高中三视图练习(含答案
三视图-配套练习(含答案)
三视图-练习
一、选择题
1.如图所示的几何体的俯视图是()
A. B. C. D.
2. 如图所示的几何体的俯视图是D
A. B. C. D.
3. 如图,由几个小正方体组成的立体图形的左视图是A
A. B. C. D.
4. 某同学把下图所示的几何体的三种视图画出如下
(不考虑尺寸);在这三种是图中,其正确的是B
A. ①②
B. ①③
C. ②③
D. ②
二、解答题
5.画出图中三棱柱的三视图.
三视图-练习
参考答案
一、选择题
1.B.解:从物体的上面观察图形可知:该俯视图是一个矩形,且矩形的中间有
一条实线.
故选B.
2.D.解:从上面可看到是三个左右相邻的长方形.
故选D.
3.A. 解:从物体左面看,左边2列,右边是1列.
故选A.
4.B.解:该几何体的主视图和俯视图都正确,左视图还要一条线段,故选B.
二、解答题
5. 三棱柱的三视图如图.。
必修2三视图练习及答案
高一数学必修二练习一、选择题1.下边的几何物体中,哪一个正视图不是三角形 A .竖放的圆锥 B .三棱锥( )C.三棱柱D.竖放的正四棱锥2.以下几何体各自的三视图中,有且只有两个视图是同样的是( )A .①②B.①③C.①④ D .②④3.已知几何体的三视图A .四棱台,圆台(如图 ),则这个几何体自上而下挨次为()B .四棱台,四棱台C.四棱柱,四棱柱 D .不可以判断4.某四棱锥的三视图如下图,该四棱锥的表面积是( )A . 32 B. 16+16 2C. 48 D. 16+32 25.以下命题中正确的选项是()A.平行于圆锥的一条母线的截面是等腰三角形6.若一个几何体的正视图和侧视图都是等腰三角形,俯视图是圆,则这个几何体可能是(A.圆柱B.三棱柱C.圆锥D.球体7、三视图均同样的几何体有()A.球B.正方体C.正四周体D.以上都对)8.给出以下命题:①假如一个几何体的三视图是完整同样的,则这个几何体是正方体;②假如一个几何体的正视图和俯视图都是矩形,则这个几何体是长方体;③假如一个几何体的三视图都是矩形,则这个几何体是长方体;④假如一个几何体的正视图和侧视图都是等腰梯形,则这个几何体是圆台.此中正确命题的个数是( )A . 0 B. 1 C. 2 D .3*9 .某简单几何体的一条对角线长为a,在该几何体的正视图、侧视图与俯视图中,这条对角线的投影都是长为2的线段,则a 等于 ( )A. 2B.3C. 1 D. 2二、填空题10、三视图的正视图、俯视图、侧视图分别是从、、察看同一个几何体,画出的空间几何体的图形.(正前方,正上方,正左方)11、圆台的正视图、侧视图都是12.把边长为 1 的正方形ABCD 沿对角线BD,俯视图是折起形成三棱锥.(全等的等腰梯形,两个齐心圆)C- ABD ,其主视图与俯视图如下图,则其左视图的面积为________.高一数学《空间几何体的三视图和直观图》练习题A组1.右图是一块带有圆形空洞和方形空洞的小木板,则以下物体中既能够堵住圆形空洞,又能够堵住方形空洞的是()2.利用斜二测画法获得的①三角形的直观图必定是三角形;②正方形的直观图必定是菱形;③等腰梯形的直观图能够是平行四边形;④菱形的直观图必定是菱形.以上结论正确的选项是()A.①②B.①C.③④D.①②③④3.等腰梯形ABCD ,上底边 CD=1, 腰 AD=CB=2, 下底 AB=3 ,按平行于上、下底边取x 轴,则直观图A′B′C′D′的面积为 _______.4.一个三角形在其直观图中对应一个边长为 1 正三角形,原三角形的面积为.5.一天,小莹站在室内,室内有一面积为 3 平方米的玻璃窗,她站在离窗子 4 米的地方向外看,他能看到窗前方一幢楼的面积为.(楼层之间的距离为20 米)6.如图,E、F 分别是正方体的面 ADD 1A 1、面 BCC 1B 1的中心,则四边形 BFD 1E 在该正方体的面上的正投影可能是(要求把可能的图的序号都填上)。
三视图练习题含答案
23正视图侧视图2俯视图 2第3题三视图练习题 (一)1.某几何体的三视图如图所示,则它的体积是( )A.283π-B.83π-C.π28-D.23π2.某四棱锥的三视图如图所示,该四棱锥的表面积是( )A .32 B.16+162 C.48 D.16322+3.如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体的体积为( ) A .43 B .4C .23 D .24.如图是某几何体的三视图,则该几何体的体积为( )A .942π+ B.3618π+C.9122π+D.9182π+5.一个空间几何体的三视图如图所示,则该几何体的表面积为( ) A. 48 B.32+817C.48+817D.806.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是( )A.35233cmB.32033cmC.22433cmD.16033cm7.若某空间几何体的三视图如图所示,则该几何体的体积是( )A.2B.1C.23D.138.某几何体的三视图如图所示,则该几何体的体积为( ) A.π816+ B.π88+ C.π1616+ D.π168+9. 某四棱台的三视图如图所示,则该四棱台的体积是() A.4 B.314 C.316D.610. 某三棱锥的三视图如图所示,已知该三视图中正视图和俯视图均为边长为2的正三角形,侧视图为如图所示的直角三角形,则该三棱锥的体积为( )A .1B .3C .4D .511. 一个几何体的三视图如图所示,则这个几何体的体积为( )332正视图侧视图俯视图第4题第5题第7题 第1题 第2题 第8题第9题第6 题A .(8)36π+B .(82)36π+C .(6)36π+D .(92)36π+12.某几何体的底面为正方形,其三视图如图所示,则该几何体的体积等于( )A .1B .2C .3D .413.某几何体的三视图如图所示,则其体积为______.14.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积等于______3cm . 15.某几何体的三视图如图所示,则该几何体的体积是______.16.已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积是 17.一个空间几何体的三视图如图所示,则这个空间几何体的体积是. 18.如图所示,一个三棱锥的三视图是三个直角三角形,则该三棱锥外接球的表面积为19.若某空间几何体的三视图如下图所示,则该几何体的表面积是_______________.20.一个正方体的内切球与它的外接球的体积比是( ).A .1∶33B .1∶22C .1∶383 D .1∶4221.已知球面上A 、B 、C 三点的截面和球心的距离都是球半径的一半,且AB =BC =CA =2,则球表面积是( )A.π964 B. π38 C. π4 D. π91622. P 、A 、B 、C 是球O 面上的四点,且PA 、PB 、PC 的两两垂直,PA=PB=PC=9,则球心O 到截面ABC 的距离为23.半径为5的球被一个平面所截,截面面积为16π,则球心到截面的距离为 ( ) A.4 B.3 C.2.5 D.224.表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________. 25.答案1.A2.B3.C4.D5.C6.B7.B8.A9.B 10.A 11.A 12.A 13.3π14.24 15.1616-π 16.1 17.67π18.29π 19. 20+82 20.A 21.A 22.233第10题3122正视图侧视图俯视图第11题 211俯视图侧视图正视图13第12题第17题24 3正视图 侧视图俯视图第18题 第15题 第14题第13题 第16题 第19题23.B 24. 2 25. ︒90 26.3500π27.π6 28.π29 29.72 30. 3629+3226-31.2500π 32.π1200。
