最新最全2019高考数学(全国卷、北京卷、江苏、天津、浙江)概率、统计汇编含选择填空解答题

合集下载

2019年全国高考文科数学分类汇编---概率统计

2019年全国高考文科数学分类汇编---概率统计

2019年全国高考文科数学分类汇编---概率统计1(2019北京文科).改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:支付金额支付方式不大于(Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数;(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由.【答案】(Ⅰ)400人;(Ⅱ)1 25;(Ⅲ)见解析.【解析】【分析】(Ⅰ)由题意利用频率近似概率可得满足题意的人数;(Ⅱ)利用古典概型计算公式可得上个月支付金额大于2000元的概率;(Ⅲ)结合概率统计相关定义给出结论即可.【详解】(Ⅰ)由图表可知仅使用A的人数有30人,仅使用B的人数有25人,由题意知A,B两种支付方式都不使用的有5人,所以样本中两种支付方式都使用的有1003025540---=,所以全校学生中两种支付方式都使用的有401000400100⨯=(人). (Ⅱ)因为样本中仅使用B 的学生共有25人,只有1人支付金额大于2000元,所以该学生上个月支付金额大于2000元的概率为125. (Ⅲ)由(Ⅱ)知支付金额大于2000元的概率为125,因为从仅使用B 的学生中随机调查1人,发现他本月的支付金额大于2000元,依据小概率事件它在一次试验中是几乎不可能发生的,所以可以认为仅使用B 的学生中本月支付金额大于2000元的人数有变化,且比上个月多.【点睛】本题主要考查古典概型概率公式及其应用,概率的定义与应用等知识,意在考查学生的转化能力和计算求解能力.2.(2019全国1卷文科)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A. 8号学生 B. 200号学生C. 616号学生D. 815号学生【答案】C 【解析】 【分析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案.【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到, 所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =, 所以610n a n=+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意; 若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 【点睛】本题主要考查系统抽样.3.(2019全国1卷文科)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.【答案】(1)43 ,55;(2)能有95%的把握认为男、女顾客对该商场服务的评价有差异.【解析】【分析】(1)从题中所给的22⨯列联表中读出相关的数据,利用满意的人数除以总的人数,分别算出相应的频率,即估计得出的概率值;(2)利用公式求得观测值与临界值比较,得到能有95%的把握认为男、女顾客对该商场服务的评价有差异. 【详解】(1)由题中表格可知,50名男顾客对商场服务满意的有40人,所以男顾客对商场服务满意率估计为1404 505P==, 50名女顾客对商场满意的有30人,所以女顾客对商场服务满意率估计为2303 505P==,(2)由列联表可知22100(40203010)1004.762 3.8417030505021K⨯-⨯==≈>⨯⨯⨯,所以能有95%的把握认为男、女顾客对该商场服务的评价有差异.【点睛】该题考查的是有关概率与统计的知识,涉及到的知识点有利用频率来估计概率,利用列联表计算2K 的值,独立性检验,属于简单题目.4.(2019全国2卷文科)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标概率为A. 23B.35 C. 25D. 15【答案】B 【解析】 【分析】本题首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式求解. 【详解】设其中做过测试的3只兔子为,,a b c ,剩余的2只为,A B ,则从这5只中任取3只的所有取法有{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B ,{,c,},{,c,},{b,,},{c,,}b A b B A B A B 共10种.其中恰有2只做过测试的取法有{,,},{,,},{,,},{,,},a b A a b B a c A a c B {,c,},{,c,}b A b B 共6种, 所以恰有2只做过测试的概率为63105=,选B . 【点睛】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.5.(2019全国2卷文科)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________. 【答案】0.98. 【解析】 【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【详解】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10+20+10=40,所以该站所有高铁平均正点率约为39.20.9840=. 【点睛】本题考点为概率统计,渗透了数据处理和数学运算素养.侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.6.(2019全国2卷文科)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.的(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602≈.【答案】(1) 增长率超过0400的企业比例为21100,产值负增长的企业比例为2110050=;(2)平均数0.3;标准差0.17. 【解析】 【分析】(1)本题首先可以通过题意确定100个企业中增长率超过0400的企业以及产值负增长的企业的个数,然后通过增长率超过0400的企业以及产值负增长的企业的个数除随机调查的企业总数即可得出结果;(2)可通过平均值以及标准差的计算公式得出结果。

2019年高考全国卷及各省单独命题真题概率统计专题总结与突破

2019年高考全国卷及各省单独命题真题概率统计专题总结与突破

2019年高考数学真题——概率统计专题整理1.(2019年全国卷1,文数6题,满分5分)某学校为了解1 000名新生的身体素 质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽 取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是A . 8号学生B . 200号学生C .616号学生D .815号学生【答案】C .【解析】依题意可知组距间隔为100010100d ==,各组间被抽到号码的绝对值差应为间隔d 的倍数,即能被10整除.只有C 项:616465710-=能被10整除,故选C . 2.(2019年全国卷1,文数17题,满分12分)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++.【答案解析】(1)由调查数据,男顾客中对该商场服务满意的比率为400.850=,因此男顾 客对该商场服务满意的概率的估计值为0.8.女顾客中对该商场服务满意的比率为300.650=,因此女顾客对该商场服务满意的概率的估计值为0.6.(2)22100(40203010) 4.76250507030K ⨯⨯-⨯=≈⨯⨯⨯. ∵4.762 3.841>,故有95%的把握认为男、女顾客对该商场服务的评价有差异.3.(2019年全国卷1,理数6题,满分5分)我国古代典籍《周易》 用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻 组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在 所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516 B . 1132 C . 2132D . 1116 【答案】A .【解析】易知出现阳爻的概率服从二项分布16,2B ⎛⎫ ⎪⎝⎭,∴每卦6爻中恰好有3个阳爻的概率333611512216P C ⎛⎫⎛⎫=-= ⎪⎪⎝⎭⎝⎭,故选A . 4.(2019年全国卷1,理数21题,满分12分)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性. 【答案解析】(1)X 的所有可能取值为1,0,1-.(1)(1)(0)(1)(1)(1)(1)P X P X P X αβαβαβαβ=-=-==+--==-,,,所以X 的分布列为(2)(i )由(1)得0.4,0.5,0.1a b c ===.因此11=0.4+0.5 +0.1i i i i p p p p -+,故()()110.10.4i i i i p p p p +--=-,即()114i i i i p p p p +--=-.又因为1010p p p -=≠,所以{}1(0,1,2,,7)i i p p i +-=为公比为4,首项为1p 的等比数列. (ii )由(i )可得88776100p p p p p p p p =-+-++-+()()()88776101413p p p p p p p -=-+-++-=.由于8=1p ,故18341p =-,所以 ()()()()44433221101411.325 7p p p p p p p p p p -=-+-+-+=-=4p 表示最终认为甲药更有效的概率,由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为410.0039257p =≈,此时得出错误结论的概率非常小,说明这种试验方案合理.5.(2019年全国卷2,文数4题,满分5分)生物实验室有5只兔子,其中只有3 只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标 的概率为A .23 B . 35 C . 25 D . 15【答案】B .【解析】“恰有2只测量过该指标”指的是事件“两只通过指标且另外一只没有通过指标”,∴21323535C C P C ==,故选B .6.(2019年全国卷2,文数14、理数13题,满分5分)我国高铁发展迅速,技术 先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有2 0个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车 所有车次的平均正点率的估计值为 . 【答案】0.98.【解析】依题意共有10201040++=个车次,∴经停该站高铁列车所有车次的平均正点率的估计值为1020100.970.980.990.98404040⨯+⨯+⨯=. 7.(2019年全国卷2,文数19题,满分12分)某行业主管部门为了解本行业中小。

全国各地高考数学真题分章节分类汇编之概率word精品文档8页

全国各地高考数学真题分章节分类汇编之概率word精品文档8页

2019年全国各地高考数学真题分章节分类汇编之概率(一)一、选择题:1. (2019年高考湖北卷理科4)投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰于向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是A. B. C. D.【答案】C【解析】因为事件A,B中至少有一件发生与都不发生互为对立事件,故所求概率为,选C。

2. (2019年全国高考宁夏卷6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为(A)100 (B)200 (C)300 (D)400【答案】B解析:根据题意显然有,所以,故.3.(2019年高考江西卷理科11)一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测.方法一:在10箱中各任意抽查一枚;方法二:在5箱中各任意抽查两枚.国王用方法一、二能发现至少一枚劣币的概率分别记为和.则A.B.C.D.以上三种情况都有可能【答案】B4.(2019年高考辽宁卷理科3)两个实习生每人加工一个零件.加工为一等品的概率分别为和,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为(A)(B)(C)(D)【答案】B二、填空题:1.(2019年高考福建卷理科13)某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮。

假设某选手正确回答每个问题的概率都是,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于。

【答案】0.128【命题意图】2.(2019年高考安徽卷理科15)甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球。

先从甲罐中随机取出一球放入乙罐,分别以和表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以表示由乙罐取出的球是红球的事件,则下列结论中正确的是________(写出所有正确结论的编号)。

2019高考全国各地数学卷文科解答题分类汇编-概率与统计

2019高考全国各地数学卷文科解答题分类汇编-概率与统计

2019高考全国各地数学卷文科解答题分类汇编-概率与统计1、〔天津文〕15、〔本小题总分值13分〕编号为1216,,,A A A ⋅⋅⋅的16名篮球运动员在某次训练比赛中的得分记录如下:〔Ⅰ〕将得分在对应区间内的人数填入相应的空格;〔Ⅱ〕从得分在区间[)20,30内的运动员中随机抽取2人,〔i 〕用运动员的编号列出所有可能的抽取结果;〔ii 〕求这2人得分之和大于50的概率、【解析】〔15〕本小题主要考查用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式的等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力,总分值13分。

〔Ⅰ〕解:4,6,6〔Ⅱ〕〔i 〕解:得分在区间[20,30)内的运动员编号为345101113,,,,,.A A A A A A 从中随机抽取2人,所有可能的抽取结果有:343531*********{,},{,},{,},{,},{,},{,},A A A A A A A A A A A A 410{,}A A ,411413510511513101110131113{,},{,},{,},{,},{,},{,},{,},{,}A A A A A A A A A A A A A A A A ,共15种。

〔ii 〕解:“从得分在区间[20,30)内的运动员中随机抽取2人,这2人得分之和大于50”〔记为事件B 〕的所有可能结果有:454104115101011{,},{,},{,},{,},{,}A A A A A A A A A A ,共5种。

所以51().153P B ==2.〔北京文〕16、〔本小题共13分〕以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.〔1〕如果X=8,求乙组同学植树棵树的平均数和方差;〔2〕如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率. 〔注:方差],)()()[(1222212x x x ns n -+-+-= 其中为nx x x ,,,21 的平均数〕 【解析】〔16〕〔共13分〕解〔1〕当X=8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10, 所以平均数为;435410988=+++=方差为.1611])43510()4359()4358[(412222=-+-+-=s 〔Ⅱ〕记甲组四名同学为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10,分别从甲、乙两组中随机选取一名同学,所有可能的结果有16个,它们是:〔A 1,B 1〕,〔A 1,B 2〕,〔A 1,B 3〕,〔A 1,B 4〕, 〔A 2,B 1〕,〔A 2,B 2〕,〔A 2,B 3〕,〔A 2,B 4〕, 〔A 3,B 1〕,〔A 2,B 2〕,〔A 3,B 3〕,〔A 1,B 4〕, 〔A 4,B 1〕,〔A 4,B 2〕,〔A 4,B 3〕,〔A 4,B 4〕,用C 表示:“选出的两名同学的植树总棵数为19”这一事件,那么C 中的结果有4个,它们是:〔A 1,B 4〕,〔A 2,B 4〕,〔A 3,B 2〕,〔A 4,B 2〕,故所求概率为.41164)(==C P3.〔全国新文〕19、〔本小题总分值12分〕 某种产品的质量以其质量指标值衡量,质量指标越大说明质量越好,且质量指标值大于或等于102的产品为优质品、现用两种新配方〔分别称为A 配方和B 配方〕做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:A 配方的频数分布表〔I 〕分别估计用A 配方,B 配方生产的产品的优质品率;〔II 〕用B 配方生产的一种产品利润y 〔单位:元〕与其质量指标值t 的关系式为2,942,941024,102t y t t -<⎧⎪=≤<⎨⎪≥⎩估计用B 配方生产的一件产品的利润大于0的概率,并求用B 配方生产的上述100件产品平均一件的利润、 【解析】〔19〕解〔Ⅰ〕由试验结果知,用A 配方生产的产品中优质的频率为228=0.3100+,所以用A 配方生产的产品的优质品率的估计值为0.3。

2019年全国各地高考数学试卷合集含解析

2019年全国各地高考数学试卷合集含解析

2019年全国各地区高考数学真题试卷与解析汇编2019年全国Ⅰ理科高考数学试卷 (2)2019年全国Ⅰ文科高考数学试卷 (6)2019年全国Ⅱ理科高考数学试卷 (10)2019年全国Ⅱ文科高考数学试卷 (13)2019年全国Ⅲ理科高考数学试卷 (16)2019年全国Ⅲ文科高考数学试卷 (21)2019年北京理科高考数学试卷 (25)2019年北京文科高考数学试卷 (28)2019年天津理科高考数学试卷 (31)2019年天津文科高考数学试卷 (34)2019年江苏省高考数学试卷 (37)2019年浙江省高考数学试卷 (41)2019年上海春季高考数学试卷 (45)2019年上海秋季高考数学试卷 (48)2019年全国Ⅰ理科高考数学试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合,,则 {|42}M x x =-<<2{|60}N x x x =--<(M N = )A .B .C .D .{|43}x x -<<{|42}x x -<<-{|22}x x -<<{|23}x x <<2.设复数满足,在复平面内对应的点为,则 z ||1z i -=z (,)x y ()A .B .C .D .22(1)1x y ++=22(1)1x y -+=22(1)1x y +-=22(1)1x y ++=3.已知,,,则 2log 0.2a =0.22b =0.30.2c =()A .B .C .D .a b c <<a c b <<c a b <<b c a<<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之,称为黄金分割比例),著名的“断臂维纳斯”便是0.618≈如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为,头顶至脖子下105cm 端的长度为,则其身高可能是 26cm ()A .B .C .D .165cm 175cm 185cm 190cm5.函数的图象在,的大致为 2sin ()cos x x f x x x +=+[π-]π()A .B .C .D .6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是 ()A .B .C .D .5161132213211167.已知非零向量,满足,且,则与的夹角为 a b ||2||a b = ()a b b -⊥ a b ()A .B .C .6π3π23πD .56π8.如图是求的程序框图,图中空白框中应填入 112122++()A .B .12A A =+12A A=+C .D .112A A =+112A A=+9.记为等差数列的前项和.已知,,则 n S {}n a n 40S =55a =()A .B .25n a n =-310n a n =-C .D .228n S n n =-2122n S n n =-10.已知椭圆的焦点为,,过的直线与交于,两点.若C 1(1,0)F -2(1,0)F 2F C A B ,,则的方程为 22||2||AF F B =1||||AB BF =C ()A .B .C .D .2212x y +=22132x y +=22143x y +=22154x y +=11.关于函数有下述四个结论:()sin |||sin |f x x x =+①是偶函数 ②在区间,单调递增()f x ()f x (2π)π③在,有4个零点 ④的最大值为2()f x [π-]π()f x 其中所有正确结论的编号是 ()A .①②④B .②④C .①④D .①③12.已知三棱锥的四个顶点在球的球面上,,是边长为2P ABC -O PA PB PC ==ABC ∆的正三角形,,分别是,的中点,,则球的体积为 E F PA AB 90CEF ∠=︒O ()A .B .C .D 二、填空题:本题共4小题,每小题5分,共20分。

2019年高考概率统计试题汇编及分析 Word版含解析

2019年高考概率统计试题汇编及分析 Word版含解析

2019高考全国一卷为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性.解析:(1)首先根据题意,随机试验一轮试验共4个结果,我们用符号+-分别表示治愈和未治愈。

则甲+乙+,甲+乙-,甲-乙+,甲-乙-。

p甲乙=(1-)p(X=0)= 甲乙+甲乙=p甲乙=(1-)所以的分布列为:(2)当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效。

假设四轮试验都是甲+乙—,则甲药比乙药多四只,认为甲药更有效。

此时甲药得分为4分,乙药得分为-4分,所以甲药、乙药在试验开始时都赋予4分。

(0,1,,8)ip i=表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则00p=表示四轮试验都是甲-乙+,乙药有效,81p=表示四轮试验都是甲+乙-,甲药有效。

历年(2019-2023)高考数学真题专项(概率与统计解答题)汇编(附答案)

历年(2019-2023)高考数学真题专项(概率与统计解答题)汇编(附答案)

