达式[课本导读]预习教材第7页~第9页“简谐运动的表达式”部分,请同学们关注以下问题:1.简谐运动的表达式是怎样的?2.表达式中各物理量的含义是怎样的?[知识识记]简谐运动的一般表达式为x =A sin(ωt +φ).1.x 表示离开平衡位置的位移,A 表示简谐运动的振幅,表示振动的强弱.2.式中ω叫做“圆频率”,它与周期频率的关系为ω=2πT =2πf .可见ω、T 、f 相当于一个量,描述的都是振动的快慢.简谐运动的表达式也可写成:x =A sin ⎝ ⎛⎭⎪⎫2πT t +φ或x =A sin(2πft +φ).3.式中(ωt+φ)表示相位,描述做周期性运动的物体在各个不同时刻所处的不同状态,是描述不同振动的振动步调的物理量.它是一个随时间变化的量,相当于一个角度,单位为弧度,相位每增加2π,意味着物体完成了一次全振动.4.式中φ表示t=0时简谐运动质点所处的状态,称为初相位或初相.5.相位差:即某一时刻的相位之差.两个具有相同ω的简谐运动,设其初相分别为φ1和φ2,其相位差Δφ=(ωt+φ2)-(ωt+φ1)=φ2-φ1.1.振子从离开平衡位置到第一次回到平衡位置的过程是一次全振动.()[答案]×2.振幅是振子通过的路程.()[答案]×3.振子一次全振动走过的路程为振幅的4倍.()[答案]√4.振子位移相同时,速度和加速度相同.()[答案]×5.振子经过关于平衡位置对称的两点,速度方向一定不同.()[答案]×6.振子先后经过同一位置经过的时间就是一个周期.()[答案]×7.ω、T、f描述的都是振动的快慢.()[答案]√要点一对描述简谐运动的各物理量及其关系的理解——概念辨析型[合作探究]1.弹簧振子经历一次全振动后,其位移、加速度、速度有何特点?弹簧振子的一次全振动经历了多长时间?提示:弹簧振子的位移、加速度、速度第一次同时与初始状态相同;弹簧振子的一次全振动的时间刚好为一个周期.2.始末速度相同的过程是一次全振动吗?简谐运动在一个周期内,振子通过的路程一定等于多少个振幅?振子在半个周期内通过的路程又是多少呢?14个周期呢?提示:不是.一次全振动,物体的始末速度一定相同,始末速度相同的一个过程不一定是一次全振动.一次全振动的路程等于四个振幅,半个周期内振子通过的路程等于两个振幅.若从平衡位置或从最大位移处开始计时,14个周期内振子通过的路程等于一个振幅,从其他位置开始计时,14个周期内振子通过的路程可能大于或小于一个振幅.[知识精要]1.对全振动的理解(1)全振动的定义:振动物体以相同的速度相继通过同一位置所经历的过程,叫做一次全振动.(2)注意把握全振动的四个特征①物理量特征:位移(x)、加速度(a)、速度(v)三者第一次同时与初始状态相同.②时间特征:历时一个周期.③路程特征:振幅的四倍.④相位特征:增加2π.2.对振幅的理解(1)定义:振动物体离开平衡位置的最大距离叫做振动的振幅.在国际单位制中,振幅的单位是米(m).(2)振幅是标量,只有大小,没有方向,是用来表示振动强弱的物理量.(3)同一振动系统,系统的能量仅由振幅决定,振动越强,振幅就越大,振动能量也越多.(4)振幅与位移、路程的区别①振幅是振动物体离开平衡位置的最大距离,是标量;而位移是由平衡位置指向末位置的有向线段,是矢量;路程是运动路径的总长度,是标量.一个周期内的路程为振幅的四倍,半个周期内的路程为振幅的两倍.②当物体做简谐运动时,振幅是定值;位移的大小和方向时刻都在变化;路程则会持续不断地增加.3.对周期和频率的理解(1)周期(T)和频率(f)都是标量,反映了振动的快慢,T=1f,即周期越大,频率越小,振动越慢.(2)振动周期、频率由振动系统决定,与振幅无关.(3)全振动次数N与周期T和振动时间t的关系为N=t T.[典例剖析](对简谐运动的描述)如图所示,将弹簧振子从平衡位置拉下一段距离Δx,释放后振子在A、B间振动,且AB=20 cm,振子首次由A到B的时间为0.1 s,求:(1)振子振动的振幅、周期和频率.(2)振子由A到O的时间.(3)振子在5 s内通过的路程及位移大小.[审题指导](1)AB间距与振幅有何关系?(2)振子首次由A到B的时间与周期有何关系?[尝试解答](1)从题图可知,振子振动的振幅为10 cm,t=0.1 s=T2,所以T=0.2 s.由f=1T得f=5 Hz.(2)根据简谐运动的对称性可知,振子由A到O的时间与振子由O到B的时间相等,均为0.05 s.(3)设弹簧振子的振幅为A,A=10 cm.振子在1个周期内通过的路程为4A,故在t=5 s=25T内通过的路程s=40×25 cm=1000 cm.5 s内振子振动了25个周期,5 s末振子仍处在A点,所以振子偏离平衡位置的位移大小为10 cm.[答案](1)10 cm0.2 s 5 Hz(2)0.05 s(3)1000 cm10 cm如图,弹簧振子在BC间做简谐运动,O为平衡位置,BC间距离是10 cm,B→C运动时间是1 s,求:(1)振子的周期、振幅和频率;(2)振子从O 到C 的时间;(3)从O 位置,经过10 s ,振子走过的距离.[审题指导] (1)BC 间距与振幅有何关系?(2)振子首次由B 到C 的时间与周期有何关系?[尝试解答] (1)由B →C 运动特征可知,振幅A =5 cm ,周期T=2 s ,由f =1T 得频率为0.5 Hz.(2)若是直线从O 至C ,则为T 4=0.5 s ,若是O →B →C ,则为3T 4=1.5 s.(3)由n =t T ,经过10 s ,做了5次全振动,通过的路程为5A =20cm.[答案] (1)2 s 5 cm 0.5 Hz (2)1.5 s (3)20 cm判断全振动的两种思路思路1:物体完成一次全振动时,一定回到了初位置,且以原来相同的速度回到初位置.思路2:全振动中路程与振幅有固定关系,即一次全振动通过的路程是振幅的四倍.要点二对简谐运动表达式的理解——概念理解型[合作探究]两个频率相同的简谐运动,相位差为Δφ=φ2-φ1,若Δφ>0或Δφ<0时,说明两振动满足什么关系?提示:若Δφ>0,表示振动2比振动1超前;若Δφ<0,表示振动2比振动1滞后.[知识精要]做简谐运动的物体位移x随时间t变化的表达式:x=A sin(ωt+φ)1.x:表示振动质点相对于平衡位置的位移.2.A:表示振幅,描述简谐运动振动的强弱.3.ω:圆频率,它与周期、频率的关系为ω=2π/T=2πf.可见ω、T、f相当于一个量,描述的都是振动的快慢.4.ωt+φ:表示相位,描述做周期性运动的物体在各个不同时刻所处的不同状态,是描述不同振动的振动步调的物理量.它是一个随时间变化的量,相当于一个角度,相位每增加2π,意味着物体完成了一次全振动.5.φ:表示t=0时振动质点所处的状态,称为初相位或初相.6.相位差:即某一时刻的相位之差.两个具有相同ω的简谐运动,设其初相分别为φ1和φ2,其相位差Δφ=(ωt +φ2)-(ωt +φ1)=φ2-φ1.[题组训练]1.(简谐运动的表达式)(多选)物体A 做简谐运动的振动位移x A =3sin ⎝ ⎛⎭⎪⎫100t +π2m ,物体B 做简谐运动的振动位移x B =5sin ⎝ ⎛⎭⎪⎫100t +π6m.比较A 、B 的运动( )A .振幅是矢量,A 的振幅是6 m ,B 的振幅是10 mB .周期是标量,A 、B 周期相等为100 sC .A 振动的频率f A 等于B 振动的频率f BD .A 的相位始终超前B 的相位π3[解析] 振幅是标量,A 、B 的振动范围分别是6 m 、10 m ,但振幅分别为3 m 、5 m ,A 错;A 、B 的周期T =2πω=2π100s =6.28×10-2 s ,B 错;因为T A =T B ,故f A =f B ,C 对;Δφ=φA 0-φB 0=π3,D 对. [答案] CD2.(简谐运动的表达式)(多选)某质点做简谐运动,其位移随时间变化的关系式为x =A sin π4t ,则质点( ) A .第1 s 末与第3 s 末的位移相同B .第1 s 末与第3 s 末的速度相同C .第3 s 末至第5 s 末的位移方向都相同D .