(完整版)高中数学3三视图课后习题(带答案)
(完整版)高中数学3三视图课后习题(带答案)332 正视图侧视图俯视图图1 三视图课后习题1.(陕西理5)某几何体的三视图如图所示,则它的体积是A .283π-B .83π-C .82π-D .23π2.(全国新课标理6)。
在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为3.(湖南理3)设图1是某几何体的三视图,则该几何体的体积为A .9122π+B .9182π+C .942π+D .3618π+4.(广东理7)如图1-3,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为A .63 B .93C .123D .1835.(北京理7)某四面体的三视图如图所示,该四面体四个面的面积中,最大的是A .8B .62C .10D .826.(安徽理6)一个空间几何体的三视图如图所示,则该几何体的表面积为(A )48 (B )32+817 (C )48+817 (D )807.(辽宁理15)一个正三棱柱的侧棱长和底面边长相等,体积为32,它的三视图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是.8.(天津理10)一个几何体的三视图如右图所示(单位:m ),则该几何体的体积为__________3m9.(2010湖南文数)13.图2中的三个直角三角形是一个体积为20cm 2的几何体的三视图,则h= cm10.(2010浙江理数)(12)若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是___________3cm .11.(2010辽宁文数)(16)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为 .12.(2010辽宁理数)(15)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.13.(2010天津文数)(12)一个几何体的三视图如图所示,则这个几何体的体积为。
高三立体几何三视图练习(带答案)
高三立体几何三视图练习(带答案)姓名:___________班级:___________考号:___________ 一、单选题1.某四棱锥的三视图如图所示,该四棱锥的体积是()A.32 B.323C.48 D.1632.已知某三棱柱的三视图如图所示,那么该几何体的表面积为()A.2B.C.D.3.已知一几何体的三视图如图所示,俯视图是一个等腰直角三角形和半圆,则该几何体的体积为4.已知某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.5.已知图中的网格是由边长为1的小正方形组成的,一个几何体的三视图如图中的粗实线和粗虚线所示,则这个几何体的体积为A.64B.C.D.1286.某几何体的三视图如右图所示,则该几何体的体积为()7.已知某棱锥的三视图如图所示,则该棱锥的体积为A.8B.C.3D.8.已知某几何体的三视图如下,根据图中标出的尺寸(单位:),可得这个几何体的体积是()A.B.C.D.9.一个几何体的三视图如图所示,则该几何体的体积为()A.143B.5 C.163D.610.某几何体的三视图单位:,如图所示,则此几何体的外接球的体积为A .B .C .D .11.某空间几何体的三视图如图所示,则该几何体的外接球的体积为A .B .C .D .12.已知长方体一个顶点上三条棱的长分别是3、4、5,且它的顶点都在同一球面上,则这个球的表面积是( )A .B .C .D .13.如图,圆柱内有一内切球(圆柱各面与球面均相切),若内切球的体积为43π,则圆柱的侧面积为A . πB . 2πC . 4πD . 8π14.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( ).A . 8π3B .C .D . 32π315.三棱锥的三条侧棱两两垂直,其长分别为,则该三棱锥的外接球的表面积( )A . 24πB . 18πC . 10πD . 6π16.一个四面体的三视图如图所示,则该四面体的外接球的表面积为( )A . 43πB . 4πC . 23π D . 2π 17.四棱锥P ABCD -的三视图如下图所示,四棱锥P ABCD -的五个顶点都在一个球面上,E 、F 分别是棱AB 、CD 的中点,直线EF 被球面所截得的线段长为该球表面积为( )A .12πB .24πC .36πD .48π参考答案1.B试题分析:由题意知本题是一个高为2,底面是一个长度为4正方形形的四棱锥,其体积为13244233 V=⨯⨯⨯=2.D由已知得到几何体如图:三棱柱的表面积为=5+;故选D.【点睛】本题考查了由几何体的三视图求几何体的表面积;关键是正确还原几何体.3.B由已知中的三视图可得:该几何体是一个三棱锥与半圆柱的组合体,三棱锥的长宽高分别为:4,2,4,故体积为:,半圆柱的底面半径为2,高为4,故体积为:,故组合体的体积,故选:B.4.D【解析】把三视图还原为几何体,此几何体是底面为直角梯形,一条侧棱垂直于底面的四棱锥,可以本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
三视图习题50道(含答案)