历年(2019-2023)高考数学真题专项(概率与统计解答题)汇编考点01:统计案例及应用1 (2021年全国高考乙卷文科)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:122S .(1)求x ,y ,21S ,22S ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x -≥则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).2 (2020年高考数学课标Ⅰ卷文科)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A ,B ,C ,D 四个等级.加工业务约定:对于A 级品、B 级品、C 级品,厂家每件分别收取加工费90元,50元,20元;对于D 级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下: 甲分厂产品等级的频数分布表等级 ABCD频数40202020乙分厂产品等级的频数分布表等级 ABCD频数28173421(1)分别估计甲、乙两分厂加工出来的一件产品为A 级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?3 (2019年高考数学课标Ⅲ卷文科)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下实验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据实验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70. (1)求乙离子残留百分比直方图中的a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用改组区间的中点值为代表).4 (2019年高考数学课标Ⅱ卷文科)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.y 的分组[0.20,0)-[0,0.20)[0.20,0.40)[0.40,0.60)[0.60,0.80)企业数 2 24 53 147 (1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602≈.5.(2022新高考全国II 卷·)在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表); (2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率;(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001).考点02相关关系与回归分析1.(2022年高考全国乙卷(文)·)某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:2m )和材积量(单位:3m ),得到如下数据:样本号i 12345678910总和根部横截面积i x0.04 0.06 0.04 0.08 0.08 0050050.07 0.07 0.06 0.6材积0.25 0.40 0.22 0.54 0.51 0.34 0.36 0.46 0.42 0.40 3.9..量i y并计算得10101022i i i ii=1i=1i=10.038, 1.6158,0.2474x y x y===∑∑∑.(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为2186m.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.附:相关系数i i(1.377)()nx x y yr--=≈∑.2.(2020年高考数学课标Ⅱ卷文科·)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i,y i)(i=1,2,…,20),其中x i和y i分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160iix==∑,2011200iiy==∑,202180iixx=-=∑(,2021)9000iiy y=-=∑(,201)800iiix yx y=--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i,y i)(i=1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r)ni ix yx y--∑((≈1.414.考点03 独立性检验1.(2022年全国高考甲卷(文)·)甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:准点班次数 未准点班次数 A 240 20 B21030(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有0090的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,()2P K k …0.100 0.050 0.010 k2.7063.8416.6352.(2020年新高考I 卷(山东卷)·)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和2SO 浓度(单位:3μg/m ),得下表: 2SOPM2.5[0,50](50,150] (150,475][0,35]32 18 4 (35,75]6 8 12 (75,115]3710(1)估计事件“该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表: 2SOPM2.5[0,150](150,475][0,75](75,115](3)根据(2)中列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,2()P K k ≥ 0.050 0.010 0.001 k3.841 6.63510.8283 .(2020新高考II 卷(海南卷)·)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM 2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM 2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM 2.5浓度与2SO 浓度有关?的附:22()()()()()n ad bc K a b c d a c b d -=++++,4.(2021年高考全国甲卷文科·)甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:一级品 二级品 合计 甲机床 150 50 200 乙机床 120 80 200 合计270130400(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++ ()2P K k ≥ 0.050 0.0100.001k 3.841 6.635 10.8285.(2020年高考数学课标Ⅲ卷文科·)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天): 锻炼人次 空气质量等级 [0,200](200,400](400,600]1(优) 2 16 25 2(良)51012的3(轻度污染) 67 84(中度污染) 72 0(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好空气质量不好附:22()()()()()n ad bcKa b c d a c b d-=++++,P(K2≥k)0.050 0.010 0.001k 3.841 6.635 10.8286.(2019年高考数学课标Ⅰ卷文科·)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:满意不满意男顾客40 10女顾客30 20(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.2()P K k…0.050 0.010 0.001 k 3.841 6.635 10.828参考答案考点01:统计案例及应用1 (2021年全国高考乙卷文科)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:122S .(1)求x ,y ,21S ,22S ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x -≥则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).【答案】(1)221210,10.3,0.036,0.04x yS S ====;(2)新设备生产产品的该项指标的均值较旧设备有显著提高. 【答案解析】:(1)9.810.31010.29.99.81010.110.29.71010x +++++++++==,10.110.410.11010.110.310.610.510.410.510.310y +++++++++==,22222222210.20.300.20.10.200.10.20.30.03610S +++++++++==,222222222220.20.10.20.30.200.30.20.10.20.0410S +++++++++==(2)依题意,0.320.15y x -==⨯==,=y x -≥,所以新设备生产产品的该项指标的均值较旧设备有显著提高.2 (2020年高考数学课标Ⅰ卷文科)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A ,B ,C ,D 四个等级.加工业务约定:对于A 级品、B 级品、C 级品,厂家每件分别收取加工费90元,50元,20元;对于D 级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲.分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表等级 A B C D频数 4020 20 20乙分厂产品等级的频数分布表等级 A B C D频数 2817 34 21(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?【答案】(1)甲分厂加工出来的A级品的概率为0.4,乙分厂加工出来的A级品的概率为0.28;(2)选甲分厂,理由见答案解析.【答案解析】(1)由表可知,甲厂加工出来的一件产品为A级品的概率为400.4100=,乙厂加工出来的一件产品为A级品的概率为280.28 100=;(2)甲分厂加工100件产品总利润为()()()()4090252050252020252050251500⨯-+⨯-+⨯--⨯+=元,所以甲分厂加工100件产品的平均利润为15元每件;乙分厂加工100件产品的总利润为()()()()2890201750203420202150201000⨯-+⨯-+⨯--⨯+=元,所以乙分厂加工100件产品的平均利润为10元每件.故厂家选择甲分厂承接加工任务.3 (2019年高考数学课标Ⅲ卷文科)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下实验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据实验数据分别得到如下直方图:的记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70. (1)求乙离子残留百分比直方图中的a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用改组区间的中点值为代表). 【答案】【答案解析】:(1)C 为事件:“乙离子残留在体内的百分比不低于5.5”, 根据直方图得到P (C )的估计值为0.70. 则由频率分布直方图得: 0.200.150.70.050.1510.7a b ++=⎧⎨++=-⎩, 解得乙离子残留百分比直方图中0.35a =,0.10b =. (2)估计甲离子残留百分比的平均值为:20.1530.2040.3050.2060.1070.05 4.05x =⨯+⨯+⨯+⨯+⨯+⨯=甲.乙离子残留百分比的平均值为:30.0540.150.1560.3570.280.156x =⨯+⨯+⨯+⨯+⨯+⨯=乙.4 (2019年高考数学课标Ⅱ卷文科)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.y 的分组[0.20,0)-[0,0.20)[0.20,0.40)[0.40,0.60)[0.60,0.80)企业数 2 24 53 147 (1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602≈. 【答案】【答案解析】:(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为1470.21100+=.产值负增长的企业频率为20.02100=. 用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%.(2)1(0.1020.10240.30530.50140.707)0.30100y =-⨯+⨯+⨯+⨯+⨯=,()52211100i i i s n y y ==-∑222221(0.40)2(0.20)240530.20140.407100⎡⎤=-⨯+-⨯+⨯+⨯+⨯⎣⎦ =0.0296,0.020.17s ==≈,所以,这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.5.(2022新高考全国II 卷·)在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表); (2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率;(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001). 【答案】(1)47.9岁; (2)0.89; (3)0.0014.【答案解析】:(1)平均年龄(50.001150.002250.012350.017450.023x =⨯+⨯+⨯+⨯+⨯ 550.020650.017750.006850.002)1047.9+⨯+⨯+⨯+⨯⨯=(岁). (2)设A ={一人患这种疾病的年龄在区间[20,70)},所以()1()1(0.0010.0020.0060.002)1010.110.89P A P A =-=-+++⨯=-=.(3)设{B =任选一人年龄位于区间}[40,50),{C =任选一人患这种疾病}, 则由条件概率公式可得 ()0.1%0.023100.0010.23(|)0.00143750.0014()16%0.16P BC P C B P B ⨯⨯⨯====≈.考点02相关关系与回归分析1.(2022年高考全国乙卷(文)·)某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:2m )和材积量(单位:3m ),得到如下数据: 样本号i 12345678910总和根部横截面积i x0.04 0.06 0.04 0.08 0.08 0050050.07 0.07 0.06 0.6材积量i y0.25 0.40 0.22 0.54 0.51 0.34 0.36 0.46 0.42 0.40 3.9并计算得10101022ii i i i=1i=1i=10.038, 1.6158,0.2474xy x y ===∑∑∑.(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量; (2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为2186m .已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.附:相关系数ii( 1.377)()nx x y y r --=≈∑.【答案】(1)20.06m ;30.39m (2)0.97..(3)31209m【答案解析】:【小问1详解】样本中10棵这种树木的根部横截面积的平均值0.60.0610x == 样本中10棵这种树木的材积量的平均值 3.90.3910y == 据此可估计该林区这种树木平均一棵的根部横截面积为20.06m , 平均一棵的材积量为30.39m 【小问2详解】()()1010iii i10x x y y x y xyr ---==∑∑0.01340.970.01377==≈≈则0.97r ≈ 【小问3详解】设该林区这种树木的总材积量的估计值为3m Y , 又已知树木的材积量与其根部横截面积近似成正比, 可得0.06186=0.39Y,解之得3=1209m Y . 则该林区这种树木总材积量估计为31209m2.(2020年高考数学课标Ⅱ卷文科·)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i i y ==∑,202180i ix x =-=∑(,2021)9000i i y y =-=∑(,201)800i i i x y x y =--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.的附:相关系数r)niix y x y --∑((≈1.414.【答案】(1)12000;(2)0.94;(3)详见答案解析【答案解析】(1)样区野生动物平均数为201111200602020ii y ==⨯=∑, 地块数为200,该地区这种野生动物的估计值为2006012000⨯= (2)样本(,)i i x y (i =1,2,…,20)的相关系数为20()()0.943iix x y y r --===≈∑(3)由(2)知各样区的这种野生动物的数量与植物覆盖面积有很强的正相关性, 由于各地块间植物覆盖面积差异很大,从俄各地块间这种野生动物的数量差异很大, 采用分层抽样的方法较好地保持了样本结构与总体结构得以执行,提高了样本的代表性, 从而可以获得该地区这种野生动物数量更准确的估计.【点晴】本题主要考查平均数的估计值、相关系数的计算以及抽样方法的选取,考查学生数学运算能力,是一道容易题.考点03 独立性检验1.(2022年全国高考甲卷(文)·)甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:准点班次数 未准点班次数 A 240 20 B21030(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有0090的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,()2P K k …0.100 0.050 0.010 k2.7063.8416.635【答案】(1)A ,B 两家公司长途客车准点的概率分别为1213,78(2)有 【答案解析】根据表中数据,A 共有班次260次,准点班次有240次, 设A 家公司长途客车准点事件为M ,则24012()26013P M ==; B 共有班次240次,准点班次有210次, 设B 家公司长途客车准点事件为N , 则210()28074P N ==. A 家公司长途客车准点的概率为1213; B 家公司长途客车准点的概率为78. (2)列联表准点班次数未准点班次数 合计A 240 20 260B 210 30 240 合计4505050022()()()()()n ad bc K a b c d a c b d -=++++=2500(2403021020) 3.205 2.70626024045050⨯⨯-⨯≈>⨯⨯⨯,根据临界值表可知,有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关. 2.(2020年新高考I 卷(山东卷)·)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和2SO 浓度(单位:3μg/m ),得下表: 2SOPM2.5[0,50](50,150] (150,475][0,35]32 18 4 (35,75]6812(75,115]3 7 10(1)估计事件“该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表: 2SOPM2.5[0,150](150,475][0,75](75,115](3)根据(2)中列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,2()P K k ≥ 0.050 0.010 0.001 k3.841 6.63510.828【答案】(1)0.64;(2)答案见答案解析;(3)有.【答案解析】:(1)由表格可知,该市100天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的天数有32618864+++=天,所以该市一天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的概率为640.64100=; (2)由所给数据,可得22⨯列联表为:2SO2.5PM[]0,150(]150,475合计[]0,7564 16 80 (]75,11510 10 20 合计 7426100(3)根据22⨯列联表中的数据可得的222()100(64101610)()()()()80207426n ad bc K a b c d a c b d -⨯⨯-⨯==++++⨯⨯⨯36007.4844 6.635481=≈>, 因为根据临界值表可知,有99%的把握认为该市一天空气中 2.5PM 浓度与2SO 浓度有关. 3 .(2020新高考II 卷(海南卷)·)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM 2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM 2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM 2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,【答案】(1)0.64;(2)答案见答案解析;(3)有.【答案解析】:(1)由表格可知,该市100天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的天数有32618864+++=天,所以该市一天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的概率为640.64100=; (2)由所给数据,可得22⨯列联表为:2SO2.5PM[]0,150(]150,475合计[]0,7564 16 80 (]75,11510 10 20 合计 7426100(3)根据22⨯列联表中的数据可得222()100(64101610)()()()()80207426n ad bc K a b c d a c b d -⨯⨯-⨯==++++⨯⨯⨯36007.4844 6.635481=≈>, 因为根据临界值表可知,有99%的把握认为该市一天空气中 2.5PM 浓度与2SO 浓度有关. 【题目栏目】统计\相关关系、回归分析与独立性检验\独立性检验4.(2021年高考全国甲卷文科·)甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:一级品 二级品 合计 甲机床 150 50 200 乙机床 120 80 200 合计270130400(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++ ()2P K k ≥ 0.050 0.0100.001k 3.841 6.635 10.828【答案】(1)75%;60%;的(2)能.答案解析:(1)甲机床生产的产品中的一级品的频率为15075% 200=,乙机床生产的产品中的一级品的频率为12060% 200=.(2)()22400150801205040010 6.63527013020020039K⨯-⨯==>>⨯⨯⨯,故能有99%的把握认为甲机床的产品与乙机床的产品质量有差异.5.(2020年高考数学课标Ⅲ卷文科·)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次空气质量等级[0,200](200,400] (400,600]1(优) 216 252(良) 510 123(轻度污染) 67 84(中度污染) 72 0(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好空气质量不好附:22()()()()()n ad bcKa b c d a c b d-=++++,P(K2≥k)0.050 0.010 0.001 k 3.841 6.635 10.828【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09;(2)350;(3)有,理由见答案解析.【答案解析】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43100++=,等级为2的概率为510120.27100++=,等级为3的概率为6780.21100++=,等级为4的概率为7200.09100++=;(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100⨯+⨯+⨯=(3)22⨯列联表如下:人次400≤人次400>空气质量不好 3337 空气质量好 228()221003383722 5.820 3.84155457030K ⨯⨯-⨯=≈>⨯⨯⨯,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.6.(2019年高考数学课标Ⅰ卷文科·)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:满意 不满意 男顾客 40 10 女顾客3020(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异? 附:22()()()()()n ad bc K a b c d a c b d -=++++.2()P K k …0.050 0.010 0.001 k3.8416.63510.828【答案】【答案解析】(1)由调查数据,男顾客中对该商场服务满意的比率为400.850=,因此男顾客对该商场服务满意的概率的估计值为0.8.女顾客中对该商场服务满意的比率为300.650=,因此女顾客对该商场服务满意的概率的估计值为0.6.(2)22100(40203010)4.76250507030K⨯⨯-⨯=≈⨯⨯⨯.由于4.762 3.841>,故有95%的把握认为男、女顾客对该商场服务的评价有差异.。

2019年高考数学理科数学概率与统计分类汇编

2019年高考数学理科数学概率与统计分类汇编

2019年高考数学理科数学概率与统计1.【2019年高考全国Ⅲ卷理数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A .0.5 B .0.6 C .0.7D .0.8【答案】C【解析】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C .2.【2019年高考全国Ⅱ卷理数】演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差D .极差 【答案】A【解析】设9位评委评分按从小到大排列为123489x x x x x x <<<<<.则①原始中位数为5x ,去掉最低分1x ,最高分9x 后剩余2348x x x x <<<<,中位数仍为5x ,A 正确; ②原始平均数1234891()9x x x x x x x =<<<<<,后来平均数23481()7x x x x x '=<<<,平均数受极端值影响较大,∴x 与x '不一定相同,B 不正确; ③2222111[()()()]9q S x x x x x x =-+-++-,22222381[()()()]7s x x x x x x '=-'+-'++-',由②易知,C 不正确;④原极差91x x =-,后来极差82x x =-,显然极差变小,D 不正确.故选A . 3.【2019年高考浙江卷】设0<a <1,则随机变量X 的分布列是Xa 1P131313则当a 在(0,1)内增大时, A .()D X 增大B .()D X 减小C .()D X 先增大后减小D .()D X 先减小后增大【解析】方法1:由分布列得1()3aE X +=, 则2222111111211()(0)()(1)()333333926a a a D X a a +++=-⨯+-⨯+-⨯=-+, 则当a 在(0,1)内增大时,()D X 先减小后增大.故选D .方法2:则222221(1)222213()()()0[()]3399924a a a a D X E X E X a +-+=-=++-==-+,则当a 在(0,1)内增大时,()D X 先减小后增大.故选D .4.【2019年高考江苏卷】已知一组数据6,7,8,8,9,10,则该组数据的方差是______________. 【答案】53【解析】由题意,该组数据的平均数为678891086+++++=,所以该组数据的方差是22222215[(68)(78)(88)(88)(98)(108)]63-+-+-+-+-+-=. 5.【2019年高考全国Ⅱ卷理数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______________. 【答案】0.98【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【解析】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10201040++=,所以该站所有高铁平均正点率约为39.20.9840=. 6.【2019年高考全国Ⅰ卷理数】甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是______________. 【答案】0.18【解析】前四场中有一场客场输,第五场赢时,甲队以4:1获胜的概率是30.60.50.520.108,⨯⨯⨯=前四场中有一场主场输,第五场赢时,甲队以4:1获胜的概率是220.40.60.520.072,⨯⨯⨯=综上所述,甲队以4:1获胜的概率是0.1080.0720.18.q =+=7.【2019年高考全国Ⅲ卷理数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70. (1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表). 【答案】(1)a =0.35,b =0.10;(2)甲、乙离子残留百分比的平均值的估计值分别为4.05,6.00. 【解析】(1)由已知得0.70=a +0.20+0.15,故a =0.35. b =1–0.05–0.15–0.70=0.10.(2)甲离子残留百分比的平均值的估计值为 2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05. 乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.8.【2019年高考全国Ⅱ卷理数】11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束. (1)求P (X =2);(2)求事件“X =4且甲获胜”的概率.【答案】(1)0.5;(2)0.1.【解析】(1)X =2就是10∶10平后,两人又打了2个球该局比赛结束, 则这2个球均由甲得分,或者均由乙得分. 因此P (X =2)=0.5×0.4+(1–0.5)×(1–0.4)=0.5.(2)X =4且甲获胜,就是10∶10平后,两人又打了4个球该局比赛结束, 且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分. 因此所求概率为[0.5×(1–0.4)+(1–0.5)×0.4]×0.5×0.4=0.1.9.【2019年高考天津卷理数】设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望; (2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率. 【答案】(1)分布列见解析,()2E X =;(2)20243. 【分析】本小题主要考查离散型随机变量的分布列与数学期望,互斥事件和相互独立事件的概率计算公式等基础知识.考查运用概率知识解决简单实际问题的能力.满分13分.【解析】(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23,故2~(3,)3X B ,从而3321()C ()(),0,1,2,333kkkP X k k -===.所以,随机变量X 的分布列为X0 1 2 3P127 29 49 827随机变量X 的数学期望()323E X =⨯=.(2)设乙同学上学期间的三天中7:30之前到校的天数为Y , 则2~(3,)3Y B ,且{3,1}{2,0}M X Y X Y =====. 由题意知事件{3,1}X Y ==与{2,0}X Y ==互斥,且事件{3}X =与{1}Y =,事件{2}X =与{0}Y =均相互独立, 从而由(1)知()({3,1}{2,0})P M P X Y X Y =====(3,1)(2,0)P X Y P X Y ===+== (3)(1)(2)(0)P X P Y P X P Y ===+==824120279927243=⨯+⨯=. 10.【2019年高考北京卷理数】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:支付金额(元)支付方式(0,1000](1000,2000]大于2000仅使用A 18人 9人 3人 仅使用B10人14人1人(1)从全校学生中随机抽取1人,估计该学生上个月A ,B 两种支付方式都使用的概率;(2)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由.【答案】(1)0.4;(2)分布列见解析,E (X )=1;(3)见解析.【解析】(1)由题意知,样本中仅使用A 的学生有18+9+3=30人,仅使用B 的学生有10+14+1=25人,A ,B 两种支付方式都不使用的学生有5人.故样本中A ,B 两种支付方式都使用的学生有100−30−25−5=40人.所以从全校学生中随机抽取1人,该学生上个月A ,B 两种支付方式都使用的概率估计为400.4100=. (2)X 的所有可能值为0,1,2.记事件C 为“从样本仅使用A 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”,事件D 为“从样本仅使用B 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”. 由题设知,事件C ,D 相互独立,且93141()0.4,()0.63025P C P D ++====. 所以(2)()()()0.24P X P CD P C P D ====,(1)()P X P CD CD == ()()()()P C P D P C P D =+ 0.4(10.6)(10.4)0.6=⨯-+-⨯0.52=,(0)()()()0.24P X P CD P C P D ====.所以X 的分布列为X 0 1 2 P0.240.520.24故X 的数学期望()00.2410.5220.241E X =⨯+⨯+⨯=.(3)记事件E 为“从样本仅使用A 的学生中随机抽查3人,他们本月的支付金额都大于2000元”. 假设样本仅使用A 的学生中,本月支付金额大于2000元的人数没有变化, 则由上个月的样本数据得33011()C 4060P E ==. 答案示例1:可以认为有变化. 理由如下:P (E )比较小,概率比较小的事件一般不容易发生.一旦发生,就有理由认为本月的支付金额大于2000元的人数发生了变化,所以可以认为有变化. 答案示例2:无法确定有没有变化.理由如下: 事件E 是随机事件,P (E )比较小,一般不容易发生, 但还是有可能发生的,所以无法确定有没有变化.11.【2019年高考全国Ⅰ卷理数】为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性. 【答案】(1)分布列见解析;(2)(i)证明见解析,(ii) 45 127p =,解释见解析. 【解析】X 的所有可能取值为1,0,1-.(1)(1)P X αβ=-=-,(0)(1)(1)P X αβαβ==+--,(1)(1)P X αβ==-,所以X 的分布列为X1- 0 1P(1)αβ-(1)(1)αβαβ+-- (1)αβ-(2)(i )由(1)得0.4,0.5,0.1a b c ===.因此110.40.5 0.1i i i i p p p p -+=++,故110.1()0.4()i i i i p p p p +--=-, 即114()i i i i p p p p +--=-. 又因为1010p p p -=≠, 所以1{}(0,1,2,,7)i i p p i +-=为公比为4,首项为1p 的等比数列.(ii )由(i )可得88776100p p p p p p p p =-+-++-+877610()()()p p p p p p =-+-++-81413p -=.由于8=1p ,故18341p =-,所以44433221101 (411()327 )(5())p p p p p p p p p p-=-+-+-+=-=.4p表示最终认为甲药更有效的概率,由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为410.0039 257p=≈,此时得出错误结论的概率非常小,说明这种试验方案合理.。