第3 s 末至第5 s 末的速度方向都相同[解析] 根据x =A sin π4t 可求得该质点振动周期T =8 s ,则该质点振动图象如图所示,图象的斜率为正,表示速度为正,反之为负,由图可以看出第1 s 末和第3 s 末的位移相同,但斜率一正一负,故速度方向相反,选项A 正确、B 错误;第3 s 末和第5 s 末的位移方向相反,但两点的斜率均为负,故速度方向相同,选项C 错误、D 正确.[答案] AD3.(对简谐运动表达式的理解)(多选)某质点做简谐运动,其位移随时间变化的关系式为x =10sin ⎝ ⎛⎭⎪⎫π4t cm ,则下列关于质点运动的说法中正确的是( )A .质点做简谐运动的振幅为10 cmB .质点做简谐运动的周期为4 sC .在t =4 s 时质点的速度最大D .在t =4 s 时质点的位移最大[解析] 由简谐运动的表达式x =10sin ⎝ ⎛⎭⎪⎫π4t cm ,知质点的振幅为10 cm ,2πT =π4,得:T =8 s ,故A 正确,B 错误;将t =4 s 代入x =10 sin ⎝ ⎛⎭⎪⎫π4t cm ,可得位移为零,质点正通过平衡位置,速度最大,故C 正确,D 错误.[答案] AC要点三 简谐运动图象与简谐运动表达式对比分析——重难点突破型[合作探究]到现在为止,我们描述简谐运动有几种方法?它们各自的特点是什么?提示:我们可以用函数表达式和图象描述简谐运动.图象形象、直观;函数表达式精确、抽象,两种方法是从不同的角度描述同一个简谐运动过程.[知识精要]简谐运动两种描述方法的比较1.简谐运动图象即x -t 图象是直观表示质点振动情况的一种手段,直观表示了质点的位移x 随时间t 变化的规律.2.x =A sin(ωt +φ)是用函数表达式的形式反映质点的振动情况. 两者对同一个简谐运动的描述应该是一致的,只是描述的方法不同.我们可以根据振动方程作出振动图象,也可以根据振动图象读出振幅、周期、初相,进而写出位移的函数表达式.[题组训练]1.(简谐运动的表达式与图象)用余弦函数描述一简谐运动,已知振幅为A ,周期为T ,初相φ=-13π,则振动曲线为( )[解析] 根据题意可以写出振动表达式为x =A cos ⎝ ⎛⎭⎪⎫2πT t -π3,故选A.[答案] A2.(简谐运动的图象)一质点做简谐运动,其位移和时间关系如图所示.(1)求t =0.25×10-2 s 时的位移;(2)在t =1.5×10-2 s 到2×10-2 s 的振动过程中,质点的位移、回复力、速度、动能、势能如何变化?(3)在t =0到8.5×10-2 s 时间内,质点的路程、位移各多大?[解析] (1)由题图可知A =2 cm ,T =2×10-2 s ,振动方程为x =A sin ⎝ ⎛⎭⎪⎫ωt -π2=-A cos ωt =-2cos100πt cm. 当t =0.25×10-2s 时,x =-2cos π4 cm =- 2 cm. (2)由图可知,在1.5×10-2~2×10-2 s 的振动过程中,质点的位移变大,回复力变大,速度变小,动能变小,势能变大.(3)从t =0至8.5×10-2 s 时间内为4.25个周期,质点的路程为s =17A =34 cm ,位移为2 cm.[答案] (1)- 2 cm (2)变大 变大 变小 变小 变大(3)34 cm 2 cm3.(简谐运动的表达式与图象)有一弹簧振子在水平方向上的B 、C 之间做简谐运动,已知B 、C 间的距离为20 cm ,振子在2 s 内完成了10次全振动.若从某时刻振子经过平衡位置时开始计时(t =0),经过14周期振子有负向最大位移. (1)求振子的振幅和周期;(2)画出该振子的位移—时间图象;(3)写出振子的位移随时间变化的关系式.[解析] (1)弹簧振子在B 、C 之间做简谐运动,故振幅A =10 cm ,振子在2 s内完成了10次全振动,振子的周期T=tn=0.2 s.(2)振子从平衡位置开始计时,故t=0时刻,位移是0,经14周期振子的位移为负向最大,故如图所示.(3)由函数图象可知振子的位移与时间函数关系式为x=10sin(10πt+π) cm.[答案](1)10 cm0.2 s(2)图见解析(3)x=10sin(10πt+π) cm要点四简谐运动的多解问题——易错型[合作探究]一质点在平衡位置O附近做简谐运动,从它经过平衡位置起开始计时,经t1质点第一次通过M点,再经t2第二次通过M点,则质点振动周期的值为多少?提示:将物理过程模型化,画出具体化的图景如图所示.第一种可能,质点从平衡位置O 向右运动到M 点,那么质点从O 到M 运动时间为t 1,再由M 经最右端A 返回M 经历时间为t 2,如图甲所示.此时周期为4(t 1+t 2/2).另一种可能就是M 点在O 点左方,如图乙所示,质点由O 点经最右方A 点后向左经过O 点到达M 点历时t 1,再由M 点向左经最左端A ′点返回M 点历时t 2.此时周期为43⎝ ⎛⎭⎪⎫t 1+t 22. [知识精要]由于振动的往复性,质点经过某一位置时因速度方向不确定常会导致多解,或由于简谐运动的方向的不确定以及对称性,质点先后经过同一位置的时间不确定,而导致多解.[题组训练]1.(简谐运动的周期性)下列说法中正确的是( )A .若t 1、t 2两时刻振动物体在同一位置,则t 2-t 1=TB .若t 1、t 2两时刻振动物体在同一位置,且运动情况相同,则t 2-t 1=TC .若t 1、t 2两时刻振动物体的振动反向,则t 2-t 1=T 2D .若t 2-t 1=T 2,则在t 1、t 2时刻振动物体的振动反向[解析]该题考查了振动的周期性及其相位的问题.相差一个周期的两时刻,物体在同一位置且运动情况相同;但物体在同一位置,两时刻的时间差不一定是一个周期.即使物体在同一位置,且运动情况相同,它可能是一个周期,也可能是几个周期,故A、B错误.振动情况反向,不一定是相隔半个周期,但相隔半个周期振动一定反向,故C错,D对.[答案]D2.(简谐运动的对称性)一质点在平衡位置O附近做简谐运动,从它经过平衡位置起开始计时,经0.13 s质点第一次通过M点,再经0.1 s第二次通过M点,则质点振动周期的值为多少?[解析]设质点从平衡位置O向右运动到M点,那么质点从O 点到M点运动时间为0.13 s,再由M点经最右端A点返回M点经历时间为0.1 s,如图甲、乙所示.根据以上分析,可以看出从O→M→A′历时0.18 s,根据简谐运动的对称性,可得到T1=4×0.18 s=0.72 s.另一种可能如图乙所示,由O→A→M历时t1=0.13 s,由M→A′历时t2=0.05 s,则34T2=t1+t2,故T2=43(t1+t2)=0.24s,所以周期的可能值为0.72 s和0.24 s.[答案]0.72 s和0.24 s3.(简谐运动的周期性)物体做简谐运动,通过A点时的速度为v,经过1 s后物体第一次以相同速度v通过B点,再经过1 s物体紧接着又通过B点,已知物体在2 s内所走过的总路程为12 cm,则该简谐运动的周期和振幅分别是多大?[解析]物体通过A点和B点时的速度大小相等,A、B两点一定关于平衡位置O点对称.依题意作出物体的振动路径草图如图甲、乙所示,在图甲中物体从A向右运动到B,即图中从1运动到2,时间为1 s,从2运动到3,又经过1 s,从1到3共经历了0.5T,即0.5T =2 s,T=4 s,2A=12 cm,A=6 cm.在图乙中,物体从A先向左运动,当物体第一次以相同的速度通过B点时,即图中从1运动到2时,时间为1 s,从2运动到3,又经过1 s,同样A、B两点关于O点对称,从图中可以看出从1运动到3共经历了1.5T,即1.5T=2 s,T=43s,1.5×4A=12 cm,A=2cm.[答案]T=4 s,A=6 cm或T=43s,A=2 cm课堂归纳小结[知识体系][本节小结]1.全振动以及描述简谐运动的物理量:振幅、周期、频率、角速度以及它们的关系.2.简谐运动的表达式:x=A sin(ωt+φ),明确相位、初相位、相位差.3.简谐运动的表达式和图象之间的关系:两者对同一个简谐运动的描述应该是一致的,只是描述的方法不同(如要点三题组训练1、2).4.简谐运动的周期性和对称性(如要点四题组训练1、2、3).。

