密度泛函理论(DFT)的基础.ppt
密度泛函理论(DFT)
一、 计算方法密度泛函理论(DFT )、含时密度泛函理论(TDDFT )二、 计算方法原理1. 计算方法出处及原理本计算方法设计来源于量子化学理论中的Born –Oppenheimer 近似,给近似下认为原子核不动, 这样电子就相当于在一个由核产生的外部的静态势场 V 中运动。
那么一个固定的电子态可以用波函数 Ψ(1r , · · · ,N r ), 并且满足多 N 电子体系薛定谔方程:()()22ˆˆˆˆ,2N N N i i j i i i i j H T V U V r U r r E m <⎡⎤⎡⎤ψ=++ψ=-∇++ψ=ψ⎢⎥⎣⎦⎣⎦∑∑∑ (2-3) 其中,● Ĥ, 哈密顿算符;● E , 体系总能量;● ˆT, 动能项; ● ˆV, 由带正电的原子核引起的外场势能项; ● Û, 电子电子相互作用能。
通常把 ˆT和 Û 叫做通用算符, 因为对于任何一个 N 电子体系, 表达式都相同.而势能函数 ˆV与体系密切相关。
由于电子相互作用项 Û 的存在, 复杂的多体系的薛定谔方程公式 2-3并不能拆分为简单的单电子体系的薛定谔方程。
根据 DFT 的核心理念, 对于一个归一化的波函数 Ψ, 电子的密度 n(r ) 可以定义为:333*231212()(,,)(,,)N N N n r N d r d r d r r r r r r r =⋅⋅⋅ψ⋅⋅⋅ψ⋅⋅⋅⎰⎰⎰ (2-4)更重要的是, DFT 的核心理念告诉我们, 对于一个给定的基态, 如果基态的电子密度0()n r 是知道的话, 那么基态的波函数012(,,)N r r r ψ⋅⋅⋅就唯一确定。
也就是说, 基态的波函数0ψ是基态电子密度0n 的泛函[11], 表达为:[]00n ψ=ψ (2-5)既然有以上的假定, 那么对于基态的任何一个观测量ˆO, 它的数学期望就应该是0n 的泛函:[][][]000ˆO n n O n =ψψ (2-6) 特别的, 基态的能量也是0n 的泛函:[][][]0000ˆˆˆE E n n T V U n ==ψ++ψ (2-7) 这里外部势能的贡献[][]00ˆn V n ψψ可以通过基态的电子密度0n 来精确表达:300[]()()V n V r n r d r =⎰ (2-8)或者外部势能ˆVψψ可以用电子密度 n 来表达: 30[]()()V n V r n r d r =⎰ (2-9)泛函 T [n ] 和 U [n ] 被称作通用泛函, 而势能泛函 V [n ] 被称做非通用泛函, 因为它与当前研究的系统息息相关。
计算材料学第一性原理密度泛函理论分子动力学ppt课件
波恩-奥本海默近似
因为原子核的质量为电子的1000倍左右,因此其速度比电子慢得多; 那么,可以将电子运动分为两个部分:考虑电子运动时,原子核处于 其瞬时的位置,而考虑核的运动时不考虑电子在空间的具体分布。这 样可以将原子核与电子分离求解。
将上式代人薛定谔方程,电子部分:
哈密顿量:
23
Thomas-Fermi-Dirac近似
非自旋极化系统, 自旋极化系统,
电子气关联能的表达式,
35
交换关联函数, GGA
在L(S)DA的基础上,人们又进一步发展了广义梯度近似(GGA)。GGA 在L(S)DA的基础上,认为交换关联能 不但是电子密度的函数,而且 还是其梯度的函数。其表达式为:
--到此为止,整个过程就只有一次近似,即局域密度近似;那么这个计算 结果的正确与否就决定了LDA(GGA)的合理与否。
交换项
动能项
外场项
库仑项
丢失了很多重要的物理量,如原子的壳层信息
24
Hohenberg-Kohn 定理
定理一: 粒子数密度函数是一个决定系统基 态物理量性质的基本变量。
定理二: 在粒子数不变条件下能量泛函对密 度函数的变分就得到系统基态的能量
25
定理一
定理一: 粒子数密度函数是一个决定系统基 态物理量性质的基本变量。
33
K-S方程求解 (SCF)
求解条件:用来构造有效势的 电荷密度与解Kohn-Sham方程 得来的电荷密度一致。