(完整版)2019高考分类汇编概率与统计(原卷版)

(完整版)2019高考分类汇编概率与统计(原卷版)

概率与统计1.【 2019 年高考全国Ⅲ卷理数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学珍宝,并称为中国古典小说四大名著.某中学为认识本校学生阅读四大名著的状况,随机检查了100 位学生,此中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80 位,阅读过《西游记》且阅读过《红楼梦》的学生共有60 位,则该检阅读过《西游记》的学生人数与该校学生总数比值的预计值为A. B .C.D.2.【 2019 年高考全国Ⅱ卷理数】演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从 9 个原始评分中去掉 1 个最高分、1 个最低分,获得 7 个有效评分. 7 个有效评分与 9 个原始评分对比,不变的数字特点是A .中位数B .均匀数C.方差D.极差3.【 2019 年高考浙江卷】设0< a< 1,则随机变量X 的散布列是X0a1P 111 333则当 a 在( 0,1)内增大时,A.D(X)增大B.D(X)减小C.D( X )先增大后减小D.D ( X )先减小后增大4.【 2019年高考江苏卷】已知一组数据6, 7, 8, 8,9, 10,则该组数据的方差是______________ .5.【 2019年高考全国Ⅱ卷理数】我国高铁发展快速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为,有 20 个车次的正点率为,有 10 个车次的正点率为,则经停该站高铁列车全部车次的均匀正点率的预计值为______________.6.【 2019 年高考全国Ⅰ卷理数】甲、乙两队进行篮球决赛,采纳七场四胜制(当一队博得四场成功时,该队获胜,决赛结束).依据先期比赛成绩,甲队的主客场安排挨次为“主主客客主客主”.设甲队主场取胜的概率为0.6 ,客场取胜的概率为,且各场比赛结果互相独立,则甲队以 4 ∶ 1 获胜的概率是______________.7.【 2019 年高考全国Ⅲ卷理数】为认识甲、乙两种离子在小鼠体内的残留程度,进行以下试验:将200 只小鼠随机分红 A ,B 两组,每组100 只,此中 A 组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液,每只小鼠给服的溶液体积同样、摩尔浓度同样.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.依据试验数据分别获得以下直方图:记 C 为事件:“乙离子残留在体内的百分比不低于”,依据直方图获得P( C)的预计值为.(1)求乙离子残留百分比直方图中a,b 的值;(2)分别预计甲、乙离子残留百分比的均匀值(同一组中的数据用该组区间的中点值为代表).8.【 2019 年高考全国Ⅱ卷理数】11 分制乒乓球比赛,每赢一球得 1 分,当某局打成10:10 平后,每球互换发球权,先多得 2 分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假定甲发球时甲得分的概率为,乙发球时甲得分的概率为,各球的结果互相独立.在某局两方10:10 平后,甲先发球,两人又打了X 个球该局比赛结束.(1)求 P( X=2);(2)求事件“X=4 且甲获胜”的概率.9.【 2019 年高考天津卷理数】设甲、乙两位同学上学时期,每日7: 30 以前到校的概率均为2.假定甲、3乙两位同学到校状况互不影响,且任一起学每日到校状况互相独立.(1)用 X 表示甲同学上学时期的三天中7: 30以前到校的天数,求随机变量X 的散布列和数学希望;(2)设 M 为事件“上学时期的三天中,甲同学在7: 30 以前到校的天数比乙同学在7: 30 以前到校的天数恰很多 2”,求事件M发生的概率.10.【 2019 年高考北京卷理数】改革开放以来,人们的支付方式发生了巨大转变.最近几年来,挪动支付已成为主要支付方式之一.为认识某校学生上个月 A ,B 两种挪动支付方式的使用状况,从全校学生中随机抽取了 100 人,发现样本中 A , B 两种支付方式都不使用的有5人,样本中仅使用 A 和仅使用 B 的学生的支付金额散布状况以下:支付金额(元)(0, 1000](1000, 2000]大于 2000支付方式仅使用 A18人9人3人仅使用 B10人14人1人( 1)从全校学生中随机抽取 1 人,预计该学生上个月 A , B 两种支付方式都使用的概率;( 2)从样本仅使用 A 和仅使用 B 的学生中各随机抽取1人,以 X 表示这 2 人中上个月支付金额大于1000 元的人数,求X 的散布列和数学希望;( 3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用 A 的学生中,随机抽查 3 人,发现他们本月的支付金额都大于2000元.依据抽查结果,可否定为样本仅使用 A 的学生中本月支付金额大于 2000 元的人数有变化?说明原由.11.【 2019 年高考全国Ⅰ卷理数】为治疗某种疾病,研制了甲、乙两种新药,希望知道哪一种新药更有效,为此进行动物试验.试验方案以下:每一轮选用两只白鼠对药效进行对照试验.关于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当此中一种药治愈的白鼠比另一种药治愈的白鼠多 4 只时,就停止试验,并以为治愈只数多的药更有效.为了方便描绘问题,商定:关于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得 1 分,乙药得1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得 1 分,甲药得1分;若都治愈或都未治愈则两种药均得0 分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.( 1)求X的散布列;( 2)若甲药、乙药在试验开始时都给予 4 分,p i(i0,1,L ,8) 表示“甲药的累计得分为i 时,最后认为甲药比乙药更有效”的概率,则p0 0, p8 1 , p i ap i 1bp i cp i 1 (i1,2,L ,7) ,此中a P( X1) ,b P(X 0),cP( X1).假定,0.8 .(i) 证明:{ p i 1p i } (i0,1,2,L,7)为等比数列;(ii) 求p4,并依据p4的值解说这类试验方案的合理性.优良模拟试题12.【广西桂林市、崇左市2019届高三放学期二模联考】在某项测试中,丈量结果听从正态散布N (1, 2 )(0) ,若 P(01) 0.4 ,则 P(02)A.B.C.D.13.【河南省洛阳市2019 届高三第三次一致考试】已知某地域中小学生人数和近视状况分别如图甲和图乙所示.为了认识该地域中小学生的近视形成原由,用分层抽样的方法抽取2% 的学生进行检查,则样本容量和抽取的高中生近视人数分别为A .100, 10B .100, 20C. 200, 10D. 200, 2014.【陕西省 2019 届高三年级第三次联考】同时投掷 2 枚质地均匀的硬币 4 次,设 2 枚硬币均正面向上的次数为 X ,则 X 的数学希望是A .1B .235C.D.2215.【江西省新八校 2019 届高三第二次联考】某学校高一年级1802 人,高二年级 1600人,高三年级1499人,先采纳分层抽样的方法从中抽取98 名学生参加全国中学生禁毒知识比赛,则在高一、高二、高三三个年级中抽取的人数分别为A .35,33,30B .36,32,30C.36,33,29D.35,32,3116.【浙江省三校2019 年 5 月第二次联考】已知甲口袋中有 3 个红球和 2 个白球,乙口袋中有 2 个红球和 3个白球,现从甲、乙口袋中各随机拿出一个球并互相互换,记互换后甲口袋中红球的个数为,则E( )1413A.B.5578C.D.3317.【福建省泉州市2019 届高三第二次( 5 月 )质检】已知某样本的容量为50,均匀数为70,方差为 75.现发此刻采集这些数据时,此中的两个数据记录有误,一个错将80 记录为 60,另一个错将70 记录为 90.在对错误的数据进行改正后,从头求得样本的均匀数为x ,方差为s2,则A .x70, s275B .x70, s275C.x70, s275D.x70, s27518.【广东省汕头市2019 届高三第二次模拟考试( B 卷 )】在某次高中学科比赛中,4000 名考生的参赛成绩统计以下图,60 分以下视为不及格,若同一组中数据用该组区间中点作代表,则以下说法中有误的是A .成绩在[70,80]分的考生人数最多B.不及格的考生人数为1000 人C.考生比赛成绩的均匀分约70.5 分D .考生比赛成绩的中位数为75 分19.【天津市南开中学2019 届高三模拟试题】《中国诗词大会》是央视推出的一档以“赏中华诗词,寻文化基因,品生活之美”为主旨的大型文化类比赛节目,邀请全国各个年纪段、各个领域的诗词喜好者共同参加诗词知识比拼.“百人团”由一百多位来自全国各地的选手构成,成员上至古稀老人,下至垂髫小儿,人数依照年纪分组统计以下表:分组(年纪)[7,20)[20,40)[40,80)频数(人)185436者的人数;( 2)在( 1)中抽出的 6 人中,任选 2 人参加一对一的抗衡比赛,求这 2 人来自同一年纪组的概率.20.【 2019 北京市通州区三模】某企业五机器的售状况,企业随机采集了一个月售的相关数据,企业定同一机器售价钱同样,分整理获得下表:机器型第一第二第三第四第五售(万元)10050200200120售量(台)521058利率利率是指:一台机器售价钱减去出厂价钱获得的利与机器售价钱的比.( 1)从企业本月出的机器中随机一台,求台机器利率高于0.2 的概率;(2)从企业本月出的售价 20 万元的机器中随机取2台,求两台机器的利率不一样的概率;(3)假每机器利率不,售一台第一机器利x1万元,售一台第二机器利x2万元,⋯,售一台第五机器利x5,依照上表数据,随机售一台机器利的希望E( x) ,x x1 x2 x3 x4x5,判断 E( x) 与 x 的大小.(不要求明)5(完整版)2019高考分类汇编概率与统计(原卷版)21.【江西省新八校2019 届高三第二次联考】某种水果依照果径大小可分为四类:标准果、优良果、精选果、礼物果.某采买商从采买的一批水果中随机抽取100 个,利用水果的等级分类标准获得的数据如下:等级标准果优良果精选果礼物果个数10304020(1)若将频次是为概率,从这100个水果中有放回地随机抽取4个,求恰巧有2个水果是礼物果的概率;(结果用分数表示)(2)用样本预计整体,果园老板提出两种购销方案给采买商参照,方案1:不分类卖出,单价为20 元/ kg.方案2:分类卖出,分类后的水果售价以下:等级标准果优良果精选果礼物果售价 (元 /kg)16182224从采买单的角度考虑,应当采纳哪一种方案?( 3)用分层抽样的方法从这100 个水果中抽取 10 个,再从抽取的10 个水果中随机抽取 3 个,X表示抽取的是精选果的数目,求X的散布列及数学希望E( X ) .1111 / 11。

2019年高考数学试题分类汇编概率附答案详解

2019年高考数学试题分类汇编概率附答案详解

2019年高考数学试题分类汇编概率一、选择题.1、(2019年高考全国I 卷文科6)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生答案:C解析:组距为10,所以选出号码为等差数列,公差为10,故选C2、(2019年高考全国I 卷理科6)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .1116答案:A解析:一共有6426=种可能,其中满足恰有3个阳爻的有2036=C 种,概率为1656420=故选A 3、(2019年高考全国II 卷文科4)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为 A .23B .35 C .25D .15答案:B解析:设5只兔子为A,B,C,D,E,其中A,B,C 为测量过指标的取出3只所有情况:ABC 、ABD 、ABE 、ACD 、ACE 、ADE 、BCD 、BCE 、BDE 、CDE 共10种满足条件的有6种:ABD 、ABE 、ACD 、ACE 、BCD 、BCE 故概率为53=p 故答案选B 4、(2019年高考全国II 卷理科5)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A .中位数B .平均数C .方差D .极差 答案:A解析:9个数的中位数与去掉两个数后的7个数的中位数相同.故答案选A5、(2019年高考全国III 卷文科3)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是A .16B .14C .13D .12答案:D解析:两位男生和两位女生排成一列,共有44A 种站法,其中两位女生相邻的站法共有3322A A 种,所以两位女生相邻的概率是21123412312443322=⨯⨯⨯⨯⨯⨯⨯=A A A 。

历年(2019-2023)高考数学真题专项(概率与统计选择题及填空题)汇编(附答案)

历年(2019-2023)高考数学真题专项(概率与统计选择题及填空题)汇编(附答案)