《城市道路工程施工质量检验标准》DB11@T1073-2014

《城市道路工程施工质量检验标准》DB11@T1073-2014

建 标 标 备 〔2014〕 8 6 号
北京市住房和城乡建设委员会:
你 委 《关 于 四 项 北 京 市 工 程 建 设 地 方 标 准 〈城市道路工程施
工 质 量 检 验 标 准 〉、〈建 筑 结 构 长 城 杯 工 程 质 量 评 审 标 准 〉、〈建筑
长 城 杯 工 程 质 量 评 审 标 准 >、〈居住建 筑装 修装饰工程质量验收规
增 加 软 土 地 基 处 理 一 节 ;路 基 土 压 实 度 标 准 按 现 行 行 业 标 准 《城
市 道 路 工 程 设 计 规 范 》C U 3 7 相 应 提 高 ;半 刚 性 基 层 压 实 度 标 准
按 现 行 行 业 《城 镇 道 路 路 面 设 计 规 范 》C U 169相 应 提 高 ;路 面 、
广场和停车场........................................................................... 34
6 . 1 水 泥 混 凝 土 (钢 筋 混 凝 土 )面 层 ...................................34 6 . 2 沥 青 混 合 料 面 层 ...............................................................35 6. 3 石 材 面 层 ............................................................................37 6. 4 路 面 砖 面 层 ........................................................................38