word 格式三视图练习题则该几何体的体积是()(D)()(D ) 280第3题(单位cm ) 16033(D) 所得几何体的正则该几何体的俯视图为()1 3第5题(A) 2(主)视图与侧(左)视图分别如右图所示(B ) 1(C ) 292第1题(B ) 3603、若某几何体的三视图 如图所示,则此几何体的体积是 1、若某空间几何体的三视图如图所示—cm 34、一个长方体去掉一个小长方体 2、一个几何体的三视图如图,该几何体的表面积是(B ) 320cm 3“,f=L23(A ) 352cm 3 33r — 1111I ___J第2题1'1-T P5、 若一个底面是正三角形的三棱柱的正视图如图所示,则其侧.面积等于(A . . 3B . 2C . 2 3D . 66、 图2中的三个直角三角形是一个体积为20cm 2的几何体的三视图,则h=7、 一个几何体的三视图如图所示 ,则这个几何体的体积为 _____________AA // BB // CC , CC 丄平面 ABC3且3 AA = 3 BB = CC =AB,则多面体△ ABC - ABC 的正视图(也称主视图)是()8、如图,网格纸的小正方形的边长是1 ,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为9、如图1 , △ ABC 为正三角形,)S 2a.俯视图正(主)视图侧(左)视图A. 9 nB. 10 nC. 11 n D . 12 n10、一空间几何体的三视图如图所示,则该几何体的体积为().A.2 2.3B. 4 2 . 3侧(左)视图C. 2D. 4第11题第10题11、上图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是12、一个棱锥的三视图如图,则该棱锥的全面积(单位:c m2)为(A) 48+12 . 2 (B) 48+24 . 2 ( C) 36+12 2 (D)36+24 213、若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是cm3第12题正视图侧视图俯视图15题14、设某几何体的三视图如上图所示。
三视图习题(含答案)
几何体的三视图练习题1、若某空间几何体的三视图如下图,则该几何体的体积是 ( )(A )2(B )1(C )23(D )132、一个几何体的三视图如图,该几何体的表面积是 ( ) (A )372 (B )360 (C )292 (D )2803、若某几何体的三视图(单位:cm )如下图,则此几何体的体积是 (A )3523cm 3 (B )3203cm 3 (C )2243cm 3 (D )1603cm 34、一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为: ( )5、若一个底面是正三角形的三棱柱的正视图如下图,则其侧面积...等于 ( ) A .3 B .2 C .23 D .66、图2中的三个直角三角形是一个体积为20cm 2的几何体的三视图,则h= cm第1题第2题第3题第5题第6题7、一个几何体的三视图如下图,则这个几何体的体积为 。
8、如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.9、如图1,△ ABC 为正三角形,AA '//BB ' //CC ' , CC ' ⊥平面ABC 且3AA '=32BB '=CC '=AB,则多面体△ABC -A B C '''的正视图(也称主视图)是( )10、一空间几何体的三视图如下图,则该几何体 的体积为( ).A.223π+B. 423π+C. 2323π+D. 2343π+11、上图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .9πB .10πC .11πD .12π12、一个棱锥的三视图如图,则该棱锥的全面积(单位:c 2m )为 ( )第7题第8题2 2侧(左)视图2 22 正(主)视俯视图第10题俯视图 正(主)视图 侧(左)视图2 32 2第11题(A )48+122 (B )48+242 (C )36+122 (D )36+242 13、若某几何体的三视图(单位:cm )如下图,则此几何体的体积是 3cm .14、设某几何体的三视图如上图所示。
高三专项训练:三视图练习题
高三专项训练:三视图练习题(一)(带答案)一、选择题1.如图是某几何体的三视图,则此几何体的体积是( )A .36B .108C .72D .1802.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是A 、球B 、三棱锥C 、正方体D 、圆柱3.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A 、9πB 、10πC 、11πD 、12π4.有一个几何体的三视图及其尺寸如图(单位cm ),则该几何体的表面积及体积为( )A.3212,24cm cm ππB. 3212,15cm cm ππC. 3236,24cm cm ππD.以上都不正确5.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.A .23B .22C .5D .36.一空间几何体的三视图如图所示,则该几何体的体积为.A. 1B. 3 C 6 D. 2[7. 若某空间几何体的三视图如图所示,则该几何体的体积是A .13 B .23C .1D .28.右图是某几何体的三视图,则该几何体的体积为( )A .942π+ B.3618π+C.9122π+ D.9182π+9.已知一个几何体的三视图如图所示,则该几何体外接球的表面积为( )332正视图俯视图A .43πB . 163πC .1912πD . 193π 10.某几何体的正视图如图所示,则该几何体的俯视图不可能的是11.已知某个几何体的三视图如图(主视图中的弧线是半圆),根据图中标出的尺寸(单位:cm),可得这个几何体的体积是( )cm 3.A .π+8B .328π+C .π+12D .3212π+12.已知正六棱柱的底面边长和侧棱长均为2cm ,其三视图中的俯视图如图所示,则侧视图主视俯视22 312第8题图2俯视图 332 1侧视图 正视图1 1 1其左视图的面积是( ) (A )243cm (B )223cm (C )28cm (D )24cm13.下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .6πB .7πC .8πD .9π14.如右图所示,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为 ( )A .π3B .π2C .π23 D .π4 15.如图是一个几何体的三视图,若它的体积是33,则图中正视图所标a=( )A .1B 3C 3D .316.已知某几何体的三视图如图所示(单位:cm ),其中正视图、侧视图都是等腰直角三角形,则这个几何体的体积是( )A .338cmB .3316cm C .33216cm D . 3332cm17.一个几何体的三视图如右图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A .π12B .π34C .π3D .π31218.若某空间几何体的三视图如图所示,则该几何体的体积是 ( )A.13 B. 23C. 1D. 2 俯视图侧视图正视图22119.某物体是空心的几何体,其三视图均为右图,则其体积为( )A 、8B 、43π C 、483π+ D 、483π-正视图 侧视图俯视图 正视第9题22 4 2侧视图 22俯视20.如图,水平放置的三棱柱ABC-A 1B 1C 1中,侧棱AA 1⊥平面A 1B 1C 1,其正视图是边长为a 的正方形.俯视图是边长为a 的正三角形,则该三棱柱的侧视图的面积为A .a 2B .12a 2C .32a 2 D .3a 221.