解Kohn-Sham方程,这一步 计算量最大,里面需要用到许 多技巧,比如平面波展开,赝 势等。
SCF:自洽求解
34
交换关联函数, LDA
交换关联势在意义上是非局域的,我们前面提到这一部分包含两部分 交换相互作用和关联作用(即是有相互作用粒子和无相互作用粒子的
DFT(密度泛函理论)ppt课件
1. Lennard-Jones (LJ)势
最常用的描述原子间范德华力的经验势。最广泛使用的是 12-6 LJ:
V (r)
4
12
r12
6
r6
F(r)
V
r
24
r
12
2
r12
6
r6
rˆ
惰性气体的原子间相互作用仅用 LJ 就基本可以完全描述。
Perdew and Wang(PW91 or P91):改进 P86。
PW c
91
H0 t, rS , H1 t, rS ,
H0
t, rS
,
b1
f
3
ln
1
a
1
t2 At 2
At 4 A2t 4
H1
t,
rS
,
N i
i
2
2
4
Perdew and Wang (PW91)
PW91
x
LDA x
xa1 sinh1 xa2 1 xa1 sinh1
a3 xa2
a4ebx2 a5x2
x2
x
4/3
关联项
Q
tan
1
Q 2x b
2
f 1 4/3 1 4/3 2 2 21/3 1
x rS X x x2 bx cQ 4c b2
第四章 密度泛函理论(DFT)
[ ] 1 2
∇
2
+
v
'(r
)
ψ
' i
(r
)
=
ε
i'ψ
' i
(r
)
(4.23)
N
2
∑ n '(r) =
ψ
' i
(r
)
i =1
(4.24)
16
Kohn-Sham方程
N
N
∑ ∑ ∴
ε
' i
=
DFT: n(r) 3维空间。
也许,在有机化学、生物 技术(爱滋病)、合金物 理、表面科学、磁性等领 域DFT最为重要。
8
4.3 Hohenberg-Kohn定理-I
1. 定理1:对于一个共同的外部势v(r), 相互作用的多粒子系统的 所有基态性质都由(非简併)基态的电子密度分布n(r)唯一地 决定。 简并Ref
Hohenberg-Kohn定理的证明
• HK定理的证明:外部势v(r)是n(r)的唯一泛函。即由n(r)唯一决 定。换句话说,如果有另一个v’(r),则不可能产生同样的n(r).
反证法:设有另一个v’(r) ,其基态Ψ’也会产生相同的n(r).
∵ v(r)≠v’(r) ,∴ Ψ≠Ψ’(除非v’(r)-v (r)=const).
同理,T和U也是n(r) 的唯一泛函。可定义:
F[n(r)] = (Ψ, (T + U )Ψ)
(4.12)
式(4.12)是一个普适函数,适于任何粒子系和任何外部势。于是 整个系统的基态能量泛函可写为:
第四章 密度泛函理论(DFT)
Hartree单位 外部势
∫
U
=
1 2
r
1 −r′
ψ
+
(
r
)ψ
+
(
r
′)ψ
(r
′)ψ
(
r
)drdr
′
(4.1) (4.2) (4.3)
(4.4)
电子密度算符 nˆ(r) = ψˆ + (r)ψˆ (r)
(4.5)
电子密度分布n(r)是nˆ(r) 的期待值:
n(r) = (Ψ, nˆ(r)Ψ) (即 Ψ nˆ(r) Ψ ) (4.6) 9
∵ Ψ 与 Ψ’满足不同的Schrödinger 方程:
HΨ=EΨ
Hˆ = Tˆ + Vˆ + Uˆ
H’Ψ’ = E’Ψ’ Hˆ ′ = Tˆ + Vˆ′ + Uˆ = H + V ′ − V
(4.7) (4.8)
• 利用基态能量最小原理,有
E′ = (Ψ′, Hˆ ′ Ψ′)
< (Ψ,
H
'
Ψ)
DFT: n(r) 3维空间。
也许,在有机化学、生物 技术(爱滋病)、合金物 理、表面科学、磁性等领 域DFT最为重要。
8
4.3 Hohenberg-Kohn定理-I
1. 定理1:对于一个共同的外部势v(r), 相互作用的多粒子系统的 所有基态性质都由(非简併)基态的电子密度分布n(r)唯一地 决定。 简并Ref
我们将在第五章详细介绍LDA,本章只直 接引用以便建立Kohn-Sham方程。