历年(2019-2023)高考数学真题专项(概率与统计选择题及填空题)汇编考点01:排列组合与二项式定理一选择题:1.(2023年新课标全国Ⅰ卷)某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有________种(用数字作答). 2.(2020年高考课标Ⅱ卷理科)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.二、填空题1.(2023年天津卷)在6312x x ⎛⎫- ⎪⎝⎭的展开式中,2x 项的系数为_________. 2.(2021年高考浙江卷·)已知多项式344321234(1)(1)x x x a x a x a x a -++=++++,则1a =___________,234a a a ++=___________3.(2020年高考课标Ⅲ卷理科)262()x x+的展开式中常数项是__________(用数字作答).4.(2020年浙江省高考数学试卷)设()2345125345612 x a a x a x a x a x a x +=+++++,则a 5=________;a 1+a 2 +a 3=________.5.(2022新高考全国I 卷·)81()y x y x ⎛⎫-+ ⎪⎝⎭展开式中26x y 的系数为________________(用数字作答). 6.(2021高考天津)在6312x x ⎛⎫+ ⎪⎝⎭的展开式中,6x 的系数是__________.7.(2021高考北京)在341()x x-的展开式中,常数项为__________.8.(2020天津高考)在522x x ⎛⎫+ ⎪⎝⎭的展开式中,2x 的系数是_________.9.(2019·浙江·)在二项式9)x +的展开式中,常数项是 ,系数为有理数的项的个数是 .10.(2019·天津·理·)83128x x ⎛⎫- ⎪⎝⎭的展开式中的常数项为 ..的考点02 事件概率1.(2023年天津卷)甲乙丙三个盒子中装有一定数量黑球和白球,其总数之比为5:4:6.这三个盒子中黑球占总数的比例分别为40%,25%,50%.现从三个盒子中各取一个球,取到的三个球都是黑球的概率为_________;将三个盒子混合后任取一个球,是白球的概率为_________.2.(2022年高考全国甲卷数学(理)·)从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________.3.(2022年高考全国乙卷数学(理))从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.4.(2021高考天津·)甲、乙两人在每次猜谜活动中各猜一个谜语,若一方猜对且另一方猜错,则猜对的一方获胜,否则本次平局,已知每次活动中,甲、乙猜对的概率分别为56和15,且每次活动中甲、乙猜对与否互不影响,各次活动也互不影响,则一次活动中,甲获胜的概率为____________,3次活动中,甲至少获胜2次的概率为______________.5.(2020天津高考·)已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________.6.(2020江苏高考·)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____.7.(2019·上海·)某三位数密码锁,每位数字在90-数字中选取,其中恰有两位数字相同的概率是_______.8.(2019·江苏·第6题)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 .考点03 随机事件分布列1.(2020年浙江省高考数学试卷)一个盒子里有1个红1个绿2个黄四个相同的球,每次拿一个,不放回,拿出红球即停,设拿出黄球的个数为ξ,则(0)P ξ==_______;()E ξ=______.的2.(2022年浙江省高考数学试题)现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为ξ,则(2)P ξ==__________,()E ξ=_________.3.(2019·全国Ⅰ·理·)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主” .设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是 .4.(2021年高考浙江卷)袋中有4个红球m 个黄球,n 个绿球.现从中任取两个球,记取出的红球数为ξ,若取出的两个球都是红球的概率为16,一红一黄的概率为13,则m n -=___________,()E ξ=___________.5.(2022新高考全国II 卷).已知随机变量X 服从正态分布()22,N σ,且(2 2.5)0.36P X <≤=,则( 2.5)P X >=____________.参考答案考点01:排列组合与二项式定理一选择题:1.(2023年新课标全国Ⅰ卷)某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有________种(用数字作答). 【答案】64【答案解析】:(1)当从8门课中选修2门,则不同的选课方案共有144116C C =种; (2)当从8门课中选修3门,①若体育类选修课1门,则不同的选课方案共有1244C C 24=种; ②若体育类选修课2门,则不同的选课方案共有2144C C 24=种; 综上所述:不同的选课方案共有16242464++=种. 故答案为:64.2.(2020年高考课标Ⅱ卷理科)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种. 【答案】36【答案解析】: 4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学∴先取2名同学看作一组,选法有:246C = 现在可看成是3组同学分配到3个小区,分法有:336A = 根据分步乘法原理,可得不同的安排方法6636⨯=种 故答案为:36. 二、填空题1.(2023年天津卷)在6312x x ⎛⎫- ⎪⎝⎭的展开式中,2x 项的系数为_________.【答案】60【答案解析】:展开式的通项公式()()6361841661C 212C kkk kk kk k T x x x ---+⎛⎫=-=-⨯⨯⨯ ⎪⎝⎭, 令1842k -=可得,4k =,则2x 项的系数为()4644612C 41560--⨯⨯=⨯=.故答案为:60.2.(2021年高考浙江卷·)已知多项式344321234(1)(1)x x x a x a x a x a -++=++++,则1a =___________,234a a a ++=___________.【答案】(1). 5; (2). 10.【答案解析】:332(1)331x x x x -=-+-, 4432(1)4641x x x x x +=++++,所以12145,363a a =+==-+=,34347,110a a =+==-+=,所以23410a a a ++=故答案为5,10.3.(2020年高考课标Ⅲ卷理科)262()x x+的展开式中常数项是__________(用数字作答).【答案】240【答案解析】: 622x x ⎛⎫+ ⎪⎝⎭其二项式展开通项: ()62612rrrr C xx T -+⎛⎫⋅⋅ ⎪⎝⎭=1226(2)r rr r xC x --⋅=⋅ 1236(2)r r r C x -=⋅当1230r -=,解得4r =∴622x x ⎛⎫+ ⎪⎝⎭的展开式中常数项是:664422161516240C C ⋅=⋅=⨯=.故答案为:240.【点睛】本题考查二项式定理,利用通项公式求二项展开式中的指定项,解题关键是掌握()na b +的展开通项公式1C rn rr r n T ab -+=,考查了分析能力和计算能力,属于基础题.4.(2020年浙江省高考数学试卷)设()2345125345612 x a a x a x a x a x a x +=+++++,则a 5=________;a 1+a 2 +a 3=________.【答案】(1).80 (2).122【答案解析】:5(12)x +的通项为155(2)2rr r r r r T C x C x +==,令4r =,则444455280T C x x ==,580a ∴=;113355135555222122a a a C C C ∴++=++=5.(2022新高考全国I 卷·)81()y x y x ⎛⎫-+ ⎪⎝⎭展开式中26x y 的系数为________________(用数字作答). 【答案】‐28【答案解析】:因为()()()8881=y y x y x y x y x x⎛⎫-++-+ ⎪⎝⎭, 所以()81y x y x ⎛⎫-+ ⎪⎝⎭的展开式中含26x y 的项为6265352688C 28y x y C x y x y x-=-, ()81y x y x ⎛⎫-+ ⎪⎝⎭的展开式中26x y 的系数为‐28故答案为:‐28 6.(2021高考天津)在6312x x ⎛⎫+ ⎪⎝⎭的展开式中,6x 的系数是__________.【答案】160.的【答案解析】:6312x x ⎛⎫+ ⎪⎝⎭的展开式的通项为()636184166122rrrr r r r T C x C x x ---+⎛⎫=⋅=⋅ ⎪⎝⎭, 令1846r -=,解得3r =, 所以6x 的系数是3362160C =.故答案:160.7.(2021高考北京)在341()x x-的展开式中,常数项为__________.【答案】4- 【答案解析】:的展开式的通项令1240r -=,解得, 故常数项为.8.(2020天津高考)在522x x ⎛⎫+ ⎪⎝⎭的展开式中,2x 的系数是_________.【答案】10【答案解析】因为522x x ⎛⎫+ ⎪⎝⎭的展开式的通项公式为()5531552220,1,2,3,4,5rr r rr r r T C x C x r x --+⎛⎫==⋅⋅= ⎪⎝⎭,令532r -=,解得1r =.所以2x 的系数为15210C ⨯=.故答案为:10.9.(2019·浙江·)在二项式9)x +的展开式中,常数项是 ,系数为有理数的项的个数是 .【答案】,5【答案解析】9)x展开式的通项为919(0,1,2,,9)r r r r T C x r -+== ,当0r =时,可得二项式9)x +展开式的常数项是0919T C =.若系数为有理数,则(9)r -为偶数即可,故r 可取1,3,4,5,7,9,即246810,,,,T T T T T 共5项.10.(2019·天津·理·)83128x x ⎛⎫- ⎪⎝⎭的展开式中的常数项为 .【答案】28【答案解析】:83128x x ⎛⎫- ⎪⎝⎭的展开式中的常数项为2268311(2)286428864C x x ⎛⎫⋅⋅-=⨯⨯= ⎪⎝⎭. 考点02 事件概率1.(2023年天津卷)甲乙丙三个盒子中装有一定数量黑球和白球,其总数之比为5:4:6.这三个盒子中黑球占总数的比例分别为40%,25%,50%.现从三个盒子中各取一个球,取到的三个球都是黑球的概率为_________;将三个盒子混合后任取一个球,是白球的概率为_________.为的【答案】①. 0.05 ②.35##0.6 【答案解析】:设甲、乙、丙三个盒子中的球的个数分别为5,4,6n n n ,所以总数为15n , 所以甲盒中黑球个数为40%52n n ⨯=,白球个数为3n ; 甲盒中黑球个数为25%4n n ⨯=,白球个数为3n ; 甲盒中黑球个数为50%63n n ⨯=,白球个数为3n ;记“从三个盒子中各取一个球,取到的球都是黑球”为事件A ,所以,()0.40.250.50.05P A =⨯⨯=;记“将三个盒子混合后取出一个球,是白球”为事件B , 黑球总共有236n n n n ++=个,白球共有9n 个, 所以,()93155n P B n ==.故答案为:0.05;35. 2.(2022年高考全国甲卷数学(理)·)从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________. 【答案】635. 【答案解析】从正方体的8个顶点中任取4个,有48C 70n ==个结果,这4个点在同一个平面的有6612m =+=个,故所求概率1267035m P n ===.故答案为:635.3.(2022年高考全国乙卷数学(理))从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.【答案】310【答案解析】:从5名同学中随机选3名的方法数为35C 10= 甲、乙都入选的方法数为13C 3=,所以甲、乙都入选的概率310P = 故答案为:3104.(2021高考天津·)甲、乙两人在每次猜谜活动中各猜一个谜语,若一方猜对且另一方猜错,则猜对的一方获胜,否则本次平局,已知每次活动中,甲、乙猜对的概率分别为56和15,且每次活动中甲、乙猜对与否互不影响,各次活动也互不影响,则一次活动中,甲获胜的概率为____________,3次活动中,甲至少获胜2次的概率为______________. 【答案】①.23 ②. 2027【答案解析】:由题可得一次活动中,甲获胜的概率为564253⨯=; 则在3次活动中,甲至少获胜2次的概率为23232122033327C ⎛⎫⎛⎫⨯⨯+=⎪ ⎪⎝⎭⎝⎭.故答案为:23;2027.5.(2020天津高考·)已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________. 【答案】 (1).16 (2). 23【答案解析】甲、乙两球落入盒子的概率分别为11,23,且两球是否落入盒子互不影响,所以甲、乙都落入盒子概率为111236⨯=,甲、乙两球都不落入盒子的概率为111(1(1)233-⨯-=,所以甲、乙两球至少有一个落入盒子的概率为23.故答案为:16;23.6.(2020江苏高考·)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____. 【答案】19【答案解析】根据题意可得基本事件数总为6636⨯=个. 点数和为5的基本事件有()1,4,()4,1,()2,3,()3,2共4个. ∴出现向上的点数和为5的概率为41369P ==.故答案为:19.7.(2019·上海·)某三位数密码锁,每位数字在90-数字中选取,其中恰有两位数字相同的概率是_______.【答案】27100【答案解析】法一:100271031923110=⋅⋅=C C C P (分子含义:选相同数字×选位置×选第三个数字) 法二:100271013310110=+-=P C P (分子含义:三位数字都相同+三位数字都不同) 8.(2019·江苏·第6题)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 . 【答案】710的【答案解析】从5名学生中抽取2名学生,共有10种方法,其中不含女生的方法有3种,因此所求概率为371=1010-.考点03 随机事件分布列1.(2020年浙江省高考数学试卷)一个盒子里有1个红1个绿2个黄四个相同的球,每次拿一个,不放回,拿出红球即停,设拿出黄球的个数为ξ,则(0)P ξ==_______;()E ξ=______. 【答案】(1).13(2). 1 【答案解析】:因为0ξ=对应事件为第一次拿红球或第一次拿绿球,第二次拿红球, 所以1111(0)4433P ξ==+⨯=, 随机变量0,1,2ξ=,212111211(1)434324323P ξ==⨯+⨯⨯+⨯⨯=,111(2)1333P ξ==--=,所以111()0121333E ξ=⨯+⨯+⨯=.2.(2022年浙江省高考数学试题)现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为ξ,则(2)P ξ==__________,()E ξ=_________. 【答案】 ①.1635, ②. 127##517【答案解析】:从写有数字1,2,2,3,4,5,6的7张卡片中任取3张共有37C 种取法,其中所抽取的卡片上的数字的最小值为2的取法有112424C C C +种,所以11242437C C C 16(2)C 35P ξ+===,由已知可得ξ的取值有1,2,3,4,2637C 15(1)C 35P ξ===,16(2)35P ξ==,,()()233377C 31134C 35C 35P P ξξ======所以15163112()1234353535357E ξ=⨯+⨯+⨯+⨯=,故答案为:1635,127.3.(2019·全国Ⅰ·理·)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主” .设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是 .【答案】0.18 【答案解析】:因为甲队以4:1获胜,故一共进行5场比赛,且第5场为甲胜,前面4场比赛甲输一场,若第1场或第2场输1场,则12120.60.40.50.60.072P C =⨯⨯⨯⨯=, 若第3场或第4场输1场,则21220.60.50.50.60.108P C =⨯⨯⨯⨯=,所以甲以4:1获胜的概率是120.18P P +=.4.(2021年高考浙江卷)袋中有4个红球m 个黄球,n 个绿球.现从中任取两个球,记取出的红球数为ξ,若取出的两个球都是红球的概率为16,一红一黄的概率为13,则m n -=___________,()E ξ=___________.【答案】 (1). 1 (2). 89【答案解析】:2244224461(2)366m n m n m n C P C C C ξ++++++====⇒=,所以49m n ++=, ()P 一红一黄114244133693m m n C C m m m C ++⋅====⇒=, 所以2n =, 则1m n -=. 由于11245522991455105(2),(1),(0)63693618C C C P P P C C ξξξ⋅⨯========== 155158()2106918399E ξ∴=⨯+⨯+⨯=+=.故答案为1;89.5.(2022新高考全国II 卷).已知随机变量X 服从正态分布()22,N σ,且(2 2.5)0.36P X <≤=,则( 2.5)P X >=____________.【答案】0.14 【答案解析】 因为()22,X N σ ,所以()()220.5P X P X <=>=,因此()()()2.522 2.50.50.360.14P X P X P X >=>-<≤=-=. 故答案为:0.14.。

2019年江苏卷、全国卷数学高考试题(含答案)

2019年江苏卷、全国卷数学高考试题(含答案)