走遍美国文本及笔记11-2

走遍美国文本及笔记11-2

ACT 2-1 “这里的房子的价格对你们来讲太高了。

”【故事梗概】在房地产经纪人办公室里,Marilyn和丈夫Richard正在同房地产经纪人Virginia Martinelli 谈房子的事。

Virginia Martinelli是Stewart家的老朋友,她坦诚的告诉他们,以他们的经济情况是无法购买位于Riverdale的房子的。

Virginia: I remember your parents' first house very well. It was on Spring Avenue, near the park.Richard: I grew up in that house.Virginia: Yes, and you were such a cute baby.Marilyn: I've seen pictures of him. He had blond hair.Virginia: I've been friendly with the Stewart family for a long time, so it's my pleasure to help you find a house now.Richard: Well, we're not sure we can afford one.Marilyn: But we'd like to find out about the possibilities.Virginia: That's a good idea. I love your house on Linden Street. I sold your father that house seventeen years ago.Marilyn: Really?Richard: Yes, Mom was pregnant with Robbie then, and they needed the extra room.Virginia: I hear you're expecting a baby, Mrs. Stewart.Marilyn: Mmm-hmm. So we will be needing more room.Virginia: Oh, so you don't need something immediately?Richard: No. But in five or six months…Marilyn: And time passes so quickly.Virginia: Yes, it does. Well, when you called, you gave me enough information about your salaries and your savings. So I have a good idea about your financial situation. Let me show you some pictures of houses.Marilyn: With two bedrooms?Virginia: Yes, I think I can show you some. Of course, they won't be in Riverdale. The cost of housing's too high for you here.Richard: Haven't thought about living anywhere else. We've always lived in this area.【语言点精讲】1. I've been friendly with the Stewart family for a long time, so it's my pleasure to help you find a house now.我同Stewart一家人熟识很久了,现在我感到很高兴能帮助你们找一所房子。

11 2 Sample t Test(Chinese)

11 2 Sample t Test(Chinese)

P-Value在0.05以上此平均值无有意差。 7
2 Sample t Test
●How to use Minitab ●概要
・Stat → Basic Statistics → 2-Sample t ・选择Samples in different columns、分别输入想要鉴别的列。
・如果偏差无有意差的话选择Assume equal variances。
Sample1 Sample2
Difference = mu Sample1 - mu Sample2 Estimate for difference: 0.252 95% CI for difference: (-0.272, 0.775) T-Test of difference = 0 (vs not =): T-Value = 0.97 P-Value = 0.337 DF = 38 Both use Pooled StDev = 0.818
点击2-Sample t
3
2 Sample t Test
●How to use Minitab
选择Samples in different columns、分别输入想要鉴 别的列。
如偏差无有意差的话选择Assume equal variances
点击Graphs。
4
2 Sample t Test
●How to use Minitab
选择Boxplots of data
点击OK。
5
2 Sample t Test
●How to use Minitab
点击OK。 6
2 Sample t Test
●Session summary
Two-sample T for Sample1 vs Sample2 N 20 20 Mean 5.183 4.931 StDev 0.858 0.775 SE Mean 0.19 0.17