14
局域密度近似(LDA)
LDA: 对于缓变的n(r) 或/和高电子密度情况,可采用如下近似:
密度泛函理论
密度泛函理论导言密度泛函理论(Density Functional Theory, DFT)是一种用于计算量子力学体系中电子密度的方法。
它是由Hohenberg 和Kohn于1964年首次提出,并在Kohn和Sham于1965年进行进一步发展。
密度泛函理论在固体物理、化学和生物物理等领域中得到了广泛的应用,并成为计算材料科学的重要工具。
基本原理密度泛函理论的基本思想是通过电子密度来描述体系的基态性质。
根据Hohenberg和Kohn的第一定理,任何物质的基态性质都可以通过其基态电子密度唯一确定。
而根据第二定理,存在一个能泛函,即总能量泛函,使得该能泛函在给定的电子密度下取得最小值。
根据Kohn和Sham的工作,总能量泛函可以分解为以下三个部分:动能泛函、外势能泛函和电子间排斥能泛函。
•动能泛函是电子动能的泛函,它可以用Kohn-Sham 方程的非相互作用的体系的Kohn-Sham轨道来表示。
该方程可以看作是一组单电子Schrödinger方程,其中电子之间的相互作用通过有效的外势能来描述。
•外势能泛函是不包括电子间相互作用的外势能的泛函,它可以通过实验数据或密度泛函理论本身得到。
•电子间排斥能泛函是电子之间的库伦相互作用的泛函,其一般采用Coulomb势能或同时考虑交换-相关作用的LDA(局域密度近似)或GGA(广义梯度近似)泛函来表示。
密度泛函理论的实现在实际计算中,密度泛函理论的实现包括以下几个关键步骤:1.选择适当的泛函:根据系统的性质选择合适的泛函,其中包括局域密度近似(LDA)和广义梯度近似(GGA)等方法。
2.确定电子密度:通过求解Kohn-Sham方程或自洽场方法确定电子密度。
3.计算物理性质:利用求解得到的电子密度计算相应的物理性质,如能带结构、吸附能等。
4.校正方法研究误差:对于一些复杂体系,密度泛函理论可能存在误差,可以通过校正方法如GW近似、自洽微扰理论等来提高计算的精度。
第三章_密度泛函理论(DFT)
(3.11)
j (r) dr 1
2
(3.12)
为了定义一个完整的反对称波函数,我们用反对称算符作用 在Hartree product上,于是多体波函数可以用行列式的形式 被写出,并可用代数的技巧来处理它。这个行列式波函数就 称为Slater 行列式:
5。原子波函数复杂性的估算
考虑实空间有10x10x10=1000个离散点。 对于He原子,只有2个电子,按上述公式,离散 的波函数将由1000x999/2=500x999~5x105的一组 成员来定义。这使得Schrödinger方程的离散方式 是一个有5x105个矢量的本征矢问题。 对于C,有6个电子,问题的维数是: 1000x999x998x997x996x995/(6x5x4x3x2)~1015。 如果考虑的离散点更多,将更为复杂。
2。所有的方法都将与波函数有关联,或者与由波函数 导出的量相关。例如密度矩阵或密度,这些将在前2 -6节详述。另一个重要的概念是变分原理,将在第 7节介绍。
2
3.2 外部势场中的电子体系
1。如果研究的对象是固体中的电子,这里外部势场不是指 外加的电磁场,而是核和其它电子构成的势场。这时体系 的Hamiltonian和Schrödinger方程如下:
N amp M! M ( M 1)...( M N 1)( M N )! M N = N !( M N )! N !( M N )! N!
(3.10)
用这个公式计算时,通常M比N大许多,所以它变成MN/(N!)。 对于实际的体系,需要考虑自旋自由度,上述讨论尚需做适 当修改。但不必担心这个,我们只需对此问题的size有一定观 念即可。 7
密度泛函理论(DFT)的基础.ppt
用二次量子化和场算符概念推导
N-粒子波函数 把2-粒子波函数推广到N-粒子情形,其波函数写成
1 ( r ,, r , r ) 0 ( r ) ( r ) () r
i 12 N
N !