2019年高考数学试卷(江苏卷)数学Ⅰ参考公式:样本数据12,,,n x x x …的方差()2211n i i s x x n ==-∑,其中11n i i x x n ==∑.柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高. 锥体的体积13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则AB = ▲ .2.已知复数(2i)(1i)a ++的实部为0,其中i 为虚数单位,则实数a 的值是 ▲ . 3.下图是一个算法流程图,则输出的S 的值是 ▲ .4.函数y =的定义域是 ▲ .5.已知一组数据6,7,8,8,9,10,则该组数据的方差是 ▲ .6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 ▲ .7.在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是▲ .8.已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是 ▲ . 9.如图,长方体1111ABCD A BC D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是 ▲.10.在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是 ▲ .11.在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 ▲ .12.如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是 ▲ .13.已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 ▲ . 14.设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,()f x =(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若a =3c ,bcos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值. 16.(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC . 求证:(1)A 1B 1∥平面DEC 1; (2)BE ⊥C 1E .17.(本小题满分14分)如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1. 已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.18.(本小题满分16分)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米). (1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.19.(本小题满分16分)设函数()()()(),,,f x x a x b x c a b c =---∈R 、()f 'x 为f (x )的导函数. (1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值; (3)若0,01,1a b c =<=,且f (x )的极大值为M ,求证:M ≤427. 20.(本小满分16分)定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }*()n ∈N 满足:245324,440a a a a a a =-+=,求证:数列{a n }为“M -数列”; (2)已知数列{b n }*()n ∈N 满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n }*()n ∈N ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +成立,求m 的最大值.2019年(江苏卷)数学Ⅰ·参考答案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分. 1.【答案】{1,6}.【解析】由题意利用交集的定义求解交集即可. 【详解】由题知,{1,6}A B =.【点睛】本题主要考查交集的运算,属于基础题. 2.【答案】2【解析】本题根据复数的乘法运算法则先求得z ,然后根据复数的概念,令实部为0即得a 的值.【详解】2(a 2)(1i)222(2)i a ai i i a a i ++=+++=-++,令20a -=得2a =.【点睛】本题主要考查复数的运算法则,虚部的定义等知识,意在考查学生的转化能力和计算求解能力. 3. 【答案】5【解析】结合所给的流程图运行程序确定输出的值即可. 【详解】执行第一次,1,1422x S S x =+==≥不成立,继续循环,12x x =+=; 执行第二次,3,2422x S S x =+==≥不成立,继续循环,13x x =+=; 执行第三次,3,342xS S x =+==≥不成立,继续循环,14x x =+=;执行第四次,5,442xS S x =+==≥成立,输出 5.S =【点睛】识别、运行程序框图和完善程序框图的思路: (1)要明确程序框图的顺序结构、条件结构和循环结构. (2)要识别、运行程序框图,理解框图所解决的实际问题. (3)按照题目的要求完成解答并验证. 4.【答案】[-1,7]【解析】由题意得到关于x 的不等式,解不等式可得函数的定义域. 【详解】由已知得2760x x +-≥, 即2670x x --≤ 解得17x -≤≤,故函数的定义域为[-1,7].【点睛】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可. 5.【答案】53【解析】由题意首先求得平均数,然后求解方差即可. 【详解】由题意,该组数据的平均数为678891086+++++=,所以该组数据的方差是22222215[(68)(78)(88)(88)(98)(108)]63-+-+-+-+-+-=. 【点睛】本题主要考查方差的计算公式,属于基础题. 6.【答案】710【解析】先求事件的总数,再求选出的2名同学中至少有1名女同学的事件数,最后根据古典概型的概率计算公式得出答案.【详解】从3名男同学和2名女同学中任选2名同学参加志愿服务,共有2510C =种情况. 若选出的2名学生恰有1名女生,有11326C C =种情况,若选出的2名学生都是女生,有221C=种情况,所以所求的概率为617 1010 +=.【点睛】计数原理是高考考查的重点内容,考查的形式有两种,一是独立考查,二是与古典概型结合考查,由于古典概型概率的计算比较明确,所以,计算正确基本事件总数是解题的重要一环.在处理问题的过程中,应注意审清题意,明确“分类”“分步”,根据顺序有无,明确“排列”“组合”.7.【答案】y=【解析】根据条件求b,再代入双曲线的渐近线方程得出答案.【详解】由已知得222431-=,解得b=b=因为0b>,所以b=因为1a=,所以双曲线的渐近线方程为y=.【点睛】双曲线的标准方程与几何性质,往往以小题的形式考查,其难度一般较小,是高考必得分题.双曲线渐近线与双曲线标准方程中的,a b密切相关,事实上,标准方程中化1为0,即得渐近线方程.8.【答案】16【解析】由题意首先求得首项和公差,然后求解前8项和即可.【详解】由题意可得:()()()25811191470989272a a a a d a d a dS a d⎧+=++++=⎪⎨⨯=+=⎪⎩,解得:152ad=-⎧⎨=⎩,则8187840282162S a d⨯=+=-+⨯=.【点睛】等差数列、等比数列的基本计算问题,是高考必考内容,解题过程中要注意应用函数方程思想,灵活应用通项公式、求和公式等,构建方程(组),如本题,从已知出发,构建1a d,的方程组.9.【答案】10【解析】由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积.【详解】因为长方体1111ABCD A BC D-的体积为120,所以1120AB BC CC⋅⋅=,因为E为1CC的中点,所以112CE CC=,由长方体的性质知1CC⊥底面ABCD,所以CE是三棱锥E BCD-的底面BCD上的高,所以三棱锥E BCD-的体积1132V AB BC CE=⨯⋅⋅=111111201032212AB BC CC=⨯⋅⋅=⨯=.【点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.10.【答案】4【解析】将原问题转化为切点与直线之间的距离,然后利用导函数确定切点坐标可得最小距离【详解】当直线22gRr平移到与曲线4y xx=+相切位置时,切点Q即为点P到直线22gRr的距离最小.由2411yx'=-=-,得)x,y=即切点Q,则切点Q 到直线22gR r4=,故答案为:4.【点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法和公式法,利用数形结合和转化与化归思想解题. 11.【答案】(e,1)【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值可得切点坐标. 【详解】设点()00,A x y ,则00ln y x =.又1y x'=, 当0x x =时,01y x '=, 点A 在曲线ln y x =上切线为0001()y y x x x -=-, 即00ln 1xy x x -=-, 代入点(),1e --,得001ln 1ex x ---=-, 即00ln x x e =,考查函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >, 且()'ln 1H x x =+,当1x >时,()()'0,H x H x >单调递增, 注意到()H e e =,故00ln x x e =存在唯一的实数根0x e =,此时01y =,故点A 的坐标为(),1A e .【点睛】导数运算及切线的理解应注意的问题:一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.12.【答案】【解析】由题意将原问题转化为基底的数量积,然后利用几何性质可得比值.【详解】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 中点,知BF =FE =EA ,AO =OD .()()()3632AO EC AD AC AE AB AC AC AE =-=+- ()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭,得2213,22AB AC =即3,AB AC =故AB AC =的【点睛】本题考查在三角形中平面向量的数量积运算,渗透了直观想象、逻辑推理和数学运算素养.采取几何法,利用数形结合和方程思想解题. 13.【答案】10【解析】由题意首先求得tan α的值,然后利用两角和差正余弦公式和二倍角公式将原问题转化为齐次式求值的问题,最后切化弦求得三角函数式的值即可.【详解】由()tan 1tan tan tan 2tan 1tan 13tan 1tan 4αααααπααα-===-++⎛⎫+ ⎪-⎝⎭, 得23tan 5tan 20αα--=,解得tan 2α=,或1tan 3α=-.sin 2sin 2cos cos 2sin 444πππααα⎛⎫+=+ ⎪⎝⎭)22222sin cos cos sin sin 2cos 2sin cos αααααααα⎫+-=+⎪+⎝⎭222tan 1tan =2tan 1ααα⎫+-⎪+⎝⎭, 当tan 2α=时,上式22221221⎫⨯+-⎪+⎝⎭ 当1tan 3α=-时,上式=22112133=210113⎛⎫⎛⎫⎛⎫⨯-+--⎪ ⎪ ⎪⎝⎭⎝⎭⎪ ⎪⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭综上,sin 24πα⎛⎫+= ⎪⎝⎭【点睛】本题考查三角函数的化简求值,渗透了逻辑推理和数学运算素养.采取转化法,利用分类讨论和转化与化归思想解题.14.【答案】13⎡⎢⎣⎭【解析】分别考查函数()f x 和函数()g x 图像的性质,考查临界条件确定k 的取值范围即可.【详解】当(]0,2x ∈时,()f x =即()2211,0.x y y -+=≥又()f x 为奇函数,其图象关于原点对称,其周期为4,如图,函数()f x 与()g x 的图象,要使()()f x g x =在(0,9]上有8个实根,只需二者图象有8个交点即可.当1g()2x =-时,函数()f x 与()g x 的图象有2个交点; 当g()(2)x k x =+时,()g x 的图象为恒过点(-2,0)的直线,只需函数()f x 与()g x 的图象有6个交点.当()f x 与()g x 图象相切时,圆心(1,0)到直线20kx y k -+=的距离为1,1=,得k =,函数()f x 与()g x 的图象有3个交点;当g()(2)x k x =+过点(1,1)时,函数()f x 与()x 的图象有6个交点,此时13k =,得13k =.综上可知,满足()()f x g x =在(0,9]上有8个实根的k的取值范围为13⎡⎢⎣⎭. 【点睛】本题考点为参数的取值范围,侧重函数方程的多个实根,难度较大.不能正确画出函数图象的交点而致误,根据函数的周期性平移图象,找出两个函数图象相切或相交的临界交点个数,从而确定参数的取值范围. 二、解答题 15.【答案】(1)3c =;(2)5【解析】(1)由题意结合余弦定理得到关于c 的方程,解方程可得边长c 的值;(2)由题意结合正弦定理和同角三角函数基本关系首先求得cos B 的值,然后由诱导公式可得sin()2B π+的值.【详解】(1)因为23,3a cb B ===, 由余弦定理222cos 2a c b B ac +-=,得2222(3)323c c c c+-=⨯⨯,即213c =.所以c =(2)因为sin cos 2A Ba b =, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而cos B =.因此πsin cos 2B B ⎛⎫+==⎪⎝⎭【点睛】本题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.16.【答案】(1)见解析;(2)见解析.【解析】(1)由题意结合几何体的空间结构特征和线面平行的判定定理即可证得题中的结论; (2)由题意首先证得线面垂直,然后结合线面垂直证明线线垂直即可. 【详解】(1)因为D ,E 分别为BC ,AC 的中点,所以ED ∥AB .在直三棱柱ABC-A 1B 1C 1中,AB ∥A 1B 1, 所以A 1B 1∥ED .又因为ED ⊂平面DEC 1,A 1B 1⊄平面DEC 1, 所以A 1B 1∥平面DEC 1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC .因为三棱柱ABC-A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC . 又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .【点睛】本题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.17.【答案】(1)22143x y +=;(2)3(1,)2E --. 【解析】(1)由题意分别求得a ,b 的值即可确定椭圆方程;(2)解法一:由题意首先确定直线1AF 的方程,联立直线方程与圆的方程,确定点B 的坐标,联立直线BF 2与椭圆的方程即可确定点E 的坐标;解法二:由题意利用几何关系确定点E 的纵坐标,然后代入椭圆方程可得点E 的坐标. 【详解】(1)设椭圆C 的焦距为2c .因为F 1(-1,0),F 2(1,0),所以F 1F 2=2,c =1.又因为DF 1=52,AF 2⊥x 轴,所以DF 232==, 因此2a =DF 1+DF 2=4,从而a =2由b 2=a 2-c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1.将x =1代入圆F 2的方程(x -1) 2+y 2=16,解得y =±4.因为点A 在x 轴上方,所以A (1,4). 又F 1(-1,0),所以直线AF 1:y =2x +2.由()2222116y x x y =+⎧⎪⎨-+=⎪⎩,得256110x x +-=, 解得1x =或115x =-.将115x =-代入22y x =+,得125y =-,因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由223(1)4143y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-.将1x =-代入3(1)4y x =-,得32y =-.因此3(1,)2E --.解法二:由(1)知,椭圆C :22143x y +=.如图,连结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB ,从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B , 所以∠A =∠BF 1E ,从而EF 1∥F 2A . 因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(-1,0),由221143x x y =-⎧⎪⎨+=⎪⎩,得32y =±.又因为E 是线段BF 2与椭圆的交点,所以32y =-. 因此3(1,)2E --.【点睛】本题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力. 18.【答案】(1)15(百米);(2)见解析;(3)17+. 【解析】解:解法一:(1)过A 作AE BD ⊥,垂足为E .利用几何关系即可求得道路PB 的长; (2)分类讨论P 和Q 中能否有一个点选在D 处即可.(3)先讨论点P 的位置,然后再讨论点Q 的位置即可确定当d 最小时,P 、Q 两点间的距离. 解法二:(1)建立空间直角坐标系,分别确定点P 和点B 的坐标,然后利用两点之间距离公式可得道路PB 的长;(2)分类讨论P 和Q 中能否有一个点选在D 处即可.(3)先讨论点P 的位置,然后再讨论点Q 的位置即可确定当d 最小时,P 、Q 两点间的距离. 【详解】解法一:(1)过A 作AE BD ⊥,垂足为E . 由已知条件得,四边形ACDE 为矩形, 6, 8DE BE AC AE CD =====. 因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==. 所以12154cos 5BD PB PBD ===∠. 因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知10AD ==,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角.所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置. 当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设P 1为l 上一点,且1PB AB ⊥,由(1)知,115PB =,此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB>=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,CQ ===此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+因此,d 最小时,P ,Q 两点间的距离为17+. 解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3. 因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25. 从而A (4,3),B (−4,−3),直线AB 的斜率为34. 因为PB ⊥AB ,所以直线PB 的斜率为43-, 直线PB 的方程为42533y x =--.所以P (−13,9),15PB ==.因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求. ②若Q 在D 处,连结AD ,由(1)知D (−4,9),又A (4,3), 所以线段AD :36(44)4y x x =-+-≤≤.在线段AD 上取点M (3,154),因为5OM =<=, 所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置. 当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设P 1为l 上一点,且1PB AB ⊥,由(1)知,115PB =,此时()113,9P -; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15.再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由15(4)AQ a ==>,得a =4+Q (4+9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4+9)时,d 最小,此时P ,Q 两点间的距离4(13)17PQ =+-=+因此,d 最小时,P ,Q 两点间的距离为17+.【点睛】本题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力. 19.【答案】(1)2a =;(2)见解析;(3)见解析. 【解析】(1)由题意得到关于a 的方程,解方程即可确定a 的值;(2)由题意首先确定a ,b ,c 的值从而确定函数的解析式,然后求解其导函数,由导函数即可确定函数的极小值.(3)由题意首先确定函数的极大值M 的表达式,然后可用如下方法证明题中的不等式: 解法一:由函数的解析式结合不等式的性质进行放缩即可证得题中的不等式; 解法二:由题意构造函数,求得函数在定义域内的最大值, 因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-. 令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭. 令()0g'x =,得1x =.列表如下:所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭.所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤.【详解】(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-. 因为(4)8f =,所以3(4)8a -=,解得2a =.(2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-, 从而2()3()3a b f 'x x b x +⎛⎫=-- ⎪⎝⎭.令()0f 'x =,得x =b 或23a bx +=. 因为2,,3a ba b +,都在集合{3,1,3}-中,且a b ≠, 所以21,3,33a ba b +===-. 此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-.()0f 'x =所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>,则有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得121133b b x x ++==.所以()f x 的极大值()1M f x =. 解法一:()321111(1)M f x x b x bx ==-++()()221111211(1)32(1)3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭ ()2321(1)(1)227927b b b b b --+++=++23(1)2(1)(1)2272727b b b b +-+=-+(1)24272727b b +≤+≤.因此427M ≤.解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-. 令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭. 令()0g'x =,得13x =.列表如下:所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭. 所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤.【点睛】本题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.20.【答案】(1)见解析;(2)①b n =n ()*n ∈N ;②5.【解析】(1)由题意分别求得数列的首项和公比即可证得题中的结论;(2)①由题意利用递推关系式讨论可得数列{b n }是等差数列,据此即可确定其通项公式;②由①确定k b 的值,将原问题进行等价转化,构造函数,结合导函数研究函数的性质即可求得m 的最大值. 【详解】(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M —数列”.(2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-, 当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列.因此,数列{b n }的通项公式为b n =n ()*n N ∈.②由①知,b k =k ,*k N ∈.因为数列{c n }为“M –数列”,设公比为q ,所以c 1=1,q >0.因为c k ≤b k ≤c k +1,所以1k k q k q -≤≤,其中k =1,2,3,…,m . 当k =1时,有q ≥1;当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x -=. ()0f 'x =因为ln 2ln 8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==.取q =k =1,2,3,4,5时,ln ln kq k≤,即k k q ≤, 经检验知1k q k -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216, 所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.【点睛】本题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.数学Ⅱ(附加题)21.【答案】(1)115106⎡⎤⎢⎥⎣⎦;(2)121,4λλ==. 【解析】(1)利用矩阵的乘法运算法则计算2A 的值即可;(2)首先求得矩阵的特征多项式,然后利用特征多项式求解特征值即可.【详解】(1)因为3122⎡⎤=⎢⎥⎣⎦A ,所以231312222⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦A=3312311223222122⨯+⨯⨯+⨯⎡⎤⎢⎥⨯+⨯⨯+⨯⎣⎦=115106⎡⎤⎢⎥⎣⎦. (2)矩阵A 的特征多项式为231()5422f λλλλλ--==-+--.令()0f λ=,解得A 的特征值121,4λλ==. 【点睛】本题主要考查矩阵的运算、特征值等基础知识,考查运算求解能力.22.【答案】(1(2)2.【解析】(1)由题意,在OAB △中,利用余弦定理求解AB 的长度即可; (2)首先确定直线的倾斜角和直线所过的点的极坐标,然后结合点B 的坐标结合几何性质可得点B 到直线l 的距离.【详解】(1)设极点为O .在△OAB 中,A (3,4π),B 2π),由余弦定理,得AB (2)因为直线l 的方程为sin()34ρθπ+=,则直线l 过点)2π,倾斜角为34π.又)2B π,所以点B 到直线l 的距离为3sin()242ππ⨯-=.【点睛】本题主要考查曲线的极坐标方程等基础知识,考查运算求解能力. 23.【答案】1{|1}3x x x <->或.【解析】由题意结合不等式的性质零点分段即可求得不等式的解集. 【详解】当x <0时,原不等式可化为122x x -+->,解得x <–13: 当0≤x ≤12时,原不等式可化为x +1–2x >2,即x <–1,无解; 当x >12时,原不等式可化为x +2x –1>2,解得x >1. 综上,原不等式的解集为1{|1}3x x x <->或.【点睛】本题主要考查解不等式等基础知识,考查运算求解和推理论证能力.【必做题】24.【答案】(1)5n =;(2)-32.【解析】(1)首先由二项式展开式的通项公式确定234,,a a a 的值,然后求解关于n 的方程可得n 的值; (2)解法一:利用(1)中求得的n 的值确定有理项和无理项从而可得a ,b 的值,然后计算223a b -的值即可;解法二:利用(1)中求得的n 的值,由题意得到(51的展开式,最后结合平方差公式即可确定223a b -的值.【详解】(1)因为0122(1)C C C C 4n n nn n n n x x x x n +=++++≥,,所以2323(1)(1)(2)C ,C 26n nn n n n n a a ---====, 44(1)(2)(3)C 24nn n n n a ---==. 因为23242a a a =,所以2(1)(2)(1)(1)(2)(3)[]26224n n n n n n n n n ------=⨯⨯,解得5n =.(2)由(1)知,5n =.5(1(1n =02233445555555C C C C C C =++++a =+解法一:因为*,a b ∈N ,所以024135555555C 3C 9C 76,C 3C 9C 44a b =++==++=, 从而222237634432a b -=-⨯=-.解法二:50122334455555555(1C C (C (C (C (C (=+++++02233445555555C C C C C C =--+-.因为*,a b ∈N ,所以5(1a =-因此225553((1(1(2)32a b a a -=+-=⨯=-=-.【点睛】本题主要考查二项式定理、组合数等基础知识,考查分析问题能力与运算求解能力. 25.【答案】(1)见解析;(2)见解析.【解析】(1)由题意首先确定X 可能的取值,然后利用古典概型计算公式求得相应的概率值即可确定分布列; (2)将原问题转化为对立事件的问题求解()P X n >的值,据此分类讨论①.b d =,②.0,1b d ==,③.0,2b d ==,④.1,2b d ==四种情况确定X 满足X n >的所有可能的取值,然后求解相应的概率值即可确定()P X n ≤的值.【详解】(1)当1n =时,X的所有可能取值是12X的概率分布为22667744(1),(C 15C 15P X P X ======,22662222(2),(C 15C 15P X P X ======.(2)设()A a b ,和()B c d ,是从n M 中取出的两个点. 因为()1()P X n P X n ≤=->,所以仅需考虑X n >的情况. ①若b d =,则AB n ≤,不存在X n >的取法;②若01b d ==,,则AB =X n >当且仅当AB 0 a c n ==,或 0a n c ==,,有2种取法;③若02b d ==,,则AB =≤3n ≥n ≤,所以X n >当且仅当AB =,此时0 a c n ==,或 0a n c ==,,有2种取法; ④若12b d ==,,则AB =X n >当且仅当AB 0 a c n ==,或 0a n c ==,,有2种取法.综上,当X n >时,X22242442(,(C C n n P X P X ++====.因此,2246()1((1C n P X n P X P X +≤=-=-==-.【点睛】本题主要考查计数原理、古典概型、随机变量及其概率分布等基础知识,考查逻辑思维能力和推理论证能力.2019年全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B = A .(-∞,1) B .(-2,1)C .(-3,-1)D .(3,+∞)2.设z =-3+2i ,则在复平面内z 对应的点位于 A .第一象限 B .第二象限C .第三象限D .第四象限3.已知AB =(2,3),AC =(3,t ),BC =1,则AB BC ⋅= A .-3 B .-2C .2D .34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设r R α=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为 ABCD5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差 D .极差6.若a >b ,则A .ln(a −b )>0B .3a <3bC .a 3−b 3>0D .│a │>│b │7.设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面8.若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A .2B .3C .4D .89.下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=│cos 2x │B .f (x )=│sin 2x │C .f (x )=cos│x │D .f (x )= sin │x │10.已知α∈(0,2π),2sin 2α=cos 2α+1,则sin α=A .15B .5C 3D .511.设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为A BC .2D 12.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦二、填空题:本题共4小题,每小题5分,共20分.13.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为__________.14.已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________.15.ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为__________. 16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)三、解答题:共70分。