Appeared in Computational Intelligence (1995), 11(2), 246-267

Appeared in Computational Intelligence (1995), 11(2), 246-267

Incremental concept formation algorithms based on Galois (concept) latticesAppeared in Computational Intelligence (1995), 11(2), 246-267ROBERT GODIN, ROKIA MISSAOUI, HASSAN ALAOUIDépartement d'InformatiqueUniversité du Québec à MontréalC.P. 8888, Succursale "Centre Ville"Montréal (Québec), Canada, H3C 3P8(514)987-3088E-mail: godin.robert@uqam.caAbstract. The Galois (or concept) lattice produced from a binary relation has been proved useful for many applications. Building the Galois lattice can be considered as a conceptual clustering method since it results in a concept hierarchy. This article presents incremental algorithms for updating the Galois lattice and corresponding graph, resulting in an incremental concept formation method. Different strategies are considered based on a characterization of the modifications implied by such an update. Results of empirical tests are given in order to compare the performance of the incremental algorithms to three other batch algorithms. Surprisingly, when the total time for incremental generation is used, the simplest and less efficient variant of the incremental algorithms outperforms the batch algorithms in most cases.When only the incremental update time is used, the incremental algorithm outperforms all the batch algorithms. Empirical evidence shows that, on the average, the incremental update is done in time proportional to the number of instances previously treated. Although the worst case is exponential, when there is a fixed upper bound on the number of features related to an instance, which is usually the case in practical applications, the worst case analysis of the algorithm also shows linear growth with respect to the number of instances.Keywords. Concept lattice, Galois lattice, conceptual clustering, incremental algorithm, concept formation. Subject Categories. Learning, Knowledge Representation.1. IntroductionBuilding the Galois lattice of a binary relation has many important applications. Wille (1982) proposed to consider each element in the lattice as a concept and the corresponding graph (Hasse diagram) as the generalization/specialization relationship between concepts. From this perpective, the lattice represents a concept hierarchy. Each concept is a pair composed of an extension representing a subset of instances and an intension representing the common features for this set of instances. The task of inducing a concept hierarchy in an incremental manner is known as incremental concept formation or simply concept formation (Fisher, Pazzani & Langley, 1991; Gennari, Langley & Fisher, 1990) and is a fundamental process of human learning. In this article we present and analyze incremental algorithms for building Galois lattices. The main distinguishing characteristics of this method with respect to other well-known concept formation methods such as UNIMEM (Lebowitz, 1987), COBWEB (Fisher, 1987) and CLASSIT (Gennari et al., 1990) are that the concept hierarchy is a lattice, not restricted to a tree hierarchy, and although the algorithm is incremental, the resulting hierarchy does not depend on any tunable parameters, algorithm specifics, or the order in which the instances are acquired. A good overview of work on concept formation is found in (Fisher et al., 1991; Gennari et al., 1990).The practical application of using Galois lattices has resulted in many developments concerning the visualization of the lattice using computer generated diagrams (Wille, 1984), its simplification through decompositions or pruning heuristics (Ganter & Wille, 1989; Godin & Mili, 1993; Mephu Nguifo, 1993), its use in an interactive knowledge acquisition process and the generation of rules from the lattice (Guigues & Duquenne, 1986; Wille, 1992) which can be used for knowledge discovery in databases (Godin & Missaoui, 1994). In (Missaoui & Godin, 1994) we show how the concept lattice can usefully be (i) exploited (by avoiding combinatorial computations) as a framework for computing the basic measures usually calculated in the rough sets studies (Pawlak, 1991), (ii) used to define additional notions related to the intensional dimension of a classification. Carpinieto and Romano (1993) show how the lattice can be used successfully for class discovery and class prediction using several machine learning data sets. The Galois lattice can also be useful as a browsing space for information retrieval (Godin, Missaoui & April, 1993; Godin, Saunders & Gecsei, 1986). A structure very similar to the Galois lattice has been proposed for retrieval of classes in a large library based on class features (Oosthuizen, Bekker & Avenant, 1992). Recently, several other software engineering applications have been considered (Godin & Mili, 1993; Godin, Mineau, Missaoui, St-Germain & Faraj, 1995; Krone & Snelting, 1994). Extensions and refinements of the basic theory have been proposed for dealing with richer representations such as attribute-value pairs (Godin et al., 1986; Wille, 1992), conceptual graphs and use of feature taxonomies (Godin & Mili, 1993; Mineau & Godin, 1994).Many algorithms have been proposed for generating the Galois lattice from a binary relation (Bordat, 1986; Carpineto & Romano, 1993; Chein, 1969; Fay, 1975; Ganter, 1984; Godin, Missaoui & Alaoui, 1991; Malgrange, 1962; Norris, 1978). Only two of these (Carpineto & Romano, 1993; Godin et al., 1991) incrementally update the lattice and the corresponding Hasse diagram. This feature is necessary in many applications. As argued in (Frawley, Piatetsky-Shapiro & Matheus, 1991), two important features for the practical feasibility of automated knowledge discovery methods are that they should be incremental and efficient. From the currently known algorithms, the Bordat algorithm (Bordat, 1986) builds the Hasse diagram but is not incremental, and the Norris algorithm is incremental but it does not build the Hasse diagram (Guénoche, 1990). Furthermore, very little is known about the complexity of these algorithms. The algorithms we present in this article generate both the lattice and Hasse diagram incrementally. Furthermore, a detailed comparison is made to show the relative complexity of these algorithms.The following section recalls basic definitions related to the concept of Galois lattice. Section 3 presents incremental algorithms after giving a characterization of the modifications induced by adding a new instance.Section 4 presents detailed comparisons with other well-known algorithms, some of which were adapted to generate the Hasse diagram.2. Basic definitionsThis section recalls basic definitions related to the concept of Galois lattice for a binary relation. We limit our description to the aspects relevant to this paper. The following references give a more complete and formal coverage of the subject (Barbut & Monjardet, 1970; Davey & Priestley, 1992; Wille, 1982; Wille, 1992). Given a set of instances E and a set of features E', and a binary relation R between these two sets, R Õ E x E' (Table 1), there is a unique Galois lattice corresponding to this binary relation (Figure 1). Each element of the lattice is a pair, noted (X, X'), composed of a set X Œ P(E) and a set X' Œ P(E'). P(A) represents the powerset of A. Each pair must be a complete pair as defined in the following.A pair (X, X') from P(E) x P(E') is complete with respect to R if and only if the two following properties are satisfied:1) X' = f(X) where f(X) = {x' ∈ E' | ∀ x ∈ X, xRx'}.2) X = f'(X') where f'(X') = {x ∈ E | ∀ x' ∈ X', xRx'}Notice that f(Ø) = E' and f'(Ø) = E. Only maximally extended pairs are kept in the hierarchy. If a subset X of instances is not maximally extended in the sense that there are other instances described by the features common to X, then the subset has to be extended to contain this instance. Symmetrically, if X' does not contain a feature that is common to every instance in X, it has to be extended to include this feature. The idea of maximally extending the sets is formalized by the mathematical notion of a closure in ordered sets. A closure in an ordered set (E, =) is an application, h: E → E, having the following properties:i) ∀ x ∀ y, x = y ⇒ h(x) = h(y)ii) ∀ x, h(x) = xiii) ∀ x, h(h(x)) = h(x)E'R|a b c d e f g h i______|________________________________________________________1| 1 010010102|101000101E3|1001001014|0110010105|010010100______|________________________________________________________Figure 1. Matrix representation of a binary relation R.({1,2,3},{a})({1,2,4},{c})({4,5},{b})({2,3,5},{g})(Ø,{a,b,c,d,e,f,g,h,i})Figure 1. Galois lattice.The image h(x) of x in E is called h-closure of x; if x = h(x), x is h-closed or a closed element for h. The applications h = f o f' and h' = f' o f are respectively closures in E and E'. Therefore the h-closed elements of E correspond to the maximally extended instance subsets and they form a lattice H isomorphic to the Galois lattice. The isomorphism is simply to put into correspondence the closed elements with the X sets of G. Symmetrically, the h'-closed elements of E' are the maximally extended feature subsets and they correspond to the X' sets of the G.The couple of functions (f, f') is a Galois connection between P(E) and P(E') and the Galois lattice G for the binary relation is the set of all complete pairs (Barbut & Monjardet, 1970) with the following partial order: given C1=(X1,X'1) and C2=(X2,X'2), C1 < C2 <=> X'1⊂ X'2 .There is a dual relationship between the X and X' sets in the lattice, i.e.,X'1⊂ X'2 <=> X2⊂ X1and therefore,C1 < C2 <=> X2⊂ X1.The partial order is used to generate the lattice graph in the following way: there is an edge (C1,C2) if C1 < C2 and there is no other element C3 in the lattice such that C1 < C3 < C2 . C1 is called parent of C2 and C2 child of C1. The graph is usually called a Hasse diagram. When drawing a Hasse diagram, the edge direction is either downwards or upwards. The Hasse diagram therefore reveals the generalization/specializationrelationship between the concepts corresponding to the subset relationship between the extension or intensionof the concepts. Given, C, a set of elements from G, inf(C) and sup(C) will denote respectively the greatest lower bound and least upper bound of the elements in C. A fundamental property of G is that it is a completelattice since for any subset of G (complete pairs) there exists a unique greatest lower bound and a unique leastupper bound (Davey & Priestley, 1992).3. Incremental Update AlgorithmsBefore presenting the incremental update algorithms, a description of the update problem is first given inSection 3.1. The presentation of this paper extends on the material in (Godin et al., 1991) by giving a morecomplete and detailed presentation of the algorithms. Some of this material is also used in (Godin & Missaoui, 1994) to describe an algorithm for the incremental update of rules generated from a database using the lattice.3.1 Characterization of the update problemFor most applications, it is necessary to generate not only the complete pairs of the lattice G but also the Hasse diagram of the lattice. It is also important in many applications to be able to incrementally add a new instance, x*, by modifying the lattice without having to regenerate it from scratch. For example, adding the new element, x* = 6, related to the set, f*({x*}) = {b, c, f, i}, would result in the modifications shown in Figure 2 representing the new lattice noted G*. G* can be obtained from G by taking all the pairs in G and modifying the X part of the nodes for which X' ⊆ f*({x*}) by adding x*. The pairs that remain intact are called old pairs and the others, modified pairs in G*. In addition, new pairs are created. These new pairs are always in the form (Y ∪ {x*}, Y' ∩ f*({x*})) for some pair (Y, Y') ∈ G. They correspond to new X' sets with respect to G. The related (Y, Y') node in G is called the generator for this new pair. If the generators can be characterized in some manner, the new nodes can be generated from them. Proposition 1 is one possible characterization and is the basis for Algorithm 1.Proposition 1.If (X, X') = inf{(Y,Y')∈ G| X'=Y' ∩ f*({x*})} for some set X' and there is no node of the form (Z, X') ∈ G then (Y, Y') is the generator of a new pair (X = Y ∪ {x*}, X' = Y' ∩ f*({x*})) ∈ G*.