右图是一个几何体的三视图(侧视图中的弧线是半圆),则该几何体的表面积是( )A .20+3πB .24+3πC .20+4πD .24+4π22.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A .12πB .π34C .3πD .π312. 23.如右图为一个几何体的三视图,其中俯视图为正三角形,A 1B 1=2,AA 1=4,则该几何体的表面积为( )A. 6+3B. 24+3C. 24+23D. 32正视图 侧视图 俯视图 AC A 11正视图 侧视图俯视图24.图1是设某几何体的三视图,则该几何体的体积为( )A .942π+ B.3618π+ C.9122π+ D.9182π+ 、25.已知某几何体的三视图如图所示,根据图中标注的尺寸(单位cm )可得该几何体的体积是( )A .313cmB .323cm C .343cm D .383cm26.小红拿着一物体的三视图(如图所示)给小明看,并让小明猜想这个物件的形状是A. 长方形B. 圆柱C. 立方体D. 圆锥27.一个几何体的三视图如图所示,则这个几何体的体积为( )A 32B .12C .32D 312+ 正视图侧视图俯视图 332正视图俯视图图128.一个空间几何体的三视图如图(1)所示,其中正视图为等腰直角三角形,侧视图与俯视图为正方形,则该几何体的体积和表面积分别为 ( )A 、64,48+B 、32,48+C 、643,32+ D 、332,48+29.若某多面体的三视图(单位: cm )如图所示,则此多面体的体积是 ( )A .21cm 3B .32cm 3C .65cm 3 D .87cm 3 30.一个空间几何体的正视图、侧视图均是长为2、高为3的矩形,俯视图是直径为2的圆(如右图),则这个几何体的表面积为正视侧视俯视正视图俯视图图(1)侧(左)视图 11111A .12π+B .7πC . π8D .π2031.(一空间几何体的三视图如图所示,则该几何体的体积为( ). A.223π+ B. 423π+C. 2323π+D. 2343π+ 32.已知几何体其三视图(如图),若图中圆半径为1, 等腰三角形腰为3,则该几何体表面积为 ( )A .6πB .5πC .4πD .3π33.若一个正三棱柱的三视图如下图所示,则这个正三棱柱的高和底面边长分别为( )A .2,23B .22,2 D .2,434.如图,有一个几何体的正视图与侧视图都是底为6cm ,腰为5cm 的等腰三角形,俯视图是直径为6cm 的圆,则该几何体的体积为 ( )A .12πcm 3B .24πc m 3C .36πcm 3D .48πcm 3正视图 2 32 左视图俯视图正视图 侧视图俯视35.一个多面体的三视图分别是正方形、等腰三角形和矩形, 其尺寸如图,则该多面体的体积为(A )348cm (B )324cm(C )332cm (D )328cm36. 如图,直三棱柱的侧棱长和底面边长均为2,正视图和俯视图如图所示,则其侧视图的面积为 ( )A .4B .3C .32D .237.某四面体的三视图如下图所示,则该四面体的四个面中,直角三角形的面积和是_______.38.一个几何体的三视图如右图所示,主视图与俯视图都是一边长为3cm 的矩形,左视图是一个边长为2cm 的等边三角形,则这个几何体的体积为________.二、填空题3主视图 俯视图 侧视图39.如图所示是一个几何体的三视图(单位:cm ),主视图和左视图是底边长为4cm ,腰长为22的等腰三角形,俯视图是边长为4的正方形,则这个几何体的表面积是-__________40.某几何体的三视图如图所示,则该几何体的体积的最大值为 .41.一正多面体其三视图如图所示,该正多面体的体积为___________.42.若某几何体的三视图(单位:cm )如右图所示,则该几何体的体积为 cm 2.31正视图俯视图左视图主视图 左视图俯视图43.已知某几何体的三视图如图所示,其中侧视图是等腰直角三角形,正视图是直角三角形,俯视图ABCD是直角梯形,则此几何体的体积为;44.某四面体的三视图如上图所示,该四面体四个面的面积中最大的是45.一个几何体的三视图如右图所示(单位:m),则该几何体的体积为__________3m 46.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,若该几何体的所有顶点在同一球面上,则球的表面积是_____.47.如图,一个简单空间几何体的三视图其主视图与左视图都是边长为2的正三角形,其俯视图轮廓为正方形,则其体积是_________.主视图左视图俯视图48.某几何体的三视图如图所示,则它的体积是___________49.设某几何体的三视图如图所示,则该几何体表面积是50.一个几何体的三视图如右图所示,正视图是一个边长为2的正三角形,侧视图是一个等腰直角三角形,则该几何体的体积为.三视图练习题(一)参考答案1.B【解析】此几何体是一个组合体,下面是一个正四棱柱上面是一个四棱锥.其体积为166********V =⨯⨯+⨯⨯⨯=.2.D【解析】圆的正视图(主视图)、侧视图(左视图)和俯视图均为圆; 三棱锥的正视图(主视图)、侧视图(左视图)和俯视图可以为全等的三角形; 正方体的正视图(主视图)、侧视图(左视图)和俯视图均为正方形; 圆柱的正视图(主视图)、侧视图(左视图)为矩形,俯视图为圆。
三视图习题(含答案)
几何体的三视图练习题1、若某空间几何体的三视图如图所示,则该几何体的体积是 ( )(A )2(B )1(C )23(D )132、一个几何体的三视图如图,该几何体的表面积是 ( ) (A )372 (B )360 (C )292 (D )2803、若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 (A )3523cm 3 (B )3203cm 3 (C )2243cm 3 (D )1603cm 34、一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为: ( )5、若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积...等于 ( ) A.2 C..66、图2中的三个直角三角形是一个体积为20cm 2的几何体的三视图,则h= cm第2题第5题7、一个几何体的三视图如图所示,则这个几何体的体积为 。
8、如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.9、如图1,△ ABC 为正三角形,AA '//BB ' //CC ' , CC ' ⊥平面ABC 且3AA '=32BB '=CC '=AB,则多面体△ABC -A B C '''的正视图(也称主视图)是( )10、一空间几何体的三视图如图所示,的体积为().A.2π+B. 4π+C. 23π+D. 43π+11、上图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .9πB .10πC .11πD .12π12、一个棱锥的三视图如图,则该棱锥的全面积(单位:c 2m )为 ( )第7题侧(左)视图正(主)视俯视图俯视图 正(主)视图 侧(左)视图(A )(B )(C )(D )13、若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm .14、设某几何体的三视图如上图所示。