2019年高考真题概率统计专题总结 小题+大题 详细答案解析

2019年高考真题概率统计专题总结 小题+大题 详细答案解析

2019年高考数学真题——概率统计专题整理1.(2019年全国卷1,文数6题,满分5分)某学校为了解1 000名新生的身体素 质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽 取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是A . 8号学生B . 200号学生C .616号学生D .815号学生2.(2019年全国卷1,理数6题,满分5分)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻 组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在 所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516 B . 1132 C . 2132D . 1116 3.(2019年全国卷2,文数4题,满分5分)生物实验室有5只兔子,其中只有3 只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标 的概率为A .23 B . 35 C . 25 D . 154.(2019年全国卷2,文数14、理数13题,满分5分)我国高铁发展迅速,技术 先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有2 0个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车 所有车次的平均正点率的估计值为 .5.(2019年全国卷2,理数5题,满分5分)演讲比赛共有9位评委分别给出某选 手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个 最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特 征是A .中位数B .平均数C .方差D .极差6.(2019年全国卷3,文数3题,满分5分)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是A .16B .14C .13D .127.(2019年全国卷3,文数4、理数3题,满分5分)《西游记》《三国演义》 《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著. 某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读 过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80 位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A .0.5B .0.6C .0.7D .0.88.(2019年江苏卷5题,满分5分)已知一组数据6,7,8,8,9,10,则该组数据的方差是 ▲ .9.(2019年江苏卷6题,满分5分)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 ▲ . 10.(2019年浙江卷7题,满分4分)设01α<<,则随机变量X 的分布列是则当α在()0,1内增大时,.A ()D X 增大 B .()D X 减小C . ()D X 先增大后减小 D .()D X 先减小后增大11.(2019年全国卷1,文数17题,满分12分)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++.12.(2019年全国卷1,理数21题,满分12分)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性.13.(2019年全国卷2,文数19题,满分12分)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.018.602≈.14.(2019年全国卷2,理数18题,满分12分)11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.P X=;(1)求()2(2)求事件“4X=且甲获胜”的概率.15.(2019年全国卷3,文数、理数17题,满分12分)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到()P C的估计值为0.70.(1)求乙离子残留百分比直方图中,a b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).16.(2019年北京卷,文数17题,满分12分)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B 的学生的支付金额分布情况如下:(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2 000元的概率;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B 的学生中随机抽查1人,发现他本月的支付金额大于2 000元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于2 000元的人数有变化?说明理由.17.(2019年北京卷,理数17题,满分13分)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:都使用的概率;(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.18.(2019年天津卷,文数15题,满分13分)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(Ⅰ)应从老、中、青员工中分别抽取多少人?(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记A B C D E F.享受情况如下表,其中“○”表示享受,“×”表示不为,,,,,享受.现从这6人中随机抽取2人接受采访.(ii)设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.19.(2019年天津卷,理数16题,满分13分)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X的分布列和数学期望;(Ⅱ)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.答案解析1.【答案】C .【解析】依题意可知组距间隔为100010100d ==,各组间被抽到号码的绝对值差应为间隔d 的倍数,即能被10整除.只有C 项:616465710-=能被10整除,故选C .2.【答案】A .【解析】易知出现阳爻的概率服从二项分布16,2B ⎛⎫⎪⎝⎭,∴每卦6爻中恰好有3个阳爻的概率333611512216P C ⎛⎫⎛⎫=-= ⎪⎪⎝⎭⎝⎭,故选A . 3.【答案】B .【解析】“恰有2只测量过该指标”指的是事件“两只通过指标且另外一只没有通过指标”,∴21323535C C P C ==,故选B .4.【答案】0.98.【解析】依题意共有10201040++=个车次,∴经停该站高铁列车所有车次的平均正点率的估计值为1020100.970.980.990.98404040⨯+⨯+⨯=. 5.【答案】A .【解析】根据一组数据中中位数的找法可知,极端值变化不改变整组数据的中位数,故选A . 6.【答案】D .【解析】把两名女同学“捆绑”在一起看成一个特殊的同学有222A =种方法,再与剩下的两名男同学全排列共有336A =种方法,而两男两女四名同学所有的排列方法有4424A =种,故两位女同学相邻的概率23234412A A P A ⋅==,故选D . 7.【答案】C .【解析】阅读过《西游记》且阅读过《红楼梦》的学 生共有60位,而阅读过《红楼梦》的学生共有80位, 由此可知只阅读过红楼梦的学生有20人。

2019年高考数学真题分类汇编:专题(12)概率和统计(理科)及答案

2019年高考数学真题分类汇编:专题(12)概率和统计(理科)及答案

专题十二 概率和统计1.【2018高考重庆,理3】重庆市2019年各月的平均气温(o C )数据的茎叶图如下:0891258200338312则这组数据的中位数是( )A 、19B 、20C 、21.5D 、23 【答案】B.【解析】从茎叶图知所有数据为8,9,12,15,18,20,20,23,23,28,31,32,中间两个数为20,20,故中位数为20,选B..【考点定位】本题考查茎叶图的认识,考查中位数的概念.【名师点晴】本题通过考查茎叶图的知识,考查样本数据的数字特征,考查学生的数据处理能力.2.【2018高考广东,理4】袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球。

从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( ) A .1 B. 2111 C. 2110 D. 215【答案】B .【解析】从袋中任取2个球共有215105C =种,其中恰好1个白球1个红球共有1110550C C =种,所以从袋中任取的2个球恰好1个白球1个红球的概率为5010=10521,故选B . 【考点定位】排列组合,古典概率.【名师点睛】本题主要考查排列组合,古典概率的计算和转化与化归思想应用、运算求解能力,解答此题关键在于理解所取2球恰好1个白球1个红球即是分步在白球和红球各取1个球的组合,属于容易题.3.【2018高考新课标1,理4】投篮测试中,每人投3次,至少投中2次才能通过测试。

已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )(A )0.648 (B )0.432 (C )0.36 (D )0.312【答案】A【解析】根据独立重复试验公式得,该同学通过测试的概率为22330.60.40.6C ⨯+=0.648,故选A.【考点定位】本题主要考查独立重复试验的概率公式与互斥事件和概率公式【名师点睛】解答本题时,先想到所求事件是恰好中3次与恰好中2次两个互斥事件的和,而这两个事件又是实验3次恰好分别发生3次和2次的独立重复试验,本题很好考查了学生对独立重复试验和互斥事件的理解和公式的记忆与灵活运用,是基础题,正确分析概率类型、灵活运用概率公式是解本题的关键. 4.【2018高考陕西,理11】设复数(1)z x yi =-+(,)x y R ∈,若||1z ≤,则y x ≥的概率为( )A .3142π+ B .1142π- C .112π- D .112π+ 【答案】B【考点定位】1、复数的模;2、几何概型.【名师点晴】本题主要考查的是复数的模和几何概型,属于中档题.解几何概型的试题,一般先求出实验的基本事件构成的区域长度(面积或体积),再求出事件A 构成的区域长度(面积或体积),最后代入几何概型的概率公式即可.解本题需要掌握的知识点是复数的模和几何概型的概率公式,即若z a bi =+(a 、R b ∈),则,几何概型的概率公式()P A =()()A 构成事件的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.5.【2018高考陕西,理2】某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为 ( )A .167B .137C .123D .93【答案】B【解析】该校女老师的人数是()11070%150160%137⨯+⨯-=,故选B . 【考点定位】扇形图.【名师点晴】本题主要考查的是扇形图,属于容易题.解题时一定要抓住重要字眼“女教师”,否则很容易出现错误.扇形统计图是用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形图可以很清晰地表示各部分数量同总数之间的关系.6.【2018高考湖北,理2】我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( ) A .134石 B .169石 C .338石 D .1365石 【答案】B【解析】依题意,这批米内夹谷约为169153425428=⨯石,选B. 【考点定位】用样本估计总体.【名师点睛】《九章算术》是中国古代第一部数学专著,是算经十书中最重要的一种.该书内容十分丰富,系统总结了战国、秦、汉时期的数学成就.本题“米谷粒分”是我们统计中的用样本估计总体问题.7.【2018高考安徽,理6】若样本数据1x ,2x ,⋅⋅⋅,10x 的标准差为8,则数据121x -,221x -,⋅⋅⋅,1021x -的标准 差为( )(A )8 (B )15 (C )16 (D )32 【答案】C【解析】设样本数据1x ,2x ,⋅⋅⋅,10x 8=,即方差64DX =,而数据121x -,221x -,⋅⋅⋅,1021x -的方差22(21)2264D X DX -==⨯16=.故选C.【考点定位】1.样本的方差与标准差的应用.【名师点睛】已知随机变量X 的均值、方差,求X 的线性函数Y aX b =+的均值、方差和标准差,可直接用X的均值、方差的性质求解.若随机变量X 的均值EX 、方差DX ,则数Y aX b =+的均值aEX b +、方差2a DX 、标准差.8.【2018高考湖北,理4】设211(,)X N μσ,222(,)Y N μσ,这两个正态分布密度曲线如图所示.下列结论中正确的是( )A .21()()P Y P Y μμ≥≥≥B .21()()P X P X σσ≤≤≤C .对任意正数t ,()()P X t P Y t ≤≥≤D .对任意正数t ,()()P X t P Y t ≥≥≥【答案】C【考点定位】正态分布密度曲线. 【名师点睛】正态曲线的性质①曲线在x 轴的上方,与x 轴不相交. ②曲线是单峰的,它关于直线μ=x 对称. ③曲线在μ=x 处达到峰值πσ21.④曲线与x 轴之间的面积为1.⑤当σ一定时,曲线随着μ的变化而沿x 轴平移,如图甲所示⑥μ一定时,曲线的形状由σ确定.σ越大,曲线越“矮胖”,总体分布越分散;σ越小.曲线越“瘦高”.总体分布越集中.如图乙所示.9.【2018高考福建,理4】为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:15万元家庭年支出为( )A .11.4万元B .11.8万元C .12.0万元D .12.2万元 【答案】B【解析】由已知得8.28.610.011.311.9105x ++++==(万元), 6.27.58.08.59.885y ++++==(万元),故80.76100.4a =-⨯=,所以回归直线方程为ˆ0.760.4yx =+,当社区一户收入为15万元家庭年支出为ˆ0.76150.411.8y=⨯+=(万元),故选B . 【考点定位】线性回归方程.【名师点睛】本题考查线性回归方程,要正确利用平均数公式计算和理解线性回归方程的意义,属于基础题,要注意计算的准确性.10.【2018高考湖北,理7】在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≥”的概率,2p 为事件“1||2x y -≤”的概率,3p 为事件“12xy ≤”的概率,则 ( )A .123p p p <<B .231p p p <<C .312p p p <<D .321p p p <<【答案】B【解析】因为,[0,1]x y ∈,对事件“12x y +≥”,如图(1)阴影部分1S , 对事件“1||2x y -≤”,如图(2)阴影部分2S , 对为事件“12xy ≤”,如图(3)阴影部分3S , 由图知,阴影部分的面积从下到大依次是132S S S <<,正方形的面积为111=⨯, 根据几何概型公式可得231p p p <<.(1) (2) (3) 【考点定位】几何概型.【名师点睛】对于几何概型的概率公式中的“测度”要有正确的认识,它只与大小有关,而与形状和位置无关,在解题时,要掌握“测度”为长度、面积、体积、角度等常见的几何概型的求解方法.11.【2018高考山东,理8】已知某批零件的长度误差(单位:毫米)服从正态分布()20,3N ,从中随机取 一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布()2,N μσ ,则()68.26%P μσξμσ-<<+= ,()2295.44%P μσξμσ-<<+=。