#1Figure 2. Modifications resulting from adding element 6 related to the set {b, c, f, i}.Any new X' set in G* will have to be the result of intersecting f*({x*}) with some Y' set already present in the lattice G. There may be many pairs in G that give a particular new intersection in this manner. For example, in Figure 2, the new X' set, {i}, in the new pair #15, can be formed by intersecting f*({x*}) = {b, c, f, i} with the Y' set of pair #7, {a, g, i}, or the Y' set of pair #12, {a, d, g, i}. However, there is only one of these that is the generator of the new pair, #7 in this example. This pair is the smallest (inf) old pair that produces the intersection. Unicity of the greatest lower bound is guaranteed by the lattice property of G. In Figure 2, the generator pairs for the new pairs #15, #16, #17, #18, #19 are respectively #7, #11, #8, #13, #14.One minor problem is for the case of the generator being sup(G) = (Ø, E'). If the new instance x* contains new features not contained in E', there will be no generators for the pair ({x*}, f({x*}). In practical applications, we may want E' to grow as new features are encountered. This is easily taken into account by simply adding the new features to E' as a first step in the algorithm and therefore the characterization remains valid.In addition, the edges of the Hasse diagram also have to be updated. First, the generator of a new pair will always be a child to the new pair in the Hasse diagram. The children of old pairs do not change. The parents of generator pairs, however, have to be changed. The generator is the only old pair that becomes a child of athe new pair. There may be another child but it will be a new pair. For example in Figure 2, there is an edgefrom the new pair # 17 to its generator #8 and there is another child #18 that is a new pair. The parents of oldpairs that are not generators remain unchanged.Also, the parents of modified pairs never change. However, the children of some modified pairs may bemodified. There may be new children that are new pairs. This implies that some old children may have to beremoved if the new children fall in between the old child and the modified pair. This is the case when the new pair falls between a generator and one of its parents. The result is that the edge from that parent to thegenerator (e.g., edge(#3,#8) in Figure 2) is replaced by two edges, one from the parent to the new pair (e.g.,edge(#3,#17)) and one from the parent to the generator (e.g., edge(#17,#8)).Table 2 is a summary of the modifications resulting from the update process with respect to our classificationof pairs. The updating is decomposed into four aspects: the X set, the X' set, the parents and children. The firstthree categories represent the pairs that are in G and remain in G* with possibly some modifications. As opposed to category 3, categories 1 and 2 are pairs that have to be modified. The fourth category is for the new pairs.TABLE 2. Summary of the modifications in the update process.Type of node X set X' set parents children1.Modified node (Y, Y') ∈ G Add x*No change No change Add new nodesin some casesRemove agenerator whena new node inbetween2.Old node generator of N No change No change Add new nodeN and removeparent when Nis in betweenthis parent andthe generatorNo change3.Old node nongeneratorNo change No change No change No change4.New node having generator (Y, Y')Y ∪ {x*}Y' ∩ f({x*})Old nodes andnew nodesGenerator andpossibly newnode3.2 Basic algorithmsAlgorithm 1 is a basic algorithm and a refinement which could be considered for large data sets is given in Algorithm 2. For a node H, X(H) and X'(H) will denote respectively the extent (first component) and intent (second component) of the complete pair. Sup(G) and inf(G) will denote respectively the lowest upper bound and greatest lower bound of the lattice.The lattice is initialized with one element: (Ø, Ø). This means that E = E' = Ø. The algorithm updates E and E' as new elements are added. If we suppose that E and E' contain in advance every element with an empty R, the lattice would be initialized with the two elements: (E,Ø) and (Ø,E'). This would slightly simplify the algorithm because adjusting E' by adding new elements from f({x*}) would not be necessary.Algorithm 1 Add (x*: new object; f({x*}) : elements related to x* by R);BEGIN1{Adjust (sup(G)) for new elements in E'}2IF sup(G) = (Ø, Ø) THEN3Replace sup(G) by: ({x*},f({x*}))4ELSE5IF NOT (f*({x*}) ⊆ X'(sup(G))) THEN6IF X(sup(G)) = Ø THEN X'(sup(G)) := X'(sup(G)) ∪ f({x*})7ELSE8Add new pair H {becomes sup(G*)}: (Ø,X'(sup(G)) ∪ f({x*}));9Add new edge sup(G)->H10END IF11END IF;12C[i] <- {H: ||X'(H)||=i}; {Class pairs in buckets with same cardinality of the X' sets}13C'[i] <- Ø; {Initialize the C' sets}14{Treat each bucket in ascending cardinality order}15.FOR i : 0 TO maximum cardinality DO16FOR each pair H in C[i]17 IF X'(H) ⊆ f({x*}) THEN {modified pair}18Add x* to X(H);19 Add H to C'[i];20 IF X'(H) = f({x*}) THEN exit algorithm21 ELSE{old pair}22 int <- X'(H) ∩ f({x*});23 IF ¬∃ H1 ∈ C'[||int||] such that X'(H1)=Int THEN {H is a generator}24 Create new pair H n=(X(H) ∪{x*},int) and add to C'[||int||];25Add edge H n -> H;26 {Modify edges}27 FOR j : 0 TO ||int||-128FOR each H a∈ C'[j]29IF X'(H a) ⊂ int {H a is a potential parent of H n}30 parent<-true;31 FOR each H d child of H a32IF X'(H d) ⊂ Int parent<-false; exit FOR END IF33 END FOR;34 IF parent35IF H a is a parent of H36 eliminate edge H a->H END IF;37 Add edge H a->H n38 END IF39 END IF40 END FOR41END FOR;42 IF Int=f*({x*}) THEN exit algorithm END IF43 END IF44 END IF45END FOR46END FOR47END IFEND {Add}As introduced earlier, the basic idea is to generate G* from G, changing the X sets, and links of the pairs already in G and adding some new pairs for the new X' sets and linking them. The new pairs are generated by finding the generator pairs using the characterization of Proposition 1. The function of lines 1 to 11 is to take into account the case when new features appear by adjusting E' in sup(G). Line 12 classifies the pairs intobuckets with the same ||X'||. The main loop (lines 15-46) iterates on every pair in ascending ||X'||. New pairsare obtained by systematically trying to generate a new intersection from each pair (Y, Y') already in the lattice by intersecting Y' with f({x*}) (line 22). Verifying that this intersection is not already present is doneby looking in the sets already encountered which are subsets of f({x*}) (line 23). These sets are kept in C'(line 19, line 24). This is valid because the pairs are treated in ascending cardinality of the X' sets.Furthermore, the first pair encountered which gives a new intersection is the generator of the new pair because it is necessarily the infimum. Thus, we compute the X set of the New pair by adding x* to the generator's X set (line 24). Also, there is automatically an edge from the new pair to the generator (line 25). When a new pair is added, some edges have to be added from modified or other new pairs to the new pair. The candidates are necessarily in the C' sets since there X' set must be a subset of f({x*}). These parents of the new pair are determined by examining the pairs in C' (lines 27-41), testing if the X' sets are subsets of the X' set of the new pair (line 29) and verifying that no child of the potential parent has this property (lines 30-34). It is necessary to eliminate an edge between the new parent and the generator when there is such an edge (lines 34-35). The exhaustive iteration on the C' set is a fairly simple minded approach to modifying the edges and could be optimized somewhat. Lines 17-20 process the modified pairs and the rest of the treatment is skipped for these pairs because they cannot be generators.Although in the worst case, the lattice may grow exponentially, the growth is linearly bounded with respect to||E||, when there is a fixed upper bound on ||f({x})||. This is the case in practical applications such asinformation retrieval where for each document x in E there is a reasonable fixed upper bound on the number of terms from E' related to x (Godin et al., 1986). Clearly any new X' other than the updating of E' is a subset of f({x*}). This implies that there is at most 2||f({x*})|| additional pairs generated by adding x*. If there is an upper bound K, independent of the ||E||, on ||f({x})||, the lattice grows linearly with respect to ||E||: ||G|| = 2K ||E||.Experimental applications and theoretical results based on a uniform distribution hypothesis show that the average growth factor obtained is far less than the 2K bound. In every application, we observe that: ||G|| = k ||E||,where k is the mean value for ||f({x})||. Furthermore, theoretical estimations based on different values of ksuggest that the lattice may grow linearly with respect to the number of terms per document. Using a formuladerived in (Godin et al., 1986) for the mean value of ||G*|| with random assignment of index terms within documents, we have computed the theoretical values for different values of k, keeping other parameters fixed. Again, we obtain ||G*||/n < k and the observed growth is linear in k (Godin et al., 1993). More details on the complexity of the lattice are found in (Godin, 1989; Godin et al., 1986).The time complexity of iterating on the pairs for creating the intersections and verifying the existence of theintersection in C' is the major factor in analyzing the complexity of the algorithm. Although the linkingprocess is complicated, the pairs affected are limited and this part is only done when a generator pair is encountered. This is why we give a fairly straightforward algorithm for this process. Since ||G|| = 2K ||E|| and the ||C'|| is bounded by 2K, the whole time complexity is:O(||G|| 2K) = O(22K ||E||),which is O(||E||) for a fixed K. In applications where k is large, a more refined algorithm for the edge updating is to consider.Algorithm 1 iterates on almost every pair of G. It is possible to do the work by looking at a limited subset of G: the pairs that correspond to generators and modified pairs. This can be done by keeping for each x' in E' a pointer P x' on the smallest pair containing x' and using these pointers as entry points for a top-down depth-first search starting with every x' in f({x*}). This guarantees that any pair encountered will have at least x' in common with f({x*}). Algorithm 2 performs the search in this manner. Some minor modifications have to be introduced for maintaining these pointers but the details are left out.Algorithm 2 Add(x*: new object; f({x*}) : elements related to x by R);Procedure SelectAndClassifyPairsProcedure Search(H: pair)BEGINMark H as visited and add H to C[||X'(H)||];FOR each H d child of HIF H d is not marked as visitedSearch(H d)END IFEND FOREND {search}BEGINMark inf(G) as visited and add inf(G) to C[||X'(inf(G))||]FOR each x' in f({x*})·Search(P x')END FOREND {SelectAndClassifyPairs}BEGIN....12. SelectAndClassifyPairs;....END. {Add}Compared to Algorithm 1, Algorithm 2 can offer significant gains. For example, in an information retrieval application involving more than 3000 documents (Godin, 1986), the proportion of nodes treated by Algorithm 2 varied between 10% to 15% of the whole lattice. However, even if there is an important gain with this strategy compared to the basic Algorithm 1, the asymptotical complexity is unchanged with respect to Algorithm 1 because generally the subset of pairs is of the same order of complexity as the whole lattice.3.3 Other variantsIn this section we describe some variants of the previous algorithms which could prove to be useful in some contexts. However, we have not considered these variants in our experiments. Although the algorithm by Norris (Norris, 1978). generates the pairs using the same basic method as in Algorithm 1 by scanning each node in G, testing for modified pairs and testing for generators in order to add new pairs, it differs from ours in the way the generator is characterized. In the Norris algorithm, the complete pair property of the potential new pair, (Y ∪ {x*},Y' ∩ f*({x*})), is explicitly computed by testing if f'(Y' ∩ f*({x*})) = Y ∪ {x*}. Therefore, the information necessary for this computation must be incrementally maintained and the computation time grows with ||E|| as opposed to our approach for testing generators. Furthermore, the Norris algorithm does not address the graph update part. Their method of determining generators could nevertheless be incorporated in Algorithms 1 and 2 giving other variants that might be advantageous in some cases. In particular, when the average for ||f({x})|| is large, the number of pairs in C' can grow so much that computing the f' function would be less expensive.Another possible variation to be considered is to use the generator characterization of Proposition 2. It is a more local characterization since it only depends on conditions expressed in terms of the candidate generator and its parents.Proposition 2.(Y,Y') ∈ G is the generator of the new pair (X,X') ∈ G* if and only ifY' ¬⊆ f*({x*}) and for every parent (Z, Z') of (Y, Y') in G, Y' ∩ f*({x*}) ¬⊆ Z'This would mean replacing the search of the C' set to determine if the intersection is new by looking at the set of parents of the pair to be tested. Empirical evidence from a large information retrieval application (Godin, 1986) suggests that the mean number of parents (which is equal to the mean number of children) grows proportionally to ln(||E||), and that this number is often smaller than the number of pairs in C'. This suggests some potential saving in CPU time if the characterization of Proposition 2 is used instead of searching C'. The algorithm proposed in (Carpineto & Romano, 1993) uses this approach to generate the new nodes. One major disadvantage in their algorithm with respect to Algorithm 2 is that it iterates over all the nodes in the lattice as our Algorithm 1. Since this strategy systematically considers the set of parents of a node, a natural way proposed in (Godin, 1986) is to use a bottom-up strategy starting with sup(G) and searching the lattice with a depth-first search and using the characterization of Proposition 2 for the generator. This strategy however looks at more nodes than Algorithm 2 because some nodes for which X'(H) ∩ f*({x*}) = Ø have to be treated. In particular, for sup(G), a large number of non relevant parent nodes have to be considered.To deal with this problem, another algorithm has been tested (Godin, 1986) which searches the lattice as in Algorithm 2 using a depth first search based on the characterization of Proposition 2 but in a different manner than suggested above. Instead of verifying the characterization of Proposition 2 directly by looking at all the parents at once, nodes are created temporarily until a parent that contradicts the property is found. Therefore, some nodes that have been created by mistake will be deleted. The algorithm is more complex than Algorithm 2 and did not give any improvement for our experimental applications. There may be some advantage in this strategy when central memory is limited because only local information is used to process a node.A major advantage of using the characterization of Proposition 2 for generating new nodes is when considering parallel algorithms. Given the localized characterization of the generators, these can be tested independently in parallel. A parallel algorithm for building the lattice in such a manner is proposed in (Ouaggag, Godin, Missaoui & Mili, 1993).3.4 Removing instancesRemoving an instance from the lattice might also be considered for some applications. This problem is much easier than adding an instance. One simple method is to start from the lowest pair containing the instance to remove and to search upwards recursively, verifying if the parents are still necessary. When deleting a parent, care must be taken for relinking nodes, if necessary. The number of pairs to examine is limited to pairs (X, X') where X' ⊆ f({x}), x being the instance. This process will therefore be much more efficient than adding an instance. More details are found in (Godin, 1986).。