1
2
N
(3.26)
b b b 其中 是N个粒子状态各不相同的情形。 k 21 0 N 对于费米子,式(3.26)写成单粒子波函数的表达式,就是 著名的Slater行列式:
e l E ( RURER ) ( ) () n N n
(3.1)
3
3。因为把核的位置作为固定参数,可以把核位置指标拿掉, 以后就用下面的Schrödinger方程进行工作:
N 1 1 2 e l (3.2) V ( r ) ( r , . . . r ) E ( r , . . . r ) i n 1 N nn 1 N r 2i r 1 i 1 i jN r i j
8
3.4 Slater行列式
1。多体波函数可以用“Slater 行列式”展开得到,它是基于单 体(单电子)轨道集合的反对称波函数。这个概念在今后的 章节中都是有用的。 定义Hartree products:即N个one-body波函数的简单乘积。
( r , r , . . . r ) ( r )( r ) . . .( r )
14
3。Hartree 乘积波函数对比完全的波函数要简单得多。 如果空间有M个离散点,则(3.11)的参数的数目为 MxN,因为M个值就由每一个one-body波函数描述。 这比起前面给的MN/(N!)要小得多。 4。利用Hartree 乘积波函数求其中一个粒子在一个点上 的几率振幅,并不依赖于其它粒子处在什么地方,粒 子之间是没有相互依赖性的。 5。利用Slater行列式波函数求一个粒子在某一个点上的 几率振幅,将依赖于其它粒子的位置,因为有反对称 的要求。 6。这种依赖性的形式比较简单,它被称为交换效应。 7。还有一种依赖性是由无限制的反对称波函数关于 Slater行列式的附加维数带来的,被称为关联效应。
密度泛函理论
密度泛函理论引言密度泛函理论(Density Functional Theory,简称DFT),是一种理解和计算电子结构的方法。
它是解决多体问题的一种近似方法,它通过考虑物质中电子的密度来描述系统的性质。
密度泛函理论在凝聚态物理、量子化学和材料科学等领域都有广泛的应用。
DFT的基本原理密度泛函理论的基本原理是根据单体密度的基本原理制定的。
基本原理包含两个主要部分:\1.霍恩堡定理:一个体系的总能量可以通过经典电磁场和电子的交变相互作用来表示。
这个定理表明体系的总能量主要由电子的运动决定。
2.雅可比定理:任何一个电子系统的外势能和密度之间都有一一对应的关系。
根据这两个基本原理,密度泛函理论可以将多体问题转化为求解一个单粒子波函数的问题,进而可以计算得到体系的总能量和物理性质。
密度泛函的近似实际上,精确求解密度泛函的方程是非常困难的。
因此,人们提出了一系列近似方法来简化计算过程。
其中最著名的近似方法是局域密度近似(Local DensityApproximation,LDA)和广义梯度近似(Generalized Gradient Approximation,GGA)。
LDA近似假设体系的局部化性质是均匀的,通过将非均匀体系映射为均匀电子气来近似计算。
这种近似方法在实际计算中取得了一定的成功,但是对于一些体系来说,精度相对较低。
GGA近似在LDA的基础上引入了梯度信息,优化了近似表达式。
它对于局部化性质和径向分布提供了更准确的描述,因此在描述分子间相互作用和共价键性质方面更为准确。
应用领域密度泛函理论广泛应用于固体材料的研究。
例如,研究晶体的能带结构、电子态密度以及光谱性质等。
此外,密度泛函理论还可以用于研究分子的结构、反应动力学等。
密度泛函理论在计算材料性质和设计新材料方面也有广泛应用。
例如,它可以用于计算材料的弹性模量、热膨胀系数、热导率等宏观性质,以及预测新型材料的性质。
最后,密度泛函理论还可以应用于计算化学反应的能垒和速率常数,从而在催化剂的设计和反应机理的研究中发挥重要作用。
《量子化学》教学课件苏州大学第八章密度泛函理论简介
量子化学是化学和量子力学的交叉领域,密度泛函理论是量子化学中重要的 研究方向之一。接下来让我们一起了解一下密度泛函理论的基础知识。
密度泛函理论简介
什么是密度泛函?