2019高考数学(理)真题和模拟题分类汇编-概率与统计.docx

2019高考数学(理)真题和模拟题分类汇编-概率与统计.docx

概率与统计专题1.[2019年高考全国III卷理数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A. 0.5B. 0.6C. 0.7D. 0.8【答案】C【解析】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70^100=0.7.故选C.【名师点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.2.[2019年高考全国II卷理数】演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A.中位数B.平均数C.方差D.极差【答案】A【解析】设9位评委评分按从小到大排列为不 <吃<兀3<兀4 <忑<冯.则①原始中位数为冯,去掉最低分X1,最高分兀后剩余兀2<兀3<兀4< <忑,中位数仍为无,A正确;-1 — 1②原始平均数% = <x2<x3<x4 <X8< x9),后来平均数x' ~—{x2 < x3 < x4 < x8),平均数受极端值影响较大,•••:与7不一定相同,B不正确;1 1 — _ —® S2 = -[(%! - X)2 + (%! - X)2 ++(%-元)2], s'2 =-[(X2-X,)2+(X3-x'f++(X8-y)2],由②易知,C不正确;④原极差=冯-召,后来极差=忑-兀2,显然极差变小,D不正确.故选A.3. [2019年高考浙江卷】设OVaVl,则随机变量X的分布列是则当a 在(0,1)内增大时,A. D(X)增大【答案】D【分析】研究方差随a 变化的增大或减小规律,常用方法就是将方差用参数a 表示,应用函数知识求解. 本题根据方差与期望的关系,将方差表示为a 的二次函数,二次函数的图象和性质解题.题目有一定综合 性,注重重要知识、基础知识、运算求解能力的考查.【解析】方法1:由分布列得E(X)=匕色,则当a 在(0,1)内增大时,D(X)先减小后增大.故选D.方法 2:则 D(X) = E(X-)-E(X) = 0 + — + --^^ = ^-^-^ = -[(a--)-+~],3 3 9 9 9 2 4则当a 在(0,1)内增大时,D(X)先减小后增大.故选D.【名师点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计 算能力差,不能正确得到二次函数表达式.4. [2019年高考江苏卷】已知一组数据6, 7, 8, 8, 9, 10,则该组数据的方差是 _______________________ .【答案】|所以该组数据的方差是丄[(6-8)2 + (7 -8)2 + (8-8)2 + (8 -8)2+ (9 -8)2 + (10-8)2]=-. 635. [2019年高考全国II 卷理数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁 列车所有车次的平均正点率的估计值为 _______________ • 【答案】0.98【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【解析】由题意得,经停该高铁站的列车正点数约为10x0.97 + 20x0.98 + 10x0.99 = 39.2,其中高铁39 2 个数为10 + 20 + 10 = 40 ,所以该站所有高铁平均正点率约为=0.98 .40【名师点睛】本题考查了概率统计,渗透了数据处理和数学运算素养,侧重统计数据的概率估算,难度 不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车 总数的比值.B. £>(X)减小C. £>(X)先增大后减小D. £>(X)先减小后增大【解析】由题意,该组数据的平均数为 --------- -------- =8,6.[2019年高考全国I卷理数】甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4: 1获胜的概率是【答案】0.18【分析】本题应注意分情况讨论,即前五场甲队获胜的两种情况,应用独立事件的概率的计算公式求解•题目有一定的难度,注重了基础知识、基本计算能力及分类讨论思想的考查.【解析】前四场中有一场客场输,第五场赢时,甲队以4:1获胜的概率是0.63x0.5x0.5x2 = 0.108,前四场中有一场主场输,第五场赢时,甲队以4:1获胜的概率是0.4x0.62x0.52x2 = 0.072,综上所述,甲队以4 : 1获胜的概率是q = 0.108 + 0.072 = 0.1 &【名师点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是思维的全面性是否具备,要考虑甲队以4:1获胜的两种情况;易错点之三是是否能够准确计算.7.[2019年高考全国III卷理数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A, B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同•经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C)的估计值为0.70.(1)求乙离子残留百分比直方图中a, b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).【答案】(1) a=0.35, b=0.10; (2)甲、乙离子残留百分比的平均值的估计值分别为4.05 , 6.00.【解析】(1)由已知得0.70=a+0.20+0.15,故a-0.35.^=1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2x0.15+3x0.20+4x0.30+5x0.20+6x0.10+7x0.05=4.05.乙离子残留百分比的平均值的估计值为3x0.05+4x0.10+5x0.15+6x0.35+7x0.20+8x0.15=6.00.8.[2019年高考全国II卷理数】11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.⑴求P (X=2);(2)求事件“X=4且甲获胜”的概率.【答案】(1) 0.5; (2) 0.1.【解析】(1) X=2就是10 : 10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分.因此P (X=2) =0.5x0.44- (1-0.5) x (1-0.4) =0.5.(2) X=4且甲获胜,就是10: 10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为[0.5x (1-0.4) + (1-0.5) x0.4]x0.5x0.4=0.1.9.[2019年高考天津卷理数】设甲、乙两位同学上学期间,每天7: 30之前到校的概率均为扌.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X表示甲同学上学期间的三天中7: 30之前到校的天数,求随机变量X的分布列和数学期望;(2)设M为事件“上学期间的三天中,甲同学在7: 30之前到校的天数比乙同学在7: 30之前到校的天数恰好多2”,求事件M发生的概率.【答案】(1)分布列见解析,E(X) = 2; (2)—.243【分析】本小题主要考查离散型随机变量的分布列与数学期望,互斥事件和相互独立事件的概率计算公式等基础知识.考查运用概率知识解决简单实际问题的能力.满分13分.【解析】(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7: 30之前到校的概率均为扌,2 2 1故X ~ B(3,-),从而P(X=k) = C; (-/ (-)3-'山=0,1,2,3.所以,随机变量X的分布列为随机变量X的数学期望E(X)=3x| = 2.(2)设乙同学上学期间的三天中7: 30之前到校的天数为Y ,2则Y 〜3(3,§),且M={X=3,Y = 1}{X = 2,Y = 0}.由题意知事件{X=3,Y = 1}与{X=2,Y = 0}互斥,且事件{X = 3}与{丫 = 1},事件{X = 2}与{Y = 0}均相互独立,从而由(1)知P(M) = P({X=3,Y = 1}{X=2,Y=0})= P(X=3,Y = l) + P(X=2,Y = 0)=P(X = 3)P(y = 1) + P(X = 2)P(Y = 0)8 2 4 1 20—___ x _ | _ x ___—___27 9 9 27 243 '10.[2019年高考北京卷理数】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A, B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A, B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(1)从全校学生中随机抽取1人,估计该学生上个月A, B两种支付方式都使用的概率;(2)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人, 发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.【答案】(1) 0.4; (2)分布列见解析,E (X) =1; (3)见解析.【解析】(1)由题意知,样本中仅使用A的学生有18+9+3=30人,仅使用B的学生有10+14+1=25人,A, B两种支付方式都不使用的学生有5人.故样本中A, B两种支付方式都使用的学生有100-30-25-5=40人.40所以从全校学生中随机抽取1人,该学生上个月A, B两种支付方式都使用的概率估计为—-0.4.(2) X的所有可能值为0, 1, 2.记事件C为“从样本仅使用A的学生中随机抽取1人,该学生上个月的支付金额大于1000元”,事件D 为“从样本仅使用B的学生中随机抽取1人,该学生上个月的支付金额大于1000元”.9 + 3 14 + 1由题设知,事件C, D相互独立,且P(C) = —= 0.4, P(D) = -^- = 0.6.所以P(X -2) = P(CD) = P(C)P(D) = 0.24 ,P(X = 1) = P(CD CD)= P(C)P(D) + P(C)P(D)=0.4 x (1 — 0.6) + (1 — 0.4) x0.6= 0.52,P(X =0) = P(CD) = P(C)P(D) = 0.24 .所以X的分布列为故x 的数学期望E(X) = 0x0.24 + 1x0.52 + 2x0.24 = 1.(3)记事件E为“从样本仅使用A的学生中随机抽查3人,他们本月的支付金额都大于2000元”.假设样本仅使用A的学生中,本月支付金额大于2000元的人数没有变化,则由上个月的样本数据得P(E) = -^ =――.C: 4060答案示例1:可以认为有变化.理由如下:P (E)比较小,概率比较小的事件一般不容易发生.一旦发生,就有理由认为本月的支付金额大于2000元的人数发生了变化,所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E是随机事件,P(E)比较小,一般不容易发生,但还是有可能发生的,所以无法确定有没有变化.11.[2019年高考全国I卷理数】为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1 分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为a和0, —轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,A0 = 0,1, ,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则Po=O,卩8=1,Pi = ap-i + bp: + epi*、(i = \,2,,7),其中1), b = P(X=0), C=P(X = 1).假设« = 0.5, 0 = 0.8.(i)证明:{p i+l-Pi] G = 0,l,2, ,7)为等比数列;(ii)求A,并根据A的值解释这种试验方案的合理性.【答案】(1)分布列见解析;(2)⑴证明见解析,(ii) °4 =占,解释见解析.【解析】X的所有可能取值为-1,0,1.P(X=_l) = (l_a)0,P(X=Q) = a/3 + (l-a)(l-/3),p(X=l) = a(l_0),所以X的分布列为(2)(i)由(1)得a = 0.4,b = 0.5,c = 0.1.因此B =0.4p_i +0.5Pi +0.1p i+1,故0.1(p,+i —门)= 0.4(门一门_J, 即P M-P i=4(P i-P i-i)-又因为Pl _ Po = Pl * 0,所以{p^-p^i = 0,1,2,,7)为公比为4,首项为p的等比数列.(ii)由(i)可得ft = A-A+A-A+ +P l-Po + Po=(A-A)+(A-A)+ +(A-A)48-l=P\ •313由于A=h故0严歹二,44 _1 1所以A = (A - ft) + (ft - ^2)+(^2 - A)+(A - Po)==面•A表示最终认为甲药更有效的概率,由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为刃= 0.0039,此时得出错误结论的概率非常小,说明这种试验方案合理.12.【广西桂林市、崇左市2019届高三下学期二模联考】在某项测试中,测量结果f服从正态分布N(1Q2)Q>0),若P(0<£ <1) = 0.4,则P(0<^<2) =A. 0.4B. 0.8C. 0.6D. 0.2【答案】B【解析】由正态分布的图象和性质得P(0<^<2) = 2P(0<^<l) = 2x0.4 = 0.8.故选B.【名师点睛】本题主要考查正态分布的图象和性质,考查正态分布指定区间的概率的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.13. 【河南省洛阳市2019届高三第三次统一考试】已知某地区中小学生人数和近视情况分别如图甲和图乙本容量和抽取的高中生近视人数分别为A. 100, 10 C. 200, 10【答案】D【解析】由题得样本容量为(3500 + 2000 + 4500) x 2% = 10000 x 2% = 200 , 抽取的高中生人数为2000x2% = 40人,则近视人数为40x0.5 = 20人,故选D.14. 【陕西省2019届高三年级第三次联考】同时抛掷2枚质地均匀的硬币4次,设2枚硬币均正面向上的 次数为X,则X 的数学期望是A. 1B. 235 C. —D. 一22【答案】A【分析】先计算依次同时抛掷2枚质地均匀的硬币,恰好岀现2枚正面向上的概率,进而利用二项分 布求数学期望即可.【解析】•••一次同时抛掷2枚质地均匀的硬币,恰好出现2枚正面向上的概率为丄x 丄=-,2 2 4X~B (4丄),E (X ) = 4x - = 1.故选A.4 4【名师点睛】求离散型随机变量期望的一般方法是先求分布列,再求期望.如果离散型随机变量服从 二项分布B ~(77, p ),也可以直接利用公式E (G = np 求数学期望.15. 【江西省新八校2019届高三第二次联考】某学校高一年级1802人,高二年级1600人,高三年级1499人,先采用分层抽样的方法从中抽取98名学生参加全国中学生禁毒知识竞赛,则在高一、高二、高三 三个年级中抽取的人数分别为 【答案】B【分析】先将各年级人数凑整,从而可确定抽样比;再根据抽样比计算得到各年级抽取人数.所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样 B. 100, 20 D. 200, 20甲【解析】先将每个年级的人数凑整,得高一:1800人,高二:1600人,高三:1500人,则三个年级的总人数所占比例分别为空,—,—,49 49 49因此,各年级抽取人数分别为98x —= 36, 98x —= 32, 98x —= 30,故选B.49 49 4916.【浙江省三校2019年5月第二次联考】已知甲口袋中有3个红球和2个白球,乙口袋中有2个红球和3个白球,现从甲、乙口袋中各随机取出一个球并相互交换,记交换后甲口袋中红球的个数为则E(§) =14 13A. —B.—5 57 8C. —D.—3 3【答案】A【分析】先求出歹的可能取值及取各个可能取值时的概率,再利用E^) = ^p1+^p2+ +&门+可求得数学期望.【解析】§的可能取值为2,3,4, § = 2表示从甲口袋中取出一个红球,从乙口袋中取出一个白球,故3 3 9P(^ = 2) = -x- = —; ^ = 3表示从甲、乙口袋中各取出一个红球,或从甲、乙口袋中各取出一个白3 2 2 3 12球,故P(^ = 3) = -x-+-x-=—; ^=4表示从甲口袋中取岀一个白球,从乙口袋中取出一个红5 5 5 5 252 2 4 9 12 4 14球,故P(g = 4) = —x—= ——,所以E(^) = 2x —+ 3x —+ 4x—.故选A.5 5 25 25 25 25 517.【福建省泉州市2019届高三第二次(5月)质检】已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为元,方差为s',则A.壬= 70,『<75B.壬= 70,/>75C.壬>70,¥ <75D.壬<70,2 >75【答案】A【分析】分别根据数据的平均数和方差的计算公式,求得元,M 的值,即可得到答案.设收集的48个准确数据分别记为西,尢2,,屯8, 则 75 =命[(X] — 70)2 + (x 2 -70)2 ++ (心-70)2 + (60 -70)2 + (90 — 70)2 ]=#3 - 70『*(勺 _ 70)2 + + (x 48 - 70)2 + 500],$2 =令[(西 _ 70)2 + (花-70)2 ++(屯8 _70)2 + (80 -70)2 + (70 -70)2]=寺[(Xi — 70)2 + (x 2 — 70)2 + + (x 48- 70)2 + 100] <75 ,所以52 < 75 ■故选A.【名师点睛】本题主要考查了数据的平均数和方差的计算公式的应用,其中解答中熟记数据的平均数 和方差的公式,合理准确计算是解答的关键,着重考查了推理与运算能力,是基础题.18. 【广东省汕头市2019届高三第二次模拟考试(B 卷)】在某次高中学科竞赛中,4000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中数据用该组区间中点作代表,则下列说法中有误的 是A.成绩在[70,80]分的考生人数最多B.不及格的考生人数为1000人C.考生竞赛成绩的平均分约70.5分D.考生竞赛成绩的中位数为75分【答案】D【解析】由频率分布直方图可得,成绩在[70,80]的频率最高,因此考生人数最多,故A 正确;由频率 分布直方图可得,成绩在[40,60)的频率为0.25,因此,不及格的人数为4000x0.25 = 1000,故B 正确;由频率分布直方图可得:平均分等于45x0.1 + 55x0.15 + 65x0.2 + 75x0.3 + 85x0.15 +95x0.1 = 70.5,故C 正确;因为成绩在[40,70)的频率为0.45,由[70,80]的频率为0.3,所以中位数为70 + 10X ^Q 71.67,故D 错误.故选D.0.319. 【天津市南开中学2019届高三模拟试题】《中国诗词大会》是央视推出的一档以“赏中华诗词,寻文化 基因,品生活之美”为宗旨的大型文化类竞赛节目,邀请全国各个年龄段、各个领域的诗词爱好者共 同参与诗【解析】由题意, 可得牙=70x50 + 80-60 + 70-9050= 70,成绩(分)词知识比拼.“百人团”由一百多位来自全国各地的选手组成,成员上至古稀老人,下至垂髻小儿,人数按照年龄分组统计如下表:(1)用分层抽样的方法从“百人团”中抽取6人参加挑战,求从这三个不同年龄组中分别抽取的挑战者的人数;(2)在(1)中抽出的6人中,任选2人参加一对一的对抗比赛,求这2人来自同一年龄组的概率.4【答案】(1)1, 3 , 2 ;(2)—.【分析】(1)先求出样本容量与总体个数的比,由此利用分层抽样的方法能求出从这三个不同年龄组中分别抽取的挑战者的人数;(2)从分层抽样的方法从“百人团”中抽取6人参加挑战,这三个不同年龄组[7, 20), [20, 40), [40, 80)中分别抽取的挑战者的人数分别为1, 3, 2.从抽出的6人中,任选2人参加一对一的对抗比赛,基本事件总数= =15,这2人来自同一年龄组包含的基本事件个数为加=C; +C; = 4,由此能求出这2人来自同一年龄组的概率.【解析】(1)•••样本容量与总体个数的比是岛=岂,108 18•••样本中包含3个年龄段落的个体数分别是:年龄在[7, 20)的人数为一x 18=1,108年龄在[20, 40)的人数为—x54=3,108年龄在[40, 80)的人数为—x36=2,108•••从这三个不同年龄组[7, 20), [20, 40), [40, 80)中分别抽取的挑战者的人数分别为1, 3, 2.(2)从分层抽样的方法从“百人团”中抽取6人参加挑战,这三个不同年龄组[7, 20), [20, 40), [40, 80)中分别抽取的挑战者的人数分别为1, 3, 2.从抽出的6人中,任选2人参加一对一的对抗比赛,基本事件总数为" = C;=15,这2人来自同一年龄组包含的基本事件个数为加=C; + C; = 4,m 4/.这2人来自同一年龄组的概率P = — = —.n 1520.[2019北京市通州区三模】为调查某公司五类机器的销售情况,该公司随机收集了一个月销售的有关数据,公司规定同一类机器销售价格相同,经分类整理得到下表:利润率是指:一台机器销售价格减去出厂价格得到的利润与该机器销售价格的比值.(1)从该公司本月卖出的机器中随机选一台,求这台机器利润率高于0.2的概率;(2)从该公司本月卖出的销售单价为20万元的机器中随机选取2台,求这两台机器的利润率不同的概率;(3)假设每类机器利润率不变,销售一台第一类机器获利%!万元,销售一台第二类机器获利吃万元,…,销售一台第五类机器获利忑,依据上表统计数据,随机销售一台机器获利的期望为£(%),设元=斗+勺+ ;3 +屯+抵,试判断E(x)与无的大小.(结论不要求证明)【答案】(1) -; (2) —; (3) E(x) < x .3 21【分析】(1)先由题意确定,本月卖出机器的总数,再确定利润率高于0.2的机器总数,即可得出结果;(2)先由题意确定,销售单价为20万元的机器分别:是第一类有5台,第三类有10台,共有15台,d记两台机器的利润率不同为事件B,由P(B) = —屮即可结果;(3)先由题意确定,X可能取的值, 求出对应概率,进而可得出E(x),再由亍=再+勺+;+"+兀求出均值,比较大小,即可得出结果.【解析】(1)由题意知,本月共卖出30台机器,利润率高于0.2的是第一类和第四类,共有10台.设“这台机器利润率高于0.2”为事件4,则P(A)=|^ = |.(2)用销售总额除以销售量得到机器的销售单价,可知第一类与第三类的机器销售单价为20万,第一类有5台,第三类有10台,共有15台,随机选取2台有C :种不同方法, 两台机器的利润率不同则每类各取一台有C ;C ;°种不同方法,c 1^10设两台机器的利润率不同为事件B ,则P(3) =•因 ith J E(x) = -x8 + —x5 + -x3 + -xl0 = —;6 15 5 6 1529,所以 E(x) < x . 21. 【江西省新八校2019届高三第二次联考】某种水果按照果径大小可分为四类:标准果、优质果、精品果、礼品果.某采购商从采购的一批水果中随机抽取100个,利用水果的等级分类标准得到的数据如 下:等级 标准果优质果精品果礼品果个数10 30 40 20(1)若将频率是为概率,从这100个水果中有放回地随机抽取4个,求恰好有2个水果是礼品果的概率;(结果用分数表示)(2)用样本估计总体,果园老板提出两种购销方案给采购商参考,方案1:不分类卖出,单价为20元/kg. 方案2:分类卖出,分类后的水果售价如下:等级 标准果优质果精品果礼品果售价(元/kg)16 18 22 24从采购单的角度考虑,应该采用哪种方案?(3) 用分层抽样的方法从这100个水果中抽取10个,再从抽取的10个水果中随机抽取3个,X 表示抽取的是精品果的数量,求X 的分布列及数学期望E(X). 【答案】(1) 笺;(2)第一种方案;(3)分布列见解析,£(X) = |.625 5P(x -3) =10 + 8 30*10)佥冷,(3)由题意可得,X 可能取的值为&5,3,10【分析】(1)计算出从100个水果中随机抽取一个,抽到礼品果的概率;则可利用二项分布的概率公 式求得所求概率;(2)计算出方案2单价的数学期望,与方案1的单价进行比较,选择单价较低的方案;(3)根据分层抽样原则确定抽取的10个水果中,精品果4个,非精品果6个;则X 服从超几何分布, 利用超几何分布的概率计算公式可得到每个X 取值对应的概率,从而可得分布列;再利用数学期望的 计算公式求得结果.【解析】(1)设从100个水果中随机抽取一个,抽到礼品果的事件为4,则P(A) = ^ = |, 现有放回地随机抽取4个,设抽到礼品果的个数为X,则X~B(4,f), 所以恰好抽到2个礼品果的概率为P(X=2) = C^(j)2(|)2 =曇,(2)设方案2的单价为则单价的期望值为 13 42^) = 16x- + 18x- + 22x- + 24x- =因为E(g)>20,所以从采购商的角度考虑,应该采用第一种方案.(3) 用分层抽样的方法从100个水果中抽取10个,则其中精品果4个,非精品果6个,现从中抽取3个,则精品果的数量X 服从超几何分布,所有可能的取值为0,1,2,3,C 3 1c 2C* 1 则 P(X=0)=-^ = -; P(X=1)=-^A = -Jo ° Jo 乙P(X = 2) = ^ = A ; P (X =3)=4 = ±C ;o 10 30所以X 的分布列如下:【名师点睛】本题考查二项分布求解概率、数学期望的实际应用、超几何分布的分布列与数学期望的 求解问题,关键是能够根据抽取方式确定随机变量所服从的分布类型,从而可利用对应的概率公式求 解出概率.6 516 + 54 + 88 + 4810所以 E(X) = 0x- + lx- + 2x —+ 3x —=6 2 10 30。