高中三视图练习(含答案
俯视侧〔左〕视24主〔正〕视图三视图专题练习:1.一个几何体的三视图如下图,其中俯视图为正三角形,则该几何体的外表积为___________.2.一个几何体的三视图如下列图所示, 则该几何体的外表积为______.3.如右图所示,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的外表积为〔 〕 A . π3 B . π2 C . π23 D . π44.右图是一个几何体的三视图,则该几何体 的体积为 〔 〕 A .6 B .8 C .16D .24正视图侧视图俯视图1223112231第3题图主视图俯视图左视图5.一空间几何体的三视图如下图,则该几何体的体积为( ). A.223π+ B. 423π+ C. 323π+ D. 2343π+6.一个棱锥的三视图如图,则该棱锥的全面积〔单位:c 2m 〕为〔A 〕2 〔B 〕2 〔C 〕2 〔D 〕27.假设某几何体的三视图〔单位:cm 〕如下图,则此几何体的体积是3cm .2 2 2 正(主)视图 22侧(左)视图俯视图8.设某几何体的三视图如下〔尺寸的长度单位为m〕。
则该几何体的体积为3m 9.如图是一个几何体的三视图,假设它的体积是33,则a_______10.如右图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为12。
则该集合体的俯视图可以是11.右图是一个几何体的三视图,根据图中数据,可得该几何体的外表积是 (A)9π 〔B 〕10π (C)11π (D)12π答案:1. 243+ 2. 2412π+ 3.A. 4.B 5.C. 6.A. 7.18. 8.4. 9. 3 10.C 11.D〔11〕一个体积为16的三棱锥的三视图如下图,其俯视图是一个等腰直角三角形,则这个三棱锥左视图的面积为 .4.某几何体的三视图如下图,则该几何体的体积为〔 〕 〔A 〕2 〔B 〕43〔C 〕4 〔D 〕5〔12〕一个空间几何体的三视图如下图,则这个几何体的体积为 ; 外表积为 .左视图主视图 俯视图2正(主)视图俯视图侧(左)视图2 3 12511 正视图11 俯视图〔7〕 某三棱锥的三视图如下图,该三棱锥的体积是〔A〕 〔B〕 〔C〕 〔D〕6.正三棱柱的左视图如右图所示,则柱的侧面积为〔 〕11、某几何体的三视图如下图,则这个几何体的体积是 .A .4B .12C .3D .24主视图侧视图俯视图〔12〕如右图是一几何体的三视图,则该几何体的体积为 .(5) 某几何体的三视图如下图,则该几何体的体积是〔A 〕12 〔B 〕36 〔C 〕24 〔D 〕7213.一个空间几何体的三视图如下图,该几何体的外表积为俯视图正视图侧视图左视图俯视图左视图 俯视图俯视图主视图侧视图2俯视图侧视图正视图〔第12题图〕12.由两个四棱锥组合而成的空间几何体的三视图如下图,其体积是;外表积是.。
三视图练习题
三视图练习题一、基本概念题1. 请简述三视图的概念及其作用。
2. 三视图包括哪三个视图?分别表示物体的哪些信息?3. 在三视图中,主视图、俯视图和左视图之间的位置关系是怎样的?二、识图题(1)正方体(2)长方体(3)圆柱体(1)球体(2)圆锥体(3)圆环体(1)三棱柱(2)四棱锥(3)六棱柱三、绘图题(1)一个长方体,长、宽、高分别为10cm、6cm、4cm。
(2)一个圆柱体,底面直径为8cm,高为10cm。
(3)一个圆锥体,底面直径为6cm,高为8cm。
(1)一把直尺(2)一个手机(3)一个茶壶四、分析题(1)主视图为矩形,俯视图为圆形,左视图为矩形。
(2)主视图为三角形,俯视图为矩形,左视图为三角形。
(1)主视图、俯视图和左视图均为正方形。
(2)主视图、俯视图和左视图均为圆形。
五、应用题(1)主视图为长方形,长、宽、高分别为10cm、6cm、4cm。
(2)主视图为圆形,直径为8cm,高为10cm。
(1)一个长方体木箱,长、宽、高分别为60cm、40cm、20cm。
(2)一个圆柱形水桶,底面直径为40cm,高为50cm。
六、综合题(1)一个长方体上放置一个正方体。
(2)一个圆柱体和一个圆锥体组合在一起。
(1)一个长方体挖去一个圆柱体形成的组合体,长方体的长、宽、高分别为20cm、10cm、5cm,圆柱体直径为5cm,高为10cm。
(2)一个正方体和一个四棱锥组合在一起,正方体边长为8cm,四棱锥底面边长为6cm,高为4cm。
七、判断题1. 三视图中,主视图和俯视图的长度方向一定相同。
()2. 在三视图中,左视图的宽度方向与主视图的高度方向一致。
()3. 任何物体的三视图都可以通过旋转和翻转得到。
()八、选择题A. 主视图B. 俯视图C. 正视图D. 左视图A. 主视图B. 俯视图C. 左视图D. 所有视图A. 主视图反映了物体的长度和高度B. 俯视图反映了物体的长度和宽度C. 左视图反映了物体的宽度和高度D. 三视图中的每个视图都包含了物体的所有尺寸信息九、填空题1. 三视图是用于表达物体______、______和______三个方向尺寸的图样。
高中三视图试题及答案
高中三视图试题及答案一、选择题(每题2分,共10分)1. 在三视图中,主视图、左视图和俯视图分别表示物体的哪个面?A. 正面、侧面、上面B. 侧面、正面、上面C. 正面、上面、侧面D. 上面、侧面、正面2. 以下哪个选项不是三视图的组成部分?A. 主视图B. 左视图C. 右视图D. 俯视图3. 根据三视图的规则,物体的长、宽、高分别在哪个视图中表示?A. 主视图、俯视图、左视图B. 俯视图、主视图、左视图C. 左视图、主视图、俯视图D. 主视图、左视图、俯视图4. 如果一个物体的主视图和俯视图都是圆形,那么这个物体可能是:A. 圆柱体B. 圆锥体C. 球体D. 立方体5. 在绘制三视图时,如果一个物体的左视图和主视图相同,那么这个物体可能是:A. 正方体B. 长方体C. 圆柱体D. 圆锥体二、填空题(每空1分,共10分)6. 三视图包括______、______和______。
7. 物体的三视图应该按照______、______、______的顺序排列。
8. 在三视图中,______视图可以反映物体的高度和长度。
9. 如果一个物体的主视图是一个矩形,左视图是一个圆形,那么这个物体可能是______。
10. 在绘制三视图时,需要考虑物体的______、______和______。
三、简答题(每题5分,共10分)11. 简述三视图的定义及其重要性。
12. 描述如何根据一个物体的主视图和俯视图推断其形状。
四、绘图题(每题5分,共10分)13. 根据以下描述绘制一个物体的三视图:- 主视图:一个正方形- 左视图:一个矩形,宽度为正方形的边长的一半- 俯视图:一个圆形,直径等于正方形的边长14. 根据以下三视图,描述物体的形状:- 主视图:一个圆形- 左视图:一个矩形- 俯视图:一个圆形答案:一、选择题1. A2. C3. D4. C5. A二、填空题6. 主视图、左视图、俯视图7. 主视图、左视图、俯视图8. 左视图9. 圆柱体10. 长度、宽度、高度三、简答题11. 三视图是工程图学中用来描述物体形状的三个基本视图,包括主视图、左视图和俯视图。