密度泛函是描述电子态的密度与外加势能之间 的关系的函数。
交换相关函数
交换相关函数描述电子间相互作用的性质。
哈特里-福克理论
哈特里-福克理论是最早的确定电子密度的理论 方法。
密度泛函理论的基本原理
Thomas-Fermi近似
通过电子密度函数的函数形式进行处理,推导出交换相关能的表达式。
Kohn-Sham方程
构建一个等效单电子哈密顿量,将含交换相关能的波函数变换成一组符合该哈密顿量的单电 子波函数。
交换相关能
构造近似表达式来描述电子间的相互作用。
密度泛函理论的应用领域
1
材料科学
可以用密度泛函理论研究材料的电子结构和性质。
2
表面科学
可以研究固体表面能量、结构和反应性质等重要问题。
密度泛函理论的发展历程
1 1964年
Kohn和Sham提出KohnSham方程。
2 1980年
Parr和Yang提出交换相 关能的密度泛函方法。
3 1998年
John P. Perdew提出了密 度泛函理论中广泛使用 的交换相关泛函——PBE 泛函。
密度泛函理论的优缺点
优点
• 适用性广 • 计算精度高 • 计算速度快
缺点
• 依赖于交换相关泛函的选择 • 难以处理强关联体系
密度泛函理论的未来发展趋势
超大规模计算
未来密度泛函理论可望突破 计算规模限制,实现超大规 模计算。
强关联体系研究
发展新的杂化密度泛函方法 和量子蒙特卡罗方法,以应 对强相互作用和强关联体系 研究的挑战。
密度泛函理论
知识创造未来
密度泛函理论
密度泛函理论(Density Functional Theory,简称DFT)是一种基于泛函理论的计算量子力学方法,用于研究原子、分子和固体的电子结构和性质。
在密度泛函理论中,系统的基态电子密度被认为是系统的
基本自由度,可以通过求解波函数的Kohn-Sham方程来
得到。
与传统的Hartree-Fock方法相比,DFT考虑了电子间的相互作用和交换相关效应,使得计算结果更加准确。
密度泛函理论的核心是密度泛函,即将电子密度作为整个
系统的一个函数来描述。
通过最小化系统的总能量泛函,
可以得到系统的基态电子密度和相应的能量。
密度泛函理论有很多应用,包括计算分子的结构、能量、
振动频率等性质,研究材料的结构、热力学性质以及催化
反应等。
它在材料科学、化学、物理等领域都有广泛的应用,并且在计算效率和准确性方面都取得了很大的进展。
1。
DFT密度泛函理论课件教程
实际计算是利用能量变分原理,使系统能量达到最低(有一定精 度要求)。由此求出体系的真正电荷密度n(r) ,进而计算体系 的所有其它基态性质。如,能带结构,晶格参数,体模量等 等。
12
4.4 能量泛函公式
系统的基态能量泛函
E[n(r)] v(r)n(r)dr F[n(r)]
(4.15)
中,普适函数F[n]可以把其中包含的经典Coulomb能部分写出,
利用LDA式(4.19), 能量泛函写为:
E[n' ] Ts[n' ] v(r)n' (r)dr (4.22)
1 2
n '( r ) n '( r ') rr'
drdr'
n' (r) xc[n' (r)]dr
上式考虑另一个电子密度n’(r)。然后求E[n’]对n’的变分 δE[n’] /δn’为最小。相当于改变n’(r) 使E[n’] E[n]。 先求Ts[n’]:
要是相互作用电子体系的交换
关联能Exc[n]无法精确得到。为 了使DFT理论能够付诸实施, Kohn-Sham提出了局域密度近 似(Local Density Approximation, LDA)。
我们将在第五章详细介绍
LDA,本章只直接引用以便建
立Kohn-Sham方程。
Prof. L.J.Sham
E [v(r) v(r)]n(r)dr
(4.9)
10
Hohenberg-Kohn定理的证明(续)
即 E E [v(r) v(r)]n(r)dr
同时,把带撇的与不带撇的交换得
(4.10)
E E [v(r) v(r)]n(r)dr
第四章 密度泛函理论(DFT)
13
4.5 局域密度近似
HK定理已经建立了密度泛函理论(DFT) 的框架,但在实际执行上遇到了严重困难。 主要是相互作用电子体系的交换关联能Exc[n] 无法精确得到。为了使DFT理论能够付诸实 施,Kohn-Sham提出了局域密度近似(Local Density Approximation, LDA)。