2019年高考真题和模拟题分项汇编数学(理) 专题10 概率与统计 含答案解析

2019年高考真题和模拟题分项汇编数学(理) 专题10 概率与统计 含答案解析

专题10 概率与统计1.【2019年高考全国Ⅲ卷理数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A .0.5 B .0.6 C .0.7D .0.8【答案】C【解析】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C .【名师点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.2.【2019年高考全国Ⅱ卷理数】演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差D .极差 【答案】A【解析】设9位评委评分按从小到大排列为123489x x x x x x <<<<<.则①原始中位数为5x ,去掉最低分1x ,最高分9x 后剩余2348x x x x <<<<,中位数仍为5x ,A 正确;②原始平均数1234891()9x x x x x x x =<<<<<,后来平均数23481()7x x x x x '=<<<,平均数受极端值影响较大,∴x 与x '不一定相同,B 不正确; ③2222111[()()()]9q S x x x x x x =-+-++-,22222381[()()()]7s x x x x x x '=-'+-'++-',由②易知,C不正确;④原极差91x x =-,后来极差82x x =-,显然极差变小,D 不正确.故选A . 3.【2019年高考浙江卷】设0<a <1,则随机变量X 的分布列是333则当a 在(0,1)内增大时, A .()D X 增大B .()D X 减小C .()D X 先增大后减小D .()D X 先减小后增大【答案】D【分析】研究方差随a 变化的增大或减小规律,常用方法就是将方差用参数a 表示,应用函数知识求解.本题根据方差与期望的关系,将方差表示为a 的二次函数,二次函数的图象和性质解题.题目有一定综合性,注重重要知识、基础知识、运算求解能力的考查. 【解析】方法1:由分布列得1()3aE X +=, 则2222111111211()(0)()(1)()333333926a a a D X a a +++=-⨯+-⨯+-⨯=-+, 则当a 在(0,1)内增大时,()D X 先减小后增大.故选D .方法2:则222221(1)222213()()()0[()]3399924a a a a D X E X E X a +-+=-=++-==-+,则当a 在(0,1)内增大时,()D X 先减小后增大.故选D .【名师点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式.4.【2019年高考江苏卷】已知一组数据6,7,8,8,9,10,则该组数据的方差是______________. 【答案】53【解析】由题意,该组数据的平均数为678891086+++++=,所以该组数据的方差是22222215[(68)(78)(88)(88)(98)(108)]63-+-+-+-+-+-=. 5.【2019年高考全国Ⅱ卷理数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______________. 【答案】0.98【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【解析】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10201040++=,所以该站所有高铁平均正点率约为39.20.9840=. 【名师点睛】本题考查了概率统计,渗透了数据处理和数学运算素养,侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值. 6.【2019年高考全国Ⅰ卷理数】甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是______________. 【答案】0.18【分析】本题应注意分情况讨论,即前五场甲队获胜的两种情况,应用独立事件的概率的计算公式求解.题目有一定的难度,注重了基础知识、基本计算能力及分类讨论思想的考查.【解析】前四场中有一场客场输,第五场赢时,甲队以4:1获胜的概率是30.60.50.520.108,⨯⨯⨯=前四场中有一场主场输,第五场赢时,甲队以4:1获胜的概率是220.40.60.520.072,⨯⨯⨯=综上所述,甲队以4:1获胜的概率是0.1080.0720.18.q =+=【名师点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是思维的全面性是否具备,要考虑甲队以4:1获胜的两种情况;易错点之三是是否能够准确计算.7.【2019年高考全国Ⅲ卷理数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70. (1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表). 【答案】(1)a =0.35,b =0.10;(2)甲、乙离子残留百分比的平均值的估计值分别为4.05,6.00. 【解析】(1)由已知得0.70=a +0.20+0.15,故a =0.35. b =1–0.05–0.15–0.70=0.10.(2)甲离子残留百分比的平均值的估计值为 2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05. 乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.8.【2019年高考全国Ⅱ卷理数】11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束.(1)求P (X =2);(2)求事件“X =4且甲获胜”的概率. 【答案】(1)0.5;(2)0.1.【解析】(1)X =2就是10∶10平后,两人又打了2个球该局比赛结束, 则这2个球均由甲得分,或者均由乙得分. 因此P (X =2)=0.5×0.4+(1–0.5)×(1–0.4)=0.5.(2)X =4且甲获胜,就是10∶10平后,两人又打了4个球该局比赛结束, 且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分. 因此所求概率为[0.5×(1–0.4)+(1–0.5)×0.4]×0.5×0.4=0.1. 9.【2019年高考天津卷理数】设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望; (2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.【答案】(1)分布列见解析,()2E X =;(2)20243. 【分析】本小题主要考查离散型随机变量的分布列与数学期望,互斥事件和相互独立事件的概率计算公式等基础知识.考查运用概率知识解决简单实际问题的能力.满分13分.【解析】(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23,故2~(3,)3X B ,从而3321()C ()(),0,1,2,333kkkP X k k -===.所以,随机变量X 的分布列为随机变量X 的数学期望()323E X =⨯=. (2)设乙同学上学期间的三天中7:30之前到校的天数为Y , 则2~(3,)3Y B ,且{3,1}{2,0}M X Y X Y =====. 由题意知事件{3,1}X Y ==与{2,0}X Y ==互斥,且事件{3}X =与{1}Y =,事件{2}X =与{0}Y =均相互独立, 从而由(1)知()({3,1}{2,0})P M P X Y X Y =====(3,1)(2,0)P X Y P X Y ===+== (3)(1)(2)(0)P X P Y P X P Y ===+==824120279927243=⨯+⨯=. 10.【2019年高考北京卷理数】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(1)从全校学生中随机抽取1人,估计该学生上个月A ,B 两种支付方式都使用的概率;(2)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由.【答案】(1)0.4;(2)分布列见解析,E (X )=1;(3)见解析.【解析】(1)由题意知,样本中仅使用A 的学生有18+9+3=30人,仅使用B 的学生有10+14+1=25人,A ,B 两种支付方式都不使用的学生有5人.故样本中A ,B 两种支付方式都使用的学生有100−30−25−5=40人.所以从全校学生中随机抽取1人,该学生上个月A ,B 两种支付方式都使用的概率估计为400.4100=. (2)X 的所有可能值为0,1,2.记事件C 为“从样本仅使用A 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”,事件D 为“从样本仅使用B 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”.由题设知,事件C ,D 相互独立,且93141()0.4,()0.63025P C P D ++====. 所以(2)()()()0.24P X P CD P C P D ====,(1)()P X P CD CD == ()()()()P C P D P C P D =+ 0.4(10.6)(10.4)0.6=⨯-+-⨯0.52=,(0)()()()0.24P X P CD P C P D ====.所以X 的分布列为X 0 1 2 P0.240.520.24故X 的数学期望()00.2410.5220.241E X =⨯+⨯+⨯=.(3)记事件E 为“从样本仅使用A 的学生中随机抽查3人,他们本月的支付金额都大于2000元”. 假设样本仅使用A 的学生中,本月支付金额大于2000元的人数没有变化, 则由上个月的样本数据得33011()C 4060P E ==. 答案示例1:可以认为有变化. 理由如下:P (E )比较小,概率比较小的事件一般不容易发生.一旦发生,就有理由认为本月的支付金额大于2000元的人数发生了变化,所以可以认为有变化. 答案示例2:无法确定有没有变化.理由如下: 事件E 是随机事件,P (E )比较小,一般不容易发生, 但还是有可能发生的,所以无法确定有没有变化.11.【2019年高考全国Ⅰ卷理数】为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性. 【答案】(1)分布列见解析;(2)(i)证明见解析,(ii) 45 127p =,解释见解析. 【解析】X 的所有可能取值为1,0,1-.(1)(1)P X αβ=-=-,(0)(1)(1)P X αβαβ==+--, (1)(1)P X αβ==-,所以X 的分布列为(2)(i )由(1)得0.4,0.5,0.1a b c ===.因此110.40.5 0.1i i i i p p p p -+=++,故110.1()0.4()i i i i p p p p +--=-, 即114()i i i i p p p p +--=-. 又因为1010p p p -=≠, 所以1{}(0,1,2,,7)i i p p i +-=为公比为4,首项为1p 的等比数列.(ii )由(i )可得88776100p p p p p p p p =-+-++-+877610()()()p p p p p p =-+-++-81413p -=.由于8=1p ,故18341p =-,所以44433221101( 411()327)(5())p p p p p p p p p p -=-+-+-+=-=. 4p 表示最终认为甲药更有效的概率,由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时, 认为甲药更有效的概率为410.0039257p =≈, 此时得出错误结论的概率非常小,说明这种试验方案合理.12.【广西桂林市、崇左市2019届高三下学期二模联考】在某项测试中,测量结果ξ服从正态分布2(1,)(0)N σσ>,若(01)0.4P ξ<<=,则(02)P ξ<<= A .0.4 B .0.8 C .0.6D .0.2【答案】B【解析】由正态分布的图象和性质得(02)2(01)20.40.8P P ξξ<<=<<=⨯=.故选B .【名师点睛】本题主要考查正态分布的图象和性质,考查正态分布指定区间的概率的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.13.【河南省洛阳市2019届高三第三次统一考试】已知某地区中小学生人数和近视情况分别如图甲和图乙所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为A .100,10B .100,20C .200,10D .200,20【答案】D【解析】由题得样本容量为(350020004500)2%100002%200++⨯=⨯=, 抽取的高中生人数为20002%40⨯=人,则近视人数为400.520⨯=人,故选D .14.【陕西省2019届高三年级第三次联考】同时抛掷2枚质地均匀的硬币4次,设2枚硬币均正面向上的次数为X ,则X 的数学期望是 A .1B .2C .32D .52【答案】A【分析】先计算依次同时抛掷2枚质地均匀的硬币,恰好出现2枚正面向上的概率,进而利用二项分布求数学期望即可.【解析】∵一次同时抛掷2枚质地均匀的硬币,恰好出现2枚正面向上的概率为111224⨯=, ∴1~(4,)4X B ,∴1()414E X =⨯=.故选A . 【名师点睛】求离散型随机变量期望的一般方法是先求分布列,再求期望.如果离散型随机变量服从二项分布~(,)B n p ,也可以直接利用公式()E np ξ=求数学期望.15.【江西省新八校2019届高三第二次联考】某学校高一年级1802人,高二年级1600人,高三年级1499人,先采用分层抽样的方法从中抽取98名学生参加全国中学生禁毒知识竞赛,则在高一、高二、高三三个年级中抽取的人数分别为 A .35,33,30 B .36,32,30 C .36,33,29D .35,32,31【答案】B【分析】先将各年级人数凑整,从而可确定抽样比;再根据抽样比计算得到各年级抽取人数. 【解析】先将每个年级的人数凑整,得高一:1800人,高二:1600人,高三:1500人,则三个年级的总人数所占比例分别为1849,1649,1549, 因此,各年级抽取人数分别为18983649⨯=,16983249⨯=,15983049⨯=,故选B . 16.【浙江省三校2019年5月第二次联考】已知甲口袋中有3个红球和2个白球,乙口袋中有2个红球和3个白球,现从甲、乙口袋中各随机取出一个球并相互交换,记交换后甲口袋中红球的个数为ξ,则()E ξ=A .145 B .135 C .73D .83【答案】A【分析】先求出ξ的可能取值及取各个可能取值时的概率,再利用1122()i i E p p p ξξξξ=++++可求得数学期望.【解析】ξ的可能取值为2,3,4,2ξ=表示从甲口袋中取出一个红球,从乙口袋中取出一个白球,故339(2)5525P ξ==⨯=;3ξ=表示从甲、乙口袋中各取出一个红球,或从甲、乙口袋中各取出一个白球,故322312(3)555525P ξ==⨯+⨯=;4ξ=表示从甲口袋中取出一个白球,从乙口袋中取出一个红球,故224(4)5525P ξ==⨯=,所以912414()2342525255E ξ=⨯+⨯+⨯=.故选A .17.【福建省泉州市2019届高三第二次(5月)质检】已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为x ,方差为2s ,则 A .270,75x s =< B .270,75x s => C .270,75x s ><D .270,75x s ><【答案】A【分析】分别根据数据的平均数和方差的计算公式,求得2,x s 的值,即可得到答案.【解析】由题意,可得7050806070907050x ⨯+-+-==,设收集的48个准确数据分别记为1248,,,x x x ,则222221248175[(70)(70)(70)(6070)(9070)]50x x x =-+-++-+-+-22212481[(70)(70)(70)500]50x x x =-+-++-+, 22222212481[(70)(70)(70)(8070)(7070)]50s x x x =-+-++-+-+-22212481[(70)(70)(70)100]7550x x x =-+-++-+<, 所以275s <.故选A .【名师点睛】本题主要考查了数据的平均数和方差的计算公式的应用,其中解答中熟记数据的平均数和方差的公式,合理准确计算是解答的关键,着重考查了推理与运算能力,是基础题.18.【广东省汕头市2019届高三第二次模拟考试(B 卷)】在某次高中学科竞赛中,4000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中数据用该组区间中点作代表,则下列说法中有误的是A .成绩在[70,80]分的考生人数最多B .不及格的考生人数为1000人C .考生竞赛成绩的平均分约70.5分D .考生竞赛成绩的中位数为75分【答案】D【解析】由频率分布直方图可得,成绩在[70,80]的频率最高,因此考生人数最多,故A 正确;由频率分布直方图可得,成绩在[40,60)的频率为0.25,因此,不及格的人数为40000.251000⨯=,故B 正确;由频率分布直方图可得:平均分等于450.1550.15650.2750.3850.15⨯+⨯+⨯+⨯+⨯+950.170.5⨯=,故C 正确;因为成绩在[40,70)的频率为0.45,由[70,80]的频率为0.3,所以中位数为0.05701071.670.3+⨯≈,故D 错误.故选D .19.【天津市南开中学2019届高三模拟试题】《中国诗词大会》是央视推出的一档以“赏中华诗词,寻文化基因,品生活之美”为宗旨的大型文化类竞赛节目,邀请全国各个年龄段、各个领域的诗词爱好者共同参与诗词知识比拼.“百人团”由一百多位来自全国各地的选手组成,成员上至古稀老人,下至垂髫小儿,人数按照年龄分组统计如下表:(1)用分层抽样的方法从“百人团”中抽取6人参加挑战,求从这三个不同年龄组中分别抽取的挑战者的人数; (2)在(1)中抽出的6人中,任选2人参加一对一的对抗比赛,求这2人来自同一年龄组的概率. 【答案】(1)1,3,2;(2)415. 【分析】(1)先求出样本容量与总体个数的比,由此利用分层抽样的方法能求出从这三个不同年龄组中分别抽取的挑战者的人数;(2)从分层抽样的方法从“百人团”中抽取6人参加挑战,这三个不同年龄组[7,20),[20,40),[40,80)中分别抽取的挑战者的人数分别为1,3,2.从抽出的6人中,任选2人参加一对一的对抗比赛,基本事件总数26C 15n ==,这2人来自同一年龄组包含的基本事件个数为2232C C 4m =+=,由此能求出这2人来自同一年龄组的概率.【解析】(1)∵样本容量与总体个数的比是6110818=, ∴样本中包含3个年龄段落的个体数分别是:年龄在[7,20)的人数为6108⨯18=1, 年龄在[20,40)的人数为6108⨯54=3, 年龄在[40,80)的人数为6108⨯36=2, ∴从这三个不同年龄组[7,20),[20,40),[40,80)中分别抽取的挑战者的人数分别为1,3,2. (2)从分层抽样的方法从“百人团”中抽取6人参加挑战,这三个不同年龄组[7,20),[20,40),[40,80)中分别抽取的挑战者的人数分别为1,3,2.从抽出的6人中,任选2人参加一对一的对抗比赛,基本事件总数为26C 15n ==, 这2人来自同一年龄组包含的基本事件个数为2232C C 4m =+=,∴这2人来自同一年龄组的概率415m P n ==. 20.【2019北京市通州区三模】为调查某公司五类机器的销售情况,该公司随机收集了一个月销售的有关数据,公司规定同一类机器销售价格相同,经分类整理得到下表:利润率是指:一台机器销售价格减去出厂价格得到的利润与该机器销售价格的比值. (1)从该公司本月卖出的机器中随机选一台,求这台机器利润率高于0.2的概率;(2)从该公司本月卖出的销售单价为20万元的机器中随机选取2台,求这两台机器的利润率不同的概率; (3)假设每类机器利润率不变,销售一台第一类机器获利1x 万元,销售一台第二类机器获利2x 万元,…,销售一台第五类机器获利5x ,依据上表统计数据,随机销售一台机器获利的期望为()E x ,设123455x x x x x x ++++=,试判断()E x 与x 的大小.(结论不要求证明) 【答案】(1)13;(2)1021;(3)()E x x <. 【分析】(1)先由题意确定,本月卖出机器的总数,再确定利润率高于0.2的机器总数,即可得出结果;(2)先由题意确定,销售单价为20万元的机器分别:是第一类有5台,第三类有10台,共有15台,记两台机器的利润率不同为事件B ,由11510215C C ()C P B =即可结果;(3)先由题意确定,x 可能取的值,求出对应概率,进而可得出()E x ,再由123455x x x x x x ++++=求出均值,比较大小,即可得出结果.【解析】(1)由题意知,本月共卖出30台机器, 利润率高于0.2的是第一类和第四类,共有10台. 设“这台机器利润率高于0.2”为事件A ,则101()303P A ==. (2)用销售总额除以销售量得到机器的销售单价,可知第一类与第三类的机器销售单价为20万,第一类有5台,第三类有10台,共有15台,随机选取2台有215C 种不同方法, 两台机器的利润率不同则每类各取一台有11510C C 种不同方法,设两台机器的利润率不同为事件B ,则11510215C C 10()C 21P B ==. (3)由题意可得,x 可能取的值为8,5,3,1051(8)306P x ===,21(5)3015P x ===, 1083(3)305P x +===,51(10)306P x ===,因此113177853*******(55)E x =⨯+⨯+⨯+⨯=;又8531032955x ++++==,所以()E x x <.21.【江西省新八校2019届高三第二次联考】某种水果按照果径大小可分为四类:标准果、优质果、精品果、礼品果.某采购商从采购的一批水果中随机抽取100个,利用水果的等级分类标准得到的数据如下:(1)若将频率是为概率,从这100个水果中有放回地随机抽取4个,求恰好有2个水果是礼品果的概率;(结果用分数表示)(2)用样本估计总体,果园老板提出两种购销方案给采购商参考, 方案1:不分类卖出,单价为20元/kg . 方案2:分类卖出,分类后的水果售价如下:从采购单的角度考虑,应该采用哪种方案?(3)用分层抽样的方法从这100个水果中抽取10个,再从抽取的10个水果中随机抽取3个,X 表示抽取的是精品果的数量,求X 的分布列及数学期望()E X . 【答案】(1)96625;(2)第一种方案;(3)分布列见解析,6()5E X =. 【分析】(1)计算出从100个水果中随机抽取一个,抽到礼品果的概率;则可利用二项分布的概率公式求得所求概率;(2)计算出方案2单价的数学期望,与方案1的单价进行比较,选择单价较低的方案;(3)根据分层抽样原则确定抽取的10个水果中,精品果4个,非精品果6个;则X 服从超几何分布,利用超几何分布的概率计算公式可得到每个X 取值对应的概率,从而可得分布列;再利用数学期望的计算公式求得结果. 【解析】(1)设从100个水果中随机抽取一个,抽到礼品果的事件为A ,则201()1005P A ==, 现有放回地随机抽取4个,设抽到礼品果的个数为X ,则1~(4,)5X B , 所以恰好抽到2个礼品果的概率为22244196(2)C ()()55625P X ===, (2)设方案2的单价为ξ,则单价的期望值为134216548848()1618222420.61010101010E ξ+++=⨯+⨯+⨯+⨯==, 因为()20E ξ>,所以从采购商的角度考虑,应该采用第一种方案. (3)用分层抽样的方法从100个水果中抽取10个,则其中精品果4个,非精品果6个, 现从中抽取3个,则精品果的数量X 服从超几何分布,所有可能的取值为0,1,2,3,则36310C 1(0)C 6P X ===;2164310C C 1(1)C 2P X ===; 1264310C C 3(2)C 10P X ===;34310C 1(3)C 30P X ===,所以X 的分布列如下:所以()01236210305E X =⨯+⨯+⨯+⨯= 【名师点睛】本题考查二项分布求解概率、数学期望的实际应用、超几何分布的分布列与数学期望的求解问题,关键是能够根据抽取方式确定随机变量所服从的分布类型,从而可利用对应的概率公式求解出概率.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019高考数学概率、统计汇编1.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A.516B.1132C.2132D.11162.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A.中位数B.平均数C.方差D.极差3.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是A.8号学生B.200号学生C.616号学生D.815号学生4.设0<a<1,则随机变量X的分布列是则当a在(0,1)内增大时A.D(X)增大B.D(X)减小C.D(X)先增大后减小D.D(X)先减小后增大5.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是A.16B.14C.13D.126.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A.0.5 B.0.6 C.0.7 D.0.87.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A.23B.35C.25D.158.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙9.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有2 0个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.10.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是____________.11.已知一组数据6,7,8,8,9,10,则该组数据的方差是.12.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是.13.为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同。

经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70. (1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).14.2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有人,现采用分层抽样的方法,从该单位上述员工中抽取人调查专项附加扣除的享受情况. (Ⅰ)应从老、中、青员工中分别抽取多少人?(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为.享受情况如右表,其中“”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.72,108,12025,,,,,A B C D E F ○(i )试用所给字母列举出所有可能的抽取结果;(ii )设为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件发生的概率.15.设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望; (Ⅱ)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.16.为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A 、B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液,每组小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70. (1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).MM17.某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602≈.18.11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.19.某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++.20.为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性.21.在平面直角坐标系xOy 中,设点集{(0,0),(1,0),(2,0),,(,0)}n A n =⋯,{(0,1),(,1)},{(0,2),(1,2),(2,2),,(,2)},.n n B n C n n *==∈N令n nn n M A B C =.从集合M n 中任取两个不同的点,用随机变量X 表示它们之间的距离.(1)当n =1时,求X 的概率分布;(2)对给定的正整数n (n ≥3),求概率P (X ≤n )(用n 表示).22.改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(Ⅰ)估计该校学生中上个月A ,B 两种支付方式都使用的人数;(Ⅱ)从样本仅使用B 的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率; (Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B 的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B 的学生中本月支付金额大于2000元的人数有变化?说明理由.23.改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.。

相关文档
最新文档