2024年天津市中考 数学试题及答案

2024年天津市中考 数学试题及答案

2024年天津市初中学业水平考试试卷数学第I 卷注意事项:1.每题选出答案后,用2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点。

2.本卷共12题,共36分。

一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算()33--的结果等于( ) A .—6B .0C .3D .62.下图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A .B .C .D .3的值在( ) A .1和2之间B .2和3之间C .3和4之间D .4和5之间4.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .B .C .D .5.据2024年4月18日《天津日报》报道,天津市组织开展了第43届“爱鸟周”大型主题宣传活动.据统计,今春过境我市候鸟总数已超过800000只.将数据800000用科学记数法表示应为( ) A .70.0810⨯B .60.810⨯C .5810⨯D .48010⨯61-o 的值等于( )A .0B .1C .12- D 17.计算3311x x x ---的结果等于( ) A .3B .xC .1x x - D .231x - 8.若点()()()123,1,,1,,5A x B x C x -都在反比例函数5y x=的图象上,则312,,x x x 的大小关系是( ) A .123x x x << B .132x x x <<C .321x x x <<D .213x x x <<9.《孙子算经》是我国古代著名的数学典籍,其中有一道题:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳度之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x 尺,绳子长y 尺,则可以列出的方程组为( ) A . 4.50.51y x x y -=⎧⎨-=⎩ B . 4.50.51y x x y -=⎧⎨+=⎩ C . 4.51x y x y +=⎧⎨-=⎩ D . 4.51x y y x +=⎧⎨-=⎩10.如图,Rt ABC △中,90,40C B ∠∠==oo,以点A 为圆心,适当长为半径画弧,交AB 于点E ,交AC 于点F ;再分别以点,E F 为圆心,大于12EF 的长为半径画弧,两弧(所在圆的半径相等)在BAC∠的内部相交于点P ;画射线AP ,与BC 相交于点D ,则ADC ∠的大小为( )A .60oB .65oC .70oD .75o11.如图,ABC △中,30B ∠=o ,将ABC △绕点C 顺时针旋转60o 得到DEC △,点,A B 的对应点分别为,D E ,延长BA 交DE 于点F ,下列结论一定正确的是( )A .ACB ACD ∠∠=B .AC DE ∥C .AB EF =D .BF CE ⊥12.从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系式是()230506h t tt =-≤≤.有下列结论:①小球从抛出到落地需要6s ; ②小球运动中的高度可以是30m ;③小球运动2s 时的高度小于运动5s 时的高度. 其中,正确结论的个数是( ) A .0B .1C .2D .3第II 卷二、填空题(本大题共6小题,每小题3分,共18分)13.不透明袋子中装有10个球,其中有3个绿球、4个黑球、3个红球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率为______. 14.计算86x x ÷的结果为______.15.计算)11的结果为______.16.若正比例函数y kx =(k 是常数,0k ≠)的图象经过第三、第一象限,则k 的值可以是______(写出一个..即可).17.如图,正方形ABCD 的边长为,AC BD 相交于点O ,点E 在CA 的延长线上,5OE =,连接DE .(I )线段AE 的长为______;(II )若F 为DE 的中点,则线段AF 的长为______.18.如图,在每个小正方形的边长为1的网格中,点,,A F G 均在格点上.(I )线段AG 的长为______;(II )点E 在水平网格线上,过点,,A E F 作圆,经过圆与水平网格线的交点作切线,分别与,AE AF 的延长线相交于点,,B C ABC △中,点M 在边BC 上,点N 在边AB 上,点P 在边AC 上.请用无刻度...的直尺,在如图所示的网格中,画出点,,M N P ,使MNP △的周长最短,并简要说明点,,M N P 的位置是如何找到的(不要求证明)______.三、解答题(本大题共7小题,共66分.解答应写出文字说明,演算步骤或推理过程)19.(本小题8分) 解不等式组213, 317. x x x +≤⎧⎨-≥-⎩①②请结合题意填空,完成本题的解答. (I )解不等式①,得______; (II )解不等式②,得______;(III )把不等式①和②的解集在数轴上表示出来:(IV )原不等式组的解集为______.20.(本小题8分)为了解某校八年级学生每周参加科学教育的时间(单位:h ),随机调查了该校八年级a 名学生,根据统计的结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(I )填空:a 的值为______,图①中m 的值为______,统计的这组学生每周参加科学教育的时间数据的众数和中位数分别为______和______;(II )求统计的这组学生每周参加科学教育的时间数据的平均数;(III )根据样本数据,若该校八年级共有学生500人,估计该校八年级学生每周参加科学教育的时间是9h 的人数约为多少?21.(本小题10分)已知AOB △中,30,ABO AB ∠=o为O e 的弦,直线MN 与O e 相切于点C .(I )如图①,若AB MN ∥,直径CE 与AB 相交于点D ,求AOB ∠和BCE ∠的大小;(II )如图②,若,OB MN CG AB ⊥∥,垂足为,G CG 与OB 相交于点,3F OA =,求线段OF 的长.22.(本小题10分)综合与实践活动中,要用测角仪测量天津海河上一座桥的桥塔AB 的高度(如图①).某学习小组设计了一个方案:如图②,点,,C D E 依次在同一条水平直线上,36m,DE EC AB =⊥,垂足为C .在D 处测得桥塔顶部B 的仰角(CDB ∠)为45o ,测得桥塔底部A 的俯角(CDA ∠)为6o ,又在E 处测得桥塔顶部B 的仰角(CEB ∠)为31o .(I )求线段CD 的长(结果取整数); (II )求桥塔AB 的高度(结果取整数). 参考数据:tan310.6,tan60.1≈≈oo.23.(本小题10分)已知张华的家、画社、文化广场依次在同一条直线上,画社离家0.6km ,文化广场离家1.5km .张华从家出发,先匀速骑行了4min 到画社,在画社停留了15min ,之后匀速骑行了6min 到文化广场,在文化广场停留6min 后,再匀速步行了20min 返回家.下面图中x 表示时间,y 表示离家的距离.图象反映了这个过程中张华离家的距离与时间之间的对应关系.请根据相关信息,回答下列问题: (I )①填表:②填空:张华从文化广场返回家的速度为______;③当025x ≤≤时,请直接写出张华离家的距离y 关于时间x 的函数解析式;(II )当张华离开家8min 时,他的爸爸也从家出发匀速步行了20min 直接到达了文化广场,那么从画社到文化广场的途中()0.6 1.5y <<两人相遇时离家的距离是多少?(直接写出结果即可)24.(本小题10分)将一个平行四边形纸片OABC 放置在平面直角坐标系中,点()0,0O ,点()3,0A ,点,B C 在第一象限,且2,60OC AOC ∠==o.(I )填空:如图①,点C 的坐标为______,点B 的坐标为______;(II )若P 为x 轴的正半轴上一动点,过点P 作直线l x ⊥轴,沿直线l 折叠该纸片,折叠后点O 的对应点O '落在x 轴的正半轴上,点C 的对应点为C '.设OP t =.①如图②,若直线l 与边CB 相交于点Q ,当折叠后四边形PO C Q ''与OABC Y 重叠部分为五边形时,O C ''与AB 相交于点E .试用含有t 的式子表示线段BE 的长,并直接写出t 的取值范围; ②设折叠后重叠部分的面积为S ,当21134t ≤≤时,求S 的取值范围(直接写出结果即可).25.(本小题10分)已知抛物线()2,,,0y ax bx c a b c a =++>为常数的顶点为P ,且20a b +=,对称轴与x 轴相交于点D ,点(),1M m 在抛物线上,1,m O >为坐标原点. (I )当1,1a c ==-时,求该抛物线顶点P 的坐标;(II )当2OM OP ==时,求a 的值; (III )若N 是抛物线上的点,且点N 在第四象限,90,MDN DM DN ∠==o,点E 在线段MN 上,点F在线段DN 上,NE NF +=,当DE MF +a 的值.2024年天津市初中学业水平考试数学参考答案一、选择题(本大题共12小题,每小题3分,共36分)1.D 2.B 3.C 4.C 5.C 6.A 7.A8.B9.A10.B11.D12.C二、填空题(本大题共6小题,每小题3分,共18分)13.31014.2x 15.1016.1(答案不唯一,满足0k >即可)17.(I )2;(II18.(I (II )如图,根据题意,切点为M ;连接ME 并延长,与网格线相交于点1M ;取圆与网格线的交点D 和格点H ,连接DH 并延长,与网格线相交于点2M ;连接12M M ,分别与,AB AC 相交于点,N P ,则点,,M N P 即为所求.三、解答题(本大题共7小题,共66分)19.(本小题8分) 解:(I )1x ≤; (II )3x ≥-;(III )(IV )31x -≤≤. 20.(本小题8分) 解:(I )50,34,8,8. (II )观察条形统计图,63778179151088.36,3717158x ⨯+⨯+⨯+⨯+⨯==++++Q∴这组数据的平均数是8.36.(III )Q 在所抽取的样本中,每周参加科学教育的时间是9h 的学生占30%, ∴根据样本数据,估计该校八年级学生500人中,每周参加科学教育的时间是9h 的学生占30%,有50030%150⨯=.∴估计该校八年级学生每周参加科学教育的时间是9h 的人数约为150.21.(本小题10分)解:(I )AB Q 为O e 的弦,OA OB ∴=.得A ABO ∠∠=.AOB Q △中,180A ABO AOB ∠∠∠++=o ,又30ABO ∠=o ,1802120AOB ABO ∠∠∴=-=o o .Q 直线MN 与O e 相切于点,C CE 为O e 的直径,CE MN ∴⊥.即90ECM ∠=o .又AB MN ∥,90CDB ECM ∠∠∴==o .在Rt ODB △中,9060BOE ABO ∠∠=-=o o .12BCE BOE ∠∠=Q ,30BCE ∠∴=o .(II )如图,连接OC .同(I ),得90COB ∠=o .CG AB ⊥Q ,得90FGB ∠=o .∴在Rt FGB △中,由30ABO ∠=o ,得9060BFG ABO ∠∠=-=o o .60CFO BFG ∠∠∴==o .在Rt COF △中,tan ,3OC CFO OC OA OF∠===, 3tan tan60OC OF CFO ∠∴===o. 22.(本小题10分)解:(I )设CD x =,由36DE =,得36CE CD DE x =+=+.EC AB ⊥Q ,垂足为C ,90BCE ACD ∠∠∴==o .在Rt BCD △中,tan ,45BC CDB CDB CD∠∠==o , tan tan45BC CD CDB x x ∠∴=⋅=⋅=o .在Rt BCE △中,tan ,31BC CEB CEB CE∠∠==o , ()tan 36tan31BC CE CEB x ∠∴=⋅=+⋅o .()36tan31x x ∴=+⋅o .得36tan31360.6541tan3110.6x ⨯⨯=≈=--o o . 答:线段CD 的长约为54m .(II )在Rt ACD △中,tan ,6AC CDA CDA CD∠∠==o , tan 54tan6540.1 5.4AC CD CDA ∠∴=⋅≈⨯≈⨯=o .5.45459AB AC BC ∴=+≈+≈.答:桥塔AB 的高度约为59m .23.(本小题10分)解:(I )①0.15,0.6,1.5;②0.075;③当04x ≤≤时,0.15y x =;当419x <≤时,0.6y =;当1925x <≤时,0.15 2.25y x =-.(II )1.05km .24.(本小题10分)解:(I )((,.(II )①由折叠知,60,OO C AOC O P OP t ∠∠==='''=o ,则2OO t '=. Q 点()3,0A ,得3OA =.23AO OO OA t ∴'=='--.Q 四边形OABC 为平行四边形,2,AB OC AB OC ∴==∥.得60O AB AOC ∠∠=='o .AO E ∴'△为等边三角形.有23AE AO t '==-.BE AB AE =-Q ,即()22352BE t t =--=-,25BE t ∴=-+,其中t 的取值范围是3522t <<.S ≤≤ 25.(本小题10分)解:(I )20,1a b a +==Q ,得22b a =-=-.又1c =-,∴该抛物线的解析式为221y x x =--.()222112y x x x =--=--Q , ∴该抛物线顶点P 的坐标为()1,2-.(II )过点(),1M m 作MH x ⊥轴,垂足为,1H m >,则90,1,MHO HM OH m ∠===o.在Rt MOH △中,由222,HM OH OM OM +==, 221m ∴+=⎝⎭.解得1233,22m m ==-(舍). ∴点M 的坐标为3,12⎛⎫ ⎪⎝⎭. 20a b +=Q ,即12b a-=. ∴抛物线22y ax ax c =-+的对称轴为1x =.Q 对称轴与x 轴相交于点D ,则1,90OD ODP ∠==o .在Rt OPD △中,由222,OD PD OP OP +== 221PD ∴+=⎝⎭.解得32PD =. 由0a >,得该抛物线顶点P 的坐标为31,2⎛⎫- ⎪⎝⎭. ∴该抛物线的解析式为()2312y a x =--. Q 点3,12M ⎛⎫ ⎪⎝⎭在该抛物线上,有2331122a ⎛⎫=-- ⎪⎝⎭. 10a ∴=.(III )过点(),1M m 作MH x ⊥轴,垂足为,1H m >,则90,1,MHO HM OH m ∠===o . 1DH OH OD m ∴=-=-.∴在Rt DMH △中,()222211DM DH HM m =+=-+.过点N 作NK x ⊥轴,垂足为K ,则90DKN ∠=o .90,MDN DM DN ∠==o Q ,又90DNK NDK MDH ∠∠∠=-=o , NDK DMH ∴≌△△.得点N 的坐标为()2,1m -.在Rt DMN △中,45DMN DNM ∠∠==o ,22222MN DM DN DM =+=,即MN =.根据题意,NE NF +=,得ME NF =.在DMN △的外部,作45DNG ∠=o ,且NG DM =,连接GF ,得90MNG DNM DNG ∠∠∠=+=o .GNF DME ∴≌△△.有GF DE =.DE MF GF MF GM ∴+=+≥.当满足条件的点F 落在线段GM 上时,DE MF +取得最小值,即GM = 在Rt GMN △中,22223GM NG MN DM =+=,223DM ∴=.得25DM =.()2115m ∴-+=.解得123,1m m ==-(舍). ∴点M 的坐标为()3,1,点N 的坐标为()2,2-.Q 点()()3,1,2,2M N -都在抛物线22y ax ax c =-+上,得196,244a a c a a c =-+-=-+.1a ∴=.。