1 2
∇2
+ Veff
(r ) ⎤⎦
ψ i (r) = εiψ i (r)
Veff (r) = φ (r) + Vxc (r)
εi=Kohn-Sham本征值 称有效势
∫ φ (r) = v(r) +
n(r ') r −r '
dr
'
=
v(r
)
+
vH
(r
)
经典Coulomb势
Vxc
(r)
=
δ
E xc [n]
=
(Ψ,
(Hˆ
+V
′−V
)Ψ)
= (Ψ, Hˆ Ψ) + (Ψ, (V ′ −V )Ψ)
= E + ∫[v′(r) − v(r)]n(r)dr
(4.9)
10
Hohenberg-Kohn定理的证明(续)
即 E′< E + ∫ [v′(r) − v(r)]n(r)dr
同时,把带撇的与不带撇的交换得
(4.10)
DFT: n(r) 3维空间。
也许,在有机化学、生物 技术(爱滋病)、合金物 理、表面科学、磁性等领 域DFT最为重要。
8
4.3 Hohenberg-Kohn定理-I
1. 定理1:对于一个共同的外部势v(r), 相互作用的多粒子系统的 所有基态性质都由(非简併)基态的电子密度分布n(r)唯一地 决定。 简并Ref
第一性原理与密度泛函理论PPT课件
4
• 多粒子系统的Schrődinger方程
其中ψ 和H分别对应于多粒子系统的波函数和哈密顿量。
原则上只要对上式进行求解即可得出所有物理性质,然而由于电子之间的相 互作用的复杂性,要严格求出多电子体系的Schrődinger方程解是不可能的, 必须在物理模型上进一步作一系列的近似。
5
+ 换句话说,做第一原理计算(ab initio calculation)便可知道一块固体
猜测试探波函数 构造所有算符 求解单粒子赝薛定谔方程
对于解出的新的波函数,重新构造Hartree-Fock算符
重复以上循环,直到收敛(即前后叠代的结果相同)
自恰场(SCF)方法是求解材料电子结构问题的常用方法
11
对处理原子数较少的系统来说,Hartree-Fock近似是一种 很方便的近似方法。
决定的。
20世纪初量子力学的出现,原则上提出
了像原子核和电子这样的微观粒子运动
和交互作用的定律。
理论上,给定一块固体化学成分(即所 含原子核的电荷和质量),我们就可以 计算这些固体的性质。因为一块固体实 际上是一个多粒子体系。决定这个体系 性质的波函数可以通过解薛定谔 (Schrödinger)波动方程来获得。
的性质。
可 是 , 这 个 薛 定 谔 波 动 方 程 有 3×N 个 变 量
(N是粒子总数),极其复杂,假使我们把
目前世界上的所有电脑都用上,让它跑千年、
万年都不可能算出来。正如1929年量子物理
大师狄拉克(Dirac)所言:处理大部分物理
学和全部化学问题的基本定理已经完全知道。
困难在於这些定律的应用所引出的数学方程
动能可以写为
25Leabharlann 库仑能可具体表达为:此时总能量 Et的表达式可写为
密度泛函原理
密度泛函原理密度泛函理论(DFT)是一种用于研究原子、分子和固体的量子力学方法。
它是基于电子密度的理论,而不是传统的基于波函数的方法。
密度泛函理论的提出和发展为我们理解物质的性质和相互作用提供了重要的理论基础。
密度泛函理论的基本思想是将多体问题转化为单体问题。
在密度泛函理论中,电子密度是一个核坐标的函数,通过最小化系统的总能量来确定系统的基态电子密度。
这种方法使得我们能够在理论上研究大型复杂系统,比如分子和固体,而不需要过多的近似。
密度泛函理论的基本方程是库仑相互作用能和交换-相关能的总和。
库仑相互作用能是电子之间的经典相互作用能,而交换-相关能则包括了电子交换和相关效应。
密度泛函理论的关键在于找到交换-相关能的近似表达式,这是整个理论的核心。
密度泛函理论的发展历程可以追溯到1964年,当时Kohn和Sham提出了密度泛函理论的基本框架。
在此之后,密度泛函理论得到了迅速的发展和应用,成为理论化学和凝聚态物理领域的重要工具。
在实际应用中,密度泛函理论可以用于计算原子核外电子系统的基态性质,比如能量、结构、振动频率等。
它还可以用于研究分子之间的相互作用、表面吸附、光谱性质等。