三视图习题50道(含答案)
三视图练习题1、若某空间几何体的三视图如图所示,则该几何体的体积是( )(A )2(B )1(C )23(D )132、一个几何体的三视图如图,该几何体的表面积是 ( ) (A )372 (B )360 (C )292 (D )2803、若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 (A )3523cm 3 (B )3203cm 3 (C )2243cm 3 (D )1603cm 34、一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为: ( )5、若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积等于 ( ) A .3 B .2 C .23 D .66、图2中的三个直角三角形是一个体积为20cm 2的几何体的三视图,则h= cm第1题第2题第3题第5题第6题7、一个几何体的三视图如图所示,则这个几何体的体积为 。
8、如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.9、如图1,△ ABC 为正三角形,AA '//BB ' //CC ' , CC ' ⊥平面ABC 且3AA '=32BB '=CC '=AB,则多面体△ABC -A B C '''的正视图(也称主视图)是( )10、一空间几何体的三视图如图所示,则该几何体 的体积为( ).A.223π+B. 423π+C. 2323π+D. 2343π+ 第7题第8题22侧(左)视图222 正(主)视图俯视图第10题俯视图正(主)视图侧(左)视图 2 322 第11题11、上图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .9πB .10πC .11πD .12π12、一个棱锥的三视图如图,则该棱锥的全面积(单位:c 2m )为 ( )(A )48+122 (B )48+242 (C )36+122 (D )36+242 13、若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm .14、设某几何体的三视图如上图所示。
三视图专练(含答案并详解)
三视图专练1. 如图,是某几何体的三视图,其中矩形的高为圆的半径,若该几何体的体积是352π,则此几何体的表面积为( )A .π33B .π34C .π36D .π42【答案】A 【解析】考点:几何体的三视图及表面积与体积.2. 某四面体的三视图如图所示,则该四面体的四个面中,直角三角形的面积和是( )A .2B .4C .25D .425+【答案】C 【解析】考点:几何体的三视图及其面积的计算.3. 有一个几何体的正视图、侧视图、俯视图如图所示,则该几何体的表面积为( )A .48πB .36πC .24πD .12π【答案】C 【解析】试题分析:由题意得,根据给定的三视图可知,该几何体表示一个底面半径为3r =,母线长5l = 的一个圆锥,所以该圆锥的表面积为2233524S r rl πππππ=+=⨯+⨯⨯=,故选C . 考点:几何体的三视图及表面积的求解.4. 一个三棱锥的正视图和俯视图如右图所示,则该三棱锥的侧视图可能为( )【答案】D 【解析】考点:空间几何体的三视图.5. 已知三棱锥的三视图如图所示,则它的外接球表面积为( )A .π16B .π4 C. π D .π2 【答案】B 【解析】试题分析:由图中的三视图分析可知,三棱锥的直观图如下图所示,M 为Rt ACB ∆斜边的中点,1MA MB MC ===,又PM ⊥底面ABC ,根据主视图的高为1,所以1MP =,则点M到三棱锥四个顶点,,,P A B C 的距离都相等,所以M 为三棱锥外接球的球心,外接球半径1R =,所以表面积为244S R ππ==,故选B.考点:三棱锥的外接球.6. 若某多面体的三视图如图所示(单位:cm ),则此多面体的体积是 2cm .【答案】56【解析】考点:三视图.7. 一个几何体的三视图如图所示,則此几何体的体积是_________.【答案】80 【解析】考点:几何体的三视图及体积的计算.8. 某空间几何体的三视图如图所示,则该几何体的体积为( ) A .73B .83π- C .83D .73π-【答案】B 【解析】试题分析:由三视图可知,该几何体是一个四棱锥挖掉半个圆锥所得,所以体积为21118222123233ππ-⋅⋅⋅-⋅⋅⋅=. 考点:三视图.9. 一个几何体的三视图如图所示,其中俯视图是一个腰长为2的等腰直角三角形,则该几何体外接球的体积是( ) A .36πB .9πC .92πD .275π【答案】C【解析】考点:球的外接几何体.10. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为()A.823π+B.83π+C.42π+D.4π+【答案】D 【解析】试题分析:由三视图可知,该几何体由三棱柱和半个圆柱组成,故体积为112222422ππ⋅⋅⋅+⋅=+. 考点:三视图.11. “牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如左图,图中四边形是为体现其直观性所作的辅助线.当其主视图和侧视图完全相同时,它的俯视图可能是( )【答案】B 【解析】考点:1、阅读能力及空间想象能力;2、几何体的三视图. 12. 某几何体的三视图如图所示,该几何体的体积为( )A .24B .703C.20 D .683【答案】D【解析】试题分析:由三视图可知,该几何体由一个直四棱柱(底面为直角梯形)截去一个三棱锥而得,它的直观图如图所示,故其体积为()2111682424222323V V V =-=⨯+⨯⨯-⨯⨯⨯=四棱柱三棱锥,故选D.考点:1、几何体的三视图;2、棱柱及棱锥的体积公式.13. 某椎体的三视图如图所示,则该棱锥的最长棱的棱长为( ) A .33B .17C .41D .42【答案】C 【解析】考点:简单几何体的三视图.14. 如图1,已知正方体1111ABCD A B C D -的棱长为a ,动点M N Q 、、分别在线段上1AD ,1B C ,11C D 上,当三棱锥Q BMN -的俯视图如图2所示时,三棱锥Q BMN -的正视图面积等于( )A.212a B .214a C.224a D .234a 【答案】B 【解析】考点:三视图.15. 已知某几何体的三视图如图所示,俯视图中正方形的边长为2,正视图中直角梯形的两底长为1和2,则此几何体的体积为( )A .3B .103 C. 113D .4 【答案】B 【解析】试题分析:几何体是由正方体截掉两个四棱锥得到.310323142318V V 21=⨯⨯-⨯⨯-=--=V V 正方体. 考点:三视图及体积求法.16. 