一阶常系数线性差分方程

一阶常系数线性差分方程

第二节一阶常系数线性差分方程一阶常系数线性差分方程的一般形式为y t+i+ay t f(t) (11 2 1)和y t+i+ay t 0, (11 2 2)其中f(t)为t的已知函数,a丰0为常数.我们称方程(11 2 1)为一阶常系数非齐次线性差分方程,(11 2 2)称为其对应的齐次差分方程.一、齐次差分方程的通解将方程(11 2 2)改写为:y t+1 ay t, t 0,1,2,….假定在初始时刻(即t 0)时,函数y t取任意值A,那么由上式逐次迭代,算得y1 ay o aA,y2 ay1 ( a)2A,由数学归纳法易知,方程(11 2 2)的通解为y t A( a)t, t 0,1,2,….如果给定初始条件t 0时y t y o,则A y o,此时特解为:y t y0( a)t. (112 3)二、非齐次方程的通解与特解求非齐次方程(11 2 1)的通解的常用方法有迭代法、常数变易法,求非齐次方程(11 2 1) 的特解的常用方法为待定系数法.1.迭代法求通解将方程(11 2 1)改写为y t+1 ( a)y t+f(t), t 0,1,2,….逐步迭代,则有y1 ( a)y o+f(0),y2 ( a)2y0+( a)f(0)+f(1),y3 ( a)3y0+( a)2f(0)+( a)f(1)+f(2),由数学归纳法,可得y t ( a)t y0+( a)t1f(0)+( a)t 2f(1)+ …+f(t 1) ( a)t y0+ y t, (t 0,1,2,…),(11 2 4) 其中t 1y t( a)t 1f(0)+( a)t2f(1)+...+f(t 1) ( a)i• f(t i 1) (11 2 5)i 0为方程(11 2 1)的特解.而y A(t) ( a)t y0为(11 2 1)对应的齐次方程(11 2 2)的通解.这里y A为任意常数.因此,(11 2 4)式为非齐次方程(11 2 1)的通解.与一阶非齐次线性微分方程相类似,方程(112 1)的通解(11 24 )也可以由齐次方程(11 2 2)的通解(11 2 3)经由常数变易法求得,这里不予赘述.1例1求差分方程y t+1 1y t 2t的通解.方程为一阶非齐次线性差分方程•其中1 ,f(t)2\于是由非齐次方程的特解公式(11 2 5)有 ty t i2t i由(11 2 这里A 2t 2t1(4) 1 141(1)t1(22t 1). 4)式,得所给方程的通解 J 、t 1 ‘ 2’ 3 1y t A ^2)t +3(2)t1(22t 1)・ 2t+12 A 为任意常数. 3待定系数法求特解 2. 迭代法虽然可直接推导出非齐次方程 经常用公式(11 2 5)直接去求方程(11 1 1)的特解很不方便;因此,我们有必要去探寻求方 程(11 2 1)的特解的别的方法.与常微分方程相类似,对于一些特殊类型的 f (t ),常采用待 定系数法去求方程(11 2 1)的特解,而不是直接利用公式 (11 2 5)求特解. 下面介绍经济学中常见的几类特殊 f (t )的形式及求其特解的待定系数法. 情形I f (t )为常数. 这时,方程(11 2 1)变为 y t+1 + ay t b , (11 2 1)的通解公式(11 2 4),但是在实际应用中 (11 2 6)这里a,b 均为非零常数. 试以y 口( 口为待定常数)形式的特解代入方程(11 2 6),得当a 工1时,可求得特解 y t 当a 1时,这时改设特解y t 11( i 为待定系数),将其代入方程(11 2 6),得 [1 (t+1)+ a ^t(1 + a) b, 因a 1,故求得特解 Y t bt (a 1). 综上所述,方程 (11 2 6)的通解为y t yA(t )+y tA( a)t1, (11 2 7)A bt,1,其中A 为任意常数. 例2求差分方程y t+1解因a 2丰1,b 5,故由通解公式(112y t 5的通解.2 7),得原方程的通解为y t A • 2t 5, A为任意常数.例3 求差分方程y t+i y t 5满足初始条件y o 1的通解.解因a 1,b 5,则由通解公式(11 2 7),得原方程的通解为y t A 5t,以t 0,y o 1代入通解之中,求得 A 1.于是,所求方程的特解为y t 1 5t.情形n f(t)为t的多项式.为讨论简便起见,不妨设f(t) b o+b1t(t的一次多项式),即考虑差分方程y t+1+ay t b o+b1t, t 1,2,…,(11 2 8) 其中a,b o,b1均为常数,且0,"工0.试以特解y t + t,(,为待定系数)代入方程(11 2 8),得+ (t+1)+a( + t) b o+b1t,上式对一切t值均成立,其充分必要条件是:当1+a z 0时,即1于是,方程(11 2 8)的特解为y 当a 1时,改设特解(1 a) b o, (1 a) b1.时,b o b1 b12,, 1a (1a) 1 ab o b1 b!------ ------------ 2 t (a 丰1a (1 a) 1 aY t ( + t)t t+ t2,将其代入方程(11 2 8),并注意1,可求得特解- 1 1 2 y t(b o —b1)t+—b1t2 (a 1).2 2综上所述,方程(11 2 10)的通解为A( a)t-b-—匚2 -匚t, a 1,1a (1a) 1 a1 1 2A (b o 2d)t 2bit , a 1.1例4求差分方程y t+13y t2t满足y o —的特解.2解因a 3丰1,b o o,b1 2,故由通解公式(11 2 9)得所给方程的通解为.1y t A 3t 一t,2A为任意常数. 1);(11 2 9)1以t 0,y。

GB/T 28001-2O11证书转换中应注意的几个问题

GB/T 28001-2O11证书转换中应注意的几个问题

GB/T 28001-2O11证书转换中应注意的几个问题I. 概述A. 介绍GB/T 28001-2011标准和其重要性B. 介绍证书转换的背景和需求C. 提出论文将要讨论的几个问题II. 确认证书适用范围和有效期限A. 介绍适用范围的定义和意义B. 说明如何确认证书的适用范围是否需要调整C. 讨论有效期限的变化和影响III. 理解并满足新标准的要求A. 分析新版本标准与旧版本标准的差异B. 研究新标准中新增的要求,并加以解释C. 研究新标准中删除的要求,并整理出需要调整的内容IV. 审核内部安全管理体系的有效性A. 介绍审核的目的和意义B. 讨论审核的主要内容和方法C. 提出建议,以确保审核的可行性和有效性V. 提交转换申请并获得新证书A. 介绍转换申请的程序和要求B. 说明获得新证书的步骤和流程C. 分析如何保证新证书的有效性和可持续性VI. 结论A. 总结本文讨论的几个问题及其解决方法B. 强调证书转换的重要性和必要性C. 提出进一步研究和改进的方向和建议第一章:概述GB/T 28001-2011是中华人民共和国劳动保障部制定的关于职业健康与安全管理体系的标准。

该标准要求组织建立和实行职业健康与安全管理体系,并持续改进,以确保员工的健康和安全。

为了提高职业健康与安全管理体系的水平,越来越多的组织选择实施GB/T 28001-2011标准,并取得职业健康与安全管理体系认证证书。

然而,由于该标准在2011年进行过修订,在新标准下取得认证证书也相应需要做出调整和转换,以满足新的要求。

因此,本文将探讨在证书转换中应注意的几个问题。

第二章:确认证书适用范围和有效期限GB/T 28001-2011标准要求组织必须明确职业健康与安全管理体系的适用范围,并在其内部和外部加以宣传。

因此,在证书转换中,组织需要确认原有证书的适用范围是否需要调整,是否需要重新定义范围。

此外,原有证书的有效期限也需要加以确认,以便做出相应的调整。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档