密度泛函理论还可以与实验数据结合,帮助解释实验现象,预测新材料的性质等。
虽然密度泛函理论在理论和实际应用中取得了巨大成功,但它也面临着一些挑战和局限性。
其中最主要的挑战之一是交换-相关能的准确描述。
目前仍然没有一个通用的交换-相关能的准确表达式,不同的近似方法适用于不同的体系和性质。
此外,密度泛函理论对电子相关性的描述也存在一定的误差,特别是对于强相关体系。
总的来说,密度泛函理论作为一种强大的理论工具,为我们理解和预测原子、分子和固体的性质提供了重要的帮助。
随着计算机硬件和算法的不断进步,密度泛函理论将会在更多领域发挥重要作用,推动材料科学、化学和物理学等领域的发展。
dft原理
dft原理DFT原理。
密度泛函理论(DFT)是一种用于计算原子、分子和固体电子结构的量子力学方法。
它是一种基于电子密度而非波函数的方法,因此在处理大型系统时比传统的基于波函数的方法更具有优势。
DFT方法在理论化学和固体物理领域得到了广泛的应用,并且在计算材料性质、催化反应、生物分子结构等方面取得了重要的成就。
DFT方法的基本原理是将系统中的每个电子视为运动在外部势场中的粒子,其运动状态由电子密度决定。
通过最小化系统的总能量,可以得到系统的基态电子密度分布,从而获得系统的基态能量和其他性质。
DFT方法的核心是构建系统的交换-相关能泛函,其包含了电子间的交换和相关相互作用。
通过对交换-相关能泛函的精确描述,可以准确地描述系统的电子结构和性质。
在DFT方法中,电子密度被视为基本变量,而不是波函数。
这使得DFT方法在处理大型系统时具有比较好的可扩展性,因为电子密度的维度比波函数要低得多。
此外,DFT方法还可以比较准确地描述原子核和电子之间的相互作用,因此在描述分子和固体的结构和性质时具有一定的优势。
DFT方法的一个重要应用是计算材料的电子结构和性质。
通过DFT方法,可以计算材料的能带结构、电子态密度、光学性质等,从而揭示材料的电子行为和光学响应。
这对于材料的设计和优化具有重要的意义,特别是在新材料的发现和功能材料的设计方面。
除了材料科学领域,DFT方法还在催化反应、生物分子模拟、表面科学等领域得到了广泛的应用。
通过DFT方法,可以揭示催化剂的活性中心和反应机理,设计更高效的催化剂;可以模拟生物分子的结构和相互作用,揭示生物分子的功能和活性;可以研究表面的结构和性质,为表面科学的应用提供理论支持。
总之,DFT方法是一种强大的理论工具,可以用来研究原子、分子和固体的电子结构和性质。
它的基本原理是通过最小化系统的总能量,得到系统的基态电子密度分布,从而获得系统的基态能量和其他性质。
DFT方法在材料科学、化学、物理等领域都有重要的应用,为研究人员提供了一种高效而准确的计算手段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3.11)
第三章 密度泛函理论(DFT)的基础 -密度矩阵与多体效应
3.1 引言 3.2 外部势场中的电子体系 3.3 多体波函数 3.4 Slater行列式 3.5 一阶密度矩阵和密度 3.6 二阶密度矩阵和2-电子密度 3.7 变分原理 3.8 小结
1
3.1 引 言
1。为了计算电子体系所涉及的量,我们需要处理电子 多体问题的理论和技术。本章将首先解释处理多体 问题的某些重要概念(如多体波函数、交换和关联 效应等),然后简短地给出不同的从头算方法,重 点是审查DFT的基础,回答为何DFT可以用电子密 度作为基本变量,并阐述DFT的物理基础。
其中,N 现在是电子数。而
V(r)
j NN
Zj r Rj
(3.3)
是电子-离子相互作用势。
4
3.3 多体波函数
1。一项简化:为了处理问题简单和便于解释物理概念,本 章的绝大部分篇幅都忽略自旋波函数和自旋指标。加上它 是直接的,这将在本章最后作一简述。 2。多体波函数的反对称性 多体波函数的归一化满足
e l E ( RURER ) ( ) () n N n
(3.1)
3
3。因为把核的位置作为固定参数,可以把核位置指标拿掉, 以后就用下面的Schrödinger方程进行工作:
N 1 1 2 e l (3.2) V ( r ) ( r , . . . r ) E ( r , . . . r ) i n 1 N nn 1 N r 2i r 1 i 1 i jN r i j