某几何体的三视图如图所示,则该几何体的体积为( )A . 43B .53 C. 63 D .83 【答案】A 【解析】考点:三视图求体积.17. 已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一直角边为2的直角三角形,则该三棱锥的正视图可能为()A. B. C. D.【答案】C【解析】试题分析:由俯视图可知三棱锥的底面是个边长为2的正三角形,由侧视图可知三棱锥的一条侧棱垂直于底面,且其长度为2,故其主视图为直角边长为2的等腰直角三角形,且中间有一虚线,故选C.考点:三视图.18. 某几何体的三视图如图所示,则该几何体的表面积为()A. 50 B.50.5 C.51.5 D.60【答案】D【解析】考点:由三视图求面积、体积.19. 已知某棱锥的三视图如图所示,俯视图为正方形及一条对角线,根据图中所给的数据,该棱锥外接球的体积是_____.【答案】82π 【解析】考点:由三视图求面积、体积.20. 正方体1111ABCD A B C D -中E 为棱1BB 的中点(如图),用过点A ,E ,1C 的平面截去该正方体的上半部分,则剩余几何体的左视图为( )【答案】C【解析】试题分析:由已知可得剩余几何体的左视图应是选项C. 考点:1、组合体;2、几何体的三视图.。
三视图通关100题(含答案)
,表面积是
.
16. 某几何体的三视图如图所示(单位: cm ),则该几何体的体积是 是 cm .
cm ,表面积
17. 已知一个四棱锥的三视图如图所示,则此四棱锥的体积为
.
18. 已知三棱锥的外接球的表面积为 表π,该三棱锥的三视图如图所示,三个视图的外轮廓都是直 角三角形,则其侧视图面积的最大值为 . QQ 群 339444963 欢迎关注微信公众号
42. 某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为
.
第 11页(共 42 页)来自高中数学解题研究会
QQ 群 339444963 欢迎关注微信公众号
欢迎关注微信公众号(QQ 群):兰老师高中数学研究会 557619246
43. 某几何体的三视图如图所示(单位:cm),则该几何体最长棱的棱长为
的等腰三角形,侧视图是半径为
的半圆,
QQ 群 339444963 欢迎关注微信公众号
欢迎关注微信公众号(QQ 群):兰老师高中数学研究会 557619246
47. 一空间几何体的三视图如图所示,则该几何体的体积为
.
48. 如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是 是 .
,体积
72. 一个多面体从前面、后面、左侧、右侧、上方看到的图形分别如图所示(其中每个正方形边长 都为 ),则该多面体的表面积为 .
73. 已知正三棱锥 面积为 .
th 的正视图、俯视图如图所示,则该三棱锥的体积为
,侧视图的
74. 图中的三个直角三角形是一个体积为 㐸 cm 的几何体的三视图,该几何体的外接球表面积 为
th 中,四面体
坐标平面上的一组正投影图
23. 某几何体的三视图如图所示(其中俯视图中的圆弧是半圆),则该几何体的体积为
(完整版)高中数学3三视图课后习题(带答案)
3 32正视图侧视图俯视图图1三视图课后习题1.(陕西理5)某几何体的三视图如图所示,则它的体积是A .283B .83C .82D .232.(全国新课标理6)。
在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为3.(湖南理3)设图1是某几何体的三视图,则该几何体的体积为A .9122 B .9182C .942D .36184.(广东理7)如图1-3,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为A.63B.93C.123D.1835.(北京理7)某四面体的三视图如图所示,该四面体四个面的面积中,最大的是A.8 B.62C.10 D.826.(安徽理6)一个空间几何体的三视图如图所示,则该几何体的表面积为(A)48(B)32+8(C)48+8(D)802,它的三视图中的俯视图如右图所7.(辽宁理15)一个正三棱柱的侧棱长和底面边长相等,体积为3示,左视图是一个矩形,则这个矩形的面积是.8.(天津理10)一个几何体的三视图如右图所示(单位:m),则该几何体的体积为__________3 m9.(2010湖南文数)13.图2中的三个直角三角形是一个体积为20cm2的几何体的三视图,则h= cm 10.(2010浙江理数)(12)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是___________3cm.11.(2010辽宁文数)(16)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为 .12.(2010辽宁理数)(15)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.13.(2010天津文数)(12)一个几何体的三视图如图所示,则这个几何体的体积为。
14.(2010天津理数)(12)一个几何体的三视图如图所示,则这个几何体的体积为15.(2010湖南理数)13.图3中的三个直角三角形是一个体积为203cm的几何体的三视图,则h cm.16.(2010福建理数)若一个底面是正三角形的三棱柱的正视图如图所示,则其表面积等于.17.(2010广东理数) 6.如图1,△ ABC为三角形,AA//BB//CC, CC⊥平面ABC 且3AA=32BB=CC =AB,则多面体△ABC -A B C的正视图(也称主视图)是18.【2012高考真题新课标理7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()()A6()B9()C()D19.【2012高考真题新课标理11】已知三棱锥S ABC的所有顶点都在球O的求面上,ABC是边长为1的正三角形,SC为球O的直径,且2SC;则此棱锥的体积为()()A26()B36()C23()D2220.【2012高考真题湖南理3】某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是21.【2012高考真题湖北理4】已知某几何体的三视图如图所示,则该几何体的体积为A.8π3B.3πC.10π3D.6π22.【2012高考真题广东理6】某几何体的三视图如图所示,它的体积为A .12π B.45π C.57π D.81π【解析】该几何体的上部是一个圆锥,下部是一个圆柱,根据三视图中的数量关系,可得57533-53312222圆柱圆锥V V V.故选C .23.【2012高考真题福建理4】一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是A.球B.三棱柱C.正方形D.圆柱24.【2012高考真题北京理7】某三棱锥的三视图如图所示,该三梭锥的表面积是()A. 28+65 B. 30+65 C. 56+ 125 D. 60+12525.【2012高考真题浙江理11】已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积等于________cm 3.26.【2012高考真题辽宁理13】一个几何体的三视图如图所示,则该几何体的表面积为______________。
三视图、截交线相贯线练习题含部分参考答案
1、组合体的形状多种多样,千差万别。
就其组合体形式而言可分为、和三种类型。
2、组合体相邻的表面可能形成、和三种关系。
3、当截平面与圆柱的轴线倾斜时,截交线为。
[0302C]28、因截平面为正平面,与轴线平行,故与圆锥的截交线为。
4、平面在任何位置截切圆球的截交线都是。
一、根据轴测图,画三视图
二、补画三视图中缺少的线
三、补画第三视图
截交线、相贯线练习题(二)(先画截交线部分)画出图示物体的俯视图补画组合回转体的投影
画出被截切回转体的第三视图根据主视图和左视图,画出俯视图画出图示物体的主视图求作立体的H面投影
补画立体的水平投影分析曲面立体的截交线,补全曲面立体的三面投影
作以下立体的相贯线
画出两圆柱面的相贯线。
(不能用圆弧来替代,要求
保留辅助线)
画出圆柱面的内外相贯线补画半球切割后的投影
画出图示物体的俯视图补画下面物体的投影。
三视图习题50道(含答案)
三视图练习题1、若某空间几何体的三视图如图所示,则该几何体的体积是()(A)2(B)1(C)23(D)132、一个几何体的三视图如图,该几何体的表面积是()(A)372 (B)360 (C)292 (D)2803、若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是(A)3523cm3(B)3203cm3 (C)2243cm3(D)1603cm34、一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为:()5、若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积等于 ( )AB.2 C..66、图2中的三个直角三角形是一个体积为20cm2的几何体的三视图,则h= cm第2题第5题7、一个几何体的三视图如图所示,则这个几何体的体积为 。
8、如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.9、如图1,△ ABC 为正三角形,AA '//BB ' //CC ' , CC ' ⊥平面ABC 且3AA '=32BB '=CC '=AB,则多面体△ABC -A B C '''的正视图(也称主视图)是( )10、一空间几何体的三视图如图所示,则该几何体的体积为( ).A.2π+B. 4π+C. 2π+D. 4π11、上图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .B .C .D .9π10π11π12π第7题侧(左)视图正(主)视图俯视图俯视图正(主)视图侧(左)视图12、一个棱锥的三视图如图,则该棱锥的全面积(单位:c 2m )为 ()(A )(B )(C )(D )13、若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm .14、设某几何体的三视图如上图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题练习:
1•一个几何体的三视图如图所示,其中
俯视图为正三角形,则该几何体的表面积为
2•—个几何体的三视图如下图所示,
则该几何体的表面积为 __________ •
3.如右图所示,一个空间几何体的主视图和左视图都是边长为
直径为1的圆,那么这个几何体的表面积为()
三视图
卜仆.-2
侧视图
正视图
俯视图
第3题图
A. 3
B. 2
C. 3
D. 4
2
4•右图是一个几何体的三视图,则该几何体
的体积为(
)
A. 6
B. 8
C. 16
D. 24
if
1的正方形,俯视图是一个
J 2—1 侧(左)视
5. 一空间几何体的三视图如图所示,则该几何体的体积为(
6. 一个棱锥的三视图如图,则该棱锥的全面积(单位:
(A)48+12、2 (B)48+24、、2 (C)36+12、2 (D)36+24、2
2:3
3
D. 4
23
3
).
2
c m2)
8.设某几何体的三视图如下(尺寸的长度单位为
9.如图是一个几何体的三视图,若它的体积是
m3
△
K—M
31
1
1的正方形,且体积为 -。
则该集合
2
5
11.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是 (A)9 n ( B ) 10 n
(C)11 n
(D)12 n
答案:1. 24 , 3 2. 24 12
3.A.
4.B
5.C.
6.A.
7.1
8. 8.4.
9. . 3
10.C 11.D
注意第6题
二项分布与超几何分布辨析
山东
韩文文
二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问 题都可以利用这两个概率模型来解决•在实际应用中,理解并区分两个概率模型是至关 重要的•下面举例进行对比辨析.
例 袋中有8个白球、2个黑球,从中随机地连续抽取 3次,每次取1个球.求:
(1) 有放回抽样时,取到黑球的个数X 的分布列; (2) 不放回抽样时,取到黑球的个数Y 的分布列. 解:(1)有放回抽样时,取到的黑球数X 可能的取值为0,
1,2,3.又由于每次取
1
到黑球的概率均为,3次取球可以看成3次独立重复试验,则 X ~ B 3,-.
5
2
2
1 P(X 2) cf -
0 4 3
64
;
5 ;
125
4 2
48 5
125 1 ••• P (X 0)C? 5
1
P(X 1)C 3 5
1 4 J2_ 5 125
3
1 P (x 3) C ;-
5
因此,X 的分布列为
2.1, 2,且有:
抽到某物的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型•而 不放回抽样时,取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种 抽样为超几何分布模型•因此,二项分布模型和超几何分布模型最主要的区别在于是有 放回抽样还是不放回抽样•所以,在解有关二项分布和超几何分布问题时,仔细阅读、 辨析题目条件是非常重要的.
超几何分布和二项分布都是离散型分布 超几何分布和二项分布的区别:
超几何分布需要知道总体的容量,而二项分布不需要; 超几何分布是不放回抽取,而二项分布是放回抽取(独立重复)
当总体的容量非常大时,超几何分布近似于二项分布
3
7. 若某几何体的三视图(单位:
cm )如
4 丄
5
125
P(Y
0)
3 10
7 15
;
P(Y
1)
C ;C
2)
c |c 3 10
丄
15
因此,Y 的分布列为
辨析:通过此例可以看出: 有放回抽样时,每次抽取时的总体没有改变,因而每次
3 10
图所示,则此几何体的体积是cm .
10.如右图,某几何体的正视图与侧视图都是边长为体的俯视图可以是
5。