8
3.4 Slater行列式
1。多体波函数可以用“Slater 行列式”展开得到,它是基于单 体(单电子)轨道集合的反对称波函数。这个概念在今后的 章节中都是有用的。 定义Hartree products:即N个one-body波函数的简单乘积。
( r , r , . . . r ) ( r )( r ) . . .( r )
是交换第1和第2粒子,则有
2 1N 1 2 1 2N 1 2N
(3.6)
5
3。反对称算符 现在定义反对称算符
1 P A ( N ! ) ( 1 ) P N P
(3.7)
这个算符将选择函数的反对称部分,使得对于每一个函数ψ, ANψ是反对称的。 如果Φ是反对称的,则 (3.8) AN Φ= Φ 所以,AN是一个投影算符,有 (3.9) ANAN=AN 4。描述N-body波函数(离散方式) 的困难 从Schrödinger方程(3.2)的解详细描述N-body波函数是一项 相当困难的任务。即使是一个one-body波函数,从给定的几率 振幅要找3D空间中每一点的单粒子,已经是一个复杂的事。何 妨要描述的是N-body波函数!为了使读者对此困难有一个感觉, 让我们假定现在是在一个离散的3D空间中工作。
5。原子波函数复杂性的估算
考虑实空间有10x10x10=1000个离散点。 对于He原子,只有2个电子,按上述公式,离散 的波函数将由1000x999/2=500x999~5x105的一组 成员来定义。这使得Schrödinger方程的离散方式 是一个有5x105个矢量的本征矢问题。 对于C,有6个电子,问题的维数是: 1000x999x998x997x996x995/(6x5x4x3x2)~1015。 如果考虑的离散点更多,将更为复杂。
N M ! M ( MM 1 ) . . . ( NM 1 ) ( N ) !M N = (3.10) a m p N ! ( M N ) ! N ! ( M N ) ! N !
用这个公式计算时,通常M比N大许多,所以它变成MN/(N!)。 对于实际的体系,需要考虑自旋自由度,上述讨论尚需做适 当修改。但不必担心这个,我们只需对此问题的size有一定观 念即可。 7
H ( r , R ) U ( R ) T ( r ) U ( r ) U ( r , R ) 0 N e e e N H ( r , R ) ( r , R ) E ( R ) ( r , R ) 0 n n n
(2.5) (2.6)
在此,R是一个固定参数。 2。在从头算方法中,电子加经典的核组成的体系的能量En(R) 被称为“总能”。这是一种习惯的称呼,其实声子能量的修正 也应当包括在“真正的”总能之中。总能可以被分解为纯粹经 典的静电能,即核-核相互作用部分和其余的电子部分:
6
假定离散空间中有M个点,一个one-body波函数应当描述 在这些点的每一个点上找到粒子的几率振幅。所以onebody波函数就需要M个成员来描述。 一个two-body波函数,即使不是反对称的,也必须给出 在同一点找到粒子1,同时在某些其它点找到粒子2的几率 振幅。要描述它,所需的成员数为M2。 对于一般的N-body波函数,暂不考虑反对称,将必须有 MN个成员。简单的组合公式便可以给出描述反对称N-body 波函数的振幅的成员数是
( r , . . . r )d r . . . d r 1 1 N 1 N
2
(3.4)
要记住这个波函数在置换任何2个粒子坐标时应该是反对称的。 如果考虑N-粒子置换群的任何一个操作P,将有
P ( 1 )P
例如,假定 P 1
2
(3.5)
( r , r , . . . rP ) ( r , r , . . . r ) ( r , r , . . . r )
2。所有的方法都将与波函数有关联,或者与由波函数 导出的量相关。例如密度矩阵或密度,这些将在前2 -6节详述。另一个重要的概念是变分原理,将在第 7节介绍。
2
3.2 外部势场中的电子体系
1。如果研究的对象是固体中的电子,这里外部势场不是指 外加的电磁场,而是核和其它电子构成的势场。这时体系 的Hamiltonian和Schrödinger方程如下: